4N25V/ 4N25GV/ 4N35V/ 4N35GV Vishay Semiconductors Optocoupler, Phototransistor Output Features * Special construction: Therefore, extra low coupling capacity of typical 0.2 pF, high Common Mode Rejection * Low temperature coefficient of CTR * Rated isolation voltage (RMS includes DC) VIOWM = 600 VRMS (848 V peak) * Rated recurring peak voltage (repetitive) VIORM = 600 VRMS * Thickness through insulation 0.75 mm B 6 C 5 E 4 1 2 3 A (+) C (-) nc V D E 17186 e3 Pb Pb-free * Creepage current resistance according to VDE 0303/IEC 60112 Comparative Tracking Index: CTI 275 * Rated impulse voltage (transient overvoltage) VIOTM = 6 kV peak * Isolation test voltage (partial discharge test voltage) Vpd = 1.6 kV * Lead-free component * Component in accordance to RoHS 2002/95/EC and WEEE 2002/96/EC Order Information Agency Approvals Description * UL1577, File No. E76222 System Code A, Double Protection * BSI: BS EN 41003, BS EN 60095 (BS415), Certificate number 7081 and 7402 * DIN EN 60747-5-2 (VDE0884) DIN EN 60747-5-5 pending * VDE related features: * FIMKO (SETI): EN 60950, Certificate No. 12399 The 4N25V/ 4N25GV/ 4N35V/ 4N35GV series consists of a phototransistor optically coupled to a gallium arsenide infrared-emitting diode in a 6-lead plastic dual inline package. The elements are mounted on one leadframe using a coplanar technique, providing a fixed distance between input and output for highest safety requirements. Part Remarks 4N25GV CTR > 20 % wide lead spacing, DIP-6 4N35GV CTR > 100 % wide lead spacing, DIP-6 4N25V CTR > 20 %, DIP-6 4N35V CTR > 100 %, DIP-6 For additional information on the available options refer to Option Information. G=Leadform 10.16 mm; G is not marked on the body Applications Circuits for safe protective separation against electrical shock according to safety class II (reinforced isolation): For appl. class I - IV at mains voltage 300 V For appl. class I - III at mains voltage 600 V according to DIN EN 60747-5-2(VDE0884)/ DIN EN 607475-5 pending, table 2, suitable for: Switch-mode power supplies, line receiver, computer peripheral interface, microprocessor system interface. Document Number 83530 Rev. 1.7, 26-Oct-04 www.vishay.com 1 4N25V/ 4N25GV/ 4N35V/ 4N35GV Vishay Semiconductors Office machines (applied for reinforced isolation for mains voltage VDE Standards These couplers perform safety functions according to the following equipment standards: 400 VRMS) VDE 0804 DIN EN 60747-5-2(VDE0884)/ DIN EN 60747-5-5 pending Telecommunication apparatus and data processing Optocoupler for electrical safety requirements Safety for mains-operated electronic and related household appa- IEC EN 60950 ratus IEC 60065 Absolute Maximum Ratings Tamb = 25 C, unless otherwise specified Stresses in excess of the absolute Maximum Ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute Maximum Rating for extended periods of the time can adversely affect reliability. Input Symbol Value Reverse voltage Parameter VR 5 V Forward current IF 60 mA Forward surge current Test condition tp 10 s Power dissipation Junction temperature Unit IFSM 3 A Pdiss 100 mW Tj 125 C Unit Output Symbol Value Collector emitter voltage Parameter Test condition VCEO 32 V Emitter collector voltage VCEO 7 V mA Collector current IC 50 ICM 100 mA Pdiss 150 mW Tj 125 C Symbol Value Unit VISO 3750 VRMS Total power dissipation Ptot 250 mW Ambient temperature range Tamb - 55 to + 100 C Storage temperature range Tstg - 55 to + 125 C Tsld 260 C Collector peak current tp/T = 0.5, tp 10 ms Power dissipation Junction temperature Coupler Parameter Isolation test voltage (RMS) Soldering temperature www.vishay.com 2 Test condition t = 1 min 2 mm from case, t 10 s Document Number 83530 Rev. 1.7, 26-Oct-04 4N25V/ 4N25GV/ 4N35V/ 4N35GV Vishay Semiconductors Electrical Characteristics Tamb = 25 C, unless otherwise specified Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements. Input Typ. Max Forward voltage Parameter IF = 50 mA Test condition Symbol VF Min 1.2 1.4 Junction capacitance VR = 0, f = 1 MHz Cj 50 Unit V pF Output Symbol Min Collector emitter voltage Parameter IC = 1 mA Test condition VCEO 32 Typ. Max Unit V Emitter collector voltage IE = 100 A VECO 7 V Collector-emitter leakage current VCE = 10 V, IF = 0, Tamb = 100 C ICEO 50 nA VCE = 30 V, IF = 0, Tamb = 100 C ICEO 500 A Max Unit 0.3 V Coupler Parameter Test condition Symbol Min Typ. Collector emitter saturation voltage IF = 50 mA, IC = 2 mA VCEsat Cut-off frequency VCE = 5 V, IF = 10 mA, RL = 100 fc 110 kHz Coupling capacitance f = 1 MHz Ck 1 pF Current Transfer Ratio Parameter IC/IF Test condition VCE = 10 V, IF = 10 mA VCE = 10 V, IF = 10 mA, Tamb = 100 C Part Symbol Min Typ. 4N25V 4N25GV CTR 20 100 Max Unit % 4N35V 4N35GV CTR 100 150 % 4N35V 4N35GV CTR 40 % Maximum Safety Ratings (according to DIN EN 60747-5-2(VDE0884)/ DIN EN 60747-5-5 pending) see figure 1 This optocoupler is suitable for safe electrical isolation only within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits. Input Parameter Forward current Document Number 83530 Rev. 1.7, 26-Oct-04 Test condition Symbol IF Min Typ. Max Unit 130 mA www.vishay.com 3 4N25V/ 4N25GV/ 4N35V/ 4N35GV Vishay Semiconductors Output Parameter Test condition Power dissipation Symbol Min Typ. Pdiss Max Unit 265 mW Coupler Parameter Test condition Rated impulse voltage Safety temperature Symbol Max Unit VIOTM Min Typ. 6 kV Tsi 150 C Max Unit Insulation Rated Parameters Parameter Test condition Symbol Min Vpd 1600 V tTr = 60 s, ttest = 10 s, (see figure 2) VIOTM 6000 V tTr = 60 s, ttest = 10 s, (see figure 2) Vpd 1300 V VIO = 500 V RIO 1012 VIO = 500 V, Tamb = 100 C RIO 1011 VIO = 500 V, Tamb = 150 C RIO 109 Partial discharge test voltage Routine test 100 %, ttest = 1 s Partial discharge test voltage Lot test (sample test) Insulation resistance Typ. (construction test only) Ptot - Total Power Dissipation ( mW ) VIOTM 300 t1, t2 = 1 to 10 s t3, t4 = 1 s ttest = 10 s tstres = 12 s Phototransistor Psi ( mW ) 250 200 VPd VIOWM VIORM 150 100 IR-Diode Isi ( mA ) 50 0 0 0 25 94 9182 50 75 100 125 150 Tsi - Safety Temperature ( C ) Figure 1. Derating diagram www.vishay.com 4 13930 t3 ttest t4 t1 tTr = 60 s t2 tstres t Figure 2. Test pulse diagram for sample test according to DIN EN 60747-5-2(VDE0884)/ DIN EN 60747-; IEC60747 Document Number 83530 Rev. 1.7, 26-Oct-04 4N25V/ 4N25GV/ 4N35V/ 4N35GV Vishay Semiconductors Switching Characteristics Parameter Delay time (see figure 3) Rise time (see figure 3) Fall time (see figure 3) Storage time (see figure 3) Turn-on time (see figure 3) Turn-off time (see figure 3) Turn-on time (see figure 4) Turn-off time (see figure 4) 0 IF Test condition Part Symbol VS = 5 V, IC = 5 mA, RL = 100 4N25V 4N25GV td 4.0 s VS = 5 V, IC = 2 mA, RL = 100 4N35V 4N35GV td 2.5 s VS = 5 V, IC = 5 mA, RL = 100 4N25V 4N25GV tr 7.0 s VS = 5 V, IC = 2 mA, RL = 100 4N35V 4N35GV tr 3.0 s VS = 5 V, IC = 5 mA, RL = 100 4N25V 4N25GV tf 6.7 s VS = 5 V, IC = 2 mA, RL = 100 4N35V 4N35GV tf 4.2 s VS = 5 V, IC = 5 mA, RL = 100 4N25V 4N25GV ts 0.3 s VS = 5 V, IC = 2 mA, RL = 100 4N35V 4N35GV ts 0.3 s VS = 5 V, IC = 5 mA, RL = 100 4N25V 4N25GV ton 11.0 s VS = 5 V, IC = 2 mA, RL = 100 4N35V 4N35GV ton VS = 5 V, IC = 5 mA, RL = 100 4N25V 4N25GV toff VS = 5 V, IC = 2 mA, RL = 100 4N35V 4N35GV toff VS = 5 V, IF = 10 mA, RL = 1 k 4N25V 4N25GV ton 25.0 s 4N35V 4N35GV ton 9.0 s 4N25V 4N25GV toff 42.5 s 4N35V 4N35GV toff 25.0 s VS = 5 V, IF = 10 mA, RL = 1 k +5V IF IC = 5 mA/ 2 mA adjusted through input amplitude RG = 50 W tp = 0.01 T tp = 50 Ps Channel I Channel II 50 W 100 W 0 Typ. Max Unit s 10.0 s 7.0 s 10.0 IF = 10 mA +5V IC RG = 50 W tp = 0.01 T tp = 50 Ps Oscilloscope RL t 1 MW CL d 20 pF 14950 IF Min Channel I Channel II 50 W 1 kW Oscilloscope RL t 1 MW CL d 20 pF 95 10844 Figure 3. Test circuit, non-saturated operation Document Number 83530 Rev. 1.7, 26-Oct-04 Figure 4. Test circuit, saturated operation www.vishay.com 5 4N25V/ 4N25GV/ 4N35V/ 4N35GV Vishay Semiconductors Figure 5. Switching Times IF 96 11698 0 IC tp t 100% 90% 10% 0 tp td tr ton (= td + tr) tr td ton ts pulse duration delay time rise time turn-on time ts tf toff (= ts + tf) tf toff t storage time fall time turn-off time Typical Characteristics (Tamb = 25 C unless otherwise specified) 250 200 Phototransistor 150 IR-diode 100 0 0 40 80 120 Tamb - Ambient Temperature( C ) 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 -30 -20 -10 0 10 20 30 40 50 60 70 80 Figure 8. Relative Current Transfer Ratio vs. Ambient Temperature ICEO- Collector Dark Current, with open Base ( nA ) I F - Forward Current ( mA ) 10000 100 V CE = 10 V IF = 0 1000 10 1 100 10 0.1 1 0 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 V F - Forward Voltage ( V ) 96 11862 Figure 7. Forward Current vs. Forward Voltage www.vishay.com 6 Tamb - Ambient Temperature (C ) 96 11874 Figure 6. Total Power Dissipation vs. Ambient Temperature 1000 V CE=10V I F=10mA 1.4 rel- 50 96 11700 1.5 Relative Current Transfer Ratio Coupled device CTR P tot -Total Power Dissipation ( mW) 300 96 11875 10 20 30 40 50 60 70 80 90 100 Tamb - Ambient Temperature ( C ) Figure 9. Collector Dark Current vs. Ambient Temperature Document Number 83530 Rev. 1.7, 26-Oct-04 4N25V/ 4N25GV/ 4N35V/ 4N35GV I CB - Collector Base Current ( mA ) 1.000 V CB=10V 0.100 0.010 0.001 1 96 11876 10 I F - Forward Current ( mA ) 100 VCEsat - Collector Emitter Saturation Voltage (V ) Vishay Semiconductors 1.0 0.8 20% 0.6 CTR=50% 0.4 0.2 10% 0 1 I C - Collector Current ( mA ) 95 10972 Figure 10. Collector Base Current vs. Forward Current 100 10 Figure 13. Collector Emitter Saturation Voltage vs. Collector Current 1000 hFE - DC Current Gain V CE=10V 10.00 1.00 0.10 800 V CE=10V 600 5V 400 200 I C - Collector Current ( mA ) 100.00 0.01 0.1 1.0 10.0 I F - Forward Current ( mA ) 96 11904 0 0.01 100.0 20mA 10.0 10mA 5mA 1.0 2mA 1mA 10 100 1000 V CE=20V 100 10 1 0.1 0.1 96 11905 CTR - Current Transfer Ratio ( % ) IC - Collector Current ( mA ) I F=50mA 1 Figure 14. DC Current Gain vs. Collector Current Figure 11. Collector Current vs. Forward Current 100.0 0.1 I C - Collector Current ( mA ) 95 10973 1.0 10.0 V CE - Collector Emitter Voltage ( V ) Figure 12. Collector Current vs. Collector Emitter Voltage Document Number 83530 Rev. 1.7, 26-Oct-04 0.1 100.0 95 10976 1 10 100 I F - Forward Current ( mA ) Figure 15. Current Transfer Ratio vs. Forward Current www.vishay.com 7 4N25V/ 4N25GV/ 4N35V/ 4N35GV 50 ton / toff -Turn on / Turn off Time ( s ) ton / toff -Turn on / Turn off Time ( s ) Vishay Semiconductors Saturated Operation V S=5V RL=1k 40 30 toff 20 10 ton 0 0 95 10974 5 10 15 20 Non Saturated Operation V S=10V RL=100 15 toff 10 ton 5 0 20 I F - Forward Current ( mA ) Figure 16. Turn on / off Time vs. Forward Current 0 95 10975 2 4 6 8 10 I C - Collector Current ( mA ) Figure 17. Turn on / off Time vs. Collector Current Package Dimensions in mm 14770 www.vishay.com 8 Document Number 83530 Rev. 1.7, 26-Oct-04 4N25V/ 4N25GV/ 4N35V/ 4N35GV Vishay Semiconductors Package Dimensions in mm 14771 Document Number 83530 Rev. 1.7, 26-Oct-04 www.vishay.com 9 4N25V/ 4N25GV/ 4N35V/ 4N35GV Vishay Semiconductors Ozone Depleting Substances Policy Statement It is the policy of Vishay Semiconductor GmbH to 1. Meet all present and future national and international statutory requirements. 2. Regularly and continuously improve the performance of our products, processes, distribution and operatingsystems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs). The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances. Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents. 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively. Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances. We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423 www.vishay.com 10 Document Number 83530 Rev. 1.7, 26-Oct-04