AON7460 300V,4A N-Channel MOSFET General Description Product Summary The AON7460 is fabricated using an advanced high voltage MOSFET process that is designed to deliver high levels of performance and robustness in popular AC-DC applications.By providing low RDS(on), Ciss and Crss along with guaranteed avalanche capability this device can be adopted quickly into new and existing offline power supply designs.This device is ideal for boost converters and synchronous rectifiers for consumer, telecom, industrial power supplies and LED backlighting. VDS 350V@150 ID (at VGS=10V) 4A RDS(ON) (at VGS=10V) < 0.83 100% UIS Tested! 100% Rg Tested! Top View DFN 3x3A_EP Bottom View Top View D S S D D S G D D G Pin 1 S Absolute Maximum Ratings TA=25C unless otherwise noted Parameter Symbol Drain-Source Voltage VDS Gate-Source Voltage VGS TC=25C Continuous Drain CurrentB Pulsed Drain Current Avalanche Current C V A 13 1.2 IDSM TA=70C 30 2.5 IDM TA=25C Continuous Drain Current Units V 4 ID TC=100C C Maximum 300 A 1.0 IAR 2.1 A Repetitive avalanche energy C EAR 66 mJ Single pulsed avalanche energy G Peak diode recovery dv/dt TC=25C EAS dv/dt 132 5 33 mJ V/ns W 13 W Power Dissipation B PD TC=100C TA=25C Power Dissipation A PDSM TA=70C Junction and Storage Temperature Range Thermal Characteristics Parameter Maximum Junction-to-Ambient A Maximum Junction-to-Ambient A D Maximum Junction-to-Case Rev 0: Mar 2011 3.1 TJ, TSTG Symbol t 10s Steady-State Steady-State RJA RJC www.aosmd.com W 2 -50 to 150 Typ 30 60 3.1 C Max 40 75 3.7 Units C/W C/W C/W Page 1 of 6 AON7460 Electrical Characteristics (TJ=25C unless otherwise noted) Symbol Parameter Conditions Min ID=250A, VGS=0V, TJ=25C 300 Typ Max Units STATIC PARAMETERS BVDSS Drain-Source Breakdown Voltage BVDSS /TJ Zero Gate Voltage Drain Current IDSS Zero Gate Voltage Drain Current IGSS Gate-Body leakage current VDS=0V, VGS=30V Gate Threshold Voltage VDS=5V, ID=250A VGS(th) ID=250A, VGS=0V, TJ=150C 350 V ID=250A, VGS=0V 0.3 V/ oC VDS=300V, VGS=0V 1 VDS=240V, TJ=125C 10 A 100 3.3 3.9 4.5 n V 0.83 1 V RDS(ON) Static Drain-Source On-Resistance VGS=10V, ID=1.2A 0.67 gFS Forward Transconductance VDS=40V, ID=1.2A 2 VSD Diode Forward Voltage IS=1A,VGS=0V IS Maximum Body-Diode Continuous Current 4 A ISM Maximum Body-Diode Pulsed Current 13 A DYNAMIC PARAMETERS Input Capacitance Ciss Coss Output Capacitance Crss Reverse Transfer Capacitance Rg Gate resistance VGS=0V, VDS=25V, f=1MHz S 0.76 240 310 380 pF 30 45 60 pF 3.0 VGS=0V, VDS=0V, f=1MHz SWITCHING PARAMETERS Qg Total Gate Charge pF 1.4 2.9 4.5 5.4 6.8 8.2 nC VGS=10V, VDS=240V, ID=1.2A Qgs Gate Source Charge 1.9 nC Qgd Gate Drain Charge 2.0 nC tD(on) Turn-On DelayTime 17 ns tr Turn-On Rise Time 8 ns tD(off) Turn-Off DelayTime tf trr Turn-Off Fall Time Qrr Body Diode Reverse Recovery Charge IF=1.2A,dI/dt=100A/s,VDS=100V Body Diode Reverse Recovery Time VGS=10V, VDS=150V, ID=1.2A, RG=25 IF=1.2A,dI/dt=100A/s,VDS=100V 29 ns 12 ns 60 88 120 0.20 0.29 0.40 ns C A. The value of RJA is measured with the device mounted on 1 in2 FR-4 board with 2oz. Copper, in a still air environment with TA =25C. The Power Dissipation PDSM is based on RJA t 10s value and the maximum allowed junction temperature of 150C. The value in any given application depends on the user's specific board design. B. The power dissipation PD is based on TJ(MAX)=150C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=150C. Ratings are based on low frequency and duty cycles to keep initial TJ =25C. D. The RJA is the sum of the thermal impedance from junction to case RJC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300s pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of TJ(MAX)=150C. The SOA curve provides a single pulse rating. G.These tests are performed with the device mounted on 1 in2 FR-4 board with 2oz. Copper, in a still air environment with TA=25C. H. L=60mH, IAS=2.1A, VDD=150V, RG=10, Starting TJ=25C. THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE. Rev 0: Mar 2011 www.aosmd.com Page 2 of 6 AON7460 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 100 10 VDS=40V 10V 8 -55C 6.5V 10 ID(A) ID (A) 6 6.0V 4 125C 1 25C VGS=5.5V 2 0.1 0 0 5 10 15 20 VDS (Volts) Fig 1: On-Region Characteristics 2 25 2.0 6 8 VGS(Volts) Figure 2: Transfer Characteristics 10 Normalized On-Resistance 3 1.5 RDS(ON) ( ) 4 VGS=10V 1.0 0.5 2.5 VGS=10V ID=1.2A 2 1.5 1 0.5 0.0 0 0 2 4 6 8 10 -100 ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage -50 0 50 100 150 200 Temperature (C) Figure 4: On-Resistance vs. Junction Temperature 1.0E+01 1.2 40 125C 1.0E-01 25C IS (A) BVDSS (Normalized) 1.0E+00 1.1 1 1.0E-02 0.9 1.0E-03 1.0E-04 0.8 -100 50 100 150 200 TJ (oC) Figure 5: Break Down vs. Junction Temperature Rev 0: Mar 2011 -50 0 www.aosmd.com 0.2 0.4 0.6 0.8 VSD (Volts) Figure 6: Body-Diode Characteristics 1.0 Page 3 of 6 AON7460 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 1000 15 VDS=240V ID=1.2A Ciss 100 Capacitance (pF) VGS (Volts) 12 9 6 Coss 10 Crss 1 3 0 0 0 2 4 6 8 Qg (nC) Figure 7: Gate-Charge Characteristics 0.1 10 100 10 VDS (Volts) Figure 8: Capacitance Characteristics 100 400 10 TJ(Max)=150C TC=25C 10s 1 100s 1ms DC 10ms 0.1 Power (W) 300 RDS(ON) limited ID (Amps) 1 200 100 TJ(Max)=150C 0.01 0 1 10 100 1000 0.0001 VDS (Volts) Figure 9: Maximum Forward Biased Safe Operating Area (Note F) 0.001 0.01 0.1 1 10 Pulse Width (s) Figure 10: Single Pulse Power Rating Junction-toCase (Note F) Z JC Normalized Transient Thermal Resistance 10 1 D=Ton/T TJ,PK=TC+PDM.ZJC.RJC RJC=3.7C/W In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 0.1 PD 0.01 Single Pulse Ton T 0.001 0.000001 0.00001 0.0001 0.001 0.01 0.1 1 10 100 Pulse Width (s) Figure 11: Normalized Maximum Transient Thermal Impedance (Note F) Rev 0: Mar 2011 www.aosmd.com Page 4 of 6 AON7460 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 5.0 4.0 30 Current rating ID(A) Power Dissipation (W) 40 20 10 3.0 2.0 1.0 0 0.0 0 25 50 75 100 125 TCASE ( C) Figure 12: Power De-rating (Note B) 150 0 25 50 75 100 125 TCASE ( C) Figure 13: Current De-rating (Note B) 150 100 TJ(Max)=150C TA=25C Power (W) 80 60 40 20 0 0.0001 0.001 0.01 0.1 1 10 Pulse Width (s) Figure 14: Single Pulse Power Rating Junction-to-Ambient (Note G) 100 1000 Z JA Normalized Transient Thermal Resistance 10 1 D=Ton/T TJ,PK=TA+PDM.ZJA.RJA RJA=75C/W In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 0.1 PD 0.01 Ton Single Pulse T 0.001 0.00001 0.0001 0.001 0.01 0.1 1 10 100 1000 Pulse Width (s) Figure 15: Normalized Maximum Transient Thermal Impedance (Note G) Rev 0: Mar 2011 www.aosmd.com Page 5 of 6 AON7460 Gate Charge Test Circuit & Waveform Vgs Qg 10V + + VDC - VDC DUT Qgs Vds Qgd - Vgs Ig Charge Res istive Switching Test Circuit & Waveforms RL Vds Vds DUT Vgs + VDC 90% Vdd - Rg 10% Vgs Vgs t d(on) tr t d(off) t on tf t off Unclamped Inductive Switching (UIS) Test Circuit & Waveforms L EAR= 1/2 LI Vds 2 AR BVDSS Vds Id + Vgs Vgs VDC - Rg Vdd I AR Id DUT Vgs Vgs Diode Recovery Tes t Circuit & Waveforms Qrr = - Idt Vds + DUT Vgs Vds - Isd Vgs Ig Rev 0: Mar 2011 L Isd + Vdd trr dI/dt IRM Vdd VDC - IF Vds www.aosmd.com Page 6 of 6