Data Sheet
Broadcom AV02-2936EN
February 16, 2018
Description
This family of SMT LEDs is packaged in the industry
standard PLCC-2 package. These SMT LEDs have high
reliability performance and are designed to work under a
wide range of environmental conditions. This high reliability
feature makes them ideally suited to be used as interior
signs application conditions.
To facilitate easy pick and place assembly, the LEDs are
packed in EIA-compliant tape and reel. Every reel will be
shipped in single intensity and color bin.
These LEDs are compatible with reflow soldering process.
The wide viewing angle at 120° makes these LEDs ideally
suited for panel, push button, office equipment, industrial
equipment, and home appliances. The flat top emitting
surface makes it easy for these LEDs to mate with light
pipes. With the built-in reflector pushing up the intensity of
the light output, these LEDs are also suitable to be used as
LED pixels in interior electronic signs.
Features
High reliability package with silicone encapsulation
Compatible with reflow soldering process
High optical efficiency with 100 lm/W
Available in 8-mm carrier tape with reel diameter
180 mm
JEDEC MSL 3 product
ESD threshold of 1000V (HBM model) per JEDEC
Applications
Non-automotive use
General signage backlighting
Amusement machine backlighting
Industrial lighting
Light strips
CAUTION! LEDs are ESD sensitive. Please observe appropriate precautions during handling and processing.
ASMT-UWB1-Nxxxx
OneWhite Surface-Mount PLCC-2 LED Indicator
Broadcom AV02-2936EN
2
ASMT-UWB1-Nxxxx Data Sheet OneWhite Surface-Mount PLCC-2 LED Indicator
Package Drawing
NOTE:
1. All dimensions in millimeters.
2. Terminal finish = Ag plating.
Device Selection Guide
Color Part Number CCT (K)
Luminous Intensity (mcd)a, b
a. The luminous intensity is measured at the mechanical axis of the lamp package. The actual peak of the spatial radiation pattern may not be
aligned with this axis.
b. Tolerance ±12%
Test Current
(mA) ChipMin. Typ. Max.
White ASMT-UWB1-NX302 4500 ~ 8000 1800 2300 3550 20 InGaN
White ASMT-UWB1-NX312 2700 ~ 4000 1800 2300 3550 20 InGaN
White ASMT-UWB1-NX3A2 8000 1800 2300 3550 20 InGaN
White ASMT-UWB1-NX3B2 6500 1800 2300 3550 20 InGaN
White ASMT-UWB1-NX3C2 5700 1800 2300 3550 20 InGaN
White ASMT-UWB1-NX3D2 5000 1800 2300 3550 20 InGaN
White ASMT-UWB1-NX3E2 4500 1800 2300 3550 20 InGaN
White ASMT-UWB1-NX3F2 4000 1800 2300 3550 20 InGaN
White ASMT-UWB1-NX3G2 3500 1800 2300 3550 20 InGaN
White ASMT-UWB1-NX3H2 3000 1800 2300 3550 20 InGaN
White ASMT-UWB1-NX3J2 2700 1800 2300 3550 20 InGaN
White ASMT-UWB1-NX7B2 6500 2240 - 4500 20 InGaN
White ASMT-UWB1-NX7D2 5000 2240 - 4500 20 InGaN
White ASMT-UWB1-NX7C2 5700 2240 - 4500 20 InGaN
0.8 ± 0.3
3.5 ± 0.2
2.8 ± 0.2
0.5 ± 0.1
3.2 ± 0.2
2.2 ± 0.2
1.9 ± 0.2
0.1 TYP.
0.8 ± 0.1
CATHODE MARKING
Broadcom AV02-2936EN
3
ASMT-UWB1-Nxxxx Data Sheet OneWhite Surface-Mount PLCC-2 LED Indicator
Part Numbering System
Absolute Maximum Ratings (TA = 25°C)
Optical Characteristics (TA = 25°C)
Electrical Characteristics (TA = 25°C)
Parameters Rating
DC Forward Current a
a. Derate linearly as shown in derating curve.
30 mA
Peak Forward Currentb
b. Duty factor = 10%, frequency = 1 kHz.
100 mA
Power Dissipation 108 mW
Junction Temperature 110°C
Operating Temperature –40°C to +100°C
Storage Temperature –40°C to +100°C
Color Part Number
Dice
Technology
Typ. Chromaticity
Coordinatesa
a. The chromaticity coordinates are derived from the CIE 1931Chromaticity diagram and represents the perceived color of the device.
Viewing Angle
2½b (Degrees)
b. ½ is the off-axis angle where the luminous intensity is ½ the peak intensity.
Luminous
Efficiency e
(lm/W)
Total Flux /
Luminous
Intensity
V (lm) / IV (cd) CRI
x y Typ. Typ. Typ. Min.
White ASMT-UWB1 InGaN 0.33 0.34 120 100 2.8 70
Color Part Number
Forward Voltage
VF (Volts) @ IF = 20 mA
Reverse Voltage VRa
@ 10 µA
a. Reverse Voltage indicates product final test condition. Long-term reverse bias is not recommended.
Thermal Resistance
RJ-P (°C/W)
Min. Max. Min.
White ASMT-UWB1 2.4 3.2 5 150
Packaging Option
Color Bin Selection
Intensity Bin Selection
LED Chip Color
ASMT – U X
1
B1 – N X
2
X
3
X
4
X
5
Broadcom AV02-2936EN
4
ASMT-UWB1-Nxxxx Data Sheet OneWhite Surface-Mount PLCC-2 LED Indicator
Figure 1: Forward Current vs. Forward Voltage Figure 2: Relative Intensity vs. Forward Current
0
5
10
15
20
25
30
35
01234
FORWARD CURRENT (mA)
FORWARD VOLTAGE (V)
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
0 5 10 15 20 25 30 35
DC FORWARD CURRENT (mA)
RELATIVE LUMINOUS INTENSITY
(NORMALIZED AT 20 mA)
Figure 3: Chromaticity Shift vs. Current Figure 4: Radiation Pattern
-0.006
-0.005
-0.004
-0.003
-0.002
-0.001
0
0.001
0.002
0.003
-0.0014 -0.001 -0.0006 -0.0002 0 0.0002 0.0006
Y
X
5mA
10mA
20mA
30mA
0
0.25
0.5
0.75
1
-90 -60 -30 0 30 60 90
ANGULAR DISPLACEMENT (
q
)
NORMALIZED INTENSITY
Figure 5: Maximum Forward Current vs. Ambient
Temperature. Derated based on Tjmax 110°C, Rthja 600°C/W
Figure 6: Recommended Pb-Free Reflow Soldering Profile
0
5
10
15
20
25
30
35
0 20406080100120
MAXIMUM FORWARD CURRENT (mA)
AMBIENT TEMPERATURE (°C)
217° C
200° C
60 - 120 SEC.
6°C/SEC. MAX.
3°C/SEC. MAX.
3°C/SEC. MAX.
150° C
255 - 260° C
100 SEC. MAX.
10 - 30 SEC.
TIME
TEMPERATURE
(Acc. to J-STD-020C)
Broadcom AV02-2936EN
5
ASMT-UWB1-Nxxxx Data Sheet OneWhite Surface-Mount PLCC-2 LED Indicator
Figure 7: Recommended Soldering Pad Pattern
Figure 8: Tape Leader and Trailer Dimensions
2.60
4.50
1.50
SOLDER RESIST
END
START
Broadcom AV02-2936EN
6
ASMT-UWB1-Nxxxx Data Sheet OneWhite Surface-Mount PLCC-2 LED Indicator
Figure 9: Tape Dimensions (Unit: mm)
Figure 10: Reel Dimensions (Unit: mm)
3.85
±0.1
2.15 ±0.1 3.10 ±0.1
4.00 ±0.1
4.00 ±0.1
2.00
±0.05
3.5 ±0.1 8.00
±0.1
1.55 ±0.05
1.75 ±0.1
Cathode Marking
14.4 (MAX. MEASURED AT HUB)
7.9 (MIN.)
10.9 (MAX.)
62.5
2+0.5
–0
Ø 20.5 ± 0.3
Ø 13 ± 0.2
+0
–2.5
8.4 (MEASURED AT OUTER EDGE)
+1.50
–0.00
180
LABEL AREA (111 mm x 57 mm)
WITH DEPRESSION (0.25 mm)
ASMT-UWB1-Nxxxx Data Sheet OneWhite Surface-Mount PLCC-2 LED Indicator
Broadcom AV02-2936EN
7
Figure 11: Reel Orientation
Intensity Bin Select (X2 X3)
Individual reel will contain parts from one half bin only.
Intensity Bin Limits
Tolerance of each bin limit = ±12%
Color Bin Selection (X4)
Individual reel will contain parts from one full bin only.
CATHODE SIDE
PRINTED LABEL
USER FEED DIRECTION
X2Min IV Bin
X3
0 Full Distribution
3 3 half bins starting from x21
4 4 half bins starting from x21
5 5 half bins starting from x21
7 3 half bins starting from x22
8 4 half bins starting from x22
9 5 half bins starting from x22
Bin ID Min. (mcd) Max. (mcd)
X1 1800 2240
X2 2240 2850
Y1 2850 3550
Y2 3550 4500
Z1 4500 5600
Z2 5600 7150
AA 2000 2500
X4
Bin Color Bin ID
A 1A, 1B, 1C, 1D
B 2A, 2B, 2C, 2D
C 3A, 3B, 3C, 3D
D 4A, 4B, 4C, 4D
E 5A, 5B, 5C, 5D
F 6A, 6B, 6C, 6D
G 7A, 7B, 7C, 7D
H 8A, 8B, 8C, 8D
J 9A, 9B, 9C, 9D
K 1A, 1B, 1C, 1D, 2A, 2B, 2C, 2D,
L 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D
M 3A, 3B, 3C, 3D, 4A, 4B, 4C, 4D
N 4A, 4B, 4C, 4D, 5A, 5B, 5C, 5D
Q 6A, 6B, 6C, 6D, 7A, 7B, 7C, 7D
R 7A, 7B, 7C, 7D, 8A, 8B, 8C, 8D
S 8A, 8B, 8C, 8D, 9A, 9B, 9C, 9D
0 1A, 1B, 1C, 1D, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, 4A, 4B,
4C, 4D, 5A, 5B, 5C, 5D
1 6A, 6B, 6C, 6D, 7A, 7B, 7C, 7D, 8A, 8B, 8C, 8D, 9A, 9B,
9C, 9D
ASMT-UWB1-Nxxxx Data Sheet OneWhite Surface-Mount PLCC-2 LED Indicator
Broadcom AV02-2936EN
8
Color Bin ID Limits
Tolerance of each bin limit = ±0.01
Color
Bin ID Chromaticity Coordinates Limits
1A x 0.2950 0.2920 0.2984 0.3009
y 0.2970 0.3060 0.3133 0.3042
1B x 0.2920 0.2895 0.2962 0.2984
y 0.3060 0.3135 0.3220 0.3133
1C x 0.2984 0.2962 0.3028 0.3048
y 0.3133 0.3220 0.3304 0.3207
1D x 0.2984 0.3048 0.3068 0.3009
y 0.3133 0.3207 0.3113 0.3042
2A x 0.3048 0.3130 0.3144 0.3068
y 0.3207 0.3290 0.3186 0.3113
2B x 0.3028 0.3115 0.3130 0.3048
y 0.3304 0.3391 0.3290 0.3207
2C x 0.3115 0.3205 0.3213 0.3130
y 0.3391 0.3481 0.3373 0.3290
2D x 0.3130 0.3213 0.3221 0.3144
y 0.3290 0.3373 0.3261 0.3186
3A x 0.3215 0.3290 0.3290 0.3222
y 0.3350 0.3417 0.3300 0.3243
3B x 0.3207 0.3290 0.3290 0.3215
y 0.3462 0.3538 0.3417 0.3350
3C x 0.3290 0.3376 0.3371 0.3290
y 0.3538 0.3616 0.3490 0.3417
3D x 0.3290 0.3371 0.3366 0.3290
y 0.3417 0.3490 0.3369 0.3300
4A x 0.3371 0.3451 0.3440 0.3366
y 0.3490 0.3554 0.3427 0.3369
4B x 0.3376 0.3463 0.3451 0.3371
y 0.3616 0.3687 0.3554 0.3490
4C x 0.3463 0.3551 0.3533 0.3451
y 0.3687 0.3760 0.3620 0.3554
4D x 0.3451 0.3533 0.3515 0.3440
y 0.3554 0.3620 0.3487 0.3427
5A x 0.3530 0.3615 0.3590 0.3512
y 0.3597 0.3659 0.3521 0.3465
5B x 0.3548 0.3641 0.3615 0.3530
y 0.3736 0.3804 0.3659 0.3597
5C x 0.3641 0.3736 0.3702 0.3615
y 0.3804 0.3874 0.3722 0.3659
5D x 0.3615 0.3702 0.3670 0.3590
y 0.3659 0.3722 0.3578 0.3521
6A x 0.3670 0.3702 0.3825 0.3783
y 0.3578 0.3722 0.3798 0.3646
6B x 0.3702 0.3736 0.3869 0.3825
y 0.3722 0.3874 0.3958 0.3798
6C x 0.3825 0.3869 0.4006 0.3950
y 0.3798 0.3958 0.4044 0.3875
6D x 0.3783 0.3825 0.3950 0.3898
y 0.3646 0.3798 0.3875 0.3716
7A x 0.3889 0.3941 0.4080 0.4017
y 0.3690 0.3848 0.3916 0.3751
7B x 0.3941 0.3996 0.4146 0.4080
y 0.3848 0.4015 0.4089 0.3916
7C x 0.4080 0.4146 0.4299 0.4221
y 0.3916 0.4089 0.4165 0.3984
7D x 0.4017 0.4080 0.4221 0.4147
y 0.3751 0.3916 0.3984 0.3814
8A x 0.4147 0.4221 0.4342 0.4259
y 0.3814 0.3984 0.4028 0.3853
8B x 0.4221 0.4299 0.4430 0.4342
y 0.3984 0.4165 0.4212 0.4028
8C x 0.4342 0.4430 0.4562 0.4465
y 0.4028 0.4212 0.4260 0.4071
8D x 0.4259 0.4342 0.4465 0.4373
y 0.3853 0.4028 0.4071 0.3893
9A x 0.4373 0.4465 0.4582 0.4483
y 0.3893 0.4071 0.4099 0.3919
9B x 0.4465 0.4562 0.4687 0.4582
y 0.4071 0.4260 0.4289 0.4099
9C x 0.4582 0.4687 0.4813 0.4700
y 0.4099 0.4289 0.4319 0.4126
9D x 0.4483 0.4582 0.4700 0.4593
y 0.3919 0.4099 0.4126 0.3944
Color
Bin ID Chromaticity Coordinates Limits
ASMT-UWB1-Nxxxx Data Sheet OneWhite Surface-Mount PLCC-2 LED Indicator
Broadcom AV02-2936EN
9
Figure 12: Color Bins
Packaging Option (X5) Forward Voltage Bin
Tolerance of each bin limit = ±0.1V.
0.2800
0.3000
0.3200
0.3400
0.3600
0.3800
0.4000
0.4200
0.4400
0.2800 0.3000 0.3200 0.3400 0.3600 0.3800 0.4000 0.4200 0.4400 0.4600 0.4800
0.5000
Y
X
1A
1B
1C
1D 2A
2B
2C
2D 3A
3B 3C
3D 4A
4B 4C
4D
8OOOK
6500K
5700K
5000K
4500K
5A
5B 5C
5D 6A
6B
6C
6D
4000K
7A
7B 7C
7D
3500K
8A
8B 8C
8D
3000K
9A
9B 9C
9D
2700K
Option Test Current Package Type Reel Size
2 20 mA Top Mount 7 Inch
Bin ID Min. Max
F03 2.4 2.6
F04 2.6 2.8
F05 2.8 3.0
F06 3.0 3.2
ASMT-UWB1-Nxxxx Data Sheet OneWhite Surface-Mount PLCC-2 LED Indicator
Broadcom AV02-2936EN
10
Precautionary Notes
Handling Precautions
The encapsulation material of the LED is made of silicone
for better product reliability. Compared to epoxy
encapsulant that is hard and brittle, silicone is softer and
flexible. Observe special handling precautions during
assembly of silicone encapsulated LED products. Failure to
comply might lead to damage and premature failure of the
LED. Refer to Application Note AN5288, Silicone
Encapsulation for LED: Advantages and Handling
Precautions, for more information.
Do not poke sharp objects into the silicone encapsulant.
Sharp objects, such as tweezers or syringes, might
apply excessive force or even pierce through the
silicone and induce failures to the LED die or wire bond.
Do not touch the silicone encapsulant. Uncontrolled
force acting on the silicone encapsulant might result in
excessive stress on the wire bond. Hold the LED only
by the body.
Do not stack assembled PCBs together. Use an
appropriate rack to hold the PCBs.
The surface of the silicone material attracts dust and
dirt easier than epoxy due to its surface tackiness. To
remove foreign particles on the surface of silicone, use
a cotton bud with isopropyl alcohol (IPA). During
cleaning, rub the surface gently without putting much
pressure on the silicone. Utrasonic cleaning is not
recommended.
For automated pick and place, Broadcom has tested
the following nozzle size to work well with this LED.
However, due to the possibility of variations in other
parameters, such as pick and place, machine maker/
model and other settings of the machine, verify that the
selected nozzle will not cause damage to the LED.
Handling Moisture-Sensitive Devices
This product has a Moisture Sensitive Level 3 rating per
JEDEC J-STD-020. Refer to Broadcom Application Note
AN5305, Handling of Moisture Sensitive Surface Mount
Devices, for additional details and a review of proper
handling procedures.
Before use
An unopened moisture barrier bag (MBB) can be
stored at < 40°C/90% RH for 12 months. If the actual
shelf life has exceeded 12 months and the humidity
indicator card (HIC) indicates that baking is not
required, it is safe to reflow the LEDs per the original
MSL rating.
Do not open the MBB prior to assembly (for
example, for IQC).
Control after opening the MBB:
Read the HIC immediately upon opening the MBB.
Keep the LEDs at < 30°C / 60% RH at all times and
all high temperature-related processes, including
soldering, curing, or rework, must be completed
within 168 hours.
Control for unfinished reel:
Store unused LEDs in a sealed MBB with desiccant or
desiccator at <5% RH.
Control of assembled boards:
If the PCB soldered with the LEDs is to be subjected to
other high-temperature processes, store the PCB in a
sealed MBB with desiccant or desiccator at <5% RH to
ensure that all LEDs have not exceeded their floor life of
168 hours.
Baking is required if the following conditions exist:
The HIC indicator is not BROWN at 10% and is
AZURE at 5%.
The LEDs are exposed to condition of > 30°C / 60%
RH at any time.
The LED floor life exceeded 168 hours.
The recommended baking condition is: 60°C ± 5ºC for
20 hours.
Baking should only be done once.
Storage:
The soldering terminals of these Broadcom LEDs are
silver plated. If the LEDs are exposed in an ambient
environment for too long, the silver plating might be
oxidized, thus affecting its solderability performance. As
such, keep unused LEDs in a sealed MBB with
desiccant or in desiccator at <5% RH.
ID
OD
ID = 1.7mm
OD = 3.5mm
ASMT-UWB1-Nxxxx Data Sheet OneWhite Surface-Mount PLCC-2 LED Indicator
Broadcom AV02-2936EN
11
Application Precautions
The drive current of the LED must not exceed the
maximum allowable limit across temperature as stated
in the data sheet. Constant current driving is
recommended to ensure consistent performance.
LEDs exhibit slightly different characteristics at different
drive currents that might result in larger variations in
their performance (that is, intensity, wavelength, and
forward voltage). Set the application current as close as
possible to the test current to minimize these variations.
The LED is not intended for reverse bias. Use other
appropriate components for such purposes. When
driving the LED in matrix form, ensure that the reverse
bias voltage does not exceed the allowable limit of the
LED.
Do not use the LED in the vicinity of material with sulfur
content, in environments of high gaseous sulfur
compounds and corrosive elements. Examples of
materials that may contain sulfur are rubber gaskets,
RTV (room temperature vulcanizing) silicone rubber,
rubber gloves, and so on. Prolonged exposure to such
environments may affect the optical characteristics and
product life.
Avoid rapid change in ambient temperature, especially
in high-humidity environments, because this will cause
condensation on the LED.
Although the LED is rated as IPx6 according to
IEC60529: Degree of protection provided by enclosure,
the test condition may not represent actual exposure
during application. If the LED is intended to be used in
outdoor or harsh environments, the LED must be
protected against damages caused by rain water, dust,
oil, corrosive gases, external mechanical stress, and so on
.
Thermal Management
Optical, electrical, and reliability characteristics of LED are
affected by temperature. The junction temperature (TJ) of
the LED must be kept below allowable limit at all times. TJ
can be calculated as follows:
TJ = TA + RθJ-A × IF × VFmax
where;
TA = ambient temperature (°C)
RθJ-A = thermal resistance from LED junction to ambient
(°C/W)
IF = forward current (A)
VFmax = maximum forward voltage (V)
The complication of using this formula lies in TA and RθJ-A.
Actual TA is sometimes subjective and hard to determine.
RθJ-A varies from system to system depending on design
and is usually not known.
Another way of calculating TJ is by using solder point
temperature TS as follows:
TJ = TS + RθJ-S × IF × VFmax
where;
TS = LED solder point temperature as shown in the
following figure (°C)
RθJ-S = Thermal resistance from junction to solder point
(°C/W)
TS can be measured easily by mounting a thermocouple on
the soldering joint as shown in the preceding figure, while
RθJ-S is provided in the data sheet. Verify the TS of the LED
in the final product to ensure that the LEDs are operated
within all maximum ratings stated in the data sheet.
Eye Safety Precautions
LEDs may pose optical hazards when in operation. Do not
look directly at operating LEDs because it may be harmful
to the eyes. For safety reasons, use appropriate shielding or
personal protective equipment.
TS Point
PCB
LED Cathode
Mark
Broadcom, the pulse logo, Connecting everything, Avago Technologies, Avago, and the A logo are among the trademarks
of Broadcom and/or its affiliates in the United States, certain other countries, and/or the EU.
Copyright © 2015–2018 Broadcom. All Rights Reserved.
The term “Broadcom” refers to Broadcom Limited and/or its subsidiaries. For more information, please visit
www.broadcom.com.
Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability,
function, or design. Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does
not assume any liability arising out of the application or use of this information, nor the application or use of any product or
circuit described herein, neither does it convey any license under its patent rights nor the rights of others.
Disclaimer
Broadcom’s products are not specifically designed, manufactured, or authorized for sale as parts, components, or
assemblies for the planning, construction, maintenance, or direct operation of a nuclear facility or for use in medical devices
or applications. Customers are solely responsible, and waive all rights to make claims against Broadcom or its suppliers, for
all loss, damage, expense, or liability in connection with such use.