Preliminary Technical Information IXGR72N60B3D1 GenX3TM B3-Class IGBT w/Diode VCES IC110 VCE(sat) tfi(typ) (Electrically Isolated Back Surface) = = = 600V 40A 1.80V 90ns Medium Speed Low Vsat PT IGBTs for 5-40 kHz Switching ISOPLUS 247TM Symbol Test Conditions Maximum Ratings VCES TJ = 25C to 150C 600 V VCGR TJ = 25C to 150C, RGE = 1M 600 V VGES Continuous 20 V VGEM Transient 30 V G IC25 TC = 25C (Limited by Leads) 75 A IC110 TC = 110C 40 A IF110 TC = 110C 36 A ICM TC = 25C, 1ms 360 A IA EAS TC = 25C TC = 25C 20 220 A mJ SSOA VGE = 15V, TVJ = 125C, RG = 3 ICM = 240 A (RBSOA) Clamped Inductive Load VCE 600 V PC TC = 25C 200 W z -55 ... +150 C z TJM 150 C Tstg -55 ... +150 C 2500 3000 V~ V~ 20..120/4.5..27 N/lb TJ VISOL 50/60 Hz, RMS, t = 1Minute IISOL < 1mA t = 20 Seconds FC Mounting Force TL Maximum Lead Temperature for Soldering 300 C TSOLD 1.6mm (0.062 in.) from Case for 10s 260 C 5 g Weight z z z IC 3.0 ICES VCE = VCES, VGE = 0V IGES VCE = 0V, VGE = 20V VCE(sat) IC = 60A, VGE = 15V, Note 1 TJ = 125C = 250A, VCE = VGE z z z z TJ = 125C (c) 2009 IXYS CORPORATION, All Rights Reserved 1.50 1.75 z V 300 5 A mA 100 nA 1.80 V V High Power Density Low Gate Drive Requirement Applications z 5.0 Silicon Chip on Direct-Copper Bond (DCB) Substrate Isolated Mounting Surface Avalanche Rated Anti-Parallel Ultra Fast Diode 2500V Electrical Isolation Advantages z VGE(th) C = Collector Features z Characteristic Values Min. Typ. Max. ISOLATED TAB E G = Gate E = Emitter z Symbol Test Conditions (TJ = 25C, Unless Otherwise specified) C z Power Inverters UPS Motor Drives SMPS PFC Circuits Battery Chargers Welding Machines Lamp Ballasts DS99874A(02/09) IXGR72N60B3D1 Symbol Test Conditions (TJ = 25C, Unless Otherwise Specified) Characteristic Values Min. Typ. Max. gfs 50 IC = 60A, VCE = 10V, Note 1 Cies Coes Cres VCE = 25V, VGE = 0V, f = 1MHz 83 S 6800 575 80 pF pF pF 225 40 82 nC nC nC 31 ns 33 1.38 ns mJ Qg Qge Qgc IC = 60A, VGE = 15V, VCE = 0.5 * VCES td(on) tri Eon td(off) tfi Inductive load, TJ = 25C IC = 50A, VGE = 15V VCE = 480V, RG = 3 Eoff td(on) tri Eon td(off) tfi Eoff Inductive load, TJ = 125C IC = 50A, VGE = 15V VCE = 480V, RG = 3 RthJC RthCS Reverse Diode (FRED) Test Conditions VF IF = 60A, VGE = 0V, Note 1 trr 150 330 ns 90 160 ns 1.05 2.20 mJ 29 34 2.70 228 142 2.20 ns ns mJ ns ns mJ 0.15 0.62 C/W C/W Characteristic Values (TJ = 25C, Unless Otherwise Specified) Min. Typ. Max. Symbol IRM TJ = 150C 1.4 2.1 V V TJ = 100C -diF/dt = 100A/s, VR = 100V IF = 1A, -di/dt = 200A/s, VR = 30V 8.3 A 35 ns IF = 60A, VGE = 0V, 0.85 C/W RthJC Note 1. ISOPLUS247 (IXGR) Outline Pulse Test, t 300s; Duty Cycle, d 2%. PRELIMINARY TECHNICAL INFORMATION The product presented herein is under development. The Technical Specifications offered are derived from data gathered during objective characterizations of preliminary engineering lots; but also may yet contain some information supplied during a pre-production design evaluation. IXYS reserves the right to change limits, test conditions, and dimensions without notice. IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions. IXYS MOSFETs and IGBTs are covered 4,835,592 by one or moreof the following U.S. patents: 4,850,072 4,881,106 4,931,844 5,017,508 5,034,796 5,049,961 5,063,307 5,187,117 5,237,481 5,381,025 5,486,715 6,162,665 6,259,123 B1 6,306,728 B1 6,404,065 B1 6,534,343 6,583,505 6,683,344 6,727,585 7,005,734 B2 6,710,405 B2 6,759,692 7,063,975 B2 6,710,463 6,771,478 B2 7,071,537 7,157,338B2 IXGR72N60B3D1 Fig. 1. Output Characteristics @ 25C Fig. 2. Extended Output Characteristics @ 25C 120 330 VGE = 15V 13V 11V 100 270 9V 240 80 60 IC - Amperes IC - Amperes VGE = 15V 13V 11V 300 7V 40 210 9V 180 150 120 90 7V 60 20 30 0 0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 0 1 2 VCE(sat) - Normalized IC - Amperes 6 7 8 125 150 7.5 8.0 VGE = 15V 1.2 80 60 7V 40 20 I C = 120A I C = 60A I C = 30A 1.1 1.0 0.9 0.8 5V 0.7 0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 -50 2.4 -25 0 VCE - Volts 100 160 = 120A 60A 30A 140 IC - Amperes C 75 Fig. 6. Input Admittance TJ = 25C 4.0 I 50 180 4.5 3.5 25 TJ - Degrees Centigrade Fig. 5. Collector-to-Emitter Voltage vs. Gate-to-Emitter Voltage VCE - Volts 5 1.3 VGE = 15V 13V 11V 9V 100 4 Fig. 4. Dependence of VCE(sat) on Junction Temperature Fig. 3. Output Characteristics @ 125C 120 3 VCE - Volts VCE - Volts 3.0 2.5 120 100 80 TJ = 125C 25C - 40C 60 2.0 40 1.5 20 1.0 0 5 6 7 8 9 10 11 VGE - Volts (c) 2009 IXYS CORPORATION, All Rights Reserved 12 13 14 15 4.0 4.5 5.0 5.5 6.0 VGE - Volts 6.5 7.0 IXGR72N60B3D1 Fig. 7. Transconductance Fig. 8. Gate Charge 130 16 120 TJ = - 40C 25C 125C 100 90 I C = 60A I G = 10mA 12 80 VGE - Volts g f s - Siemens VCE = 300V 14 110 70 60 50 10 8 6 40 4 30 20 2 10 0 0 0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 IC - Amperes Fig. 9. Capacitance 120 140 160 180 200 220 240 Fig. 10. Reverse-Bias Safe Operating Area 280 10,000 Cies 240 200 1,000 IC - Amperes Capacitance - PicoFarads 100 QG - NanoCoulombs Coes 100 160 120 80 Cres 40 f = 1 MHz 10 0 5 10 15 20 25 30 35 40 TJ = 125C RG = 3 dV / dt < 10V / ns 0 100 200 300 VCE - Volts 400 500 600 VCE - Volts Fig. 11. Maximum Transient Thermal Impedance Z(th)JC - C / W 1.00 0.10 0.01 0.0001 0.001 0.01 0.1 1 10 Pulse Width - Seconds IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions. IXYS REF: G_72N60B3(76)02-10-09-D IXGR72N60B3D1 Fig. 13. Inductive Switching Energy Loss vs. Collector Current Fig. 12. Inductive Switching Energy Loss vs. Gate Resistance 8 7 8 C =100A 7 VCE = 480V TJ = 125C , VGE = 15V I C = 50A 2 4 1 5 10 15 20 25 30 35 40 45 50 4 4 3 3 TJ = 25C 20 55 30 40 50 7 I C = 50A VCE = 480V 2 - MilliJoules RG = 3 , VGE = 15V 3 t f - Nanoseconds on ---- 2 1 0 25 35 45 55 65 75 85 95 105 115 C = 100A 180 850 160 I C 140 550 I 100 C 5 10 15 t f - Nanoseconds 45 50 55 200 245 220 180 130 175 110 160 TJ = 25C 70 70 100 40 235 205 60 35 260 190 50 30 220 150 40 25 250 VCE = 480V 30 20 80 IC - Amperes (c) 2009 IXYS CORPORATION, All Rights Reserved 90 230 I C = 25A, 50A, 100A 160 215 140 200 120 185 100 145 80 130 100 60 tr td(off) - - - - RG = 3 , VGE = 15V 170 155 VCE = 480V 25 35 45 55 65 75 85 95 TJ - Degrees Centigrade 105 115 140 125 t d(off) - Nanoseconds RG = 3 , VGE = 15V 20 250 Fig. 17. Inductive Turn-off Switching Times vs. Junction Temperature t d(off) - Nanoseconds td(off) - - - - 90 TJ = 125C, VGE = 15V VCE = 480V 0 t f - Nanoseconds TJ = 125C 170 400 td(off) - - - - RG - Ohms 230 tf tf = 25A 80 0 125 Fig. 16. Inductive Turn-off Switching Times vs. Collector Current 190 700 = 50A TJ - Degrees Centigrade 210 1150 1000 I 120 1 I C = 25A = 25A, 50A, 100A 200 5 4 C t d(off) - Nanoseconds = 100A 4 Eon 0 100 90 1300 I 220 6 Eoff 80 240 E Eoff - MilliJoules 6 3 70 Fig. 15. Inductive Turn-off Switching Times vs. Gate Resistance 7 C 60 IC - Amperes Fig. 14. Inductive Switching Energy Loss vs. Junction Temperature I 2 1 RG - Ohms 5 5 0 1 0 TJ = 125C 1 2 0 VCE = 480V 5 2 3 I C = 25A 6 - MilliJoules 3 5 ---- RG = 3 , VGE = 15V on 4 --- Eon E Eon - - MilliJoules 6 Eoff on E 5 7 Eoff 6 Eoff - MilliJoules I 6 Eoff - MilliJoules 7 9 IXGR72N60B3D1 Fig. 19. Inductive Turn-on Switching Times vs. Collector Current Fig. 18. Inductive Turn-on Switching Times vs. Gate Resistance 170 140 150 TJ = 125C, VGE = 15V VCE = 480V t r - Nanoseconds 70 95 90 80 70 65 I 50 C = 50A I C 0 5 10 15 20 25 30 35 40 45 50 33 RG = 3 , VGE = 15V VCE = 480V 32 TJ = 25C, 125C 60 31 50 25C < TJ < 125C 30 29 30 28 35 20 27 20 10 = 25A 10 td(on) - - - - 40 50 30 34 tr t d(on) - Nanoseconds = 100A 110 - Nanoseconds 110 C 80 d(on) I 125 t 130 90 td(on) - - - - t r - Nanoseconds tr 55 20 RG - Ohms 30 40 50 60 70 80 90 26 100 IC - Amperes Fig. 20. Inductive Turn-on Switching Times vs. Junction Temperature 100 35 90 34 33 I C = 100A tr 70 td(on) - - - - RG = 3 , VGE = 15V 60 VCE = 480V 50 32 31 30 I C = 50A 40 29 30 28 20 t d(on) - Nanoseconds t r - Nanoseconds 80 27 I 10 C = 25A 26 0 25 35 45 55 65 75 85 95 105 115 25 125 TJ - Degrees Centigrade IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions. IXYS REF: G_72N60B3(76)02-10-09-D IXGR72N60B3D1 160 A 140 IF 4000 80 TVJ= 100C VR = 300V nC 120 3000 60 TVJ= 150C 100C 25C 80 IF= 120A, 60A, 30A IRM Qr 100 TVJ= 100C VR = 300V A IF= 120A, 60A, 30A 2000 40 60 40 1000 20 20 0 0 1 2 0 100 V A/s 1000 -diF/dt VF Fig. 21. Forward Current IF Versus VF Fig. 22. Reverse Recorvery Charge Qr Versus -diF/dt 2.0 140 TVJ= 100C VR = 300V 400 600 A/s 800 1000 -diF/dt 1.6 TVJ= 100C IF = 60A s 1.2 trr 120 1.0 200 Fig. 23. Peak ReverseCurrent IRM Versus -diF/dt V V FR 15 trr Kf 0 20 ns 130 1.5 0 tfr VFR IF= 30A, 60A, 120A 110 10 0.8 5 0.4 IRM 100 0.5 QRM 0.0 0 40 90 80 120 C 160 80 0 200 T VJ 400 600 800 A/s 1000 0 0 200 400 -diF/dt Fig. 24. Dynamic Paraments Qr, IRM Versus TvJ Fig. 25. Recorvery Time trr Versus -diF/dt 0.0 600 A/s 800 1000 diF/dt Fig. 26. Peak Forward Voltage VRM and trr Versus -diF/dt 1.000 1 K/W Z(th)JC [ C / W ] 0.1 Z thJC 0.100 0.01 0.010 0.001 0.0001 0.00001 0.001 0.0001 DSEP 2x61-06A 0.0001 0.001 0.001 0.01 0.1 0.01 t s Pulse Width [ s ] 1 0.1 1 10 Fig. 27. Maximum MaximumTransient transientThermal thermalImpeadance impedanceJuection (for diode) Fig. 27. to Case (for Diode) (c) 2009 IXYS CORPORATION, All Rights Reserved IXYS REF: G_72N60B3(76)02-10-09-D