- 1 -`
JANUARY18,2013|DATASHEET|Rev3.4
1
IR3894
12AHighlyIntegratedSupIRBuck
SingleInputVoltage,SynchronousBuckRegulator
PD97745
FEATURES
Single5Vto21Vapplication
WideInputVoltageRangefrom1.0Vto21Vwith
externalVcc
OutputVoltageRange:0.5Vto0.86*Vin
EnhancedLine/LoadRegulationwithFeedForward
ProgrammableSwitchingFrequencyupto1.5MHz
InternalDigitalSoftStart/SoftStop
EnableinputwithVoltageMonitoringCapability
ThermallyCompensatedCurrentLimitwithrobust
hiccupmodeovercurrentprotection
SmartinternalLDOtoimprovelightloadandfullload
efficiency
ExternalSynchronizationwithSmoothClocking
EnhancedPreBiasStartUp
PrecisionReferenceVoltage(0.5V+/0.5%)with
marginingcapability
VpforTrackingApplications((Source/SinkCapability
+/12A)
IntegratedMOSFETdriversandBootstrapDiode
ThermalShutDown
ProgrammablePowerGoodOutputwithtracking
capability
MonotonicStartUp
Operatingtemp:‐40oC<Tj<125oC
SmallSize:5mmx6mmPQFN
Leadfree,HalogenfreeandRoHSCompliant
BASICAPPLICATION
Figure1:IR3894BasicApplicationCircuit
DESCRIPTION
TheIR3894SupIRBuckTMisaneasytouse,fully
integratedandhighlyefficientDC/DCregulator.
TheonboardPWMcontrollerandMOSFETsmake
IR3894aspaceefficientsolution,providingaccurate
powerdelivery.
IR3894isaversatileregulatorwhichoffers
programmableswitchingfrequencyandthefixed
internalcurrentlimit
Theswitchingfrequencyisprogrammablefrom300kHz
to1.5MHzforanoptimumsolution.
Italsofeaturesimportantprotectionfunctions,suchas
PreBiasstartup,thermallycompensatedcurrentlimit
overvoltageprotectionandthermalshutdowntogive
requiredsystemlevelsecurityintheeventoffault
conditions.
APPLICATIONS
NetcomApplications
EmbeddedTelecomSystems
ServerApplications
StorageApplications
DistributedPointofLoadPowerArchitectures
Figure2:IR3894Efficiency
- 2 -`
JANUARY18,2013|DATASHEET|Rev3.4
2
IR3894
12AHighlyIntegratedSupIRBuck
SingleInputVoltage,SynchronousBuckRegulator
PD97745
ORDERINGINFORMATION
IR3894―

Package Tape&ReelQtyPartNumber
M750IR3894MTR1PBF
M4000IR3894MTRPBF
PINDIAGRAM
5mx6mmPOWERQFN
(TOPVIEW)
PBFLeadFree
TR/TP1TapeandReel
MPackageType
-
30 /
2/
JA
JPCB
CW
CW

- 3 -`
JANUARY18,2013|DATASHEET|Rev3.4
3
IR3894
12AHighlyIntegratedSupIRBuck
SingleInputVoltage,SynchronousBuckRegulator
PD97745
BLOCKDIAGRAM
Figure3:IR3894SimplifiedBlockDiagram
- 4 -`
JANUARY18,2013|DATASHEET|Rev3.4
4
IR3894
12AHighlyIntegratedSupIRBuck
SingleInputVoltage,SynchronousBuckRegulator
PD97745
PINDESCRIPTIONS
PIN # PIN NAME PIN DESCRIPTION
1Fb
Invertinginputtotheerroramplifier.Thispinisconnecteddirectlytotheoutput
oftheregulatorviaresistordividertosettheoutputvoltageandprovide
feedbacktotheerroramplifier.
2Vref
Internalreferencevoltage,itcanbeusedformarginingoperationalso. In
normalmodeandsequencingmode,a100pFceramiccapacitorisrecommended
betweenthispinandGnd.Intrackingmodeoperation,Vrefshouldbetiedto
Gnd.
3CompOutputoferroramplifier.Anexternalresistorandcapacitornetworkistypically
connectedfromthispintoFbtoprovideloopcompensation.
4GndSignalgroundforinternalreferenceandcontrolcircuitry.
5Rt/Sync
Multifunctionpintosetswitchingfrequency.Useanexternalresistorfromthis
pintoGndtosetthefreerunningswitchingfrequency.Anexternalclocksignal
toconnecttothispinthroughadiode,thedevice’sswitchingfrequencyis
synchronizedwiththeexternalclock.
6S_Ctrl
Softstart/stopcontrol.Ahighlogicinputenablesthedevicetogointothe
internalsoftstart;alowlogicinputenablestheoutputsoftdischarged.Pullthis
pintoVccifthisfunctionisnotused.
7PGoodPowerGoodstatuspin.Outputisopendrain.Connectapullupresistorfrom
thispintothevoltagelowerthanorequaltotheVcc.
8VsnsSensepinforovervoltageprotectionandPGood.Itisoptionaltotiethispinto
FbpindirectlyinsteadofusingaresistordividerfromVout.
9Vin
InputvoltageforInternalLDO.A1.0µFcapacitorshouldbeconnectedbetween
thispinandPGnd.IfexternalsupplyisconnectedtoVcc/LDO_outpin,thispin
shouldbeshortedtoVcc/LDO_Outpin.
10Vcc/LDO_OutInputBiasVoltage,outputofinternalLDO.Placeaminimum2.2µFcapfromthis
pintoPGnd.
11PGndPowerGround.ThispinservesasaseparatedgroundfortheMOSFETdrivers
andshouldbeconnectedtothesystem’spowergroundplane.
12SWSwitchnode.Thispinisconnectedtotheoutputinductor.
13PVinInputvoltageforpowerstage.
14BootSupplyvoltageforhighsidedriver,a100nFcapacitorshouldbeconnected
betweenthispinandSWpin.
15EnableEnablepintoturnonandoffthedevice,ifthispinisconnectedtoPVinpin
througharesistordivider,inputvoltageUVLOcanbeimplemented.
16Vp
Inputtoerroramplifierfortrackingpurposes.Inthenormaloperation,itisleft
floatingandnoexternalcapacitorisrequired.Inthesequencingorthetracking
modeoperation,anexternalsignalcanbeappliedasthereference.
17GndSignalgroundforinternalreferenceandcontrolcircuitry.

- 5 -`
JANUARY18,2013|DATASHEET|Rev3.4
5
IR3894
12AHighlyIntegratedSupIRBuck
SingleInputVoltage,SynchronousBuckRegulator
PD97745
ABSOLUTEMAXIMUMRATINGS
Stressesbeyondthoselistedunder“AbsoluteMaximumRatings”maycausepermanentdamagetothedevice.Theseare
stressratingsonlyandfunctionaloperationofthedeviceattheseoranyotherconditionsbeyondthoseindicatedinthe
operationalsectionsofthespecificationsarenotimplied.
PVin,Vin 0.3Vto25V
Vcc/LDO_Out‐0.3Vto8V(Note2)
Boot 0.3Vto33V
SW‐0.3Vto25V(DC),‐4Vto25V(AC,100ns)
BoottoSW 0.3VtoVcc+0.3V(Note1)
S_Ctrl,PGood‐0.3VtoVcc+0.3V(Note1)
OtherInput/OutputPins 0.3Vto+3.9V
PGndtoGnd‐0.3Vto+0.3V
StorageTemperatureRange 55°Cto150°C
JunctionTemperatureRange‐40°Cto150°C(Note2)
ESDClassification(HBMJESD22A114)2kV
MoistureSensitivityLevelJEDECLevel2@260°C
Note1:Mustnotexceed8V
Note2:Vccmustnotexceed7.5VforJunctionTemperaturebetween‐10°Cand‐40°C
- 6 -`
JANUARY18,2013|DATASHEET|Rev3.4
6
IR3894
12AHighlyIntegratedSupIRBuck
SingleInputVoltage,SynchronousBuckRegulator
PD97745
ELECTRICALSPECIFICATIONS
RECOMMENDEDOPERATINGCONDITIONSFORRELIABLEOPERATIONWITHMARGIN
SYMBOLMINMAXUNITS
InputVoltageRange*PVIN1.021
V

InputVoltageRange**VIN521
SupplyVoltageRange***VCC4.57.5
SupplyVoltageRangeBoottoSW4.57.5
OutputVoltageRangeVO0.50.86xVin
OutputCurrentRangeIO0±12A
SwitchingFrequencyFS3001500kHz
OperatingJunctionTemperatureTJ‐40125°C
*MaximumSWnodevoltageshouldnotexceed25V.
**Forinternallybiasedsinglerailoperation.WhenVindropsbelow6.8V,theinternalLDOentersdropout.PleaserefertoSmartLDO
sectionandOverCurrentProtectionfordetailedapplicationinformation.
***Vcc/LDO_outcanbeconnectedtoanexternalregulatedsupply.Ifso,theVininputshouldbeconnectedtoVcc/LDO_outpin.
ELECTRICALCHARACTERISTICS
Unlessotherwisespecified,thesespecificationsapplyover,6.8V<Vin=PVin<21V,Vref=0.5Vin0°C<TJ<125°C.
TypicalvaluesarespecifiedatTa=25°C.
PARAMETERSYMBOLCONDITIONSMINTYPMAXUNIT
PowerStage
PowerLossesPLOSSVin=12V,VO=1.2V,IO=12A,
Fs=600kHz,L=0.51uH,
Vcc=6.4V(InternalLDO),Note4
 2.1 W
TopSwitchRds(on)_TopVBoot‐Vsw=6.4V,IO=12A,Tj=25°C 13.217.2mΩ
BottomSwitchRds(on)_BotVcc=6.4V,IO=12A7.29.4
BootstrapDiodeForwardVoltage I(Boot)=15mA200 300500mV
SWLeakageCurrentISWSW=0V,Enable=0V
1µA
SW=0V,Enable=high,
Vp=0V
DeadBandTimeTdbNote420 ns
SupplyCurrent
VINSupplyCurrent(standby)Iin(Standby)EN=Low,NoSwitching100µA
VINSupplyCurrent(dynamic)Iin(Dyn)EN=High,Fs=600kHz,
Vin=PVin=21V
 1418mA
VCCLDOOutput
OutputVoltageVccVin(min)=6.8V,Icc=050mA,
Cload=2.2uF,DCM=06.06.46.7
V
Vin(min)=6.8V,Icc=050mA,
Cload=2.2uF,DCM=14.04.44.85
VCCDropoutVcc_dropIcc=50mA,Cload=2.2uF0.8V
ShortCircuitCurrentIshort 70mA
- 7 -`
JANUARY18,2013|DATASHEET|Rev3.4
7
IR3894
12AHighlyIntegratedSupIRBuck
SingleInputVoltage,SynchronousBuckRegulator
PD97745
PARAMETERSYMBOLCONDITIONSMINTYPMAXUNIT
ZerocrossingComparatorDelayTdly_zcNote4256/Fs s
ZerocrossingComparatorOffsetVos_zcNote4‐404mV
Oscillator
RtVoltageVrt 1.0  V
FrequencyRangeFsRt=80.6K270300330
kHz
Rt=39.2K540600660
Rt=15.0K135015001650
RampAmplitudeVrampVin=6.8V,Vinslewratemax=
1V/µs,Note4
1.02
Vpp
Vin=12V,Vinslewratemax=
1V/µs,Note4
1.80
Vin=21V,Vinslewratemax=
1V/µs,Note4
3.15
Vcc=Vin=5V,ForexternalVcc
operation,Note4
0.75
RampOffsetRamp(os)Note40.16 V
MinPulseWidthTmin(ctrl)Note460ns
MaxDutyCycleDmaxFs=300kHz,PVin=Vin=12V86 %
FixedOffTimeToffNote4200250ns
SyncFrequencyRangeFsync 2701650kHz
SyncPulseDurationTsync 100200 ns
SyncLevelThresholdHigh 3
V
Low 0.6
ErrorAmplifier
InputOffsetVoltageVos_VrefVFbVref,Vref=0.5V‐1.5+1.5
%
Vos_VpVFbVp,Vp=0.5V,Vref=0‐1.5+1.5
InputBiasCurrentIFb(E/A) 1+1
µA
InputBiasCurrentIVp(E/A) 0+4
SinkCurrentIsink(E/A) 0.40.851.2mA
SourceCurrentIsource(E/A) 47.511mA
SlewRateSRNote471220V/µs
GainBandwidthProductGBWPNote4203040MHz
DCGainGainNote4100110120dB
MaximumoutputVoltageVmax(E/A) 1.72.02.3V
MinimumoutputVoltageVmin(E/A) 100mV
CommonModeinputVoltage01.2V
ReferenceVoltage
FeedbackVoltageVfbVrefandVppinfloating0.5 V
- 8 -`
JANUARY18,2013|DATASHEET|Rev3.4
8
IR3894
12AHighlyIntegratedSupIRBuck
SingleInputVoltage,SynchronousBuckRegulator
PD97745
PARAMETERSYMBOLCONDITIONSMINTYPMAXUNIT
Accuracy0°C<Tj<70°C‐0.5+0.5
%
‐40°C<Tj<125°C,Note3‐1.0+1.0
VrefMarginingVoltage
Vref_marg 0.41.2V
SinkCurrentIsink_VrefVref=0.6V12.716.019.3
µA
SourceCurrentIsrc_VrefVref=0.4V12.716.019.3
VrefComparatorThresholdVref_disableVrefpinconnectedexternally0.15
V
Vref_enable0.4
SoftStart/Stop
SoftStartRampRateRamp(SS_start) 0.160.20.24
mV/µs
SoftStartRampRateRamp(SS_stop) 0.24‐0.2‐0.16
S_CtrlThresholdHigh 2.4
V
Low 0.6
PowerGood
PGoodTurnonThresholdVPG(on)VsnsRising,0.4V<Vref<1.2V85 9095 %Vref
VsnsRising,Vref<0.1V859095%Vp
PGoodLowerTurnoffThresholdVPG(lower)VsnsFalling,0.4V<Vref<1.2V808590 %Vref
VsnsFalling,Vref<0.1V808590%Vp
PGoodTurnonDelayVPG(on)_DlyVsnsRising,seeVPG(on)1.28 ms
PGoodUpperTurnoffThresholdVPG(upper)VsnsRising,0.4V<Vref<1.2V115 120125%Vref
VsnsRising,Vref<0.1V115120125%Vp
PGoodComparatorDelayVPG(comp)_
Dly
Vsns<VPG(lower)or
Vsns>VPG(upper)
123.5µs
PGoodVoltageLowPG(voltage)IPgood=‐5mA0.5 V
TrackerComparatorUpper
Threshold
VPG(tracker_
upper)
VpRising,Vref<0.1V0.4
V
TrackerComparatorLower
Threshold
VPG(tracker_
lower)
VpFalling,Vref<0.1V0.3
TrackerComparatorDelayTdelay(tracker)VpRising,Vref<0.1V,see
VPG(tracker_upper)
 1.28 ms
UnderVoltageLockout
VccStartThresholdVCC_UVLO_VccRisingTripLevel4.04.24.4V
VccStopThresholdVCC_UVLO_VccFallingTripLevel3.73.94.1
EnableStartThresholdEnable_UVLO_ Supplyrampingup1.141.21.26V
EnableStopThresholdEnable_UVLO_ Supplyrampingdown0.9511.05
EnableLeakageCurrentIenEnable=3.3V1µA
OverVoltageProtection
OVPTripThresholdOVP_VthVsnsRising,0.45V<Vref<1.2V115120125%Vref
VsnsRising,Vref<0.1V115120125%Vp
- 9 -`
JANUARY18,2013|DATASHEET|Rev3.4
9
IR3894
12AHighlyIntegratedSupIRBuck
SingleInputVoltage,SynchronousBuckRegulator
PD97745
PARAMETERSYMBOLCONDITIONSMINTYPMAXUNIT
OVPComparatorDelayOVP_Tdly 123.5µs
OverCurrentProtection
CurrentLimitILIMITTj=25°C,Vcc=6.4V13.815.618.5A
HiccupBlankingTimeTblk_Hiccup 20.48 ms
OverTemperatureProtection
ThermalShutdownThresholdTtsdNote4145
°C
HysteresisTtsd_hysNote420
Note3:Coldtemperatureperformanceisguaranteedviacorrelationusingstatisticalqualitycontrol.Nottestedinproduction.
Note4:Guaranteedbydesignbutnottestedinproduction.
- 10 -`
JANUARY18,2013|DATASHEET|Rev3.4
10
IR3894
12AHighlyIntegratedSupIRBuck
SingleInputVoltage,SynchronousBuckRegulator
PD97745
TYPICALEFFICIENCYANDPOWERLOSSCURVES
PVin=12V,Vcc=InternalLDO(4.4V/6.4V),Io=0A12A,Fs=600kHz,RoomTemperature,NoAirFlow.Notethatthe
efficiencyandpowerlosscurvesincludethelossesofIR3898,theinductorlossesandthelossesoftheinputandoutput
capacitors.Thetablebelowshowstheinductorsusedforeachoftheoutputvoltagesintheefficiencymeasurement.
Vout(V) Lout(µH) P/N DCR(m)
1 0.51 59PR9876N (Vitec) 0.29
1.2 0.51 59PR9876N (Vitec) 0.29
1.8 0.72 744325072(Wurth Elektronik) 1.3
3.3 1.2 744325120(Wurth Elektronik) 1.8
5 1.2 744325120(Wurth Elektronik) 1.8
- 11 -`
JANUARY18,2013|DATASHEET|Rev3.4
11
IR3894
12AHighlyIntegratedSupIRBuck
SingleInputVoltage,SynchronousBuckRegulator
PD97745
TYPICALEFFICIENCYANDPOWERLOSSCURVES
PVin=12V,Vcc=External5V,Io=0A12A,Fs=600kHz,RoomTemperature,NoAirFlow.Notethattheefficiencyand
powerlosscurvesincludethelossesofIR3898,theinductorlossesandthelossesoftheinputandoutputcapacitors.
Thetablebelowshowstheinductorsusedforeachoftheoutputvoltagesintheefficiencymeasurement.
Vout(V) Lout(µH) P/N DCR(m)
1 0.51 59PR9876N (Vitec) 0.29
1.2 0.51 59PR9876N (Vitec) 0.29
1.8 0.72 744325072(Wurth Elektronik) 1.3
3.3 1.2 744325120(Wurth Elektronik) 1.8
5 1.2 744325120(Wurth Elektronik) 1.8
- 12 -`
JANUARY18,2013|DATASHEET|Rev3.4
12
IR3894
12AHighlyIntegratedSupIRBuck
SingleInputVoltage,SynchronousBuckRegulator
PD97745
TYPICALEFFICIENCYANDPOWERLOSSCURVES
PVin=5.0V,Vcc=5.0V,Io=0A12A,Fs=600kHz,RoomTemperature,NoAirFlow.Notethattheefficiencyandpowerloss
curvesincludethelossesofIR3898,theinductorlossesandthelossesoftheinputandoutputcapacitors.
Thetablebelowshowstheinductorsusedforeachoftheoutputvoltagesintheefficiencymeasurement.
Vout(V) Lout(µH) P/N DCR(m)
1 0.4 59PR9875N (Vitec) 0.29
1.2 0.4 59PR9875N (Vitec) 0.29
1.8 0.51 59PR9876N (Vitec) 0.29
3.3 0.51 59PR9876N (Vitec) 0.29
- 13 -`
JANUARY18,2013|DATASHEET|Rev3.4
13
IR3894
12AHighlyIntegratedSupIRBuck
SingleInputVoltage,SynchronousBuckRegulator
PD97745
THERMALDERATINGCURVES
MeasurementdoneonEvaluationboardofIRDC3894.PCBis4layerboardwith2ozCopper,FR4material,size2.23"x2"
PVin=12V,Vout=1.2V,Vcc=InternalLDO(6.4V),Fs=600kHz
PVin=12V,Vout=3.3V,Vcc=InternalLDO(6.4V),Fs=600kHz
- 14 -`
JANUARY18,2013|DATASHEET|Rev3.4
14
IR3894
12AHighlyIntegratedSupIRBuck
SingleInputVoltage,SynchronousBuckRegulator
PD97745
RDSONOFMOSFETSOVERTEMPERATUREATVCC=6.4V
RDSONOFMOSFETSOVERTEMPERATUREATVCC=5.0V
- 15 -`
JANUARY18,2013|DATASHEET|Rev3.4
15
IR3894
12AHighlyIntegratedSupIRBuck
SingleInputVoltage,SynchronousBuckRegulator
PD97745
TYPICALOPERATINGCHARACTERISTICS(40°CTO+125°C)

- 16 -`
JANUARY18,2013|DATASHEET|Rev3.4
16
IR3894
12AHighlyIntegratedSupIRBuck
SingleInputVoltage,SynchronousBuckRegulator
PD97745
TYPICALOPERATINGCHARACTERISTICS(40°CTO+125°C)

InternalLDOinregulation InternalLDOindropoutmode
 
WithanExternal5VVccVoltage

- 17 -`
JANUARY18,2013|DATASHEET|Rev3.4
17
IR3894
12AHighlyIntegratedSupIRBuck
SingleInputVoltage,SynchronousBuckRegulator
PD97745
TYPICALOPERATINGCHARACTERISTICS(40°CTO+125°C)
- 18 -`
JANUARY18,2013|DATASHEET|Rev3.4
18
IR3894
12AHighlyIntegratedSupIRBuck
SingleInputVoltage,SynchronousBuckRegulator
PD97745
THEORYOFOPERATION
DESCRIPTION
TheIR3894usesaPWMvoltagemodecontrolschemewith
externalcompensationtoprovidegoodnoiseimmunity
andmaximumflexibilityinselectinginductorvaluesand
capacitortypes.
Theswitchingfrequencyisprogrammablefrom300KHz
to1.5MHzandprovidesthecapabilityofoptimizingthe
designintermsofsizeandperformance.
IR3894providespreciselyregulatedoutputvoltage
programmedviatwoexternalresistorsfrom0.5Vto
0.86*Vin.
TheIR3894operateswithaninternalbiassupply(LDO)
whichisconnectedtotheVcc/LDO_outpin.Thisallows
operationwithsinglesupply.Thebiasvoltageisvariable
accordingtoloadcondition.Iftheoutputloadcurrentis
lessthanhalfofthepeaktopeakinductorcurrent,alower
biasvoltage,4.4V,isusedastheinternalgatedrive
voltage;otherwise,ahighervoltage,6.4V,isused.
Thisfeaturehelpstheconvertertoreducepowerlosses.
Forinternalbiasedsinglerailoperation,iftheinput
voltagedropsbelow6.8V,theinternalLDOstartstoenter
dropoutmode.
TheICcanalsobeoperatedwithanexternalsupplyfrom
4.5to7.5V,allowinganextendedoperatinginputvoltage
(PVin)rangefrom1.0Vto21V.ForusingtheinternalLDO
supply,theVinpinshouldbeconnectedtoPVinpin.
Ifanexternalsupplyisused,itshouldbeconnectedto
Vcc/LDO_outpinandtheVinpinshouldbeshortedto
Vcc/LDO_outpin.
Thedeviceutilizestheonresistanceofthelowside
MOSFET(syncFET)fortheovercurrentprotection.This
methodenhancestheconverter’sefficiencyandreduces
costbyeliminatingtheneedforexternalcurrentsense
resistor.
IR3894includestwolowRds(on)MOSFETsusingIR’sHEXFET
technology.Thesearespecificallydesignedforhigh
efficiencyapplications.
UNDERVOLTAGELOCKOUTANDPOR
Theundervoltagelockoutcircuitmonitorsthevoltageof
Vcc/LdopinandtheEnableinput.Itassuresthatthe
MOSFETdriveroutputsremainintheoffstatewhenever
eitherofthesetwosignalsdropbelowthesetthresholds.
NormaloperationresumesonceVcc/LDO_OutandEnable
riseabovetheirthresholds.
ThePOR(PowerOnReady)signalisgeneratedwhenall
thesesignalsreachthevalidlogiclevel(seesystemblock
diagram).WhenthePORisassertedthesoftstart
sequencestarts(seesoftstartsection).
ENABLE
TheEnablefeaturesanotherlevelofflexibilityforstartup.
TheEnablehasprecisethresholdwhichisinternally
monitoredbyUnderVoltageLockout(UVLO)circuit.
Therefore,theIR3894willturnononlywhenthevoltage
attheEnablepinexceedsthisthreshold,typically,1.2V.
IftheinputtotheEnablepinisderivedfromthebus
voltagebyasuitablyprogrammedresistivedivider,itcan
beensuredthattheIR3894doesnotturnonuntilthebus
voltagereachesthedesiredlevel(Fig.4).Onlyafterthebus
voltagereachesorexceedsthislevelandvoltageatthe
Enablepinexceedsitsthreshold,IR3894willbeenabled.
Therefore,inadditiontobeingalogicinputpintoenable
theIR3894,theEnablefeature,withitsprecisethreshold,
alsoallowstheusertoimplementanUnderVoltage
Lockoutforthebusvoltage(PVin).Thisisdesirable
particularlyforhighoutputvoltageapplications,wherewe
mightwanttheIR3894tobedisabledatleastuntilPVIN
exceedsthedesiredoutputvoltagelevel.
Pvin (12V)
Vcc
Enable
Intl_SS
10. 2 V
Enable Threshold = 1.2V
Figure4:NormalStartup,deviceturnson
whenthebusvoltagereaches10.2V
AresistordividerisusedatENpinfromPVintoturnonthe
deviceat10.2V.
- 19 -`
JANUARY18,2013|DATASHEET|Rev3.4
19
IR3894
12AHighlyIntegratedSupIRBuck
SingleInputVoltage,SynchronousBuckRegulator
PD97745
Pvin(12V)
Vcc
Intl_SS
Enable >1.2V
Vp>1V
Figure5a:RecommendedstartupforNormaloperation
Pvin (12V)
Vcc
Enable > 1. 2 V
Intl_SS
Vp
Figure5b:Recommendedstartupforsequencingoperation
(ratiometricorsimultaneous)
Figure5c:Recommendedstartupfor
memorytrackingoperation(VTTDDR4)
Figure5ashowstherecommendedstartupsequencefor
thenormal(nontracking,nonsequencing)operationof
IR3894,whenEnableisusedasalogicinput.Figure5b
showstherecommendedstartupsequenceforsequenced
operationofIR3894withEnableusedaslogicinput.Figure
5cshowstherecommendedstartupsequencefortracking
operationofIR3894withEnableusedaslogicinput.
Innormalandsequencingmodeoperation,Vrefisleft
floating.A100pFceramiccapacitorisrecommended
betweenthispinandGnd.Intrackingmodeoperation,
VrefshouldbetiedtoGnd.
ItisrecommendedtoapplytheEnablesignalaftertheVCC
voltagehasbeenestablished.IftheEnablesignalispresent
beforeVCC,a50kΩresistorcanbeusedinserieswiththe
EnablepintolimitthecurrentflowingintotheEnablepin.
PREBIASSTARTUP
IR3894isabletostartupintoprechargedoutput,which
preventsoscillationanddisturbancesoftheoutput
voltage.
Theoutputstartsinasynchronousfashionandkeepsthe
synchronousMOSFET(SyncFET)offuntilthefirstgate
signalforcontrolMOSFET(CtrlFET)isgenerated.Figure6a
showsatypicalPreBiasconditionatstartup.ThesyncFET
alwaysstartswithanarrowpulsewidth(12.5%ofa
switchingperiod)andgraduallyincreasesitsdutycycle
withastepof12.5%untilitreachesthesteadystatevalue.
Thenumberofthesestartuppulsesforeachstepis16and
it’sinternallyprogrammed.Figure6bshowstheseriesof
16x8startuppulses.
Vo
[V]
[Time]
Pre-Bias
Voltage
Figure6a:PreBiasstartup
... ... ...
HDRv
... ... ...
16 End of
PB
LDRv
12.5% 25% 87.5%
16 ...
...
...
...
Figure6b:PreBiasstartuppulses
- 20 -`
JANUARY18,2013|DATASHEET|Rev3.4
20
IR3894
12AHighlyIntegratedSupIRBuck
SingleInputVoltage,SynchronousBuckRegulator
PD97745
SOFTSTART
IR3894hasaninternaldigitalsoftstarttocontrolthe
outputvoltageriseandtolimitthecurrentsurgeatthe
startup.Toensurecorrectstartup,thesoftstart
sequenceinitiateswhentheEnableandVccriseabove
theirUVLOthresholdsandgeneratethePowerOnReady
(POR)signal.Theinternalsoftstart(Intl_SS)signallinearly
riseswiththerateof0.2mV/µsfrom0Vto1.5V.Figure7
showsthewaveformsduringsoftstart(alsorefertoFig.
20).ThenormalVoutstartuptimeisfixed,andisequalto:

0.65V-0.15V 2.5ms (1)
0.2mV/ s
start
T

Duringthesoftstarttheovercurrentprotection(OCP)and
overvoltageprotection(OVP)isenabledtoprotectthe
deviceforanyshortcircuitorovervoltagecondition.
POR
Intl_SS
Vout
0.15V
0.65V
t1t2t3
1.5V
3.0V
Figure7:Theoreticaloperationwaveformsduring
softstart(nontracking/nonsequencing)
OPERATINGFREQUENCY
Theswitchingfrequencycanbeprogrammedbetween300
kHz1500kHzbyconnectinganexternalresistorfromRt
pintoGnd.Table1tabulatestheoscillatorfrequency
versusRt.
SHUTDOWN
IR3894canbeshutdownbypullingtheEnablepinbelow
its1.0Vthreshold.Thiswilltristateboththehighsideand
thelowsidedriver.
TABLE1:SWITCHINGFREQUENCY(FS)VS.EXTERNALRESISTOR(RT)
Rt(K)Freq(kHz)
80.6 300
60.4 400
48.7 500
39.2 600
34 700
29.4 800
26.1 900
23.2 1000
21 1100
19.1 1200
17.6 1300
16.2 1400
15 1500
OVERCURRENTPROTECTION
Theovercurrent(OC)protectionisperformedbysensing
currentthroughtheRDS(on)oftheSynchronousMosfet.This
methodenhancestheconverter’sefficiency,reducescost
byeliminatingacurrentsenseresistorandanylayout
relatednoiseissues.Thecurrentlimitispresetinternally
andiscompensatedaccordingtotheICtemperature.Soat
differentambienttemperature,theovercurrenttrip
thresholdremainsalmostconstant.
NotethattheovercurrentlimitisafunctionoftheVcc
voltage.Refertothetypicalperformancecurvesofthe
OCPcurrentlimitwiththeinternalLDOandtheexternal
Vccvoltage.DetailedoperationofOCPisexplainedas
follows.
OverCurrentProtectioncircuitsensestheinductorcurrent
flowingthroughtheSynchronousMosfetclosertothe
valleypoint.OCPcircuitsamplesthiscurrentfor40nsec
typicallyaftertherisingedgeofthePWMsetpulsewhich
hasawidthof12.5%oftheswitchingperiod.ThePWM
pulsestartsatthefallingedgeofthePWMsetpulse.This
makesvalleycurrentsensemorerobustascurrentis
sensedclosetothebottomoftheinductordownward
slopewheretransientandswitchingnoisearelowerand
helpstopreventfalsetrippingduetonoiseandtransient.
AnOCconditionisdetectediftheloadcurrentexceedsthe
threshold,theconverterentersintohiccupmode.PGood
willgolowandtheinternalsoftstartsignalwillbepulled
low.Theconvertergoesintohiccupmodewitha20.48ms
(typ.)delayasshowninFigure8.Theconvertorstaysin
thismodeuntiltheoverloadorshortcircuitisremoved.
TheactualDCoutputcurrentlimitpointwillbegreater
thanthevalleypointbyanamountequaltoapproximatey
- 21 -`
JANUARY18,2013|DATASHEET|Rev3.4
21
IR3894
12AHighlyIntegratedSupIRBuck
SingleInputVoltage,SynchronousBuckRegulator
PD97745
halfofpeaktopeakinductorripplecurrent.Thecurrent
limitpointwillbeafunctionoftheinductorvalue,input
,outputvoltageandthefrequencyofoperation.
(2)
2
OCP LIMIT
I
II

IOCP=DCcurrentlimithiccuppoint
ILIMIT=CurrentlimitValleyPoint
ΔI=Inductorripplecurrent
Figure8:TimingDiagramfor
CurrentLimitHiccup
THERMALSHUTDOWN
TemperaturesensingisprovidedinsideIR3894.Thetrip
thresholdistypicallysetto145oC.Whentripthresholdis
exceeded,thermalshutdownturnsoffbothMOSFETsand
resetstheinternalsoftstart.
Automaticrestartisinitiatedwhenthesensed
temperaturedropswithintheoperatingrange.Thereis
a20oChysteresisinthethermalshutdownthreshold.
EXTERNALSYNCHRONIZATION
IR3894incorporatesaninternalphaselockloop(PLL)
circuitwhichenablessynchronizationoftheinternal
oscillatortoanexternalclock.Thisfunctionisimportantto
avoidsubharmonicoscillationsduetobeatfrequencyfor
embeddedsystemswhenmultiplepointofload(POL)
regulatorsareused.Amultifunctionpin,Rt/Sync,isused
toconnecttheexternalclock.Iftheexternalclockis
presentbeforetheconverterturnson,Rt/Syncpincanbe
connectedtotheexternalclocksignalsolelyandnoother
resistorisneeded.Iftheexternalclockisappliedafterthe
converterturnson,ortheconverterswitchingfrequency
needstotogglebetweentheexternalclockfrequencyand
theinternalfreerunningfrequency,anexternalresistor
fromRt/SyncpintoGndisrequiredtosetthefreerunning
frequency.
WhenanexternalclockisappliedtoRt/Syncpinafterthe
converterrunsinsteadystatewithitsfreerunning
frequency,atransitionfromthefreerunningfrequencyto
theexternalclockfrequencywillhappen.Thistransitionis
tograduallymaketheactualswitchingfrequencyequalto
theexternalclockfrequency,nomatterwhichoneis
higher.Onthecontrary,whentheexternalclocksignalis
removedfromRt/Syncpin,theswitchingfrequencyisalso
changedtofreerunninggradually.Inordertominimize
theimpactfromthesetransitionstooutputvoltage,a
diodeisrecommendedtoaddbetweentheexternalclock
andRt/Syncpin,asshowninFigure9a.Figure9bshows
thetimingdiagramofthesetransitions.
Figure9a:ConfigurationofExternalSynchronization
SW
SYNC
...
...
Fs1
Fs2
Fs1
Free Running
Frequency
Synchronize to the
external clock
Return to free-
running freq
Figure9b:TimingDiagramforSynchronization
totheexternalclock(Fs1>Fs2orFs1<Fs2)
AninternalcircuitisusedtochangethePWMrampslope
accordingtotheclockfrequencyappliedonRt/Syncpin.
Eventhoughthefrequencyoftheexternalsynchronization
clockcanvaryinawiderange,thePLLcircuitwillmake
surethattherampamplitudeiskeptconstant,requiringno
adjustmentoftheloopcompensation.Vinvariationalso
affectstherampamplitude,whichwillbediscussed
separatelyinFeedForwardsection.
- 22 -`
JANUARY18,2013|DATASHEET|Rev3.4
22
IR3894
12AHighlyIntegratedSupIRBuck
SingleInputVoltage,SynchronousBuckRegulator
PD97745
FeedForward
FeedForward(F.F.)isanimportantfeature,becauseitcan
keeptheconverterstableandpreserveitsloadtransient
performancewhenVinvariesinalargerange.InIR3894,
F.F.functionisenabledwhenVinpinisconnectedtoPVin
pin.Inthiscase,theinternallowdropout(LDO)regulatoris
used.ThePWMrampamplitude(Vramp)isproportionally
changedwithVintomaintainVin/Vrampalmostconstant
throughoutVinvariationrange(asshowninFig.10).Thus,
thecontrolloopbandwidthandphasemargincanbe
maintainedconstant.Feedforwardfunctioncanalso
minimizeimpactonoutputvoltagefromfastVinchange.
ThemaximumVinslewrateiswithin1V/µs.
IfanexternalbiasvoltageisusedasVcc,Vinpinshouldbe
connectedtoVcc/LDO_outpininsteadofPVinpin.Then
theF.F.functionisdisabled.Arecalculationofcontrol
loopparametersisneededforrecompensation.
Figure10:TimingDiagramforFeedForward(F.F.)Function
SMARTLOWDROPOUTREGULATOR(LDO)
IR3894hasanintegratedlowdropout(LDO)regulator
whichcanprovidegatedrivevoltageforbothdrivers.
Inordertoimproveoverallefficiencyoverthewholeload
range,LDOvoltageissetto6.4V(typical.)atmid‐orheavy
loadconditiontoreduceRds(on)andthusMOSFET
conductionloss;anditisreducedto4.4(typical.)atlight
loadconditiontoreducegatedriveloss.
ThesmartLDOcanselectitsoutputvoltageaccordingto
theloadconditionbysensingswitchnode(SW)voltage.At
lightloadconditionwhenpartoftheinductorcurrent
flowsinthereversedirection(DCM=1),VSW>0onLDrv
fallingedgeinaswitchingcycle.Ifthiscasehappensfor
consecutive256switchingcycles,thesmartLDOreduces
itsoutputto4.4V.Ifinanyoneofthe256cycles,Vsw<0
onLDrvfallingedge,thecounterisresetandLDOvoltage
doesn’tchange.Ontheotherhand,ifVsw<0onLDrv
fallingedge(DCM=0),LDOoutputisincreasedto6.4V.A
hysteresisbandisaddedtoVswcomparisontoavoid
chattering.Figure11ashowsthetimingdiagram.
Wheneverdeviceturnson,LDOalwaysstartswith6.4V,
andthengoesto4.4V/6.4Vdependingupontheload
condition.Forinternallybiasedsinglerailoperation,Vin
pinshouldbeconnectedtoPVinpin,asshowninFigure
11b.Ifexternalbiasvoltageisused,Vinpinshouldbe
connectedtoVcc/LDO_Outpin,asshowninFigure11c.
Vcc/
LDO
0
0
IL
256/Fs
... ...
...
6.4V 6.4V
4.4V
...
Figure11a:TimeDiagramforSmartLDO
Figure11b:InternallyBiasedSingleRailOperation
Figure11c:UseExternalBiasVoltage
WhentheVinvoltageisbelow6.8V,theinternalLDO
entersthedropoutmodeatmediumandheavyload.The
dropoutvoltageincreaseswiththeswitchingfrequency.
Figure11dshowstheLDOvoltagefor600kHzand1500
kHzswitchingfrequencyrespectively.
- 23 -`
JANUARY18,2013|DATASHEET|Rev3.4
23
IR3894
12AHighlyIntegratedSupIRBuck
SingleInputVoltage,SynchronousBuckRegulator
PD97745
Figure11d:LDOdropoutVoltage
OUTPUTVOLTAGETRACKINGANDSEQUENCING
IR3894canaccommodateuserprogrammabletracking
and/orsequencingoptionsusingVp,Vref,Enable,and
PowerGoodpins.Intheblockdiagrampresentedonpage
3,theerroramplifier(E/A)hasbeendepictedwiththree
positiveinputs.Ideally,theinputwiththelowestvoltage
isusedforregulatingtheoutputvoltageandtheother
twoinputsareignored.Inpracticethevoltageoftheother
twoinputsshouldbeabout200mVgreaterthanthe
lowvoltageinputsothattheireffectscancompletely
beignored.Vpisinternallybiasedto3.3Vviaahigh
impedancepath.Fornormaloperation,VpandVrefis
leftfloating(Vrefshouldhaveabypasscapacitor).
Therefore,innormaloperatingcondition,afterEnable
goeshigh,theinternalsoftstart(Intl_SS)rampsupthe
outputvoltageuntilVfb(voltageoffeedback/Fbpin)
reachesabout0.5V.ThenVreftakesoverandtheoutput
voltageisregulated.
TrackingmodeoperationisachievedbyconnectingVrefto
GND.Intrackingmode,VfbalwaysfollowsVp,which
meansVoutisalwaysproportionaltoVpvoltage(typical
forDDR/VTTrailapplications).TheeffectiveVpvariation
rangeis0V~1.2V.Fig.5cillustratesthestartupofVTT
trackingforDDR4application.VpisproportionaltoVDDQ.
AfterVpisestablished,assertingEnableinitiatesthe
internalsoftstart.VTT,whichistheoutputofPOL,starts
torampupandtracksVp.
Insequencingmodeofoperation(simultaneousor
ratiometric),VrefisleftfloatingandVpiskepttoground
leveluntilIntl_SSsignalreachesthefinalvalue.ThenVpis
rampedupandVfbfollowsVp.WhenVp>0.5Vtheerror
amplifierswitchestoVrefandtheoutputvoltageis
regulatedwithVref.ThefinalVpvoltageaftersequencing
startupshouldbetween0.7V~3.3V.
Boot
Vcc/LDO
Fb
Comp
Gnd PGnd
SW
Vo2
(Salve)
PGood
PGood
Rt/
Sync
PVin
Vp
Vo1
(master)
S_Ctrl Vin
Vref EN
RE
RF
RC
RD
5 V < Vin < 21V
Vsns
Figure12:ApplicationCircuitforSimultaneous
andRatiometricSequencing
Trackingandsequencingoperationscanbeimplemented
tobesimultaneousorratiometric(refertoFig.13and14).
Figure12showstypicalcircuitconfigurationforsequencing
operation.Withthispowerupconfiguration,thevoltage
attheVppinoftheslavereaches0.5VbeforetheFbpinof
themaster.IfRE/RF=RC/RD,simultaneousstartupis
achieved.Thatis,theoutputvoltageoftheslavefollows
thatofthemasteruntilthevoltageattheVppinofthe
slavereaches0.5V.AfterthevoltageattheVppinofthe
slaveexceeds0.5V,theinternal0.5Vreferenceofthe
slavedictatesitsoutputvoltage.Inrealitytheregulation
graduallyshiftsfromVptointernalVref.Thecircuitshown
inFig.12canalsobeusedforsimultaneousorratiometric
trackingoperationifVrefoftheslaveisconnectedtoGND.
Table2summarizestherequiredconditionstoachieve
simultaneous/ratiometrictrackingorsequencing
operations.
- 24 -`
JANUARY18,2013|DATASHEET|Rev3.4
24
IR3894
12AHighlyIntegratedSupIRBuck
SingleInputVoltage,SynchronousBuckRegulator
PD97745
Vcc
Vref=0.5V
1.2V Soft Start (slave)
Enable (slave)
Vo1 (master)
Vo2 (slave)
(a)
Vo1 (master)
Vo2 (slave)
(b)
Figure13:Typicalwaveformsforsequencingmodeofoperation:
(a)simultaneous,(b)ratiometric
Figure14:Typicalwaveformsintrackingmodeofoperation:
(a)simultaneous,(b)ratiometric
TABLE2:REQUIREDCONDITIONSFORSIMULTANEOUS/RATIOMETRIC
TRACKINGANDSEQUENCING(FIG.12)
Operating
Mode
Vref
(Slave)
VpRequired
Condition
Normal
(Nonsequencing,
Nontracking)
0.5V
(Floating)Floating―
Simultaneous
Sequencing0.5VRampup
from0V
RA/RB>RE/
RF=RC/RD
Ratiometric
Sequencing0.5VRampup
from0V
RA/RB>RE/
RF>RC/RD
Simultaneous
Tracking0VRampup
beforeEn
RE/RF
=RC/RD
Ratiometric
Tracking0VRampup
beforeEn
RE/RF
>RC/RD
VREF
Thispinreflectstheinternalreferencevoltagewhichis
usedbytheerroramplifiertosettheoutputvoltage.In
mostoperatingconditionsthispinisonlyconnectedtoan
externalbypasscapacitoranditisleftfloating.A100pF
ceramiccapacitorisrecommendedforthebypass
capacitor.Tokeepstandbycurrenttominimum,Vrefis
notallowedcomeupuntilENstartsgoinghigh.Intracking
modethispinshouldbepulledtoGND.Formargining
applications,anexternalvoltagesourceisconnectedto
Vrefpinandoverridestheinternalreferencevoltage.The
externalvoltagesourceshouldhavealowinternal
resistance(<100Ω)andbeabletosourceandsinkmore
than25µA.
POWERGOODOUTPUT(TRACKING,
SEQUENCING,VREFMARGINING)
IR3894continuallymonitorstheoutputvoltageviathe
sensepin(Vsns)voltage.TheVsnsvoltageisaninputto
thewindowcomparatorwithupperandlowerthresholdof
0.6Vand0.45Vrespectively.PGoodsignalishigh
wheneverVsnsvoltageiswithinthePGoodcomparator
windowthresholds.ThePGoodpinisopendrainandit
needstobeexternallypulledhigh.Highstateindicatesthat
outputisinregulation.
Thethresholdissetdifferentlyatdifferentoperating
modesandtheresultsofthecomparisonsetsthePGood
signal.Figures15,16,and17showthetimingdiagramof
thePGoodsignalatdifferentoperatingmodes.Vsnssignal
isalsousedbyOVPcomparatorfordetectingoutputover
voltagecondition.
Figure15:Nonsequence,NontrackingStartup
andVrefMargin(Vppinfloating)
- 25 -`
JANUARY18,2013|DATASHEET|Rev3.4
25
IR3894
12AHighlyIntegratedSupIRBuck
SingleInputVoltage,SynchronousBuckRegulator
PD97745
0.3V
0
0
0
Vp
Vsns
0.4V
PGood
0.9*Vp
1.2*Vp
1.28ms
Figure16:VpTracking(Vref=0V)
Figure17:VpSequenceandVrefMargin
OVERVOLTAGEPROTECTION(OVP)
OVPisachievedbycomparingVsnsvoltagetoanOVP
thresholdvoltage.Innontrackingmode,OVPthreshold
voltageis1.2×Vref;intrackingmode,itissetat1.2×Vp.
WhenVsnsexceedstheOVPthreshold,anovervoltage
tripsignalassertsafter2us(typ.)delay.Thenthecontrol
FETislatchedoffimmediately,PGoodflagslow.Thesync
FETremainsontodischargetheoutputcapacitor.When
theVsnsvoltagedropsbelowthethreshold,thesyncFET
turnsofftopreventthecompletedepletionoftheoutput
capacitor.ThecontrolFETremainslatchedoffuntiluser
cycleeitherVccorEnable.
OVPcomparatorbecomesactiveonlywhenthedeviceis
enabled.Furthermore,forOVPtobeactiveVrefhasto
exceed0.2Vinnontrackingmode,orVphastoexceedthe
thresholdintrackingmode,asillustratedinFig18aandFig
18b.Ifeitheroftheaboveconditionsisnotsatisfied,OVP
isdisabled.Vsnsvoltageissetbythevoltagedivider
connectedtotheoutputanditcanbeprogrammed
externally.Figure18cshowsthetimingdiagramforOVPin
nontrackingmode.
Figure18a:ActivationofOVPinnontrackingmode
Figure18b:ActivationofOVPintrackingmode
Figure18c:TimingDiagramforOVPinnontrackingmode
- 26 -`
JANUARY18,2013|DATASHEET|Rev3.4
26
IR3894
12AHighlyIntegratedSupIRBuck
SingleInputVoltage,SynchronousBuckRegulator
PD97745
SOFTSTOP(S_CTRL)
Softstopfunctioncanmakeoutputvoltagedischarge
gradually.Toenablethisfunction,S_Ctrliskeptlowfirst
whenENgoeshigh.ThenS_Ctrlispulledhightocrossthe
logiclevelthreshold(typical.2V),theinternalsoftstart
rampisinitiated.SoVofollowsIntl_SStorampupuntilit
reachesitssteadystate.Insoftstopprocess,S_Ctrlneeds
tobepulledlowbeforeENgoeslow.AfterS_Ctrlgoes
belowitsthreshold,adecreasingrampisgeneratedat
Intl_SSwiththesameslopeasinsoftstartramp.Vo
followsthisramptodischargesoftlyuntilshutdown
completely.Figure19showsthetimingdiagramofS_Ctrl
controlledsoftstartandsoftstop.
IfthefallingedgeofEnablesignalassertsbeforeS_Ctrl
fallingedge,theconverterisstillturnedoffbyEnable.
BothgatedriversareturnedoffimmediatelyandVo
dischargestozero.Figure20showsthetimingdiagram
ofEnablecontrolledsoftstartandsoftstop.Softstop
featurealsoensuresthatVoutdischargesandalso
regulatesthecurrentpreciselytozerowithnoundershoot.
0
0
0
Intl
_SS
S_Ctrl
Vout
0
Enable
0.15V
0.65V
0.15V
0.65V
Figure19:TimingDiagramforS_Ctrlcontrolled
SoftStart/SoftStop
0
0
0
Intl
_SS
S_Ctrl
Vout
0.15V
0
Enable 1.2V 1.0V
0.65V
Figure20:TimingDiagramforEnablecontrolled
SoftStart/Shutdown
MINIMUMONTIMECONSIDERATIONS
TheminimumONtimeistheshortestamountoftimefor
CtrlFETtobereliablyturnedon.Thisisverycritical
parameterforlowdutycycle,highfrequencyapplications.
Conventionalapproachlimitsthepulsewidthtoprevent
noise,jitterandpulseskipping.Thisresultstolowerclosed
loopbandwidth.
IRhasdevelopedaproprietaryschemetoimproveand
enhanceminimumpulsewidthwhichutilizesthebenefits
ofvoltagemodecontrolschemewithhigherswitching
frequency,widerconversionratioandhigherclosedloop
bandwidth,thelatterresultsinreductionofoutput
capacitors.AnydesignorapplicationusingIR3894must
ensureoperationwithapulsewidththatishigherthanthis
minimumontimeandpreferablyhigherthan60ns.
Thisisnecessaryforthecircuittooperatewithoutjitter
andpulseskipping,whichcancausehighinductorcurrent
rippleandhighoutputvoltageripple.
in
(3)
V
out
on
ss
V
D
tFF

InanyapplicationthatusesIR3894,thefollowingcondition
mustbesatisfied:
(min)
(min)
(min)
(4)
(5)
(6)
on on
out
on
in s
out
in s
on
tt
V
tVF
V
VFt



Theminimumoutputvoltageislimitedbythereference
voltageandhenceVout(min)=0.5V.Therefore,for
Vout(min)=0.5V,
V/uS 33.8
ns 60
V 0.5
V
V
in
(min)
(min)
in
s
on
out
s
F
t
V
F
Therefore,atthemaximumrecommendedinputvoltageof
21Vandminimumoutputvoltage,theconvertershouldbe
designedataswitchingfrequencythatdoesnotexceed
396kHz.Conversely,foroperationatthemaximum
recommendedoperatingfrequency(1.65MHz)and
minimumoutputvoltage(0.5V).Theinputvoltage(PVin)
shouldnotexceed5.05V,otherwisepulseskippingwill
happen.
- 27 -`
JANUARY18,2013|DATASHEET|Rev3.4
27
IR3894
12AHighlyIntegratedSupIRBuck
SingleInputVoltage,SynchronousBuckRegulator
PD97745
MAXIMUMDUTYRATIO
AcertainofftimeisspecifiedforIR3894.Thisprovides
anupperlimitontheoperatingdutyratioatanygiven
switchingfrequency.Theofftimeremainsatarelatively
fixedratiotoswitchingperiodinlowandmidfrequency
range,whileinhighfrequencyrangethisratioincreases,
thusthelowerthemaximumdutyratioatwhichIR3894
canoperate.Figure21showsaplotofthemaximumduty
ratiovs.theswitchingfrequencywithbuiltininputvoltage
feedforward.
Figure21:Maximumdutycyclevs.switchingfrequency.
- 28 -`
JANUARY18,2013|DATASHEET|Rev3.4
28
IR3894
12AHighlyIntegratedSupIRBuck
SingleInputVoltage,SynchronousBuckRegulator
PD97745
DESIGNEXAMPLE
Thefollowingexampleisatypicalapplicationfor
IR3894.TheapplicationcircuitisshowninFig.28.
=
=12 V ( 10% )
=1 2 V
= 12 A
Ripple Voltage= 1%*
6% * 50%
=600 kHz
in
o
o
o
oo
s
V
V.
I
V
Δ
V V load transient
F
for )
EnablingtheIR3894
Asexplainedearlier,theprecisethresholdoftheEnable
lendsitselfwelltoimplementationofaUVLOforthe
BusVoltageasshowninFig.22.
Figure22:UsingEnablepinforUVLOimplementation
ForatypicalEnablethresholdofVEN=1.2V
2
(min)
12
* 1.2 (7)
in EN
R
V V
RR

21
min
(8)
EN
in( ) EN
V
RR
VV

ForVin(min)=9.2V,R1=49.9KandR2=7.5Kohmisagood
choice.
Programmingthefrequency
ForFs=600kHz,selectRt=39.2KΩ,usingTable1.
OutputVoltageProgramming
Outputvoltageisprogrammedbyreferencevoltageand
externalvoltagedivider.TheFbpinistheinvertinginputof
theerroramplifier,whichisinternallyreferencedto0.5V.
Thedividerratioissettoprovide0.5VattheFbpinwhenthe
outputisatitsdesiredvalue.Theoutputvoltageisdefinedby
usingthefollowingequation:
5
6
1(9)
oref
R
VV R




Whenanexternalresistordividerisconnectedtotheoutput
asshowninFig.23.
65 (10)
ref
oref
V
RR
VV





ForthecalculatedvaluesofR5andR6,seefeedback
compensationsection.
Figure23:TypicalapplicationoftheIR3894
forprogrammingtheoutputvoltage
BootstrapCapacitorSelection
TodrivetheControlFET,itisnecessarytosupplyagate
voltageatleast4VgreaterthanthevoltageattheSWpin,
whichisconnectedtothesourceoftheControlFET.
Thisisachievedbyusingabootstrapconfiguration,which
comprisestheinternalbootstrapdiodeandanexternal
bootstrapcapacitor(C1).Theoperationofthecircuitisas
follows:WhenthesyncFETisturnedon,thecapacitornode
connectedtoSWispulleddowntoground.Thecapacitor
chargestowardsVccthroughtheinternalbootstrapdiode
(Fig.24),whichhasaforwardvoltagedropVD.ThevoltageVc
acrossthebootstrapcapacitorC1isapproximatelygivenas:
(11)
cccD
VVV

- 29 -`
JANUARY18,2013|DATASHEET|Rev3.4
29
IR3894
12AHighlyIntegratedSupIRBuck
SingleInputVoltage,SynchronousBuckRegulator
PD97745
WhenthecontrolFETturnsoninthenextcycle,the
capacitornodeconnectedtoSWrisestothebusvoltage
Vin.However,ifthevalueofC1isappropriatelychosen,
thevoltageVcacrossC1remainsapproximately
unchangedandthevoltageattheBootpinbecomes:
(12)
Boot in cc D
VVVV 
Figure24:BootstrapcircuittogenerateVcvoltage
Abootstrapcapacitorofvalue0.1uFissuitableformost
applications.
InputCapacitorSelection
Theripplecurrentgeneratedduringtheontimeofthe
controlFETshouldbeprovidedbytheinputcapacitor.
TheRMSvalueofthisrippleisexpressedby:
(1 ) (13)
RMS o
IIDD 
(14)
o
in
V
DV

Where:
DistheDutyCycle
IRMSistheRMSvalueoftheinputcapacitorcurrent.
Ioistheoutputcurrent.
ForIo=12AandD=0.1,theIRMS=3.6A.
Ceramiccapacitorsarerecommendedduetotheirpeak
currentcapabilities.TheyalsofeaturelowESRandESLat
higherfrequencywhichenablesbetterefficiency.
Forthisapplication,itisadvisabletohave4x10uF,25V
ceramiccapacitors,C3216X5R1E106MfromTDK.
Inadditiontothese,althoughnotmandatory,
a1x330uF,25VSMDcapacitorEEVFK1E331PfromPanasonic
mayalsobeusedasabulkcapacitorandisrecommendedif
theinputpowersupplyisnotlocatedclosetotheconverter.
InductorSelection
Theinductorisselectedbasedonoutputpower,operating
frequencyandefficiencyrequirements.Alowinductorvalue
causeslargeripplecurrent,resultinginthesmallersize,faster
responsetoaloadtransientbutpoorefficiencyandhigh
outputnoise.Generally,theselectionoftheinductorvalue
canbereducedtothedesiredmaximumripplecurrentinthe
inductor(Δi).Theoptimumpointisusuallyfoundbetween
20%and50%rippleoftheoutputcurrent.
Forthebuckconverter,theinductorvalueforthedesired
operatingripplecurrentcanbedeterminedusingthe
followingrelation:

1
;
(15)
*
in o
s
o
in o
in s
i
VVL tD
tF
V
LVV ViF




Where:
Vin=Maximuminputvoltage
V0=OutputVoltage
Δi=InductorPeaktoPeakRippleCurrent
Fs=SwitchingFrequency
Δt=OntimeforControlFET
D=DutyCycle
IfΔi≈30%*Io,thentheoutputinductoriscalculatedtobe
0.5μH.SelectL=0.51μH,59PR9876N,fromVITECwhich
providesacompact,lowprofileinductorsuitableforthis
application.
- 30 -`
JANUARY18,2013|DATASHEET|Rev3.4
30
IR3894
12AHighlyIntegratedSupIRBuck
SingleInputVoltage,SynchronousBuckRegulator
PD97745
OutputCapacitorSelection
Thevoltagerippleandtransientrequirements
determinetheoutputcapacitorstypeandvalues.
Thecriteriaisnormallybasedonthevalueofthe
EffectiveSeriesResistance(ESR).Howevertheactual
capacitancevalueandtheEquivalentSeriesInductance
(ESL)areothercontributingcomponents.
Thesecomponentscanbedescribedas:
() () ()
()
()
()
*
*
(16)
8* *
o o ESR o ESL o C
oESR L
in o
oESL
L
oC
os
VV V V
VIESR
VV
VESL
L
I
VCF








Where:
ΔV0=OutputVoltageRipple
ΔIL=InductorRippleCurrent
Sincetheoutputcapacitorhasamajorroleinthe
overallperformanceoftheconverteranddetermines
theresultoftransientresponse,selectionofthe
capacitoriscritical.TheIR3894canperformwellwith
alltypesofcapacitors.
Asarule,thecapacitormusthavelowenoughESRto
meetoutputrippleandloadtransientrequirements.
Thegoalforthisdesignistomeetthevoltageripple
requirementinthesmallestpossiblecapacitorsize.
Thereforeitisadvisabletoselectceramiccapacitors
duetotheirlowESRandESLandsmallsize.EightofTDK
C2012X5R0J226M(22uF/0805/X5R/6.3V)capacitorsis
agoodchoice.
Itisalsorecommendedtousea0.1µFceramiccapacitor
attheoutputforhighfrequencyfiltering.
FeedbackCompensation
TheIR3894isavoltagemodecontroller.Thecontrolloop
isasinglevoltagefeedbackpathincludingerroramplifier
anderrorcomparator.Toachievefasttransientresponse
andaccurateoutputregulation,acompensationcircuitis
necessary.Thegoalofthecompensationnetworkisto
provideaclosedlooptransferfunctionwiththehighest
0dBcrossingfrequencyandadequatephasemargin(greater
than45o).
TheoutputLCfilterintroducesadoublepole,‐40dB/decade
gainslopeaboveitscornerresonantfrequency,andatotal
phaselagof180o.TheresonantfrequencyoftheLCfilteris
expressedasfollows:
1 (17)
2
LC
oo
FLC


Figure25showsgainandphaseoftheLCfilter.Sincewe
alreadyhave180ophaseshiftfromtheoutputfilteralone,
thesystemrunstheriskofbeingunstable.
Phase
00
FLC
0
Frequency
FLC Frequency
00
-180
0
0dB
-40dB/Decade
-90
Gain
Figure25:GainandPhaseofLCfilter
TheIR3894usesavoltagetypeerroramplifierwithhighgain
(110dB)andhighbandwidth(30MHz).Theoutputofthe
amplifierisavailableforDCgaincontrolandACphase
compensation.
TheerroramplifiercanbecompensatedeitherintypeIIor
typeIIIcompensation.TypeIIcompensationisshowninFig.
26.Thismethodrequiresthattheoutputcapacitorshave
enoughESRtosatisfystabilityrequirements.Iftheoutput
capacitor’sESRgeneratesazeroat5kHzto50kHz,thezero
generatesacceptablephasemarginandtheTypeII
compensatorcanbeused.
- 31 -`
JANUARY18,2013|DATASHEET|Rev3.4
31
IR3894
12AHighlyIntegratedSupIRBuck
SingleInputVoltage,SynchronousBuckRegulator
PD97745
TheESRzerooftheoutputcapacitorisexpressedas
follows:
1(18)
2
ESR
o
Fπ*ESR*C

VOUT
VREF
R6
R5
CPOLE
C3
R3
Ve
FZFPOLE
E/A
Zf
Frequency
Gain(dB)
H(s) dB
Fb
Comp
ZIN
Figure26:TypeIIcompensationnetwork
anditsasymptoticgainplot
Thetransferfunction(Ve/Vout)isgivenby:
33
53
1
( ) (19)
f
e
out IN
Z
VsRC
Hs
VZsRC

The(s)indicatesthatthetransferfunctionvariesasa
functionoffrequency.Thisconfigurationintroducesa
gainandzero,expressedby:

3
5
33
(20)
1(21)
2* *
z
R
Hs R
FRC


Firstselectthedesiredzerocrossoverfrequency(Fo):

o(22) and F 1/5~1/10 *
oESR s
FF F
UsethefollowingequationtocalculateR3:
5
32
** * (23)
*
osc o ESR
in LC
VFF R
RVF

Where:
Vin=MaximumInputVoltage
Vosc=AmplitudeoftheoscillatorRampVoltage
Fo=CrossoverFrequency
FESR=ZeroFrequencyoftheOutputCapacitor
FLC=ResonantFrequencyoftheOutputFilter
R5=FeedbackResistor
TocanceloneoftheLCfilterpoles,placethezerobeforethe
LCfilterresonantfrequencypole:
75 % *
1
0.75* (24)
2*
zLC
z
oo
FF
FLC

Useequation21tocalculateC3.
OnemorecapacitorissometimesaddedinparallelwithC3
andR3.Thisintroducesonemorepolewhichismainlyused
tosuppresstheswitchingnoise.
Theadditionalpoleisgivenby:
3
3
3
1(25)
*
2* *
P
POLE
POLE
FCC
RCC

Thepolesetstoonehalfoftheswitchingfrequencywhich
resultsinthecapacitorCPOLE:
3
3
3
11
(26)
1
POLE
s
s
C*R *F
*R *F C

Forageneralsolutionforunconditionalstabilityforanytype
ofoutputcapacitors,andawiderangeofESRvalues,we
shouldimplementlocalfeedbackwithatypeIIIcompensation
network.Thetypicallyusedcompensationnetworkfor
voltagemodecontrollerisshowninFig.27.
- 32 -`
JANUARY18,2013|DATASHEET|Rev3.4
32
IR3894
12AHighlyIntegratedSupIRBuck
SingleInputVoltage,SynchronousBuckRegulator
PD97745
V
OUT
V
REF
R6
R5
R4
C4
C2
C3
R3
Ve
F
Z1F
Z2F
P2FP3
E/A
Zf
ZIN
Frequency
Gain (dB)
|H(s)| dB
Fb
Comp
Figure27:TypeIIICompensationnetwork
anditsasymptoticgainplot
Again,thetransferfunctionisgivenby:
IN
f
out
e
Z
Z
sH
V
V )(
ByreplacingZinandZf,accordingtoFig.27,thetransfer
functioncanbeexpressedas:

33 4 4 5
23
52 3 3 44
23
(1 ) 1
*
() ()1 (1 )
(27)
sR C sC R R
CC
Hs
s
RC C sR sRC
CC










Thecompensationnetworkhasthreepolesandtwo
zerosandtheyareexpressedasfollows:
1
2
44
3
32
23
3
23
0(28)
1(29)
2* *
11
(30)
2* *
*
2*
P
P
P
F
FRC
FRC
CC
RCC






1
33
2
445 45
1(31)
2* *
11
(32)
2* *( ) 2* *
Z
Z
FRC
FCRR CR



Crossoverfrequencyisexpressedas:
34
1
* * * (33)
2* *
in
o
osc o o
V
FRC
VLC
Basedonthefrequencyofthezerogeneratedbytheoutput
capacitoranditsESR,relativetocrossoverfrequency,the
compensationtypecanbedifferent.Table3showsthe
compensationtypesforrelativelocationsofthecrossover
frequency.
TABLE3:DIFFERENTTYPESOFCOMPENSATORS
Compensator
Type FESRvsFOTypicalOutput
Capacitor
TypeIIFLC<FESR<FO<FS/2Electrolytic
TypeIIIFLC<FO<FESRSPCap,Ceramic
Thehigherthecrossoverfrequencyis,thepotentiallyfaster
theloadtransientresponsewillbe.However,thecrossover
frequencyshouldbelowenoughtoallowattenuationof
switchingnoise.Typically,thecontrolloopbandwidthor
crossoverfrequency(Fo)isselectedsuchthat:
so F F * 1/10~1/5
TheDCgainshouldbelargeenoughtoprovidehigh
DCregulationaccuracy.Thephasemarginshouldbegreater
than45oforoverallstability.
Forthisdesignwehave:
Vin=12V
Vo=1.2V
Vosc=1.8V(ThisisafunctionofVin,pls.seefeedforward
section)
Vref=0.5V
Lo=0.51uH
Co=8x22uF,ESR3mΩeach
Itmustbenotedherethatthevalueofthecapacitanceused
inthecompensatordesignmustbethesmallsignalvalue.
Forinstance,thesmallsignalcapacitanceofthe22ufcapacitor
usedinthisdesignis10ufat1.2Vdcbiasand600kHzfrequency.It
isthisvaluethatmustbeusedforallcomputationsrelatedtothe
compensation.
- 33 -`
JANUARY18,2013|DATASHEET|Rev3.4
33
IR3894
12AHighlyIntegratedSupIRBuck
SingleInputVoltage,SynchronousBuckRegulator
PD97745
Thesmallsignalvaluemaybeobtainedfromthe
manufacturer’sdatasheets,designtoolsorspicemodels.
Alternatively,theymayalsobeinferredfrommeasuringthe
powerstagetransferfunctionoftheconverterandmeasuring
thedoublepolefrequencyflcandusingequation(17)
tocomputethesmallsignalco.
Theseresultto:
FLC=24.9kHz
FESR=5.3MHz
Fs/2=300kHz
SelectcrossoverfrequencyF0=100kHz
SinceFLC<F0<Fs/2<FESR,TypeIIIisselectedtoplacethe
poleandzeros.
DetailedcalculationofcompensationTypeIII:
DesiredPhaseBoostΘ=70°
2
1sin 17.6 kHz
1sin
Zo
FF



2
1sin 567.1 kHz
1sin
Po
FF



Select:
12
0.5* 8.8 kHz and
ZZ
FF
30.5* 300 kHz
Ps
FF
SelectC4=2.2nF.
CalculateR3,C3andC2:
33
4
2* * * * ; 1.75 k
*
oo oosc
in
FLCV
RR
CV

SelectR3=1.82k:
33 3
13
1; 9.9 nF, Select: 10 nF
2* *
Z
CC C
FR

22 2
33
1; 354 pF, Select: 220 pF
2* *
P
CC C
FR

CalculateR4,R5andR6:
44 4
42
1; 127 , Select: 100
2* *P
RR R
CF

545
42
1-; 4.1 k,
2* *Z
RRR
CF

SelectR5=4.02k:
656 6
* ; 2.87 k Select: 2.87 k
-
ref
oref
V
RRR R
VV

SettingthePowerGoodThreshold
InthisdesignIR3894isusedinnormal(nontracking,
nonsequencing)mode,thereforethePGoodthresholdsare
internallysetat90%and120%ofVref.Atstartupassoonas
Vsnsvoltagereaches0.9*0.5V=0.45V(Fig.15),andafter
1.28msdelay,PGoodsignalisasserted.AslongastheVsns
voltageisbetweenthethresholdrange,Enableishigh,andno
faulthappens,thePGoodremainshigh.
ThefollowingformulacanbeusedtosetthePGood
threshold.Vout(PGood_TH)canbetakenas90%ofVout.Choose
R8=2.87KΩ.
(_)
7( 1)*8 (34)
0.9*
74.02
out PGood TH
V
RR
Vref
RK

ThePGoodisanopendrainoutput.Hence,itisnecessaryto
useapullupresistor,RPG,fromPGoodpintoVcc.Thevalue
ofthepullupresistormustbechosensuchastolimitthe
currentflowingintothePGoodpintobelessthan5mAwhen
theoutputvoltageisnotinregulation.Atypicalvalueused
is49.9kΩ.
OVPcomparatoralsousesVsnssignalforoverVoltage
dectection.WithabovevaluesforR7andR8,OVPtrippoint
(Vout_OVP)is
_
*1.2*( 7 8)/ 8 1.44 (35)OVPVout Vref R R R V

VrefBypassCapacitor
Aminimumvalueof100pFbypasscapacitorisrecommended
tobeplacedbetweenVrefandGndpins.Thiscapacitorshould
beplacedascloseaspossibletoVrefpin.
- 34 -`
JANUARY18,2013|DATASHEET|Rev3.4
34
IR3894
12AHighlyIntegratedSupIRBuck
SingleInputVoltage,SynchronousBuckRegulator
PD97745
APPLICATIONDIAGRAM
Figure28:ApplicationCircuitfora12Vto1.2V,12APointofLoadConverter
Suggestedbillofmaterialsfortheapplicationcircuit
Part
Reference Qty Value Description Manufacturer Part Number
Cin 1 330uF
SMD Electrolytic F size 25V
20% Panasonic EEV-FK1E331P
4 10uF 1206, 25V, X5R, 20% TDK C3216X5R1E106M
C1 C5 C6 3 0.1uF 0603, 25V, X7R, 10% Murata GRM188R71E104KA01B
Cref 1 100pF 0603,50V,NP0, 5% Murata GRM1885C1H101JA01D
C4 1 2200pF 0603,50V,X7R Murata GRM188R71H222KA01B
C2 1 220pF 0603, 50V, NP0, 5% Murata GRM1885C1H221JA01D
Co 8 22uF
0805, 6.3V, X5R, 20% TDK C2012X5R0J226M
CVcc 1 2.2uF 0603, 16V, X5R, 20% TDK C1608X5R1C225M
C3 1 10nF
0603, 25V, X7R, 10% Murata GRM188R71E103KA01J
Cvin 1 1.0uF 0603, 25V, X5R, 10% Murata GRM188R61E105KA12D
Lo 1 0.51uH SMD 11.0x7.2x7.5mm, 0.29m Vitec 59PR9876N
R3 1 1.82K
Thick Film, 0603,1/10W,1% Panasonic ERJ-3EKF1821V
R5 R7 2 4.02K Thick Film, 0603,1/10W,1% Panasonic ERJ-3EKF4021V
R6 R8 2 2.87K Thick Film, 0603,1/10W,1% Panasonic ERJ-3EKF2871V
R4 1 100
Thick Film, 0603,1/10W,1% Panasonic ERJ-3EKF1000V
Rt 1 39.2K
Thick Film, 0603,1/10W,1% Panasonic ERJ-3EKF3922V
R1 Rpg 2 49.9K Thick Film, 0603,1/10W,1% Panasonic ERJ-3EKF4992V
R2 1 7.5K
Thick Film, 0603,1/10W,1% Panasonic ERJ-3EKF7551V
U1 1 IR3894 PQFN 5x6mm IR IR3894MPBF
- 35 -`
JANUARY18,2013|DATASHEET|Rev3.4
35
IR3894
12AHighlyIntegratedSupIRBuck
SingleInputVoltage,SynchronousBuckRegulator
PD97745
Boot
Vcc/LDO_out
Fb
Comp
Gnd PGnd
SW
S_Ctrl
Vo=1V
PGood
Enable
Rt/Sync
Vin=5V
Vin
Vp
R5
3.32k
3.32k
Co=4X47uF
Lo
0.4 uH
C4
2.2nF
R4
100
R3
2k
C3
6.8nF
C2
91pF
C1
0. 1 uF
Cin = 6 X 10uF
Rt
39.2.K
RPG
49.9K
IR3894
2.2uF
CVcc
PVin
Vref
100pF
Cref
Vsns
R6
R7
3.32k
3.32k
R8
U1
C5
0.1uF
C6
0.1uF
PGood
Enable
Figure29:ApplicationCircuitfora5Vto1V,12APointofLoadConverter
Suggestedbillofmaterialsfortheapplicationcircuit
Part
Reference Qty Value Description Manufacturer Part Number
Cin 1 330uF
SMD Electrolytic F size 25V
20% Panasonic EEV-FK1E331P
6 10uF 1206, 25V, X5R, 20% TDK C3216X5R1E106M
C1 C5 C6 3 0.1uF 0603, 25V, X7R, 10% Murata GRM188R71E104KA01B
Cref 1 100pF 0603,50V,NP0, 5% Murata GRM1885C1H101JA01D
C4 1 2200pF 0603,50V,X7R Murata GRM188R71H222KA01B
C2 1 91pF 0603, 50V, NP0, 5% TDK C1608C0G1H910J
Co 4 47uF
0805, 6.3V, X5R, 20% TDK C2012X5R0J476M
CVcc 1 2.2uF 0603, 16V, X5R, 20% TDK C1608X5R1C225M
C3 1 6.8nF
0603, 25V, X7R, 10% Murata GRM188R71H682KA01D
Cvin 1 1.0uF 0603, 25V, X5R, 10% Murata GRM188R61E105KA12D
Lo 1 0.4uH SMD 11.0x7.2x7.5mm, 0.29m Vitec 59PR9875N
R3 1 2K
Thick Film, 0603,1/10W,1% Panasonic ERJ-3GEYJ202V
R5 R6 R7
R8 4 3.32k
Thick Film, 0603,1/10W,1% Panasonic ERJ-3EKF3321V
R4 1 100
Thick Film, 0603,1/10W,1% Panasonic ERJ-3EKF1000V
Rt 1 39.2K
Thick Film, 0603,1/10W,1% Panasonic ERJ-3EKF3922V
Rpg 1 49.9K
Thick Film, 0603,1/10W,1% Panasonic ERJ-3EKF4992V
U1 1 IR3894 PQFN 5x6mm IR IR3894MPBF
- 36 -`
JANUARY18,2013|DATASHEET|Rev3.4
36
IR3894
12AHighlyIntegratedSupIRBuck
SingleInputVoltage,SynchronousBuckRegulator
PD97745
TYPICALOPERATINGWAVEFORMS
PVin=12V,Vo=1.2V,Iout=012A,RoomTemperature,NoAirflow
Figure30:Startupat12ALoad,
Ch1:Vout,Ch2:Vin,Ch3:PGoodCh4:Enable
Figure32:StartupwithPreBiasVoltage,
0ALoad,Ch1:Vo
Figure34:Inductornodeat12Aload,Ch1:SWnode
Figure31:Startupat12ALoad,
Ch1:Vout,Ch2:Vin,Ch3:PGood,Ch4:Vcc
Figure33:OutputVoltageRipple,
12ALoad,Ch1:Vout
Figure35:ShortCircuitRecovery,
Ch1Vout,Ch4:Iout(5A/Div)
- 37 -`
JANUARY18,2013|DATASHEET|Rev3.4
37
IR3894
12AHighlyIntegratedSupIRBuck
SingleInputVoltage,SynchronousBuckRegulator
PD97745
TYPICALOPERATINGWAVEFORMS
Vin=12V,Vo=1.2V,Iout=012A,RoomTemperature,NoAirFlow

Figure36:TurnonatNoLoadshowingVcclevel  Figure37:TurnonatNoLoadshowingVcclevel
Ch1Vout,Ch2Vin,Ch3Vcc,Ch4Inductorcurrent Ch1Vout,Ch2Vin,Ch3Vcc,Ch4Inductorcurrent
Figure38:TransientResponse,6Ato12Astepat2.5A/uSecslewrate,
Ch1:Vout,Ch4Iout(5A/Div)
- 38 -`
JANUARY18,2013|DATASHEET|Rev3.4
38
IR3894
12AHighlyIntegratedSupIRBuck
SingleInputVoltage,SynchronousBuckRegulator
PD97745
TYPICALOPERATINGWAVEFORMS
PVin=12V,Vo=1.2V,Iout=012A,RoomTemperature,NoAirflow
Figure39:FeedforwardforVinchangefrom6.8to16V,
Ch1:Vout,Ch4:Vin
Figure41:Externalfrequencysynchronizationto800kHz
fromfreerunning600kHz,Ch1:Vo,Ch2:Rt/Sync
voltage,Ch3:SWNodevoltage
Figure43:VoltagemarginingusingVrefpin
Ch1:Vout,Ch3:PGood,Ch4:Vref
Figure40:Start/StopusingS_CtrlPin,
Ch1:Vout,Ch2:Enable,Ch3:PGood,Ch4:S_Ctrl
Figure42:OverVoltageProtection,
Ch1:Vout,Ch3:PGood
Figure44:VoltagetrackingusingVppin
Ch1Vout,Ch3:PGood,Ch4:Vp
- 39 -`
JANUARY18,2013|DATASHEET|Rev3.4
39
IR3894
12AHighlyIntegratedSupIRBuck
SingleInputVoltage,SynchronousBuckRegulator
PD97745
TYPICALOPERATINGWAVEFORMS
Vin=12V,Vo=1.2V,Iout=012A,RoomTemperature,NoAirFlow
Figure45:BodePlotat12Aloadshowsabandwidthof99.9kHzandphasemarginof55.2°
Figure46:ThermalImageoftheBoardat12ALoad,
TestPoint1isIR3894,
TestPoint2isinductor
- 40 -`
JANUARY18,2013|DATASHEET|Rev3.4
40
IR3894
12AHighlyIntegratedSupIRBuck
SingleInputVoltage,SynchronousBuckRegulator
PD97745
LAYOUTRECOMMENDATIONS
Thelayoutisveryimportantwhendesigninghigh
frequencyswitchingconverters.Layoutwillaffectnoise
pickupandcancauseagooddesigntoperformwithless
thanexpectedresults.
Maketheconnectionsforthepowercomponentsinthe
toplayerwithwide,copperfilledareasorpolygons.In
general,itisdesirabletomakeproperuseofpower
planesandpolygonsforpowerdistributionandheat
dissipation.
Theinductor,outputcapacitorsandtheIR3899shouldbe
asclosetoeachotheraspossible.Thishelpstoreduce
theEMIradiatedbythepowertracesduetothehigh
switchingcurrentsthroughthem.Placetheinput
capacitordirectlyatthePVinpinofIR3899.
Thefeedbackpartofthesystemshouldbekeptaway
fromtheinductorandothernoisesources.
Thecriticalbypasscomponentssuchascapacitorsfor
Vin,VccandVrefshouldbeclosetotheirrespectivepins.
Itisimportanttoplacethefeedbackcomponents
includingfeedbackresistorsandcompensation
componentsclosetoFbandComppins.
InamultilayerPCBuseonelayerasapowerground
planeandhaveacontrolcircuitground(analogground),
towhichallsignalsarereferenced.Thegoalistolocalize
thehighcurrentpathtoaseparateloopthatdoesnot
interferewiththemoresensitiveanalogcontrolfunction.
Thesetwogroundsmustbeconnectedtogetheronthe
PCboardlayoutatasinglepoint.Itisrecommendedto
placeallthecompensationpartsovertheanalogground
planeintoplayer.
ThePowerQFNisathermallyenhancedpackage.Based
onthermalperformanceitisrecommendedtouseat
leasta4layersPCB.Toeffectivelyremoveheatfromthe
devicetheexposedpadshouldbeconnectedtothe
groundplaneusingvias.Figures46adillustratesthe
implementationofthelayoutguidelinesoutlinedabove,
ontheIRDC38994layerdemoboard.

Figure47a:IRDC3894DemoboardLayoutConsiderationsToplayer
Compensation parts
should be placed
as close as possible
to the Comp pin
Resistor Rt and Vref
decoupling cap should
be placed as close as
possible to their pins
Enough copper & minimum
ground length path between
Input and Output
A
ll bypass caps should be
placed as close as possible
to their connecting pins
Switch N ode
- 41 -`
JANUARY18,2013|DATASHEET|Rev3.4
41
IR3894
12AHighlyIntegratedSupIRBuck
SingleInputVoltage,SynchronousBuckRegulator
PD97745
Figure47b:IRDC3894DemoboardLayoutConsiderationsBottomLayer
Analoggroundplane Powergroundplane 
Figure47c:IRDC3894DemoboardLayoutConsiderationsMidLayer1
Figure47d:IRDC3894DemoboardLayoutConsiderationsMidLayer2
Single point connection
between AGND & PGND,
should be close to the
SupIRBuck kept away from
noise sources
Feedback andVsnstrace
routingshouldbekeptaway
fromnoisesources
- 42 -`
JANUARY18,2013|DATASHEET|Rev3.4
42
IR3894
12AHighlyIntegratedSupIRBuck
SingleInputVoltage,SynchronousBuckRegulator
PD97745
PCBMETALANDCOMPONENTPLACEMENT
Evaluationshaveshownthatthebestoverall
performanceisachievedusingthesubstrate/PCBlayout
asshowninfollowingfigures.PQFNdevicesshouldbe
placedtoanaccuracyof0.050mmonbothXandYaxes.
Selfcenteringbehaviorishighlydependentonsolders
andprocessesandexperimentsshouldberuntoconfirm
thelimitsofselfcenteringonspecificprocesses.
Forfurtherinformation,pleasereferto“SupIRBuck™
MultiChipModule(MCM)PowerQuadFlatNoLead
(PQFN)BoardMountingApplicationNote.”(AN1132)
Figure48:PCBMetalPadSizingandSpacing(alldimensionsinmm)
*ContactInternationalRectifiertoreceiveanelectronicPCBLibraryfileinyourpreferredformat
- 43 -`
JANUARY18,2013|DATASHEET|Rev3.4
43
IR3894
12AHighlyIntegratedSupIRBuck
SingleInputVoltage,SynchronousBuckRegulator
PD97745
SOLDERRESIST
IRrecommendsthatthelargerPowerorLand
AreapadsareSolderMaskDefined(SMD.)
ThisallowstheunderlyingCoppertracestobeas
largeaspossible,whichhelpsintermsofcurrent
carryingcapabilityanddevicecoolingcapability.
WhenusingSMDpads,theunderlyingcopper
tracesshouldbeatleast0.05mmlarger(oneach
edge)thantheSolderMaskwindow,inorderto
accommodateanylayertolayermisalignment.
(i.e.0.1mminX&Y.)
However,forthesmallerSignaltypeleadsaround
theedgeofthedevice,IRrecommendsthatthese
areNonSolderMaskDefinedorCopperDefined.
WhenusingNSMDpads,theSolderResist
WindowshouldbelargerthantheCopperPad
byatleast0.025mmoneachedge,(i.e.0.05mm
inX&Y,)inordertoaccommodateanylayerto
layermisalignment.
Ensurethatthesolderresistinbetweenthe
smallersignalleadareasareatleast0.15mm
wide,duetothehighx/yaspectratioofthe
soldermaskstrip.
Figure49:Solderresist
*ContactInternationalRectifiertoreceiveanelectronicPCBLibraryfileinyourpreferredformat
- 44 -`
JANUARY18,2013|DATASHEET|Rev3.4
44
IR3894
12AHighlyIntegratedSupIRBuck
SingleInputVoltage,SynchronousBuckRegulator
PD97745
STENCILDESIGN
StencilsforPQFNcanbeusedwiththicknesses
of0.1000.250mm(0.0040.010").Stencilsthinner
than0.100mmareunsuitablebecausethey
depositinsufficientsolderpastetomakegood
solderjointswiththegroundpad;highreductions
sometimescreatesimilarproblems.Stencilsin
therangeof0.125mm0.200mm(0.0050.008"),
withsuitablereductions,givethebestresults.
Evaluationshaveshownthatthebestoverall
performanceisachievedusingthestencildesign
showninfollowingfigure.Thisdesignisfor
astencilthicknessof0.127mm(0.005").
Thereductionshouldbeadjustedforstencils
ofotherthicknesses.
Figure50:StencilPadSpacing(alldimensionsinmm)
*ContactInternationalRectifiertoreceiveanelectronicPCBLibraryfileinyourpreferredformat
- 45 -`
JANUARY18,2013|DATASHEET|Rev3.4
45
IR3894
12AHighlyIntegratedSupIRBuck
SingleInputVoltage,SynchronousBuckRegulator
PD97745
`
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
This product has been designed and qualified for the industrial market
Visit us at www.irf.com for sales contact information
Data and specifications su bje ct to change without notice. 12/11
Figure52:PackageDimensions
DIM MILIMITERS INCHES DIM MILIMITERS INCHES
MIN MAX MIN MAX MIN MAX MIN MAX
A 0.800 1.000 0.0315 0.0394 L 0.350 0.450 0.0138 0.0177
A1 0.000 0.050 0.0000 0.0020 M 2.441 2.541 0.0961 0.1000
b 0.375 0.475 0.1477 0.1871 N 0.703 0.803 0.0277 0.0316
b1 0.250 0.350 0.0098 0.1379 O 2.079 2.179 0.0819 0.0858
c 0.203 REF. 0.008 REF. P 3.242 3.342 0.1276 0.1316
D 5.000 BASIC 1.969 BASIC Q 1.265 1.365 0.0498 0.0537
E 6.000 BASIC 2.362 BASIC R 2.644 2.744 0.1041 0.1080
e 1.033 BASIC 0.0407 BASIC S 1.500 1.600 0.0591 0.0630
e1 0.650 BASIC 0.0256 BASIC t1, t2, t3 0.401 BASIC 0.016 BACIS
e2 0.852 BASIC 0.0335 BASIC t4 1.153 BASIC 0.045 BASIC
t5 0.727 BASIC 0.0286 BASIC
Figure51:Markinginformation
MARKINGINFORMATION
PACKAGEINFORMATION