Features
nFloating channel designed for bootstrap operation
Fully operational to +400V
Tolerant to negative transient voltage
dV/dt immune
nGate drive supply range from 10 to 20V
nUndervoltage lockout for both channels
nSeparate logic supply range from 5 to 20V
Logic and power ground ±5V offset
nCMOS Schmitt-triggered inputs with pull-down
nCycle by cycle edge-triggered shutdown logic
nMatched propagation delay for both channels
nOutputs in phase with inputs
IR2110L4
HIGH AND LOW SIDE DRIVER
Product Summary
VOFFSET 400V max.
IO+/- 2A / 2A
VOUT 10 - 20V
ton/off (typ.) 120ns & 94ns
Delay Matching 10ns
mounted and still air conditions.
Symbol Parameter Min. Max. Units
VBHigh Side Floating Supply Voltage -0.5 VS + 20
VSHigh Side Floating Supply Offset Voltage 400
VHO High Side Floating Output Voltage VS - 0.5 VB + 0.5
VCC Low Side Fixed Supply Voltage -0.5 20
VLO Low Side Output Voltage -0.5 VCC + 0.5 V
VDD Logic Supply Voltage -0.5 VSS + 20
VSS Logic Supply Offset Voltage VCC - 20 VCC + 0.5
VIN Logic Input Voltage (HIN, LIN & SD) VSS - 0.5 VDD + 0.5
dVs/dt Allowable Offset Supply Voltage Transient (Figure 2) 50 V/ns
PDPackage Power Dissipation @ TA £ +2C 1.6 W
RthJA Thermal Resistance, Junction to Ambient 75 °C/W
TJJunction Temperature -55 125
TSStorage Temperature -55 150 °C
TLLead Temperature (Soldering, 10 seconds) 300
Weight 1.5 (typical) g
Absolute Maximum Ratings
Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are
absolute voltages referenced to COM. The Thermal Resistance and Power Dissipation ratings are measured under board
05/02/11
www.irf.com 1
Description
The IR2110L4 is a high voltage, high speed power MOSFET
and IGBT driver with independent high and low side
referenced output channels. Proprietary HVIC and latch
immune CMOS technologies enable ruggedized monolithic
construction. Logic inputs are compatible with standard
CMOS or LSTTL outputs. The output drivers fetures a
high pulse current buffer stage designed for minimum
driver cross-conduction. Propagation delays are matched
to simplify use in high frequency applications. The floating
channel can be used to drive an N-channel power MOSFET
or IGBT in the high side configuration which operates up
to 400 volts.
PD-60085B
2www.irf.com
IR2110L4
Tj = 25°C Tj =
-55 to 125°C
Symbol Parameter Min. Typ. Max. Min. Max. Units Test Conditions
ton Turn-On Propagation Delay 120 150 260 VS = 0V
toff Turn-Off Propagation Delay 94 125 220 VS = 400V
tsd Shutdown Propagation Delay 110 140 235 VS = 400V
trTurn-On Rise Time 25 35 50 CL = 1000pf
tfTurn-Off Fall Time 17 25 40 CL = 1000pf
MT Delay Matching, HS & LS Turn-On/Off 20 | Hton-Lton | / | Htoff-Ltoff |
Recommended Operating Conditions
The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be
used within the recommended conditions. The VS and VSS offset ratings are tested with all supplies
biased at 15V differential. Typical ratings at other bias conditions are shown in Figures 36 and 37.
Symbol Parameter Min. Max. Units
VBHigh Side Floating Supply Absolute Voltage VS + 10 VS + 20
VSHigh Side Floating Supply Offset Voltage -4 400
VHO High Side Floating Output Voltage VSVB
VCC Low Side Fixed Supply Voltage 10 20 V
VLO Low Side Output Voltage 0 VCC
VDD Logic Supply Voltage VSS + 5 VSS + 20
VSS Logic Supply Offset Voltage -5 5
VIN Logic Input Voltage (HIN, LIN & SD) VSS VDD
ns
Dynamic Electrical Characteristics
VBIAS (VCC, VBS, VDD) = 15V, and VSS = COM unless otherwise specified. The dynamic electrical
characteristics are measured using the test circuit shown in Figure 3.
Typical Connection
HIN
up to 500V
TO
LOAD
VDD VB
VS
HO
LO
COM
HIN
LIN
VSS
SD
VCC
LIN
VDD
SD
VSS
VCC
4
www.irf.com 3
IR2110L4
Symbol Parameter Min Typ. Max. Min. Max Units Test Conditions
VIH Logic “1” Input Voltage 9.5 10 VDD = 15V
VIL Logic “0” Input Voltage 6.0 5.7 VDD = 15V
VOH High Level Output Voltage, VBIAS - VO 0.7 1.2 1.5 VIN = VIH, IO = 0A
VOL Low Level Output Voltage, VO 0.1 0.1 VIN = VIL, IO = 0A
ILK Offset Supply Leakage Current 50 250 VB = VS = 400V
IQBS Quiescent VBS Supply Current 125 230 500 VIN = VIH or VIL
IQCC Quiescent VCC Supply Current 180 340 600 VIN = VIH or VIL
IQDD Quiescent VDD Supply Current 5 30 60 VIN = VIH or VIL
IIN+ Logic “1” Input Bias Current 15 40 70 VIN = 15V
IIN- Logic “0” Input Bias Current 1.0 10 VIN = 0V
VBSUV+ VBS Supply Undervoltage Positive 7.5 8.6 9.7
Going Threshold
VBSUV- VBS Supply Undervoltage Negative 7.0 8.2 9.4
Going Threshold
VCCUV+ VCC Supply Undervoltage Positive 7.4 8.5 9.6
Going Threshold
VCCUV- VCC Supply Undervoltage Negative 7.0 8.2 9.4
Going Threshold
IO+ Output High Short Circuit Pulsed 2.0 VO = 0V, VIN =VDD
Current PW < = 10
IO- Output Low Short Circuit Pulsed 2.0 VO = 15V, VIN = 0V
Current PW < = 10
Static Electrical Characteristics
Tj = 25°C Tj = -55 to
125°C
V
V
A
µA
µs
µs
VBIAS (VCC, VBS, VDD) = 15V, TA = 25°C and VSS = COM unless otherwise specified. The VIN, VTH and
IIN parameters are referenced to VSS and are applicable to all three logic input leads: HIN, LIN and SD.
The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or
LO.
4www.irf.com
IR2110L4
Figure 1. Input/Output Timing Diagram Figure 2. Floating Supply Voltage Transient Test Circuit
Figure 3. Switching Time Test Circuit Figure 4. Switching Time Waveform Definition
Figure 6. Delay Matching Waveform DefinitionsFigure 5. Shutdown Waveform Definitions
SD
tsd
HO
LO
50%
90%
HIN
LIN
tr
ton tf
toff
HO
LO
50% 50%
90% 90%
10% 10%
HIN
LIN
HO
50% 50%
10%
LO
90%
MT
HOLO
MT
HV = 10 to 400V
(0 to 400V)
www.irf.com 5
IR2110L4
Figure 9B. Shutdown Time vs. Voltage
Figure 8A. Turn-Off Time vs. Temperature Figure 8B. Turn-Off Time vs. Voltage
Figure 7A. Turn-On Time vs. Temperature Figure 7B. Turn-On Time vs. Voltage
Figure 9A. Shutdown Time vs. Temperature
0
50
100
150
200
250
10 12 14 16 18 20
VBIAS Supply Voltage (V)
Turn-On Delay Time (ns)
Max.
Typ.
0
50
100
150
200
250
-50 -25 0 25 50 75 100 125
Temperature (°C)
Turn-On Delay Time (ns)
Max.
Typ.
0
50
100
150
200
250
-50 -25 0 25 50 75 100 125
Temperature (°C)
Turn-Off Delay Time (ns)
Max.
Typ.
0
50
100
150
200
250
10 12 14 16 18 20
VBIAS Supply Voltage (V)
Turn-Off Delay Time (ns)
Max.
Typ.
0
50
100
150
200
250
10 12 14 16 18 20
VBIAS Supply Voltage (V)
Shutdown Delay time (ns)
Max.
Typ.
0
50
100
150
200
250
-50 -25 0 25 50 75 100 125
Temperature (°C)
Shutdown Delay Time (ns)
Max.
Typ.
6www.irf.com
IR2110L4
Figure 12A. Logic 1 Input Threshold vs. Temperature Figure 12B. Logic 1 Input Threshold vs. Voltage
Figure 10A. Turn-On Rise Time vs. Temperature
Figure 11A. Turn-Off Fall Time vs. Temperature Figure 11B. Turn-Off Fall Time vs. Voltage
Figure 10B. Turn-On Rise Time vs. Voltage
0
20
40
60
80
100
-50 -25 0 25 50 75 100 125
Temperature (°C)
Turn-On Rise Time (ns)
Max .
Typ.
0
20
40
60
80
100
10 12 14 16 18 20
VBIAS Supply Voltage (V)
Turn-On Rise Time (ns)
Max.
Typ.
0
10
20
30
40
50
-50 -25 0 25 50 75 100 125
Temperature (°C)
Turn-Off Fall Time (ns)
Max.
Typ.
0
10
20
30
40
50
10 12 14 16 18 20
VBIAS Supply Voltage (V)
Turn-Off Fall Time (ns)
Max.
Typ.
0.0
3.0
6.0
9.0
12.0
15.0
-50 -25 0 25 50 75 100 125
Temperature (°C)
Logic "1" Input Threshold (V)
Min.
0.0
3.0
6.0
9.0
12.0
15.0
5 7.5 10 12.5 15 17.5 20
VDD Logic Supply Voltage (V)
Logic "1" Input Threshold (V)
Min.
www.irf.com 7
IR2110L4
Figure 13A. Logic 0 Input Threshold vs. Temperature Figure 13B. Logic 0 Input Threshold vs. Voltage
Figure 14A. High Level Output vs. Temperature Figure 14B. High Level Output vs. Voltage
Figure 15B. Low Level Output vs. VoltageFigure 15A. Low Level Output vs. Temperature
0.0
3.0
6.0
9.0
12.0
15.0
-50 -25 0 25 50 75 100 125
Temperature (°C)
Logic "0" Input Threshold (V)
Max.
0.0
3.0
6.0
9.0
12.0
15.0
5 7.5 10 12.5 15 17.5 20
VDD Logic Supply Voltage (V)
Logic "0" Input Threshold (V)
Max.
0.00
1.00
2.00
3.00
4.00
5.00
-50 -25 0 25 50 75 100 125
Temperature (°C)
High Level Output Voltage (V)
Max.
0.00
0.20
0.40
0.60
0.80
1.00
-50 -25 0 25 50 75 100 125
Temperature (°C)
Low Level Output Voltage (V)
Max.
0.00
1.00
2.00
3.00
4.00
5.00
10 12 14 16 18 20
VBIAS Supply Voltage (V)
High Level Output Voltage (V)
Max.
0.0
3.0
6.0
9.0
12.0
15.0
5 7.5 10 12.5 15 17.5 20
VDD Logic Supply Voltage (V)
Logic "1" Input Threshold (V)
Min.
8www.irf.com
IR2110L4
Figure 16B. Offset Supply Current vs. VoltageFigure 16A. Offset Supply Current vs. Temperature
Figure 18A. VCC Supply Current vs. Temperature Figure 18B. VCC Supply Current vs. Voltage
Figure 17A. VBS Supply Current vs. Temperature Figure 17B. VBS Supply Current vs. Voltage
0
125
250
375
500
625
10 12 14 16 18 20
VCC Fixed Supply Voltage (V)
V
CC
Supply CurrentA)
Max.
Typ.
0
125
250
375
500
625
-50 -25 0 25 50 75 100 125
Temperature (°C)
V
CC
Supply CurrentA)
Max.
Typ.
0
100
200
300
400
500
-50 -25 0 25 50 75 100 125
Temperature (°C)
V
BS
Supply CurrentA)
Max.
Typ.
0
100
200
300
400
500
10 12 14 16 18 20
VBS Floating Supply Voltage (V)
V
BS
Supply CurrentA)
Max.
Typ.
0
100
200
300
400
500
0 100 200 300 400 500
VB Boost Voltage (V)
Offset Supply Leakage Current (µ A)
Max.
0
100
200
300
400
500
-50 -25 0 25 50 75 100 125
Temperature (°C)
Offset Supply Leakage Current (µ A)
Max.
www.irf.com 9
IR2110L4
Figure 21A. Logic 0 Input Current vs. Temperature Figure 21B. Logic 0 Input Current vs. Voltage
Figure 19A. VDD Supply Current vs. Temperature Figure 19B. VDD Supply Current vs. Voltage
Figure 20A. Logic 1 Input Current vs. Temperature Figure 20B. Logic 1 Input Current vs. Voltage
0
20
40
60
80
100
-50 -25 0 25 50 75 100 125
Temperature (°C)
V
DD
Supply CurrentA)
Max.
Typ.
0
20
40
60
80
100
5 7.5 10 12.5 15 17.5 20
VDD Logic Supply Voltage (V)
V
DD
Supply CurrentA)
Max.
Typ.
0
20
40
60
80
100
-50 -25 0 25 50 75 100 125
Temperature (°C)
Logic "1" Input Bias Current (µ A)
Max.
Typ.
0
20
40
60
80
100
5 7.5 10 12.5 15 17.5 20
VDD Logic Supply Voltage (V)
Logic "1" Input Bias Current (µ A)
Max .
Typ.
0.00
1.00
2.00
3.00
4.00
5.00
-50 -25 0 25 50 75 100 125
Temperature (°C)
Logic "0" Input Bias Current (µ A)
Max.
0.00
1.00
2.00
3.00
4.00
5.00
5 7.5 10 12.5 15 17.5 20
VDD Logic Supply Voltage (V)
Logic "0" Input Bias Current (µ A)
Max.
10 www.irf.com
IR2110L4
6.0
7.0
8.0
9.0
10.0
11.0
-50 -25 0 25 50 75 100 125
Temperature (°C)
V
CC
Undervoltage Lockout + (V)
Max.
Typ.
Min.
6.0
7.0
8.0
9.0
10.0
11.0
-50 -25 0 25 50 75 100 125
Temperature (°C)
V
BS
Undervoltage Lockout + (V)
Max.
Typ.
Min.
Figure 22. VBS Undervoltage (+) vs. Temperature Figure 23. VBS Undervoltage (-) vs. Temperature
Figure 24. VCC Undervoltage (+) vs. Temperature Figure 25. VCC Undervoltage (-) vs. Temperature
Figure 26A. Output Source Current vs. Temperature Figure 26B. Output Source Current vs. Voltage
6.0
7.0
8.0
9.0
10.0
11.0
-50 -25 0 25 50 75 100 125
Temperature (°C)
V
BS
Undervoltage Lockout - (V)
Max.
Typ.
Min.
6.0
7.0
8.0
9.0
10.0
11.0
-50 -25 0 25 50 75 100 125
Temperature (°C)
V
CC
Undervoltage Lockout - (V)
Max.
Typ.
Min.
0.00
1.00
2.00
3.00
4.00
5.00
10 12 14 16 18 20
VBIAS Supply Voltage (V)
Output Source Current (A)
Min.
Typ.
0.00
1.00
2.00
3.00
4.00
5.00
-50 -25 0 25 50 75 100 125
Temperature (°C)
Output Source Current (A)
Min.
Typ.
www.irf.com 11
IR2110L4
Figure 28. IR2110L6 TJ vs. Frequency (IRFBC20)
RGATE = 33W, VCC = 15V
Figure 29. IR2110L6 TJ vs. Frequency (IRFBC30)
RGATE = 22W, VCC = 15V
Figure 27B. Output Sink Current vs. VoltageFigure 27A. Output Sink Current vs. Temperature
Figure 31. IR2110L6 TJ vs. Frequency (IRFPE50)
RGATE = 10W, VCC = 15V
Figure 30. IR2110L6 TJ vs. Frequency (IRFBC40)
RGATE = 15W, VCC = 15V
0.00
1.00
2.00
3.00
4.00
5.00
10 12 14 16 18 20
VBIAS Supply Voltage (V)
Output Sink Current (A)
Min.
Typ.
0
25
50
75
100
125
150
1E+2 1E+3 1E+4 1E+5 1E+6
Frequency (Hz)
Junction Temperature (°C)
320V
140V
10V
0
25
50
75
100
125
150
1E+2 1E+3 1E+4 1E+5 1E+6
Frequency (Hz)
Junction Temperature (°C)
320V
140V
10V
0
25
50
75
100
125
150
1E+2 1E+3 1E+4 1E+5 1E+6
Frequency (Hz)
Junction Temperature (°C)
320V 1 40V
10V
0
25
50
75
100
125
150
1E+2 1E+3 1E+4 1E+5 1E+6
Frequency (Hz)
Junction Temperature (°C)
320V 140V
10V
0.00
1.00
2.00
3.00
4.00
5.00
-50 -25 0 25 50 75 100 125
Temperature (°C)
Output Sink Current (A)
Min.
Typ.
12 www.irf.com
IR2110L4
Figure 32. IR2110L6S TJ vs. Frequency (IRFBC20)
RGATE = 33W, VCC = 15V
Figure 33. IR2110L6S TJ vs. Frequency (IRFBC30)
RGATE = 22W, VCC = 15V
Figure 36. Maximum VS Negative Offset vs.
VBS Supply Voltage
Figure 37. Maximum VSS Positive Offset vs.
VCC Supply Voltage
Figure 34. IR2110L6S TJ vs. Frequency (IRFBC40)
RGATE = 15W, VCC = 15V
Figure 35. IR2110L6S TJ vs. Frequency (IRFPE50)
RGATE = 10W, VCC = 15V
0
25
50
75
100
125
150
1E+2 1E+3 1E+4 1E+5 1E+6
Frequency (Hz)
Junction Temperature (°C)
320V 140V
10V
0
25
50
75
100
125
150
1E+2 1E+3 1E+4 1E+5 1E+6
Frequency (Hz)
Junction Temperature (°C)
320V 140 V
10V
0
25
50
75
100
125
150
1E+2 1E+3 1E+4 1E+5 1E+6
Frequency (Hz)
Junction Temperature (°C)
320V 140 V
10V
0
25
50
75
100
125
150
1E+2 1E+3 1E+4 1E+5 1E+6
Frequency (Hz)
Junction Temperature (°C)
320V 140V 10V
-10.0
-8.0
-6.0
-4.0
-2.0
0.0
10 12 14 16 18 20
VBS Floating Supply Voltage (V)
V
S
Offset Supply Voltage (V)
Typ.
0.0
4.0
8.0
12.0
16.0
20.0
10 12 14 16 18 20
VCC Fixed Supply Voltage (V)
V
SS
Logic Supply Offset Voltage (V)
Typ.
www.irf.com 13
IR2110L4
Lead
Symbol Description
VDD Logic supply
HIN Logic input for high side gate driver output (HO), in phase
SD Logic input for shutdown
LIN Logic input for low side gate driver output (LO), in phase
VSS Logic ground
VBHigh side floating supply
HO High side gate drive output
VSHigh side floating supply return
VCC Low side supply
LO Low side gate drive output
COM Low side return
VB
SD
LIN
VDD
PULSE
GEN
RSQ
VSS
UV
DETECT
DELAY
HV
LEVEL
SHIFT
VCC
PULSE
FILTER
UV
DETECT
VDD /VCC
LEVEL
SHIFT
VDD /VCC
LEVEL
SHIFT LO
VS
COM
RSQR
S
RQ
HIN
HO
Functional Block Diagram
Lead Definitions
14 www.irf.com
IR2110L4
Case Outline and Dimensions MO-036AB
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
IR LEOMINSTER : 205 Crawford St., Leominster, Massachusetts 01453, USA Tel: (978) 534-5776
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.
Data and specifications subject to change without notice. 05/2011