OL DEG 3675081 0018329 1 i O1E 18329 D 7-39-07 3875081 GE SOLID STATE Standard Power MOSFETs IRF510, IRF511, IRF512, IRF513 Power MOS Field-Effect Transistors N-Channel Enhancement-Mode Power Field-Effect Transistors 3.5A and 4.0A, 60V-100V fos(On) = 0.6 Q and 0.8Q Features: & SOA is power-dissipation limited Nanosecond switching speeds @ Linear transfer characteristics High input impedance @ Majority carrier device The IRF510, IRF511, IRF512 dnd IRF513 are n-channel enhancement-mode silicon-gate power field- effect transistors designed for applications such as switch- ing regulators, switching converters, motor drivers, relay drivers, and drivers for high-power bipolar switching tran- sistors requiring high speed and low gate-drive power. These types can be operated directly from integrated circuits. The IRF-types are supplied in the JEDEC TO-220AB plastic package. Absolute Maximum Ratings File Number 1573 N-CHANNEL ENHANCEMENT MODE $s $2CS-39741 TERMINAL DIAGRAM TERMINAL DESIGNATION DRAIN (FLANGE) O CS [ SOURCE [or DRAIN b care TO VIEW 92CS-39528 JEDEC TO-220AB Parameter IRF510 IRFS11 1RF12 'RF5 13 Units Vps Oram - Source Voltage O 100 60 100 60. v VDGR Drain - Gate Vonage (Rqg = 20K0} 100 60 100 60 v Ip @Te = 25C Continuous Drain Current 4.0 4.0 3.5 35 A Ip @ Te = 100C Continuous Drain Current 2.6 2.5 2.0 20 A tom Pulsed Drain Current @ 16 16 14 14 A V6s Gate - Source Voltage +20 v Pp @ Tc = 25C Max. Power Dissipation 20 (See Fig 14} wW Linear Derating Factor 0.16 (See Fig 14) W?C tlm Inductive Current, Clamped (See Fig, 15 and 16)L = 100nH A 16 - 16 j 14 i 14 Tp Storage Temporature Range 755 to 160 *c Lead Temperature 300 (0 O63 in (t.6mm} from case for 10s} C 272 :; . a Ol DEG 3875081 00148330 4 i ~ 3875081 G E SOLID STATE o1 18330 OT S9I-OPF Standard Power MOSFETs IRF510, IRF511, IRF512, IRF513 Electrical Characteristics @T = 25C (Unless Otherwise Specified) Parameter Typo Min. | Typ | Max Units. Test Conditrons BYpsg Drain - Source Breakdown Voltage Ineete 100 _ _ Vv Vgg = OV . IRFS11 - ine513 | - - v Ip = 25024 VeSuh) Gate Threshold Vottage ALL 20 | - | 40 Vv Vos = Vas. lp = 250A Iggg __ Gate-Source Leakage Forward ALL = [s00 [nA Vos = 20V igss _ Gate-Source Leakage Reverse ALL - -_|-500 nA Vos = -20V 'pss Zero Gate Voltage Drain Current ALL - = 250 BA Vps = Max Rating, Vgg = OV ~ |1000] pa Vps = Max Rating x 0.8. Vg = OV, Te = 125C inten) On State Drain Current @ IRF510 Fag _ _ A (Ri " = aE Ys? 'pton *Apstont max. Yas = 10 taesia | 25 | - | ~ A Rpsion} Static Drain-Source On State IRFS10 . {on} Resistance iRES11 o5} 06 | 8 iAFS12 Vgg = 10V.Ip = 20A IRFS13 - a6 og 2 ts Forward Teansconductance @ ALL 19 f15[ stv) Vos > 'ptont * Moston max.: 'p = 2-04 Cics__ Input Capacitance ALL | t3s | 150 [oF Ves = OV. Vpg = 26V.1 = 1 OMHz Coss Output Capacitance ALL ~ 80 | 100 | pF See Fig. 10 Cisg Reverse Transfer Capacitance ALL = 20 | 25 pF Tton) __ Turn-On Delay Time ALL = 10 | 20 ns Von = 05 BV Ip = 2-00.29 = 502 t, Rise Time ALL = 16 25, ns Seefig 17 tatoity Turn Off Delay Time ALL - 15 25. ns (MOSFET switching umes are essentially tf Fall Time "ALL _ 10 20 nS independent of operating temperature.) Tatal Gate Charge _ Vgg = 10Viip = 8.04, Vog = 0.8 Max. Rating Oa [GeteSousce Pes Gate Drain ALL 5.0} 78 | ae See Fig. 18 fortest cireurt. (Gate charge is essentially Qgs Gate Source Charge ALL _ 2.0 _ nc independent of operating temperature] [Ogg Gate Drain ("Miler") Charge ALL - 3.0} - nc lp intemal Drain Inductance - 35 - nH Measured from the Modified MOSFET contact screw on tab symbol showing the to centar of die. internal device ALL - 45 - nH Measured from the drain tead, Gmm (0 25 D In.) from package to center of die. Lo ls Internal Source Inductance ALL - 7B] - aH Measured from the source lead, 6mm 6 ts (0 25 in.) fram package to source bonding pad $s Thermat Resistance Finjc Junction to Case ALL - - 64 | C/W Rincs Case to Sink ALL - 10 Cw Mounting surface flat, smooth, and greased Rhian Junction to Amb.ent ALL - = ao | CAN Free Atr Operation Source-Drain Diode Ratings and Characteristics ts Continuous Source Curent IRF510 _ _ 4.0 A Modified MOSFET symbo! (Body Diode} IAFS 11 * showing the integral IRFS12 reverse P-N junction rectifier, o asia] ~ | ~ | 38 | A tsa Pulse Source Current IRF510 (Body Diode) @ ress | ~ | ~ | 6 | A 6 . IRFS12 s mesis | ~ | ~ | 4 4 Vso rode Forward Voltage @ ee) - | fe v To = 25C, Ig = 4.04, Vgg = OV 1AFB 12 _ _ _ inesig | ~ | 20 v To = 26C, ts = 3.5A, Vgg = OV te Reverse Recovery Time ALL ~ [| 230 [ ns Ty = 150C, Ip = 4 OA, dipidt = 100Alzs Qar Reverse Recovered Charge ALL = [14 [ [oat Ty = 150C, ip = 4.0, dip/dt = 100Alas ton Forward Tum-on Time ALL Intrinsic tum on time is negligible Turn on spead ts substantisily controlled by Lg + Lp. @Ty = 25C to 150C. @ Pulse Test: Pulsa width < 300ps, Duty Cycle 2%. @ Repetiuve Raung: Pulse width imited by max, junction temperatura, See Transient Thermal Impadance Curve (Fig 5). COO 273 a3875081 GE SOLID STATE Standard Power MOSFETs oy eff sazsoa1 oo1aaaio O1E 18331 IRF510, IRF511, IRF512, IRF513 ao 12 4 58 4a 40 32 Ip, DRAIN CURRENT (AMPERES) o ty n i) 0 Vos, DRAIN-TO-SOURCE VOLTAGE (VOLTS} Fig. 1 Typical Output Characteristics ao 64 56 48 40 ray Ip, DRAIN CURRENT AMPERES 08 9 0 05 10 18 20 25 #30 395 40 45 Vos, DRAIN TO SOURCE VOLTAGE (VOLTS} Fig. 3 Typical Saturation Characteristics son o a B 2 b a Zihycitl/Reryg. NORMALIZED EFFECTIVE TRANSIENT THERMAL IMPEOANCE (PEA UNIT} we oat ws 2 5 wt 2 5 wd 2 Vos > 'D fon} 1 Apstan) max. 4 ' Ts | Ty= 55C Ig, DRAGH CLARENT (AMPERES) au a 2 4 6 8 10 Vas, GATE TO SOURCE VOLTAGE (VOLTS) Fig. 2 Typical Transfer Characteristics AREA IS LIMITED ey Ip, ORAIN CURRENT (AMPERES) Tg = 25C y= 150C MAX. Rthuc = 6 SINGLE PULSE 50 to 2 5 W 20 sO 100 200 500 Vos. ORAIN TO-SOURCE VOLTAGE {VOLTS} Fig. 4 Maximum Safe Operating Area jst 1. DUTY FACTOR. D = + . 2 PER UNIT BASE = Rinye = 6 4 DEG CW. 3 Taa- Te = Pos Zac & 2 2 5 gl 2 6 1 2 5 10 ty, SQUARE WAVE PULSE OURATION (SECONDS} Fig. 5 Maximum Effective Transient Thermal tmpedance, Junction-to-Case Vs. Pulse Duration 274 D T- 39-073875081 GE SOLID STATE Bu pe ff aazsoan n01a33e 4h i O1E 18332 ~ 2 - a "ptoa} * Sas(oot eo & Lal ~ a ty, TRANSCONDUCTANCE (SIEMENS) - y we o @ of 16 24 32 40 48 56 Ip, ORAIN CURRENT (AMPERES) 64 72 80 Fig. 6 Typical Transconductance Vs. Drain Current {NORMALIZED} Bs BVoss DAAIN-TO-SGURCE BREAKOOWN VOLTAGE 2 % 39 40 2G OO OO Ty JUNCTION TEMPERATURE @c) 100 120 10 Fig. 8 Breakdown Voltage Vs. Temperature ywieer ' Can Cg # Cg, Cas SHORTED Cre * Ops Cog t Cg g C. CAPACITANCE {oF} g Q w a x a Vpg, ORAIN TO-SOURCE VOLTAGE (VOLTS? A) Dd T~397 OF Standard Power MOSFETs IRF510, IRF511, IRF512, IRF513 w 0 Upp. REVERSE ORAIN CURRENT (AMPERES) 6 0 02 G o6 08 10 12 14 16 18 Vp, SOURCE TO DRAIN VOLTAGE (VOLTS) 20 Fig. 7 Typical Soures-Drain Diode Forward Voitage 250 (NORMALIZED) BOR S g Fister). DRAIN-TO-SOURCE ON RESISTANCE 2 y a oo COD Ty, JUNCTION TEMPERATURE (C) 1oo 120140 Fig. 9 - Normalized On-Resistance Vs. Temperature 20 3 a o Vgs. GATE TO-SOUACE VOLTAGE (VOLTS) Ips 8A FOR TEST CIRCUIT 0 8 10 2 4 6 Oy. TOTAL GATE CHARGE (nC) Fig. 10 Typical Capacitance Vs. Drain-to-Source Voltage Fig. 11 -- Typical Gate Charge Vs. Gate-to-Source Voltage 2753875081 G E SOLID STATE Standard Power MOSFETs O1 ve sazsoai 0014333 3 O1E 18333 -D T-39-O9 IRF510, IRF511, IRF512, IRF513 20 CURRENT INITIAL Ty 2506 (HEATING OF 20 ys is a & 2 in Vgs20v Reston). ORAIN-TO-SOURCE ON RESISTANCE (OHMS) 5 10 15 a Ip. ORAIN CURRENT (AMPERES) Fig. 12 Typical On-Resistance Vs. Drain Current 20 Pp, POWER DISSIPATION (WATTS) s a 2 4 & VARY ty TO OBTAIN AEQUIREO SEAK re terabf , | ouT ue E) *058Vpg5 Vc #0 758VQ55 Fig. 15 Clamped Inductive Test Circuit - ADJUST AL TO OBTAIN PULSE GENERATOR r TO SCOFE O01 HIGH FREQUENCY SHUAT Fig. 17 Switching Time Test Circuit 276 Ig. DRAIN CURRENT (AMPERES) 0 a Ly 5 100 125 150 Tg, CASE TEMPERATURE () Fig. 13 Maximum Drsin Current Vs, Case Temperature 0 100 10 40 Te. CASE TEMPERATURE (6C) Fig, 14 Power Vs. Temperature Derating Curve Fig. 16 Clamped Inductive Waveforms o Vos CURRENT USOLATED REGULATOR 6 SUPPLY) SAME TYEE AS OUT Rv 7 BATTERY | IG 0 CURRENT = CUARENT SHUNT Fig. 18 Gate Charge Test Circuit