4-29
PQFP/TQFP
23
1
INDEX
CORNER
34
P1.0
VCC
P1.1
P1.2
P1.4
P1.3
NC
42
43 40
41
6
5
4
44
3
2
26
25
28
27
24
18192021
22
P1.7
P1.6
P1.5
NC 7
8
9
10
11
121314151617
29
30
39
3837
3635 33
32
31
NC
PSEN
XTAL1
GND
XTAL2
GND
P0.0 (AD0)
ALE/PROG
()P3.7RD
EA/VPP
()P3.6WR
(RXD) P3.0 P0.7 (AD7)
P2.6 (A14)
P0.6 (AD6)
P0.5 (AD5)
P0.4 (AD4)
P0.3 (AD3)
P0.2 (AD2)
P0.1 (AD1)
()P3.2INT0
(TXD) P3.1
(T1) P3.5
()P3.3INT1
(T0) P3.4 P2.7 (A15)
(A11) P2.3
(A12) P2.4
(A10) P2.2
(A9) P2.1
(A8) P2.0
RST
P2.5 (A13)
Features
Compatibl e with MCS-51™ Products
4K Bytes of In-System Reprogrammable Flash Memory
Endurance: 1,000 Write/Erase Cycles
Fully Static Operation: 0 Hz to 24 MHz
Three-Level Program Memory Lock
128 x 8-Bit Internal RAM
32 Programmable I/O Lines
Two 16-Bit Timer/Counters
Six Interrupt Sources
Programmable Serial Channel
Low Power Idle and Power Down Modes
Description
The AT89C51 is a low-power, high-performance CMOS 8-bit microcomputer with 4K
bytes of Flash Programmable and Erasable Read Only Memory (PEROM). The
device is manufacture d using Atmel’s high density nonvolatile memory technology
and is compatible with the industry standard MCS-51™ instruction set and pinout. The
on-chip Flash allows the program memory to be reprogrammed in-system or by a con-
ventional non volatile memo ry programmer. B y combining a ver satile 8-bit CPU with
Flash on a mo nolithic c hip, the Atme l AT89C51 is a pow erful micro computer whic h
provid es a h ighly fl exib le and cost effe ctive s olutio n to many embedd ed con trol appli -
cations.
PDIP
P1.0
V
CC
P1.1
P0.0 (AD0)
P1.2
()P3.2INT0
ALE/PROG
()P3.7RD P2.3 (A11)
(TXD) P3.1
EA/VPP
()P3.6WR P2.4 (A12)
(RXD) P3.0
P0.7 (AD7)
(T1) P3.5 P2.6 (A14)
RST
P0.6 (AD6)
P1.7
P0.5 (AD5)
P1.6
P0.4 (AD4)
P1.5
P0.3 (AD3)
P1.4
P0.2 (AD2)
P1.3
P0.1 (AD1)
()P3.3INT1
PSEN
XTAL2 P2.2 (A10)
(T0) P3.4 P2.7 (A15)
XTAL1 P2.1 (A9)
GND P2.0 (A8)
P2.5 (A13)
20
19
18
17
16
15
1
2
3
4
5
6
7
8
9
10
11
12
13
14
21
22
23
24
25
26
40
39
38
37
36
35
34
33
32
31
30
29
28
27
0265F-A–12/97
(continued)
8-Bit
Microcontroller
with 4K Bytes
Flash
AT89C51
Pin Configurations
PLCC
P1.0
VCC
P1.1
P0.0 (AD0)
P1.2
ALE/PROG
()P3.7RD
XTAL1
EA/VPP
()P3.6WR
GND
(RXD) P3.0
P0.7 (AD7)
P2.6 (A14)
P0.6 (AD6)
P0.5 (AD5)
P0.4 (AD4)
P0.3 (AD3)
P1.4
P0.2 (AD2)
P1.3
P0.1 (AD1)
PSEN
XTAL2
()P3.2INT0
(TXD) P3.1
(T1) P3.5
()P3.3INT1
(T0) P3.4 P2.7 (A15)
(A11) P2.3
(A12) P2.4
(A10) P2.2
(A9) P2.1
(A8) P2.0
NC
23
1
RST
P1.7
P1.6
P1.5
INDEX
CORNER
NC
NC
P2.5 (A13)
34
NC
42
43 40
41
65444
3
2
26
25 28
27
18
19
20 24
21
22
7
8
9
10
11
12
13
14
15
16
17 29
30
39
38
37
36
35
33
32
31
AT89C51
4-30
Block Diagram
PORT 2 DRIVERS
PORT 2
LATCH
P2.0 - P2.7
FLASH
PORT 0
LATCH
RAM
PROGRAM
ADDRESS
REGISTER
BUFFER
PC
INCREMENTER
PROGRAM
COUNTER
DPTR
RAM ADDR.
REGISTER
INSTRUCTION
REGISTER
B
REGISTER
INTERRUPT, SERIAL PORT,
AND TIMER BLOCKS
STACK
POINTER
ACC
TMP2 TMP1
ALU
PSW
TIMING
AND
CONTROL
PORT 3
LATCH
PORT 3 DRIVERS
P3.0 - P3.7
PORT 1
LATCH
PORT 1 DRIVERS
P1.0 - P1.7
OSC
GND
VCC
PSEN
ALE/PROG
EA / VPP
RST
PORT 0 DRIVERS
P0.0 - P0.7
AT89C51
4-31
The AT89 C51 provi des the fo llowi ng stan dard feat ures : 4K
bytes of F lash, 128 bytes of RAM, 32 I/O lines, two 16- bit
timer/counters, a five vector two-level interrupt architecture,
a full duplex serial port, on-chip oscillator and clock cir-
cuitry. In addition, the AT89C51 is designed with static logic
for operation down to zero frequency and supports two
software selectable power saving modes. The Idle Mode
stops the CPU while allowing the RA M, timer/counters,
serial port and interrupt system to continue functioning. The
Power Down Mode saves the RAM contents but fr eezes
the oscillator disabling all other chip functions until the next
hardware reset.
Pin Description
VCC
Supply voltage.
GND
Ground.
Port 0
Port 0 is an 8-bi t open drain bidirectional I/O port. As an
output port each pin can sink eight TT L inputs. When 1s
are written to port 0 pins, the pins can be used as high-
impedance inputs.
Port 0 may also be configured to be the multiplexed low-
order address/data bus during accesses to external pr o-
gram and data memo ry. In this mode P0 has int ernal pul-
lups.
Port 0 a lso rec eives th e code bytes d uring Fla sh prog ram-
ming, and outputs the code bytes during program verifica-
tion. E xternal pullu ps are re quired during pr ogram v erific a-
tion.
Port 1
Port 1 is a n 8- bit bi dire ction al I/O por t with inter nal pullu ps.
The Port 1 output buffers can sink/source four TTL inputs.
When 1s are written to Port 1 pins they are pulled high by
the internal pullups and can be us ed as inputs. As i nputs,
Port 1 pins that are externally being pulled low will source
current (IIL) because of the internal pullups.
Port 1 also receives the low-order address bytes during
Flash programming and verification.
Port 2
Port 2 is a n 8- bit bi dire ction al I/O por t with inter nal pullu ps.
The Port 2 output buffers can sink/source four TTL inputs.
When 1s are written to Port 2 pins they are pulled high by
the internal pullups and can be us ed as inputs. As i nputs,
Port 2 pins that are externally being pulled low will source
current (IIL) because of the internal pullups.
Port 2 emits the high-order address byte during fetches
from external program memory and during accesses to
externa l data memory t hat us e 16 -bit addr e sses ( MOVX @
DPTR). In this appli cation it us es strong in ternal pull ups
when emitting 1s. During accesses to ex ternal data mem-
ory that use 8-bit addresses (MOVX @ RI), Port 2 emits the
contents of the P2 Special Function Register.
Port 2 also receives the high-order address bits and some
control signals during Flash programming and verification.
Port 3
Port 3 is an 8-bit bi directiona l I/O port with interna l pullups.
The Port 3 output buffers can sink/source four TTL inputs.
When 1s are written to Port 3 pins they are pulled high by
the internal pullups and can be used as inputs. As inputs,
Port 3 pins that are externally being pulled low will source
current (IIL) because of the pullups.
Port 3 also s erves the funct ions of var ious s peci al featu res
of the AT89C51 as listed below:
Port 3 also receives some control signals for Flash pro-
gramming and verification.
RST
Reset input. A high on this pin for two machine cycles while
the oscillator is running resets the device.
ALE/PROG
Address Latch Enable output pulse for latching the low byte
of the address during accesses to external memory. This
pin is also the program pulse input (PROG) during Flash
programmi ng.
In normal operation ALE is emitted at a constant rate of 1/6
the osc illator frequen cy, an d may be used for ex ternal tim-
ing or clocking purposes. Note, however, that one ALE
pulse is skipped during each access to external Data Mem-
ory.
If desired, ALE operation can be disabled by setting bit 0 of
SFR loc ation 8 EH. With the bit set, ALE is acti ve only du r-
ing a MOVX or MOVC instruction. Otherwise, the pin is
weakly pulled high. Setting the ALE-disable bit has no
effect if the microcontroller is in external execution mode.
PSEN
Program Store Enable is the read strobe to external pro-
gram memory.
Port Pin Alternate Functions
P3.0 RXD (serial input port)
P3.1 TXD (serial output port)
P3.2 INT0 (external interrupt 0)
P3.3 INT1 (external in terrupt 1)
P3.4 T0 (timer 0 external input)
P3.5 T1 (timer 1 external input)
P3.6 WR (external data memory write strobe)
P3.7 RD (external data memory read strobe)
AT89C51
4-32
When the AT89C51 is executing code from external pro-
gram memory, PSEN is activated twice each machine
cycle, except that two PSEN activations are skipped during
each access to external data memory.
EA/VPP
External Access Enable. EA mu st be strap ped to GND in
order to enable the device to fetch code from external pro-
gram memory locations starting at 0000H up to FFFFH.
Note, however, that if lock bit 1 is programmed, EA will be
internally latched on reset.
EA should be strapped to VCC for internal program execu-
tions.
This pin also receives the 12-volt programming enable volt-
age (VPP) during Flash programming, for parts that require
12-volt VPP.
XTAL1
Input to the inverting osc illator amplifie r and input to the
internal clock operating circuit.
XTAL2
Output from the inverting oscillator amplifier.
Oscillator Characteristics
XTAL1 and XTA L2 are the input and output, respe ctively,
of an inverting amplifier which can be configured for use as
an on-chip oscillator, as shown in Figure 1. Either a quartz
crystal or ceramic resonator may be used. To drive the
device from an external clock source, XTAL2 should be left
unconnected while XTAL1 is driven as shown in Figure 2.
There are no requirements on the duty cycle of the external
clock signal, since the input to the internal clocking circuitry
is through a divide-by-two flip-flop, but minimum and maxi-
mum voltage high and low time specifications must be
observed.
Idle Mode
In idle mode, the CPU puts itself to sl eep while all the on-
chip peripherals remain active. The mode is invoked by
software. T he content of the on-chip RAM and all the spe-
cial functions registers remain unchanged during this
mode. The i dle mode can be terminated by any en abled
interrupt or by a hardware reset.
It should be noted that when idle is terminated by a hard
ware rese t, the devic e normally resum es program execu-
tion, fr om wh ere it le ft off, up to two machi ne cyc les b efore
the internal reset algorithm takes control. On-chip hardware
inhibi ts acces s to interna l RAM in th is event, but acce ss to
the port pins is not inhibited. To eliminate the possibility of
an unexpected write to a port pin when Idle is terminated by
reset, the instruction following the one that invokes Idle
should no t be one that w rites to a p ort pin or to external
memory.
Figure 1. Oscillator Connections
Note: C1, C2 = 30 pF ± 10 pF for Crystals
= 40 pF ± 10 pF for Ceramic Resonators
Figure 2. External Clock Drive Configuration
C2 XTAL2
GND
XTAL1
C1
Status of Exte r nal Pins Durin g Idle and Power Down Modes
Mode Program Memory ALE PSEN PORT0 PORT1 PORT2 PORT3
Idle Internal 1 1 Data Data Data Data
Idle External 1 1 Float Data Address Data
Pow er Do wn Internal 0 0 Data Data Data Data
Power Down External 0 0 Float Data Data Data
AT89C51
4-33
Power Down Mode
In the power down mode the oscillator is stopped, and the
inst ruction that in vokes power down is th e last instru ction
executed. The on-chip RAM and Special Function Regis-
ters retai n their v alues until the p ower d own mode is termi -
nated. Th e only exi t from pow er down is a hard ware reset .
Reset redefines the SFRs but does not cha nge the on-chip
RAM. The reset should not be activated before VCC is
restored to its normal operating level and m ust be held
active long enough to allow the oscillator to restart and sta-
bilize.
Program Memor y Lock Bits
On the chip are three lock bits which can be left unpro-
grammed (U) or can be programmed (P) to obtain the addi-
tional features listed in the table below:
When lock bit 1 is programmed, the logic level at the EA pi n
is sam pled and latch ed during reset. I f the d evice is pow-
ered up without a reset, the la tch initiali zes to a random
value, and holds that value until reset is activated. It is nec-
essary that the latched value of EA be in agreement with
the current logi c level at that pi n in order for the device to
function prope rl y.
Lock Bit Protection Modes
Program Lock Bits Protection Type
LB1 LB2 LB3
1 U U U No program lock features.
2 P U U MOVC instructions executed from external program memory are disabled from fetching code
by tes from internal memory, EA is s ampled and latc hed on res et, and f urther prog rammi ng of the
Flash is disabled.
3 P P U Same as mode 2, also verify is disabled.
4 P P P Same as mode 3, also external execution is disabled.
Prog ramm ing the Flash
The AT89C51 is normally shipped with the on-chip Flash
memor y array in th e erased state (tha t is, con tents = FF H)
and ready to be program med. The programming interface
accepts either a high-voltage (12-volt) or a low-voltage
(VCC) program enable signal. The low voltage program-
ming mode provides a convenient way to program the
AT89C51 inside the user’s system, while the high-voltage
programming mode is compatible with conventi onal third
party Flash or EPROM programmers.
The AT89C51 is shipped with either the high-voltage or
low-voltage programming mode enabled. The respective
top-side marking and device signature codes are listed in
the following table.
The AT89 C51 code m emory array i s progr ammed byte-by -
byte in eithe r program ming mo de.
To program any non-
blank byt e in th e on- chip Flas h Mem or y, the entire me mory
must be erased using the Chip Erase Mode.
Programming Algorithm: Before programming the
AT89 C51, the addre ss, data and con trol si gnals s hould be
set up according to the Flash programming mode table and
Figures 3 and 4. To program the AT89C51, take the follow-
ing steps.
1. Input the desired memory location on the address
lines.
2. Input the appropriate data byte on the data lines.
3. Activate the correct combination of control signals.
4. Raise EA/VPP to 12V for the high-voltage programming
mode.
5. Pulse ALE/PROG once to program a byte in the Flash
array or the lock bits. The byte-write cycle is self-timed
and typi cally takes no more tha n 1.5 ms. Repeat ste ps
1 through 5, changing the address and data for the
entire array or until the end of the object file is reached.
Data Polling: The AT89C51 features Data Polling to indi-
cate the end of a write cycle. During a write cycle, an
attempted read of the last byte written will result in the com-
plement of the written datum on PO.7. Once the write cycle
has been c om ple ted, tr ue d ata a re va li d on al l ou tpu ts, and
the next cy cle may begin . Data Po lling may be gin any time
after a write cycle has been initiated.
Ready/Busy: The progress of byte programming can also
be monitor ed by the RDY/B SY output si gna l. P 3.4 is p ull ed
low af ter ALE goes high during programmin g to indicate
BUSY. P3.4 is pulled high again when programming is
done to indicate READY.
VPP = 12V VPP = 5V
Top-Side Ma rk AT89C51
xxxx
yyww
AT89C51
xxxx-5
yyww
Signature (030H)=1EH
(031H)=51H
(032H)=FFH
(030H)=1EH
(031H)=51H
(032H)=05H
AT89C51
4-34
Program Verify: If lock bits LB1 and LB2 have not been
programmed, the programmed code data can be read back
via the ad dr es s an d d ata l ine s for ve ri fication. Th e l ock bi ts
cannot be v erified directl y. Verification of the lock bi ts is
achieved by observing that their features are enabled.
Chip Erase: The entire Flash array is erased electrically
by using the proper com bination of contr ol signals and by
holding ALE/PROG low for 10 ms. The code array is written
with all “1”s. The chip erase operation must be executed
before the code memory can be re-programmed.
Reading the Signature Bytes: The si gnature bytes are
read by the same procedure as a normal verification of
loca tio ns 030 H ,
031H, and 032H, except that P3.6 and P3.7 must be pulled
to a logic low. The values returned are as follows.
(030H) = 1EH indicates manufactured by Atmel
(031H) = 51H indicates 89C 51
(032H) = FFH indicates 12V programming
(032H) = 05H indicates 5V programming
Pr ogramming Interface
Every code byte in the Flash arr ay can be written and the
entire arra y can be era sed by usi ng the app ropriat e combi -
nation of control signal s. The write operation cycle i s self-
timed and once initiated, will automatically time itself to
completion.
All maj or prog ramming ve ndors of fer worl dwide s upport fo r
the Atmel microcontroller series. Please contact your local
programming vendor for the appropriate software revision.
Flash Programming Modes
Note: 1. Chip Erase requires a 10-ms PROG pulse.
Mode RST PSEN ALE/PROG EA/VPP P2.6 P2.7 P3.6 P3.7
Write Code Data H L H/12V L H H H
Read Code Data H L H H L L H H
Write Lock Bit - 1 H L H/12V H H H H
Bit - 2 H L H/12V H H L L
Bit - 3 H L H/12V H L H L
Chip Erase H L H/12V H L L L
Read Signature Byte H L H H L L L L
(1)
AT89C51
4-35
Figure 3. Programming the Flash Figure 4. Verifying the Flash
P1
P2.6
P3.6
P2.0 - P2.3
A0 - A7
ADDR.
OOOOH/OFFFH
T
SEE FLASH
PROGRAMMING
MODES ABLE
3-24 MHz
A8 - A11 P0
+5V
P2.7
PGM
DATA
PROG
V/V
IH PP
VIH
ALE
P3.7
XTAL2 EA
RST
PSEN
XTAL1
GND
VCC
AT89C51
P1
P2.6
P3.6
P2.0 - P2.3
A0 - A7
ADDR.
OOOOH/0FFFH
3-24 MHz
A8 - A11 P0
+5V
P2.7
PGM DATA
(USE 10K
PULLUPS)
VIH
VIH
ALE
P3.7
XTAL2 EA
RST
PSEN
XTAL1
GND
VCC
AT89C51
T
SEE FLASH
PROGRAMMING
MODES ABLE
Flash Programming and Verification Characteristics
TA = 0°C to 70°C, VCC = 5.0 ± 10%
Note: 1. Only used in 12-volt programming mode.
Symbol Parameter Min Max Units
VPP(1) Programming Ena ble Voltage 11.5 12.5 V
IPP(1) Programming Enable Current 1.0 mA
1/tCLCL Oscillator Frequency 324MHz
t
AVGL Address Setup to PROG Low 48tCLCL
tGHAX Address Hold After PROG 48tCLCL
tDVGL Data Setup to PROG Low 48tCLCL
tGHDX Data Hold After PROG 48tCLCL
tEHSH P2.7 (ENABLE) High to VPP 48tCLCL
tSHGL VPP Setup to PROG Low 10 µs
tGHSL(1) VPP Hold After PROG 10 µs
tGLGH PROG Width 1110µs
t
AVQV Address to Data Valid 48tCLCL
tELQV ENABLE Low to Data Valid 48tCLCL
tEHQZ Data Float After ENABLE 048t
CLCL
tGHBL PROG High to BUSY Low 1.0 µs
tWC Byte Write Cycle Time 2.0 ms
AT89C51
4-36
Flash Programm ing and Verification Waveforms - High Voltage Mode (VPP = 12V)
t
GLGH
t
GHSL
t
AVGL
t
SHGL
t
DVGL
t
GHAX
t
AVQV
t
GHDX
t
EHSH
t
ELQV
t
WC
BUSY READY
t
GHBL
t
EHQZ
P1.0 - P1.7
P2.0 - P2.3
ALE/PROG
PORT 0
LOGIC 1
LOGIC 0
EA/V
PP
V
PP
P2.7
(ENABLE)
P3.4
(RDY/BSY)
PROGRAMMING
ADDRESS VERIFICATION
ADDRESS
DATA IN DATA OUT
Flash Programm ing and Verification Waveforms - Low Voltage Mode (V PP = 5V)
t
GLGH
t
AVGL
t
SHGL
t
DVGL
t
GHAX
t
AVQV
t
GHDX
t
EHSH
t
ELQV
t
WC
BUSY READY
t
GHBL
t
EHQZ
P1.0 - P1.7
P2.0 - P2.3
ALE/PROG
PORT 0
LOGIC 1
LOGIC 0
EA/V
PP
P2.7
(ENABLE)
P3.4
(RDY/BSY)
PROGRAMMING
ADDRESS VERIFICATION
ADDRESS
DATA IN DATA OUT
AT89C51
4-37
Absolute Maximum Ratings*
DC Characteristics
TA = -40°C to 85°C, VCC = 5.0V ± 20% (unless otherwise noted)
Notes: 1. Under steady state (non-transient) conditions, IOL must be externally li mited as follows:
Maximum IOL per port pin: 10 mA
Maximum IOL per 8-bit port: Por t 0: 26 mA
Ports 1, 2, 3: 15 mA
Maximum total IOL for all output pins: 71 mA
If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater
than the listed test conditions.
2. Minimum VCC for Power Down is 2V.
Operating Temperature.................................. -55°C to +125°C *NOTICE: Stresses beyond those listed under “Absolute
Maximum Ratings” may cause permanent dam-
age to the device . Th is is a stres s ra ting onl y and
funct ion al ope ration of the d evice at t hes e o r any
other conditions beyond those indicated in the
operational sections of this spec ification is not
implied. Exposure to absolute maximum rating
conditi ons f or e xtended p eriods ma y af fect dev ice
reliability.
Storage Temperature..................................... -65°C to +150°C
Voltage on Any Pin
with Respect to Ground.....................................-1.0V to +7.0V
Maximu m Operating Voltage............................................. 6.6V
DC Output Current...................... ...... ..... ...... ............... 15.0 mA
Symbol Parameter Condition Min Max Units
VIL Input Low Voltage (Except EA)-0.50.2 V
CC - 0.1 V
VIL1 Input Low Voltage (EA)-0.50.2 V
CC - 0.3 V
VIH Input High Voltage (Except XTAL1, RST) 0.2 VCC + 0.9 VCC + 0.5 V
VIH1 Input High Voltage (XTAL1, RST) 0.7 VCC VCC + 0.5 V
VOL Output Low Voltage(1) (Ports 1,2,3) IOL = 1.6 mA 0.45 V
VOL1 Output Low Voltage(1)
(Port 0, ALE, PSEN) IOL = 3.2 mA 0.45 V
VOH Output High Voltage
(Ports 1,2,3, ALE, PSEN)IOH = -60 µA, VCC = 5V ± 10% 2.4 V
IOH = -25 µA 0.75 VCC V
IOH = -10 µA0.9 V
CC V
VOH1 Output High Voltage
(Port 0 in Exter nal Bus Mode) IOH = -800 µA, VCC = 5V ± 10% 2.4 V
IOH = -300 µA 0.75 VCC V
IOH = -80 µA0.9 V
CC V
IIL Logical 0 Input Current (P orts 1,2,3) VIN = 0.45V -50 µA
ITL Logical 1 to 0 Transition Current
(Ports 1,2,3) VIN = 2V, VCC = 5V ± 10% -650 µA
ILI Input Leakage Current (Por t 0, EA)0.45 < V
IN < VCC ±10 µA
RRST Reset Pulldo wn Resistor 50 300 K
CIO Pin Capacitance Test Freq. = 1 MHz, TA = 25°C 10 pF
ICC Power Supply Current Active Mode, 12 MHz 20 mA
Idle Mode, 12 MHz 5 mA
Power Down Mode(2) VCC = 6V 100 µA
VCC = 3V 40 µA
AT89C51
4-38
AC Characteristics
(Under Operating Conditions; Load Capacitance for Port 0, ALE/PROG, and PSEN = 100 pF; Load Capacitance for all other
outputs = 80 pF)
External Program and Data Memory Characteristics
Symbol Parameter 12 MHz Oscillator 16 to 24 MHz Oscillator Units
Min Max Min Max
1/tCLCL Oscillator Frequency 0 24 MHz
tLHLL ALE Pulse Width 127 2tCLCL-40 ns
tAVLL Address Valid to ALE Low 43 tCLCL-13 ns
tLLAX Address Hold After ALE Low 48 tCLCL-20 ns
tLLIV ALE Low to Valid Instruction In 233 4tCLCL-65 ns
tLLPL ALE Low to PSEN Low 43 tCLCL-13 ns
tPLPH PSEN Pulse Width 205 3tCLCL-20 ns
tPLIV PSEN Low to Valid Instruction In 145 3tCLCL-45 ns
tPXIX Input Instruction Hold After PSEN 00ns
t
PXIZ Input Instruction Float After PSEN 59 tCLCL-10 ns
tPXAV PSEN to Addres s Valid 75 tCLCL-8 ns
tAVIV Address to Valid Instruction In 312 5tCLCL-55 ns
tPLAZ PSEN Low to Address Float 10 10 ns
tRLRH RD Pulse Width 400 6tCLCL-100 ns
tWLWH WR Pulse Width 400 6tCLCL-100 ns
tRLDV RD Low to Valid Data In 252 5tCLCL-90 ns
tRHDX Data Hold After RD 00ns
t
RHDZ Data Float After RD 97 2tCLCL-28 ns
tLLDV ALE Low to Valid Data In 517 8tCLCL-150 ns
tAVDV Address to Valid Data In 585 9tCLCL-165 ns
tLLWL ALE Low to RD or WR Low 200 300 3tCLCL-50 3tCLCL+50 ns
tAVWL Address to RD or WR Low 203 4tCLCL-75 ns
tQVWX Data Valid to WR Transition 23 tCLCL-20 ns
tQVWH Data Valid to WR High 43 3 7tCLCL-120 ns
tWHQX Data Hold After WR 33 tCLCL-20 ns
tRLAZ RD Low to Address Float 0 0 ns
tWHLH RD or WR High to ALE High 43 123 tCLCL-20 tCLCL+25 ns
AT89C51
4-39
External Program Memory Read Cycle
External Data Memory Read Cycle
tLHLL
tLLIV
tPLIV
tLLAX tPXIZ
tPLPH
tPLAZ tPXAV
tAVLL tLLPL
tAVIV
tPXIX
ALE
PSEN
PORT 0
PORT 2
A8 - A15
A0 - A7 A0 - A7
A8 - A15
INSTR IN
t
LHLL
t
LLDV
t
LLWL
t
LLAX
t
WHLH
t
AVLL
t
RLRH
t
AVDV
t
AVWL
t
RLAZ
t
RHDX
t
RLDV
t
RHDZ
A0 - A7 FROM RI OR DPL
ALE
PSEN
RD
PORT 0
PORT 2
P2.0 - P2.7 OR A8 - A15 FROM DPH
A0 - A7 FROM PCL
A8 - A15 FROM PCH
DATA IN INSTR IN
AT89C51
4-40
External Data Memory Write Cycle
External Clock Drive Wavef orms
External Clock Drive
Symbol Parameter Min Max Units
1/tCLCL Oscillator Frequency 0 24 MHz
tCLCL Clock Period 41.6 ns
tCHCX High Time 15 ns
tCLCX Low Time 15 ns
tCLCH Rise Time 20 ns
tCHCL Fall Tim e 20 ns
t
LHLL
t
LLWL
t
LLAX
t
WHLH
t
AVLL
t
WLWH
t
AVWL
t
QVWX
t
QVWH
t
WHQX
A0 - A7 FROM RI OR DPL
ALE
PSEN
WR
PORT 0
PORT 2
P2.0 - P2.7 OR A8 - A15 FROM DPH
A0 - A7 FROM PCL
A8 - A15 FROM PCH
DATA OUT INSTR IN
tCHCX tCHCX
tCLCX tCLCL
tCHCL
tCLCH
V - 0.5V
CC
0.45V 0.2 V - 0.1V
CC
0.7 VCC
AT89C51
4-41
Serial Port Tim in g: Shift Register Mode Test Conditions
(VCC = 5.0 V ± 20%; Load Capacitance = 80 pF)
Shift Register Mode Timing Waveforms
Symbol Parameter 12 MHz Osc Variable Oscillator Units
Min Max Min Max
tXLXL Serial Port Clock Cycle Time 1.0 12tCLCL µs
tQVXH Output Data Setup to Clock Rising Edge 700 10tCLCL-133 ns
tXHQX Output Data Hold After Clock Rising Edge 50 2tCLCL-117 ns
tXHDX Input Data Hold After Clock Rising Edge 0 0 ns
tXHDV Clock Rising Edge to Input Data Valid 700 10tCLCL-133 ns
t
XHDV
t
QVXH
t
XLXL
t
XHDX
t
XHQX
ALE
INPUT DATA
CLEAR RI
OUTPUT DATA
WRITE TO SBUF
INSTRUCTION
CLOCK
0
0
1
1
2
2
3
3
4
4
5
5
6
6
7
7
SET TI
SET RI
8
VALID VALIDVALID VALIDVALID VALIDVALID VALID
Float Waveforms(1)
Note: 1. For timing purposes, a port pin is no longer floating
when a 100 m V ch an ge fro m l oad voltage occurs. A
port pin begins to float when 100 mV change from
the loaded VOH/VOL level occurs.
VLOAD+ 0.1V
Timing Reference
Points
V
LOAD- 0.1V
LOAD VVOL+ 0.1V
VOL - 0.1V
AC Testing Input/Output Waveforms(1)
Note: 1 . A C Inpu ts during test ing are driv en at V CC - 0.5V for
a logic 1 and 0. 45V for a logic 0. Timing m easure-
ments are made at VIH min. for a logic 1 and VIL
max. for a logic 0.
0.45V
TEST POINTS
V - 0.5V
CC 0.2 V + 0.9V
CC
0.2 V - 0.1V
CC
AT89C51
4-42
Ordering In formation
Speed
(MHz) Power
Supply Ordering Code Package Operation Range
12 5V ± 20% AT89C51-12AC 44A Commercial
AT89C51-12JC 44J (0°C to 70°C)
AT89C51-12PC 40P6
AT89C51-12QC 44Q
AT89C51-12AI 44A Industrial
AT89C51-12JI 44J (-40°C to 85°C)
AT89C51-12PI 40P6
AT89C51-12QI 44Q
AT89C51-12AA 44A Automotive
AT89C51-12JA 44J (-40°C to 105°C)
AT89C51-12PA 40P6
AT89C51-12QA 44Q
16 5V ± 20% AT89C51-16AC 44A Commercial
AT89C51-16JC 44J (0°C to 70°C)
AT89C51-16PC 40P6
AT89C51-16QC 44Q
AT89C51-16AI 44A Industrial
AT89C51-16JI 44J (-40°C to 85°C)
AT89C51-16PI 40P6
AT89C51-16QI 44Q
AT89C51-16AA 44A Automotive
AT89C51-16JA 44J (-40°C to 105°C)
AT89C51-16PA 40P6
AT89C51-16QA 44Q
20 5V ± 20% AT89C51-20AC 44A Commercial
AT89C51-20JC 44J (0°C to 70°C)
AT89C51-20PC 40P6
AT89C51-20QC 44Q
AT89C51-20AI 44A Industrial
AT89C51-20JI 44J (-40°C to 85°C)
AT89C51-20PI 40P6
AT89C51-20QI 44Q
AT89C51
4-43
Ordering In formation
Speed
(MHz) Power
Supply Ordering Code Pack age Operation Range
24 5V ± 20% AT89C51-2 4AC 44A Commercial
AT89C51-24JC 44J (0°C to 70°C)
AT89C51-24PC 44P6
AT89C51-24QC 44Q
AT89C51-24AI 44A Industrial
AT89C51-24JI 44J (-40°C to 85°C)
AT89C51-24PI 44P6
AT89C51-24QI 44Q
Package Type
44A 44 Lead, Thin Plastic Gull Wing Quad Flatpack (TQFP)
44J 44 Lead, Plastic J-Leaded Chip Carrier (PLCC)
40P6 40 Lead, 0.600” Wide, Plastic Dual Inline Package (PDIP)
44Q 44 Lead, Plastic Gull Wing Quad Flatpack (PQFP)