File Number 1577 Standard Power MOSFETs IRF620, IRF621, IRF622, IRF623 Power MOS Field-Effect Transistors N-Channel Enhancement-Mode Power Field-Effect Transistors 4.0A and 5.0A, 150V-200V Yps(on) = 0.8.Q and 1.20 Features: SOA is power-dissipation limited m& Nanosecond switching speeds @ Linear transfer characteristics B High input impedance @ Majority carrier device The IRF620, IRF621, !RF622 and IRF623 are n-channel enhancement-mode silicon-gate power field- effect transistors designed for applications such as switch- ing regulators, switching converters, motor drivers, relay N-CHANNEL ENHANCEMENT MODE sO- s 92CS-33741 TERMINAL DIAGRAM TERMINAL DESIGNATION SOURCE drivers, and drivers for high-power bipolar switching tran- i sistors requiring high speed and low gate-drive power. (RAINE DRAIN These types can be operated directly from integrated O peat circuits. a The IRF-types are supplied in the JEDEC TO-220AB plastic TOP VIEW GATE package. 92cs-39828 JEDEC TO-220AB Absolute Maximum Ratings Parameter IRF620 tRF621 IRF622 IRF623 Units Vos Drain - Source Voltage @ 200 150 200 150 Vv VoGAr Orain - Gate Voltage (Rag = 20 KO) @ 200 150 200 150 v Ip @ Tc = 25C Continuous Drain Current 5.0 5.0 4.0 4.0 A ip @ Te = 100C Continuous Drain Current 3.0 3.0 25 2.5 A low Pulsed Drain Current @ 20 20 16 16 A Vos Gate - Source Voltage 20 Vv Pp @ Tc = 25C Max. Power Dissipation 40 (See Fig. 14) Ww Linear Derating Factor 0.32 (See Fig, 14) weet 1m Inductive Current, Clamped {See Fig. 15 and t6)L = 100uH A 20 L 20 | 16 l 16 T. Operating Junction and . . Teg Storage Temperature Range 58 to 150 c Lead Temperature 300 (0.063 in. {1.6mm} from case for 10s) c 3-159Standard Power MOSFETs IRF620, IRF621, IRF622, IRF623 Electrical Characteristics @Tc = 25C (Unless Otherwise Specified) 3-160 Parameter Type Min. Typ. | Max. Units Test Conditions BVopss Orain - Source Breakdown Voltage 1RF620 . Vv v, = Ov iRF622 | 200 Gs =O IRFE21 : - Vv Ip = A inFe23 | 15 D = 260m Vesith) Gate Threshold Voltage ALL 2.0 - 4.0 v Vos = Vos.'p = 250u4 Igss __Gate-Source Leakage Forward AUL = - | 500 nA Vgs = 20V ['css Gate Source Leakage Reverse ALL - - [-500 | na Veg = -20V Ipgg Zero Gate Voltage Drain Current - : 250 BA Vos = Max. Rating, Ves = OV ALL 1000 uA Vps = Max. Rating x 0.8. Vgg = OV. Tc = 125C 'Dton) On-State Drain Current @) IRF620 | 5 4 _ A 1RF621 , Vos > 'piom * Rosin) max. Vas = 10V IRF622 | 4g A IRF6E23 . Roston) Static Drain-Source On-State hreos os | o8 2 esistance Ves = IOV Ip = 2.54 IRF622 os | 12 e . IRF623 : Mts Forward Transconductance @ ALL 13 [28] - $i) Vos >'pion) *Fpsion max: 'p = 2-54 Cisg Input Capacitance ALL = 450 = pF Vas = OV, Vpg = 25V,f = 1.0 MHz Coss _ Output Capacitance ALL = 150 | oF See Fig, 10 Cres Reverse Transter Capacitance ALL _ 40 _ pF 'gion) __Tutn-On Delay Time ALL 20 40 ns Von = 2-5BVogg: Ip = 2.54.2, = 502 'r Rise Time ALL ~ 30 | 60 ns See Fig. 17 lgtoft) _ Turn-Oft Delay Time ALL ~ 50 | 100 ns {MOSFET switching times are essentially tf Fall Time ALL ~ 30 60 ns independent of aperating temperature.} a Total Gate Charge Veg = SOV. Ip = 6.0A, Vig = 0.8 Max. Rating. g W GS 0 os (Gate-Source Plus Gate-Drain) ALL 15 nc See Fig. 18 for test circuit. (Gate charge is essentially Ogg Gate-Source Charge ALL 5.0 75 nc independent of operating temperature.} Qgqg Gate-Drain ("Miller") Charge ALL ~ 6.0 | 9.0 ac Lo Internal Drain inductance - 3.5 - nH Measured from the Modified MOSFET contact screw on tab symbol showing the to center of die. internat device ALL cr 45 - nH Measured from the drain lead, 6mm (0.25 o in.) fram package to center of die iD Lg Internal Source Inductance ALL ~ 75 oH Measured from the source lead, 6mm G Ls (0.26 1n.) from package to source bonding pad. s Thermal Resistance Rihjc _Junction-to-Case ALL - - 3.12 | cw Aincs Case-to-Sink ALL 1.0 ~ Cew Mounting surface flat. smooth, and greased. Ringa _Junction-to-Ambient ALL - : go | cw Free Air Operation Source-Drain Diode Ratings and Characteristics Is Continuous Source Current (RF620 _ _ 5.0 A Modified MOSFET symbol (Body Diode) IRE621 : showing the integral D IRF622 reverse P-N junction rectifier. 1nF623 | 7 [4 | A ism Pulse Source Current IRF620 _ . G (Body Diode) @) IRF621 20 A ~ s IRF622 IRE623 | 7 4 18 A Vsp Diode Forward Voltage @ IRF620 ono. . . IRF621 - 1.8 v To = 25C. 1g = 6.04. Vgg = OV IRF622 - : : IRF623 - 14 v To = 25C. Ig = 4.04. Vag = OV tee Reverse Recovery Time ALL 350 - ns Ty = 150C, Ip = 5.04. dip/dt = 100 Alus Opp _ Reverse Recovered Charge ALL ~ 23] - Ka Ty = 150C, ip = 5.0A, dip/dt = 100 Aus ton Forward Turn-on Time ALL Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by Lg + Lp. @Ty = 25C 10 150C. @ Pulse Test: Pulse width < 300ps. Duty Cycle < 2%. Repetitive Rating: Pulse width timited by max. junction temperature. See Transient Therma} impedance Curve (Fig. 5).Standard Power MOSFETs IRF620, IRF621, IRF622, IRF623 10 [- 80.5 PULSE TEST + . 4 Vos > 'pton) * Sps(on) mv 8P--e * - 7 coin 4 Ba a Pf + . = 2 = = < Seb ee * q b = = = S = = z ad - = - 4 = = 3 @ z z F- - ae r -- 4 = a S S 3 Be asec, . 4 2p Tye 800g . sot Ty 5 $6004 toot toot oe | hi a | i a a 20 40 60 30 100 a 2 4 6 a 10 Vos, DRAIN TO SOURCE VOLTAGE (VOLTS) Vos. GATE TO SOURCE VOLTAGE (VOLTS? Fig. 1 Typicai Output Characteristics Fig. 2 -- Typical Transfer Characteristics AREA IS LIMITED BY Rosian) a g = = a a we = = = < et z & : 2 z a = z = z z S = 3 5 3 Te = 25C Ty = 190C MAX } {. Rensg * 3.42 C/W {; E PULSE IRFE21, 3 .2 0 2 4 6 4 0 W002 5 0 20 50 100 200 = 800 Vos. DRAIN TO-SOURCE VOLTAGE (VOLTS) Vpg. ORAIN.TO-SOURCE VOLTAGE (VOLTS Fig. 3 Typical Saturation Characteristics Fig. 4 -- Maximum Safe Operating Area ~ s ey o x 2S o 2 & 1. DUTY FACTOR, D= z THERMAL IMPEDANCE (PER UNIT) SINGLE PULSE 0.02 THERMAL (MPEDANCE} 2. PER UNIT BASE = Renjc = 3.12 OEG. CW. 3. Tym - Te = Pom Ztnacttl- Zihactt/Rtngc. NORMALIZED EFFECTIVE TRANSIENT oat 105 2 5 wt 2 6 ws 2 5 we 2 5 il 2 5 10 2 5 10 ty, SQUARE WAVE PULSE DURATION (SECONDS) Fig. 5 Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration 3-161Standard Power MOSFETs IRF620, IRF621, IRF622, IRF623 3-162 Fig. AKDOWN VOLTAGE mn BV sg. ORAIN TO. Fig. 10 Typical Capacitance Vs. Drain-to-Source Voltage ay. FRARSCONDUCTANCE (S(EMENS) 1.25 a Ss a 0.85 a7 "Vs > toca) * Rosian) mex | 60 ps PULSE TEST Ip. DRAIN CURRENT (AMPERES) 6 Typical Transconductance Vs. Drain Current ~40 Fig. 8 Breakdown Voltage Vs. Temperature 1900 900 a 40 80 120 Ty, JUNCTION TEMPERATURE (9C) = 1= 1 MHz Cigg. * Cog + Cod, Cys SHORTED Cras * Cog = Cas + Cod i Crss 10 20 30 40 Vos. DRAIN-TO-SOURTE VOLTAGE (VOLTS) 160 50 pg. REVERSE DRAIN CURRENT (AMPERES) Ty = 180%C Ty + 150C Ty = 259C 1 2 3 4 Vgp, SOURCE-TO DRAIN VOLTAGE (VOLTS) Fig. 7 Typical Source-Drain Diode Forward Voltage Rosjon). DRAIN-TO-SOURCE ON RESISTANCE (NORMALIZED) a pote tq oo | Ips 2a 0 ag 80 120 Ty, JUNCTION TEMPERATURE (OC) Fig. 9 Normalized On-Resistance Vs. Temperature Vgs. GATE-TO-SOURCE VOLTAGE (VOLTS) Fig. 11 Typical Gate Charge Vs. Gate-to-Source Voltage Vps = 40V | | Vos = 160V. IRF620, 622 (p= 6A FOR TEST CIRCUIT SEE FIGURE 18 4 8 V2 16 20 Oy. TOTAL GATE CHARGE (aC15 = z = s 3 2 Vgg* 10v 2 B10 = z o 3 = a SF a 3 Leen gg = 20V 5 pen Zz 05 z & = 2 {on} MEASURED WITH CURRENT PULSE OF 20 ee DURATION. INITIAL Ty = 25C, (HEATING ERFECT OF 2.0 ps PULSE IS MINIMAL) : i it ot o 5 10 15 20 Ip, DAAIN CURRENT {AMPERES} Fig. 12 Typical On-Resistance Vs. Drain Current 40 Standard Power MOSFETs IRF620, IRF621, IRF622, IRF623 Ip. RAIN CURRENT (AMPERES) 0 28 50 VAF620, 621 15 100 ~ 8 150 Tg, CASE TEMPERATURE (C} Fig. 13 Maximum Drain Current Vs. Case Temperature \ RL) to 5 S Po ged 2 g \ = wo XN woe ~ z - < : g 2 wee ee a 215 z a : 5 10 + 5 eneefe + 4 Po , 0 20 40 60 80 100 12U 140 Tc, CASE TEMPERATURE (!!C) Fig. 14 -- Power Vs. Temperature Derating Curve VARY ty TO OBTAIN REQUIRED PEAK I, v = Ds E,=0.58V t our 1 = Ve 0.56Vp5 Vgs *2 o = Ye 0.0582 + I = Fig. 15 -- Clamped Inductive Test Circuit ADJUSTRL OF] TO OBTAIN SPECIFIED tp $ Ry. yj PULSE 9 GENERATOR OUT. CTT TT 1 I yy t i so TO SCOPE 1 | son pots 3 HIGH FREQUENCY Lip ell SHUNT Fig. 17 Switching Time Test Circuit oan Fig. 16 Clamped Inductive Waveforms Vos CURRENT (ISOLATED REGULATOR SUPPLY) SAME TYPE -VYos CURRENT = CURRENT SHUNT SHUNT Fig. 18 Gate Charge Test Circuit 3-163