Si87xx 5 K V LED E MULATOR I N PU T , O PEN C OLLECTOR O UTPUT I SOLA TORS Features Pin-compatible, drop-in upgrades for popular high-speed digital optocouplers Performance and reliability advantages vs. optocouplers Resistant to temperature, age and forward current effects 10x lower FIT rate for longer service life Higher common-mode transient immunity: >50 kV/s typical Lower power and forward input diode current PCB footprint compatible with optocoupler packaging Wide range of product options 1 channel diode emulator input 3 to 30 V open collector output Propagation delay 30 ns Data rates dc to 15 Mbps Up to 5000 VRMS isolation and 10 kV surge protection AEC-Q100 qualified Wide operating temperature range -40 to +125 C RoHS-compliant packages SOIC-8 (Narrow body) DIP8 (Gull-wing) SDIP6 (Stretched SO-6) Pin Assignments: See page 20 SOIC-8, DIP8 Open Collector Output Applications Industrial automation Isolated data acquisition Motor controls and drives Test and measurement equipment Isolated switch mode power supplies SDIP6 Open Collector Output Safety Regulatory Approvals UL 1577 recognized Up to 5000 Vrms for 1 minute CSA component notice 5A approval IEC 60950-1, 60601-1 (reinforced insulation) VDE certification conformity VDE0884 Part 10 (basic/reinforced insulation) CQC certification approval GB4943.1 SOIC-8, DIP8 Open Collector Output with 20 k Pull-up Resistor Description The Si87xx isolators are pin-compatible, one-channel, drop-in replacements for popular optocouplers with data rates up to 15 Mbps. These devices isolate high-speed digital signals and offer performance, reliability, and flexibility advantages not available with optocoupler solutions. The Si87xx series is based on Silicon Labs' proprietary CMOS isolation technology for low-power and high-speed operation and are resistant to the wear-out effects found in optocouplers that degrade performance with increasing temperature, forward current, and device age. As a result, the Si87xx series offer longer service life and dramatically higher reliability compared to optocouplers. Ordering options include open collector output with and without integrated pull-up resistor and output enable options. SOIC-8, DIP8 Open Collector Output with Output Enable Patent pending Rev. 1.3 2/18 Copyright (c) 2018 by Silicon Laboratories Si87xx Si87xx Functional Block Diagram VDD Diode Emulator A1 REC XMIT IF Output Stage OUT (Open-Collector) C1 GND 2 Rev. 1.3 Si87xx TABLE O F C ONTENTS Section Page 1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1. Theory of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3. Technical Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 3.1. Device Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 3.2. Device Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 4. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.1. Input Circuit Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.2. Output Circuit Design and Power Supply Connections . . . . . . . . . . . . . . . . . . . . . . . 17 5. Pin Descriptions (SOIC-8, DIP8) Open Collector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 6. Pin Descriptions (SOIC-8, DIP8) Output Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 7. Pin Descriptions (SDIP6) Open Collector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 8. Pin Descriptions (SOIC-8, DIP8) 20 kW Pull-Up Resistor . . . . . . . . . . . . . . . . . . . . . . . . 21 9. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 10. Package Outline: 8-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 11. Land Pattern: 8-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 12. Package Outline: DIP8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 13. Land Pattern: DIP8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 14. Package Outline: SDIP6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 15. Land Pattern: SDIP6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 16. Top Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 16.1. Top Marking (8-Pin Narrow Body SOIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 16.2. Top Marking Explanation (8-Pin Narrow Body SOIC) . . . . . . . . . . . . . . . . . . . . . . . 32 16.3. Top Marking (DIP8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 16.4. Top Marking Explanation (DIP8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 16.5. Top Marking (SDIP6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 16.6. Top Marking Explanation (SDIP6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 Rev. 1.3 3 Si87xx 1. Electrical Specifications Table 1. Recommended Operating Conditions Parameter Symbol Min Typ Max Unit VDD 3 -- 30 V 3 6 3 -- -- -- 15 30 15 mA mA mA -40 -- 125 C VDD Supply Voltage IF(ON) (see Figure 1) Input Current Si87xxA Devices Si87xxB Devices Si87xxC Devices Operating Temperature (Ambient) TA Table 2. Electrical Characteristics VDD = 5 V; GND = 0 V; TA = -40 to +125 C; typical specs at 25 C; TJ = -40 to +140 C Parameter Symbol Test Condition Min Typ Max Unit DC Parameters Supply Voltage VDD (VDD-GND) 3 -- 30 V Supply Current IDD Output high or low (VDD = 5 to 30 V) -- -- 1.7 mA Input Current Threshold IF(TH) Si87xxA devices Si87xxB devices Si87xxC devices -- -- -- -- -- -- 1.8 3.6 1.8 mA mA mA Input Current Hysteresis IHYS Si87xxA devices Si87xxB devices Si87xxC devices -- -- -- 0.17 0.34 0.17 -- -- -- mA mA mA Input Forward Voltage (OFF) VF(OFF) Measured at ANODE with respect to CATHODE. -- -- 1 V Input Forward Voltage (ON) VF(ON) 1.6 -- 2.8 V f = 100 kHz VF = 0 V, VF = 2 V -- -- 15 15 -- -- pF pF Input Capacitance CI Measured at ANODE with respect to CATHODE. Logic Low Output Voltage VOL IOL = 3 mA, VDD = 3.3 or 5 V IOL = 13 mA, VDD = 5.5 V -- -- -- -- 0.4 0.7 V V Logic High Output Current IOH VDD = VOUT = 5.5 V VDD = VOUT = 24 V -- -- -- -- 0.5 1 A A Peak Output Current IOPK Peak DC collector current drive (VDD = 5 V) -- 50 -- mA Output Low Impedance ROL -- -- 54 Pull-up Resistor RPU -- 20 -- k Enable High Min VEH 2 -- 30 V Enable Low Max VEL -- -- 0.8 V Enable High Current Draw IEH VDD = VEH = 5 V -- 20 -- A Enable Low Current Draw IEL VDD = 5 V, VEL = 0 V -- -10 0 A 4 Using internal pull-up Rev. 1.3 Si87xx Table 2. Electrical Characteristics (Continued) VDD = 5 V; GND = 0 V; TA = -40 to +125 C; typical specs at 25 C; TJ = -40 to +140 C Parameter Symbol Test Condition Min Typ Max Unit AC Switching Parameters (VDD = 5 V, RL = 350 , CL = 15 pF) Maximum Data Rate FDATA Si87xxA devices Si87xxB devices Si87xxC devices DC DC DC -- -- -- 15 15 1 MBPS MBPS MBPS Minimum Pulse Width MPW Si87xxA devices Si87xxB devices Si87xxC devices 66 66 1 -- -- -- -- -- -- ns ns s Propagation Delay (Low-to-High) tPLH CL = 15 pF using 350 pull-up -- -- 60 ns Propagation Delay (High-to-Low) tPHL CL = 15 pF using 350 pull-up -- -- 60 ns Pulse Width Distortion PWD | tPLH - tPHL | -- -- 20 ns -- -- 20 ns 15 -- ns Propagation Delay Skew Rise Time Fall Time tPSK(p-p) tPSK(P-P) is the magnitude of the difference in prop delays between different units operating at same supply voltage, load, and ambient temp. tR CL = 15 pF using 350 pull-up -- tF CL = 15 pF using 350 pull-up -- 5 -- ns -- -- 40 s 20 35 20 35 50 35 -- -- -- kV/s kV/s kV/s Device Startup Time tSTART Common Mode Transient Immunity CMTI Output = low or high VCM = 1500 V (See Figure 2) IF = 3 mA for Si87xxA devices IF = 6 mA for Si87xxB devices IF = 3 mA for Si87xxC devices Rev. 1.3 5 Si87xx 10 Anode Anode ESD e 2.2 V 700 Cathode Cathode AnodetoCathodeVoltage[V] 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0 5 10 15 20 25 DiodeEmulatorInputCurrent[mA] Figure 1. Diode Emulator Model and I-V Curve 6 Rev. 1.3 30 Si87xx 12 V Supply 267 Input Signal Switch Si87xx Anode VDD 348 5V Isolated Supply VO Oscilloscope Cathode GND Isolated Ground Input High Voltage Differential Probe Output Vcm Surge Output High Voltage Surge Generator Figure 2. Common Mode Transient Immunity Characterization Circuit Rev. 1.3 7 Si87xx Table 3. Regulatory Information* CSA The Si87xx is certified under CSA Component Acceptance Notice 5A. For more details, see Master Contract Number 232873. 60950-1: Up to 1000 VRMS reinforced insulation working voltage; up to 1000 VRMS basic insulation working voltage. 60601-1: Up to 250 VRMS working voltage and 2 MOPP (Means of Patient Protection). VDE The Si87xx is certified according to VDE0884-10. For more details, see certificate 40037519. VDE0884 Part 10: Up to 1414 Vpeak for reinforced insulation working voltage. UL The Si87xx is certified under UL1577 component recognition program. For more details, see File E257455. Rated up to 5000 VRMS isolation voltage for basic protection. CQC The Si87xx is certified under GB4943.1-2011. For more details, see certificates CQC15001121489, CQC15001121490, CQC15001121284, and CQC15001121315. Rated up to 1000 VRMS reinforced insulation working voltage; up to 1000 VRMS basic insulation working voltage. *Note: Regulatory Certifications apply to 3.75 kVRMS rated devices which are production tested to 4.5 kVRMS for 1 sec. Regulatory Certifications apply to 5.0 kVRMS rated devices which are production tested to 6.0 kVRMS for 1 sec. For more information, see "9.Ordering Guide" on page 22. Table 4. Insulation and Safety-Related Specifications Parameter Symbol Test Condition Value SOIC-8 DIP8 SDIP6 Unit Nominal External Air Gap (Clearance) CLR 4.7 min 7.2 min 9.6 min mm Nominal External Tracking (Creepage) CPG 3.9 min 7.0 min 8.3 min mm Minimum Internal Gap (Internal Clearance) DTI 0.016 0.016 0.016 mm 600 600 600 V Tracking Resistance CTI or PTI IEC60112 Erosion Depth ED 0.031 0.031 0.057 mm Resistance (Input-Output)* RIO 1012 1012 1012 Capacitance (Input-Output)* CIO 1 1 1 pF f = 1 MHz *Note: To determine resistance and capacitance, the Si87xx is converted into a 2-terminal device. Pins 1-4 (1-3, SDIP6) are shorted together to form the first terminal, and pins 5-8 (4-6, SDIP6) are shorted together to form the second terminal. The parameters are then measured between these two terminals. 8 Rev. 1.3 Si87xx Table 5. IEC 60664-1 Ratings Specification Parameter Test Condition SOIC-8 DIP8 SDIP6 I I I Basic Isolation Group Material Group Installation Classification Rated Mains Voltages < 150 VRMS I-IV I-IV I-IV Rated Mains Voltages < 300 VRMS I-IV I-IV I-IV Rated Mains Voltages < 450 VRMS I-III I-III I-IV Rated Mains Voltages < 600 VRMS I-III I-III I-IV Rated Mains Voltages < 1000 VRMS I-II I-II I-III Table 6. VDE 0884-10 Insulation Characteristics* Parameter Maximum Working Insulation Voltage Input to Output Test Voltage Transient Overvoltage Surge Voltage Symbol Test Condition Unit SOIC-8 DIP8 SDIP6 630 891 1140 V peak 1181 1671 2138 V peak VPR Method b1 (VIORM x 1.875 = VPR, 100% Production Test, tm = 1 sec, Partial Discharge < 5 pC) VIOTM t = 60 sec 6000 6000 8000 V peak 6250 6250 6250 V peak VIOSM Tested per IEC 60065 with surge voltage of 1.2 s/50 s Si87xx tested with magnitude 6250 V x 1.6 = 10 kV 2 2 2 >109 >109 >109 VIORM Pollution Degree (DIN VDE 0110, Table 1) Insulation Resistance at TS, VIO = 500 V Characteristic RS *Note: This isolator is suitable for reinforced electrical isolation only within the safety limit data. Maintenance of the safety data is ensured by protective circuits. The Si87xx provides a climate classification of 40/125/21. Rev. 1.3 9 Si87xx Table 7. IEC Safety Limiting Values Parameter Symbol Case Temperature TS Input Current IS Output Power PS Test Condition JA = 110 C/W (SOIC-8), 110 C/W (DIP8), 105 C/W (SDIP6), VF = 2.8 V, TJ = 140 C, TA = 25 C Max DIP8 SDIP6 140 140 140 C 370 370 390 mA 1 1 1 W Note: Maximum value allowed in the event of a failure; also see the thermal derating curve in Figures 3, 4, and 5. 10 Rev. 1.3 Unit SOIC-8 Si87xx Table 8. Thermal Characteristics Parameter Symbol SOIC-8 DIP8 SDIP6 110 110 105 JA IC Junction-to-Air Thermal Resistance OutputPo ower Ps,InputCurrent Is Typ Unit C/W 1200 1000 Ps(mW) 800 600 Is(mA) 400 200 0 0 20 40 60 80 100 120 140 Ts CaseTemperature(C) OutputPo ower Ps,InputCurrent Is Figure 3. (SOIC-8) Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per VDE0884 part 10 1200 1000 Ps(mW) 800 600 Is(mA) 400 200 0 0 20 40 60 80 100 120 140 Ts CaseTemperature(C) Figure 4. (DIP8) Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per VDE0884 part 10 Rev. 1.3 11 OutputPo ower Ps,InputCurrent Is Si87xx 1200 1000 Ps(mW) 800 600 Is(mA) 400 200 0 0 20 40 60 80 100 120 140 Ts CaseTemperature(C) Figure 5. (SDIP6) Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per VDE0884 part 10 12 Rev. 1.3 Si87xx Table 9. Absolute Maximum Ratings* Parameter Symbol Min Max Unit TSTG -65 +150 C Operating Temperature TA -40 +125 C Junction Temperature TJ -- +140 C IF(AVG) -- -- -- 15 30 15 mA mA mA Peak Transient Input Current (< 1 s pulse width, 300 ps) IFTR -- 1 A Reverse Input Voltage VR -- 0.3 V Supply Voltage VDD -0.5 36 V Output Voltage VOUT -0.5 36 V Enable Voltage VOUT -0.5 VDD+0.5 V Output Sink Current ISINK -- 15 mA IO(AVG) -- 8 mA IOPK -- 75 mA Input Power Dissipation PI -- 90 mW Output Power Dissipation PO -- 50 mW Total Power Dissipation PT -- 140 mW Lead Solder Temperature (10 s) -- 260 C HBM Rating ESD 3 -- kV Machine Model ESD 200 -- V CDM 500 -- V Maximum Isolation Voltage (1 s) SOIC-8 -- 4500 VRMS Maximum Isolation Voltage (1 s) DIP8 -- 4500 VRMS Maximum Isolation Voltage (1 s) SDIP6 -- 6500 VRMS Storage Temperature Average Forward Input Current Si87xxA Devices Si87xxB Devices Si87xxC Devices Average Output Current Peak Output Current (VDD = 5 V) *Note: Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions specified in the operational sections of this data sheet. Rev. 1.3 13 Si87xx 2. Functional Description 2.1. Theory of Operation The Si87xx are pin-compatible, one-channel, drop-in replacements for popular optocouplers with data rates up to 15 Mbps. The operation of an Si87xx channel is analogous to that of an opto coupler, except an RF carrier is modulated instead of light. This simple architecture provides a robust isolated data path and requires no special considerations or initialization at start-up. A simplified block diagram for the Si87xx is shown in Figure 6. Transmitter Receiver RF OSCILLATOR A LED Emulator MODULATOR SemiconductorBased Isolation Barrier DEMODULATOR Figure 6. Simplified Channel Diagram 14 Rev. 1.3 Output Stage Open Collector B Si87xx 3. Technical Description 3.1. Device Behavior Truth tables for the Si87xx are summarized in Table 10. Table 10. Si87xx Truth Table Summary1 Input VDD EN2 VO 3 OFF > UVLO H HIGH OFF > UVLO L HIGH OFF < UVLO H HIGH OFF < UVLO L HIGH ON > UVLO H LOW ON > UVLO L HIGH ON < UVLO H HIGH ON < UVLO L HIGH Notes: 1. This truth table assumes VDD is powered. UVLO is typically 2.8 V. 2. Si8712 only. 3. The output voltage level is determined by the external pull-up supply. 3.2. Device Startup During start-up, Output VO floats and its voltage level is determined by the external pull-up until VDD rises above the UVLO+ threshold for a minimum time period of tSTART. Following this, the output is low when the current flowing from anode to cathode is > IF(ON). Device startup, normal operation, and shutdown behavior is shown in Figure 7. UVLO+ VDDHYS UVLO- VDD IF(ON) IHYS IF tSTART tPLH Voltage level determined by external pull-up supply tPHL tSTART tPLH VO Figure 7. Si87xx Operating Behavior (IF > IF(MIN) when VF > VF(MIN)) Rev. 1.3 15 Si87xx 4. Applications The following sections detail the input and output circuits necessary for proper operation of the Si87xx family. 4.1. Input Circuit Design Opto coupler manufacturers typically recommend the circuits shown in Figures 8 and 9. These circuits are specifically designed to improve opto-coupler input common-mode rejection and increase noise immunity. Si87xx Vdd 1 N/C R1 2 ANODE Control Input 3 CATHODE Open Drain or Collector 4 N/C Figure 8. Si87xx Input Circuit Vdd Si87xx 1 N/C 2 ANODE Control Input Q1 3 CATHODE R1 4 N/C Figure 9. High CMR Si87xx Input Circuit The optically-coupled circuit of Figure 8 turns the LED on when the control input is high. However, internal capacitive coupling from the LED to the power and ground conductors can momentarily force the LED into its off state when the anode and cathode inputs are subjected to a high common-mode transient. The circuit shown in Figure 9 addresses this issue by using a value of R1 sufficiently low to overdrive the LED, ensuring it remains on during an input common-mode transient. Q1 shorts the LED off in the low output state, again increasing commonmode transient immunity. Some opto coupler applications recommend reverse-biasing the LED when the control input is off to prevent coupled noise from energizing the LED. The Si87xx input circuit requires less current and has twice the off-state noise margin compared to opto couplers. However, high CMR opto coupler designs that overdrive the LED (see Figure 9) may require increasing the value of R1 to limit input current IF to its maximum rating when using the Si87xx. In addition, there is no benefit in driving the Si87xx input diode into reverse bias when in the off state. Consequently, opto coupler circuits using this technique should either leave the negative bias circuitry unpopulated or modify the circuitry (e.g., add a clamp diode or current limiting resistor) to ensure that the anode pin of the Si87xx is no more than -0.3 V with respect to the cathode when reverse-biased. 16 Rev. 1.3 Si87xx New designs should consider the input circuit configurations of Figure 10, which are more efficient than those of Figures 8 and 9. As shown, S1 and S2 represent any suitable switch, such as a BJT or MOSFET, analog transmission gate, processor I/O, etc. Also, note that the Si87xx input can be driven from the I/O port of any MCU or FPGA capable of sourcing a minimum of 6 mA (see Figure 10B). Additionally, note that the Si87xx propagation delay and output drive do not significantly change for values of IF between IF(MIN) and IF(MAX). Control Input Si87xx Si87xx +5V S1 R1 S2 1 N/C 2 ANODE 3 4 1 N/C 2 ANODE CATHODE 3 CATHODE N/C 4 N/C MCU I/O Port pin R1 A B Figure 10. Si87xx Other Input Circuit Configurations 4.2. Output Circuit Design and Power Supply Connections The speed of the open collector circuit is dependent upon the supply, VCC, the pullup resistor, RL, and the load modeled by CL. Figure 11 illustrates three common circuit output configurations. For VDD = 5 V operation, RL>350 is recommended to ensure proper VOL levels. For VDD = 30 V operation, RL > 2.1 kis recommended to ensure proper VOL levels. If the enable pin is used (see Figure 11B) and two separate supplies power VDD and the VO pullup resistor, the enable pin should be referenced to the VDD pin because VO cannot exceed VDD by more than 0.5 V. Figure 11C illustrates a circuit using the internal 20 k resistor. Note that GND can be biased at, above, or below ground as long as the voltage on VDD with respect to GND is a maximum of 30 V. VDD decoupling capacitors should be placed as close to the package pins as possible. The optimum values for these capacitors depend on load current and the distance between the chip and its power source. It is recommended that 0.1 and 1 F bypass capacitors be used to reduce high-frequency noise and maximize performance. Opto replacement applications should limit their supply voltages to 30 V or less. Si87xx Si87xx VDD 8 VE 7 VCC 3-30 V EN VCC2 3-30 V VDD 8 VE 7 RL EN VDD 8 VL RL 7 VCC 3-30 V RL 0.1, 1 F 0.1, 1 F 0.1, 1 F VO 6 VO 6 VO 6 CL CL CL GND 5 A Si87xx VCC1 3-30 V GND 5 GND 5 C B Figure 11. Si87xx Output Circuit Configurations Rev. 1.3 17 Si87xx 5. Pin Descriptions (SOIC-8, DIP8) Open Collector Figure 12. Pin Configuration Table 11. Pin Descriptions (SOIC-8, DIP8) Open Collector Pin Name 1 NC* 2 ANODE 3 Description No connect. Anode of LED emulator. VO follows the signal applied to this input with respect to the CATHODE input. CATHODE Cathode of LED emulator. VO follows the signal applied to ANODE with respect to this input. 4 NC* No connect. 5 GND External MOSFET source connection and ground reference for VDD. This terminal is typically connected to ground but may be tied to a negative or positive voltage. 6 VO Output signal. 7 NC* No connect. 8 VDD Output-side power supply input referenced to GND (30 V max). *Note: No Connect. These pins are not internally connected. To maximize CMTI performance, these pins should be connected to the ground plane. 18 Rev. 1.3 Si87xx 6. Pin Descriptions (SOIC-8, DIP8) Output Enable Figure 13. Pin Configuration Table 12. Pin Descriptions (SOIC-8, DIP8) Output Enable Pin Name 1 NC* 2 ANODE 3 Description No connect. Anode of LED emulator. VO follows the signal applied to this input with respect to the CATHODE input. CATHODE Cathode of LED emulator. VO follows the signal applied to ANODE with respect to this input. 4 NC* No connect. 5 GND External MOSFET source connection and ground reference for VDD. This terminal is typically connected to ground but may be tied to a negative or positive voltage. 6 VO Output signal. 7 VE Output enable. Tied to VDD to enable output. 8 VDD Output-side power supply input referenced to GND (30 V max). *Note: No Connect. These pins are not internally connected. To maximize CMTI performance, these pins should be connected to the ground plane. Rev. 1.3 19 Si87xx 7. Pin Descriptions (SDIP6) Open Collector Figure 14. Pin Configuration Table 13. Pin Descriptions (SDIP6) Open Collector Pin Name 1 ANODE 2 NC* 3 Description Anode of LED emulator. VO follows the signal applied to this input with respect to the CATHODE input. No connect. CATHODE Cathode of LED emulator. VO follows the signal applied to ANODE with respect to this input. 4 GND External MOSFET source connection and ground reference for VDD. This terminal is typically connected to ground but may be tied to a negative or positive voltage. 5 VO Output signal. 6 VDD Output-side power supply input referenced to GND (30 V max). *Note: No Connect. These pins are not internally connected. To maximize CMTI performance, these pins should be connected to the ground plane. 20 Rev. 1.3 Si87xx 8. Pin Descriptions (SOIC-8, DIP8) 20 k Pull-Up Resistor Figure 15. Pin Configuration Table 14. Pin Descriptions (SOIC-8, DIP8) 20 k Pull-Up Resistor Pin Name 1 NC* 2 ANODE 3 Description No connect. Anode of LED emulator. VO follows the signal applied to this input with respect to the CATHODE input. CATHODE Cathode of LED emulator. VO follows the signal applied to ANODE with respect to this input. 4 NC* No connect. 5 GND External MOSFET source connection and ground reference for VDD. This terminal is typically connected to ground but may be tied to a negative or positive voltage. 6 VO Output signal. 7 VL Output Pull-Up Load. Tie to VO to enable load. 8 VDD Output-side power supply input referenced to GND (30 V max). *Note: No Connect. These pins are not internally connected. To maximize CMTI performance, these pins should be connected to the ground plane. Rev. 1.3 21 Si87xx 9. Ordering Guide Table 15. Si87xx Ordering Guide1,2,3 Ordering Options New Ordering Part Number (OPN) Input/Output Configuration Data Rate (Cross Reference) Insulation Rating Temp Range Pkg Type Open Collector Output (Available in SOIC-8, DIP8, and SDIP6) Si8710AC-B-IS LED input Open collector output 15 Mbps ACPL-W611, PS9303L2 (Functional Match) 3.75 kVrms -40 to +125 C SOIC-8 Si8710BC-B-IS High CMTI LED input Open collector output 15 Mbps ACPL-W611, PS9303L2 (Functional Match) 3.75 kVrms -40 to +125 C SOIC-8 Si8710CC-B-IS LED input Open collector output 1 Mbps ACPL-W611, PS9303L2 (Functional Match) 3.75 kVrms -40 to +125 C SOIC-8 Si8710AC-B-IP LED input Open collector output 15 Mbps HCPL-4502 3.75 kVrms -40 to +125 C DIP8/GW Si8710BC-B-IP High CMTI LED input Open collector output 15 Mbps HCPL-4502 3.75 kVrms -40 to +125 C DIP8/GW Si8710CC-B-IP LED input Open collector output 1 Mbps HCPL-4502 3.75 kVrms -40 to +125 C DIP8/GW Si8710AD-B-IS LED input Open collector output 15 Mbps ACPL-W611, PS9303L2 5.0 kVrms -40 to +125 C SDIP6 Si8710BD-B-IS High CMTI LED input Open collector output 15 Mbps ACPL-W611, PS9303L2 5.0 kVrms -40 to +125 C SDIP6 Si8710CD-B-IS LED input Open collector output 1 Mbps ACPL-W611, PS9303L2 5.0 kVrms -40 to +125 C SDIP6 Notes: 1. All packages are RoHS-compliant with peak solder reflow temperatures of 260 C according to the JEDEC industry standard classifications. 2. "Si" and "SI" are used interchangeably. 3. AEC-Q100 qualified. 22 Rev. 1.3 Si87xx Table 15. Si87xx Ordering Guide1,2,3 (Continued) Ordering Options New Ordering Part Number (OPN) Input/Output Configuration Data Rate (Cross Reference) Insulation Rating Temp Range Pkg Type Open Collector Output with 20 k Pullup Resistor (Available in SOIC-8 and DIP8) Si8711AC-B-IS LED input Open collector output with integrated pullup 15 Mbps HCPL-4506 (Functional Match) 3.75 kVrms -40 to +125 C SOIC-8 Si8711BC-B-IS High CMTI LED input Open collector output with integrated pullup 15 Mbps HCPL-4506 (Functional Match) 3.75 kVrms -40 to +125 C SOIC-8 Si8711CC-B-IS LED input Open collector output with integrated pullup 1 Mbps HCPL-4506 (Functional Match) 3.75 kVrms -40 to +125 C SOIC-8 Si8711AC-B-IP LED input Open collector output with integrated pullup 15 Mbps HCPL-4506 3.75 kVrms -40 to +125 C DIP8/GW Si8711BC-B-IP High CMTI LED input Open collector output with integrated pullup 15 Mbps HCPL-4506 3.75 kVrms -40 to +125 C DIP8/GW Si8711CC-B-IP LED input Open collector output with integrated pullup 1 Mbps HCPL-4506 3.75 kVrms -40 to +125 C DIP8/GW Notes: 1. All packages are RoHS-compliant with peak solder reflow temperatures of 260 C according to the JEDEC industry standard classifications. 2. "Si" and "SI" are used interchangeably. 3. AEC-Q100 qualified. Rev. 1.3 23 Si87xx Table 15. Si87xx Ordering Guide1,2,3 (Continued) Ordering Options New Ordering Part Number (OPN) Input/Output Configuration Data Rate (Cross Reference) Insulation Rating Temp Range Pkg Type Open Collector Output with Output Enable (Available in SOIC-8 and DIP8) Si8712AC-B-IS LED input Open collector output with enable 15 Mbps HCPL-261x/260x (Functional Match) 3.75 kVrms -40 to +125 C SOIC-8 Si8712BC-B-IS High CMTI LED input Open collector output with enable 15 Mbps HCPL-261x/260x (Functional Match) 3.75 kVrms -40 to +125 C SOIC-8 Si8712CC-B-IS LED input Open collector output with enable 1 Mbps HCPL-261x/260x (Functional Match) 3.75 kVrms -40 to +125 C SOIC-8 Si8712AC-B-IP LED input Open collector output with enable 15 Mbps HCPL-261x/260x 3.75 kVrms -40 to +125 C DIP8/GW Si8712BC-B-IP High CMTI LED input Open collector output with enable 15 Mbps HCPL-261x/260x 3.75 kVrms -40 to +125 C DIP8/GW Si8712CC-B-IP LED input Open collector output with enable 1 Mbps HCPL-261x/260x 3.75 kVrms -40 to +125 C DIP8/GW Notes: 1. All packages are RoHS-compliant with peak solder reflow temperatures of 260 C according to the JEDEC industry standard classifications. 2. "Si" and "SI" are used interchangeably. 3. AEC-Q100 qualified. 24 Rev. 1.3 Si87xx 10. Package Outline: 8-Pin Narrow Body SOIC Figure 16 illustrates the package details for the Si87xx in an 8-pin narrow-body SOIC package. Table 16 lists the values for the dimensions shown in the illustration. Figure 16. 8-Pin Narrow Body SOIC Package Table 16. 8-Pin Narrow Body SOIC Package Diagram Dimensions Symbol Millimeters Min Max A 1.35 1.75 A1 0.10 0.25 A2 1.40 REF 1.55 REF B 0.33 0.51 C 0.19 0.25 D 4.80 5.00 E 3.80 4.00 e 1.27 BSC H 5.80 6.20 h 0.25 0.50 L 0.40 1.27 0 8 Rev. 1.3 25 Si87xx 11. Land Pattern: 8-Pin Narrow Body SOIC Figure 17 illustrates the recommended land pattern details for the Si87xx in an 8-pin narrow-body SOIC. Table 17 lists the values for the dimensions shown in the illustration. Figure 17. 8-Pin Narrow Body SOIC Land Pattern Table 17. 8-Pin Narrow Body SOIC Land Pattern Dimensions Dimension Feature (mm) C1 Pad Column Spacing 5.40 E Pad Row Pitch 1.27 X1 Pad Width 0.60 Y1 Pad Length 1.55 Notes: 1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P600X173-8N for Density Level B (Median Land Protrusion). 2. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed. 26 Rev. 1.3 Si87xx 12. Package Outline: DIP8 Figure 18 illustrates the package details for the Si87xx in a DIP8 package. Table 18 lists the values for the dimensions shown in the illustration. Figure 18. DIP8 Package Table 18. DIP8 Package Diagram Dimensions Dimension Min Max A -- 4.19 A1 0.55 0.75 A2 3.17 3.43 b 0.35 0.55 b2 1.14 1.78 b3 0.76 1.14 c 0.20 0.33 D 9.40 9.90 E 7.37 7.87 E1 6.10 6.60 E2 9.40 9.90 e 2.54 BSC. L 0.38 0.89 aaa -- 0.25 Notes: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. Rev. 1.3 27 Si87xx 13. Land Pattern: DIP8 Figure 19 illustrates the recommended land pattern details for the Si87xx in a DIP8 package. Table 19 lists the values for the dimensions shown in the illustration. Figure 19. DIP8 Land Pattern Table 19. DIP8 Land Pattern Dimensions* Dimension Min Max C 8.85 8.90 E 2.54 BSC X 0.60 0.65 Y 1.65 1.70 *Note: This Land Pattern Design is based on the IPC-7351 specification. 28 Rev. 1.3 Si87xx 14. Package Outline: SDIP6 Figure 20 illustrates the package details for the Si87xx in an SDIP6 package. Table 20 lists the values for the dimensions shown in the illustration. Figure 20. SDIP6 Package Table 20. SDIP6 Package Diagram Dimensions Dimension Min Max A -- 2.65 A1 0.10 0.30 A2 2.05 -- b 0.31 0.51 c 0.20 0.33 D 4.58 BSC E 11.50 BSC E1 7.50 BSC e 1.27 BSC L 0.40 1.27 h 0.25 0.75 Notes: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. Rev. 1.3 29 Si87xx Table 20. SDIP6 Package Diagram Dimensions (Continued) Dimension Min Max 0 8 aaa -- 0.10 bbb -- 0.33 ccc -- 0.10 ddd -- 0.25 eee -- 0.10 fff -- 0.20 Notes: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 30 Rev. 1.3 Si87xx 15. Land Pattern: SDIP6 Figure 21 illustrates the recommended land pattern details for the Si87xx in an SDIP6 package. Table 21 lists the values for the dimensions shown in the illustration. Figure 21. SDIP6 Land Pattern Table 21. SDIP6 Land Pattern Dimensions* Dimension Min Max C 10.45 10.50 E 1.27 BSC X 0.55 0.60 Y 2.00 2.05 *Note: This Land Pattern Design is based on the IPC-7351 specification. Rev. 1.3 31 Si87xx 16. Top Markings 16.1. Top Marking (8-Pin Narrow Body SOIC) 16.2. Top Marking Explanation (8-Pin Narrow Body SOIC) Line 1 Marking: Customer Part Number Si871 = Isolator product series X = Output configuration 0 = open collector output only 1 = open collector output w/ internal pull-up 2 = open collector output w/ output enable S = Performance Grade: A = 15 Mbps, 20 kV/s minimum CMTI B = 15 Mbps, 35 kV/s minimum CMTI C = 1 Mbps, 20 kV/s minimum CMTI V = Insulation rating C = 3.75 kV Line 2 Marking: RTTTTT = Mfg Code Manufacturing Code from the Assembly Purchase Order form. "R" indicates revision. Line 3 Marking: Circle = 43 mils Diameter Left-Justified "e4" Pb-Free Symbol YY = Year WW = Work Week Assigned by the Assembly House. Corresponds to the year and work week of the mold date. 32 Rev. 1.3 Si87xx 16.3. Top Marking (DIP8) 16.4. Top Marking Explanation (DIP8) Line 1 Marking: Customer Part Number Si871 = Isolator product series X = Output configuration 0 = open collector output only 1 = open collector output w/ internal pull-up 2 = open collector output w/ output enable S = Performance Grade: A = 15 Mbps, 20 kV/s minimum CMTI B = 15 Mbps, 35 kV/s minimum CMTI C = 1 Mbps, 20 kV/s minimum CMTI V = Insulation rating C = 3.75 kV Line 2 Marking: YY = Year WW = Work Week Assigned by the Assembly House. Corresponds to the year and work week of the mold date. RTTTTT = Mfg Code Manufacturing Code from the Assembly Purchase Order form. "R" indicates revision. Circle = 51 mils Diameter Center-Justified "e4" Pb-Free Symbol Country of Origin (Iso-Code Abbreviation) CC Line 3 Marking: Rev. 1.3 33 Si87xx 16.5. Top Marking (SDIP6) 16.6. Top Marking Explanation (SDIP6) Line 1 Marking: Device 871 = Isolator product series X = Output configuration 0 = open collector output only 1 = open collector output w/ internal pull-up 2 = open collector output w/ output enable S = Performance Grade: A = 15 Mbps, 20 kV/s minimum CMTI B = 15 Mbps, 35 kV/s minimum CMTI C = 1 Mbps, 20 kV/s minimum CMTI V = Insulation rating C = 3.75 kV; D = 5.0 kV Line 2 Marking: RTTTTT = Mfg Code Manufacturing Code from the Assembly Purchase Order form. "R" indicates revision. Line 3 Marking: YY = Year WW = Work Week Assigned by the Assembly House. Corresponds to the year and work week of the mold date. Line 4 Marking: Country of Origin (Iso-Code Abbreviation) CC 34 Rev. 1.3 Si87xx DOCUMENT CHANGE LIST Revision 0.5 to Revision 1.0 Updated various specs in Table 2 on page 4. Added Figure 1 on page 6. Added Figure 2 on page 7. Added Figure 7 on page 15. Updated various specs in Table 9 on page 16. Removed "pending" throughout. Added references to "CQC" throughout. Added references to "AEC-Q100 qualified" throughout. Updated all Top Marking figures and descriptions. Revision 1.0 to Revision 1.1 Updated Figure 1 on page 6. Updated Ordering Guide Table 15 on page 22. Removed references to moisture sensitivity levels from table note. Revision 1.1 to Revision 1.2 Removed references to LGA8 throughout. Deleted all IEC 60747-5 and IEC 61010 references throughout and added VDE 0884-10 references throughout. Updated all certification body's certificate and file reference numbers throughout. Revision 1.2 to Revision 1.3 Updated "9.Ordering Guide" on page 22. Updated 35 Table 15. Rev. 1.3 Smart. Connected. Energy-Friendly. Products Quality www.silabs.com/products www.silabs.com/quality Support and Community community.silabs.com Disclaimer Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Trademark Information Silicon Laboratories Inc.(R) , Silicon Laboratories(R), Silicon Labs(R), SiLabs(R) and the Silicon Labs logo(R), Bluegiga(R), Bluegiga Logo(R), Clockbuilder(R), CMEMS(R), DSPLL(R), EFM(R), EFM32(R), EFR, Ember(R), Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember(R), EZLink(R), EZRadio(R), EZRadioPRO(R), Gecko(R), ISOmodem(R), Micrium, Precision32(R), ProSLIC(R), Simplicity Studio(R), SiPHY(R), Telegesis, the Telegesis Logo(R), USBXpress(R), Zentri and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders. Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA http://www.silabs.com Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: Silicon Laboratories: Si8710AC-B-IP Si8710AC-B-IS Si8710AD-B-IS Si8710BC-B-IP Si8710BC-B-IS Si8710BD-B-IS Si8710CC-B-IP Si8710CC-B-IS Si8710CD-B-IS Si8711AC-B-IP Si8711AC-B-IS Si8711AD-B-IM Si8711BC-B-IP Si8711BC-B-IS Si8711BD-B-IM Si8711CC-B-IP Si8711CC-B-IS Si8711CD-B-IM Si8712AC-B-IP Si8712AC-B-IS Si8712AD-B-IM Si8712BC-B-IP Si8712BC-B-IS Si8712BD-B-IM Si8712CC-B-IP Si8712CC-B-IS Si8712CD-B-IM Si87xxDIP8-KIT Si87xxSAMP-KIT Si87xxSOIC8-KIT Si8710CD-B-ISR Si8710BD-B-ISR Si8711CC-B-IPR Si8712BC-B-ISR Si8712CC-B-IPR Si8710AD-B-ISR Si8711BC-B-IPR Si8710BC-B-ISR Si8711BD-B-IMR Si87xxLGA8-KIT Si8710AC-B-ISR Si8711AD-B-IMR Si8710BC-B-IPR Si8712AD-B-IMR Si8711CD-B-IMR Si8711CC-B-ISR Si8712CD-B-IMR Si8712CC-B-ISR Si8711BC-B-ISR Si8711AC-B-IPR Si8712AC-B-ISR Si87xxSDIP6-KIT Si8712AC-B-IPR Si8712BC-B-IPR Si8712BD-B-IMR Si8710AC-B-IPR Si8711AC-B-ISR Si8710CC-B-ISR Si8710CC-B-IPR SI8710AD-B-IS SI8710BD-B-IS SI8710CC-B-IPR SI8710CD-B-IS SI8711BC-B-IP SI8711BD-BIMR SI8712AC-B-IS SI8711AC-B-IS SI8711CD-B-IM SI8711CD-B-IMR SI87xxDIP8-KIT SI87xxLGA8-KIT SI8710AC-B-IP SI8710BD-B-ISR SI8711CC-B-ISR SI8712CC-B-ISR SI8711CC-B-IP SI8710AC-B-IS SI87xxSAMPKIT SI8712AC-B-IPR SI8712BC-B-IS SI8712CC-B-IPR SI8712CD-B-IM SI8710BC-B-IP SI8710CC-B-ISR SI8711BC-B-IPR SI8712AC-B-ISR SI8710BC-B-IS SI8710CD-B-ISR SI8712CC-B-IS SI87xxSOIC8-KIT SI8712BCB-ISR SI8711BC-B-IS SI8711CC-B-IPR SI8711AC-B-IP SI8712CC-B-IP SI8710CC-B-IP SI8711BC-B-ISR SI8710CC-B-IS SI8712BC-B-IPR SI8712BD-B-IMR