IRDC3622D USER GUIDE FOR DUAL OUTPUT IRDC3622D EVALUATION BOARD USING IRF6622 AND IRF6629 DIRECTFET MOSFETS Table of Contents Page 1 Description www.irf.com Board Features 1 Connections & Operating Instructions 2 Layout 5 Schematic 10 Bill of Materials 11 Waveforms 12 Synchronization 21 Voltage & Tracking 22 MLPQ Package 24 RD-0621 1 USER GUIDE FOR DUAL OUTPUT IRDC3622D EVALUATION BOARD USING IRF6622 AND IRF6629 DIRECTFET MOSFETS DESCRIPTION This user guide contains the schematic and bill of materials for the IRDC3622D evaluation board. The guide describes operation and use of the evaluation board itself. The IR3622 IC is a dual channel synchronous buck controller, providing a cost-effective, high performance and flexible solution. The two channels can be configured to either two independent outputs or current sharing single output. The current share configuration is ideal for high current applications. Key features offered by the IR3622 Include configurable dual output, output voltage tracking, power up/down sequencing, programmable soft- start ramp, pre-bias start-up, latched over-voltage protection, thermal protection, accurate reference voltage, on-board regulator, threshold sensitive Enable input, programmable switching frequency up 600kHz, and input under-voltage lockout for proper start-up. An output over-current protection function and a hiccup current limit are implemented by sensing the voltage developed across the on-resistance of the synchronous rectifier MOSFET for optimum cost and performance. Detailed application information for the IR3622 integrated circuit is available in the IR3622 data sheet. BOARD FEATURES * The board is designed for two output voltages 2.5V and 1.8V up to 20A for each output. * VIN = +12V, (13.2V Max) * VO1 = +2.5V 3% @ 20A, VO2 = +1.8V 3% @ 20A * Vo(ripple)= 50mV maximum for each output * Fs=350kHz * L1=990nH, L2=540nH * Co1=2x100uF (SP) + 2x10uF (ceramic 0805) for 2.5V output * Co2=2x220uF (SP) + 2x10uF (ceramic 0805) for 1.8V output * The input voltage start threshold of the converter is set about 10V using enable pin and two external resistors (R16A1 and R16A2). * The converter has the option to sequence with other supplies using SEQ and Track pins (R6A1, R16A3 and R16A4). These pins are pulled high as default. www.irf.com RD-0621 2 CONNECTIONS and OPERATING INSTRUCTIONS Input Supplies Connection: Two supplies are required for this board, 3.3V and 12V. Both supplies should be well regulated. The 3.3V supplies the pull-up resistor for Power Good. The Track and Seq pins are also pulled high using 3.3V. Connect the 3.3V supply to TP1(+) and TP2(Gnd). The12V supply is the bus voltage; It also biases IR3622 IC and should be able to source 10A current. Connect this supply either to 8-pin connector (J1A) or solder other connectors, such as banana jacks, to the exposed pads. Note: For correct start up the 3.3V supply needs to be powered first. Output Load Connection: The load can be connected to the large screw-terminals or solder other connectors, such as banana jacks to the exposed pads. Table I. Connections Signal Name Connection +3.3V Supply TP1 Ground of the 3.3V Supply TP2 VIN (+12V) J1A Ground of VIN www.irf.com VO1 (+2.5V) TB1A Ground of VO1 (+2.5V) TB2A VO2 (+1.8V) TB3A Ground of VO2 (+1.8V) TB4A RD-0621 3 CONNECTION DIAGRAM 1.8V output Input Supply (+3.3V) 20A Load + Input Supply (+12V) 20A Load + 2.5V output J1A Fig. 1: Connection diagram of the IRDC3622D evaluation board. www.irf.com RD-0621 4 Test Points Input, output, and control signals are accessible through test points as listed in Table II. Table II. Test Points Test Point Signal Name Description TP37 SS1 Soft Start for 2.5V output TP36 SS2 Soft Start for 1.8V output TP32 SYNC External Synchronization signal TP33 SEQ Enable input for Sequence and Tracking TP7 PGD_2V5 Power Good output for the 2.5V output TP11 PGD_1V8 Power Good output for the 1.8V output TP17 GND Ground TP35 Enable Enable input of the 3622 IC TP9, TP13, TP21, TP22 Vo1 (2.5V) Output voltage and ground for the 2.5V output TP15, TP16 Vo2 (1.8V) Output voltage and ground for the 1.8V output TP28, TP29 REM_SEN2V5 Remote Sensing at terminal block for the 2.5V output TP30, TP31 REM_SEN1V8 Remote Sensing at terminal block for the 1.8V output www.irf.com RD-0621 5 LAYOUT The IRDC3622D is an eight-layer board. The top and bottom layers are 2 Oz. copper and the internal layers are 1 Oz. copper. The switching MOSFETS, Inductors, 270uF input capacitors, output capacitors, and some smaller passive components are mounted on the top side of the board. The IR3622 IC and the rest of passive components are mounted on the bottom layer. The DirectFET technology is used for MOSFETs. Fig. 2: Parts placement, the top layer. Fig. 3: Parts placement, the bottom layer. www.irf.com RD-0621 6 Fig. 4: Board layout, top layer. Fig. 5: Board layout, mid layer 1. www.irf.com RD-0621 7 Fig. 6: Board layout, mid layer 2. Fig. 7: Board layout, mid layer 3. www.irf.com RD-0621 8 Fig. 8: Board layout, mid layer 4. Fig. 9: Board layout, mid layer 5. www.irf.com RD-0621 9 Fig. 10: Board layout, mid layer 6. Fig. 11: Board layout, bottom layer. www.irf.com RD-0621 10 P3V3_STBY M1A HEATSINK MOUNT TP17 TP2 2.5V and 1.8V / 20A, 350KHz DESIGN 1 TP1 C3v3 10uF UNLESS OTHERWISE SPECIFIED: Capacitors are 0603, 10% max, 16V min, X5R min Resistors are 0603, 1%, 100mW D1A1 BAT54WS A_SOD323_B 2 1 9 1 T H 1 10 C3A 10uF C9A F 0.22u Vout3 C32A 0.1uF PGood2 1 C7A 1uF Q11A IRF6622 SQ 5 L1A 990nH ETQP6F1R1BFA P2V5 2 1 15 2 32 C17A open L2A1 2 6 Q22A 1 No Stuff 5 C22A 22pF IRF6629 MX 11 10 43 R10A open 8 R9A3.92K TP30 3 Vsen2 2 C13A C36A C35A 10uF,6.3V 10uF,6.3V 220uF C19A C13A1 220uF EMPTY C19A1 EMPTY 4 R18A5 11.5K R18A4 0.887K R18A2 11.5K C35A1 EMPTY C36A1 EMPTY C35A2 EMPTY C36A2 EMPTY C27A TP36 180pF R24A1 1M Vsen2 C30A1 open R18A6 9.1K Enable OCset1 Seq 18 Track LDrv1 OCset2 LDrv2 IR3622 MLPQ PGnd1 PGood1 Fb2 Vsen1 Vsen2 Fb1 Comp2 Comp1 0.22uF C29A1 IRF6629 MX 13 www.irf.com 1 2 3 4 5 TB1A 6 1 2 3 4 5 TB2A 6 COA 0.1uF 29 1 R11A 26. R14A 6.49K 7K TP28 22 R15A 6.49K TP29 R15A10 21 20 C25A 6.8nF C28A 47pF R21A C30A 3.01K open R17A 3.01K C26A R20A 2.2nF 0.499K REMOTE SENSE AT TERMINAL BLOCK R19A 5.1K TP21 TP22 C29A R24A 1M SIGNAL GND JOINS GND AT 1 POINT 0.22uF C37A3 C37A2 C37A1 C38A1 EMPTY EMPTY EMPTY EMPTY C37A C38A 10uF,6.3V 10uF,6.3V C15A 100uF C15A1 100uF C15A2 EMPTY C15A3 EMPTY P3V3_STBY RT = 26.7K, Fs = 350KHz R30A 4.99K TP7 R30A1 4.99K TP11 PGood2 PGD_P1V8 R7A open 5 14 U1A TP37 IR3622 MLPQ R18A3 9.1K P3V3_STBY TP9 TP13 2 No Stuff 26 Vref Vp2 Rt PGnd2 L1A1 1 Q12A C16A 22pF HDrv2 R18A 5.1K C11A open R4A 3.92K SS G p pp pp pp pp C24A 5.6nF C24A1 1.2nF 16 SS 21 N D aa dd 89 aa dd 67 aaa ddd 345 aa dd 12 R18A1 TP31 0 HDrv1 Vcc 216 7 9 P1V8 COA1 4 0.1uF 5 6 TB4A 1 2 3 1 43 4 5 6 30 TP33 R6A1 0 7 216 TB3A 1 2 3 P3V3_STBY IRF6622 SQ 5 L2A 540nH ETQP6F0R6BFA AT TERMINAL BLOCK P2V5 2 1 43 TP15TP16REMOTE SENSE 1 59 28 41 34 90 33 78 333 456 33 Q21A V c L V cH 2 V cH 1 V o u t3 P G ood2 S y nc V re f V p1 7 216 43 12 7 17 31 24 23 27 25 TP35 Vref Fig. 12: Schematic of the IRDC3622D board. 1 C34A 0.1uF C2A 10uF C14A1 R16A2 R16A4 1uF 1.4K EMPTY TP32 C14A 1uF J1A 5 1 6 +12V1 GND1 2 7 +12V2 GND2 3 8 +12V3 GND3 4 +12V4 GND4 216 7 C6A 10uF C9A1 0.22uF C8A1 C8A C10A 0.47uF,25V 0.47uF,25V 1uF + C39A 270uF T H 2 2 2 1 1 1 1 2 R16A 10 + C80A 270uF 2 2 2 D2A BAT54WS A_SOD323_B 2 1 2 R16A1 R16A3 10K EMPTY R16A5 0 P12VA C5A 10uF 1 P3V3_STBY P2V5 2 1 D1A BAT54WS A_SOD323_B 2 1 2 D2A1 BAT54WS A_SOD323_B Input capacitors must support 9.6Arms for 2.5Vo at 20 A and 1.8Vo at 20A PGD_P1V8 PGD_P2V5 PGD_P2V5 C29A2 C29A3 0.22uF 0.22uF RD-0621 11 BILL OF MATERIALS Item Qty Reference COA1, C32A, C34A, 1 4 COA 2 2 C30A, C30A1 C2A, C3A, C5A, C6A, 3 5 C3v3 C7A, C10A, C14A, 4 4 C14A1 5 2 C8A, C8A1 C9A,C29A, C9A1,C29A1, 6 6 C29A2,C29A3 7 2 C11A, C17A 8 2 C13A, C19A 9 2 C15A, C15A1 10 2 C16A, C22A 11 1 C24A 12 1 C25A 13 1 C26A 14 1 C27A 15 1 C28A C35A,C36A, C37A, 16 4 C38A 17 2 C39A,C80A C13A1, C15A2, C15A3, 18 4 C19A1 19 1 C24A1 C35A1, C35A2, C36A1, C36A2, C37A1, C37A2, 20 8 C37A3, C38A1 21 4 D1A, D2A, D1A1, D2A1 22 1 J1A 23 1 L1A 24 1 L2A 25 2 L1A1, L2A1 26 2 Q11A, Q21A 27 2 Q12A, Q22A 28 2 R4A, R9A, 29 2 R30A, R30A1 30 2 R7A, R10A 31 1 R11A Value Description PCB Footprint Manufacturer Part Number 0.1uF Open 0.1uF-0603-25V-X7R-10% A_MC-0603 A_MC-0603 Panasonic ECJ1VB1E104 10uF 10uF-1206-16V-X7R-20% A_MC-1206 Murata GRM31CR61C106KC31L 1uF 0.47uF 1uF-0603-16V-X7R-10% 0.47uF-0603-25V-X7R-10% A_MC-0603 A_MC-0603 Murata Murata GRM188R71C105KA12D GRM188R71E474KA12D 0.22uF Open 220uF 100uF 22pF 5.6nF 6.8nF 2.2nF 180pF 47pF 0.22uF-0603-16V-X7R-10% Panasonic ECJ1VB1C224 220uF-D4-2V-9mOhm-SP 100uF-D4-4V-9mOhm-SP 22pF-0603-50V-X7R-10% 5600pF-0603-50V-X7R-10% 6800pF-0603-50V-X7R-10% 2200pF-0603-50V-X7R-10% 180pF-0603-50V-C0G-5% 47pF-0603-50V-C0G-5% A_MC-0603 A_MC-0603 A_MC-6MM A_MC-6MM A_MC-0603 A_MC-0603 A_MC-0603 A_MC-0603 A_MC-0603 A_MC-0603 Panasonic Panasonic Panasonic Panasonic Panasonic Panasonic Panasonic AVX EEFSX0D221R EEFSX0G101R ECJ1VC1H220J ECJ1VB1H562K ECJ1VB1H682K ECJ1VB1H222K ECJ1VC1H181J 06035A470JAT2A 10uF 270uF 10uF-0805-6.3V-X5R-10% 270uF-8mm-16V A_MC-0805 A_MC138-336D AVX Sanyo 08056D106KAT2A 16SEPC270M Open 1.2nF 1200pF-0603-50V-X7R-10% A_MC-6MM A_MC-0603 International Rectifier Molex Panasonic Panasonic BAT54WS 39299082 ETQP6F1R1BFA ETQP6F0R6BFA International Rectifier International Rectifier Rohm Rohm IRF6622 IRF6629 MCR03EZPFX3922 MCR03EZPFX4991 Rohm MCR03EZPFX4320 Rohm Rohm Panasonic Rohm Yageo Rohm Yageo Yageo Panasonic MCR03EZPJ000 MCR03EZPFX6491 ERJ-3EKF10R0V MCR03EZPFX3011 9C06031A5101FKHFT MCR03EZPFX4990 RC0603FR-071ML RC0603FR-0710KL ERJ-S03F1401V Rohm Yageo Rohm MCR03EZPFX1152 9C06031A9101FKHFT MCR03EZPFX8870 Keystone 8197 Open BAT54WS ATX8PINS 990nH 540nH Open IRF6622 SQ IRF6629 MX 3.92K 4.99K Open 26.7K Schottky,SOD323,30V,0.2A CONN,8 Pins,2 Rows IRF6622 SQ 25V IRF6629 MX 25V RES, 0603, 1%, 1/10W RES, 0603, 1%, 1/10W RES, 0603, 1%, 1/10W A_MC-0805 A_SOD323_B PWR2X4 A_INDUCT-320 A_INDUCT-320 IR_PA0513 IR_DIRFET_SQ IR_DIRFET_MX A_CR-0603 A_CR-0603 A_CR-0805 A_CR-0603 32 33 34 35 36 37 38 39 40 41 42 43 44 4 2 1 2 2 1 2 1 1 2 2 2 1 45 4 R6A1, R15A1, R16A5, R18A1 R14A, R15A R16A R17A, R21A R18A, R19A R20A R24A, R24A1 R16A1 R16A2 R16A3, R16A4 R18A2, R18A5 R18A3, R18A6 R18A4 TB1A, TB2A, TB3A, TB4A 20 1 1 2 1 TP37, TP36, TP32, TP33, TP7, TP11, TP17, TP35, TP9, TP13, TP21, TP22, TP15, TP16, TP28. TP29. TP30, TP31, TP1, TP2 TP Testpoint V1054_ND Vector U1A IR3622 MLPQ Controller ( ) A_MLPQ32-0P5MM_VIA_A International Rectifier M1A (mm) Heat Sink ThermaFlo TIM1A, TIM2A Thermal Interface Material 7.65 x 20.51 (L x W) (mm) Bergquist SCRW1A Philips Pan Head Screw Stainless A-2(18-8), 2mm x .4 x 5mm Bolt Depot 46 47 48 49 50 www.irf.com 0 6.49K 10 3.01K 5.1K 0.499K 1M 10k 1.4K Open 11.5K 9.1K 0.887K RES, 0603, 1%, 1/10W RES, 0603, 1%, 1/10W RES, 0603, 1%, 1/10W RES, 0603, 1%, 1/10W RES, 0603, 1%, 1/10W RES, 0603, 1%, 1/10W RES, 0603, 1%, 1/10W RES, 0603, 1%, 1/10W RES, 0603, 1%, 1/10W RES, 0603, 1%, 1/10W RES, 0603, 1%, 1/10W RES, 0603, 1%, 1/10W A_CR-0603 A_CR-0603 A_CR-0603 A_CR-0603 A_CR-0603 A_CR-0603 A_CR-0603 A_CR-0603 A_CR-0603 A_CR-0603 A_CR-0603 A_CR-0603 A_CR-0603 T. BLOCK 1 PIN Terminal block TB_1_0 RD-0621 K24A/M IR3622 7201598 BG420754 6812 12 TYPICAL OPERATING WAVEFORMS Vin=12V, Vo1=2.5V, Vo2=1.8V, Io1=0-20A, Io2=0-20A Fs=350 kHz, Room Temperature, No Air Flow Fig.13: Start-up sequence into 20A Load. Fig.14: Start-up sequence into 20A load. Ch1: Vin, Ch2: Enable, Ch3: Vss1, Ch4: Vss2 Ch1: Vin, Ch2: Enable, Ch3: Vo1(2V5), Ch4: Vo2(1V8) Fig.15: Start-up sequence into 20A load. Fig.16: Start-up sequence into 20A load. Ch1: Enable, Ch2: Vss1, Ch3: Vo1(2V5), Ch4:PGood(2V5) Ch1: Enable, Ch2:Vss2, Ch3:Vo2(1V8), Ch4:PGood(1V8) Fig.17: Inductor points. Fig.18: Dead-time (rise) at 20A load. Ch1: VL1 Ch1: VL1, Ch2: VL2 www.irf.com RD-0621 13 TYPICAL OPERATING WAVEFORMS Vin=12V, Vo1=2.5V, Vo2=1.8V, Io1=0-20A, Io2=0-20A Fs=350 kHz, Room Temperature, No Air Flow Fig.19: Dead-time (fall) at 20A load. Ch1: VL1 Fig.20: Output voltage ripple at 20A load. Ch1: Vo1(2V5) Fig.21: Output voltage ripple at 20A load. Fig.22: Load transient 0-10A. Ch1: Vo2(1V8), Ch4: Io2 Ch1: Vo1(2V5), Ch4: Io1 Fig.24: Load Transient 0-10A. Fig.23: Load Transient 10-0A. Ch1: Vo1(2V5), Ch4: Io1 Ch1: Vo1(2V5), Ch4: Io1 www.irf.com RD-0621 14 TYPICAL OPERATING WAVEFORMS Vin=12V, Vo1=2.5V, Vo2=1.8V, Io1=0-20A, Io2=0-20A Fs=350 kHz, Room Temperature, No Air Flow Fig.25: Load Transient 0-10A. Fig.26: Load Transient 0-10A. Ch1: Vo2(1V8), Ch4: Io2 Ch1: Vo2(1V8), Ch4: Io2 Fig.27: Hiccup Operation Fig.28: Hiccup Operation Ch1: Vo1(2V5), Ch3: VSS1 Fig.29: Inductor Current at 15A load Ch1: Io1(2V5) www.irf.com Ch1: Vo2(1V8), Ch3: VSS2 Fig. 30: Inductor Current at 15A Ch1: Io2(1V8) RD-0621 15 TYPICAL OPERATING WAVEFORMS Vin=12V, Vo1=2.5V, Vo2=1.8V, Io1=0-20A, Io2=0-20A Fs=350 kHz, Room Temperature, No Air Flow 2.6 2.58 2.5V+3% 2.56 VO1 (V) 2.54 2.52 2.5 2.48 2.46 2.44 2.5V-3% 2.42 2.4 0 2 4 6 8 10 12 14 16 18 20 Io1 (A) Fig.31: Vo1 versus its load current. 1.88 1.86 1.8V+3% 1.84 Vo2(V) 1.82 1.8 1.78 1.76 1.8V-3% 1.74 1.72 0 2 4 6 8 10 12 14 16 18 20 Io2(A) Fig.32: Vo2 versus its load current. www.irf.com RD-0621 16 TYPICAL OPERATING WAVEFORMS Vin=12V, Vo1=2.5V, Vo2=1.8V, Io1=0-20A, Io2=0-20A Fs=350 kHz, Room Temperature, No Air Flow Fig .33: Bode Plot of 2.5V loop at 0A shows a bandwidth of 52kHz and phase margin of 48 degree. Fig. 34: Bode Plot of 2.5V loop at 20 A shows a bandwidth of 61kHz and phase margin of 47 degree. www.irf.com RD-0621 17 TYPICAL OPERATING WAVEFORMS Vin=12V, Vo1=2.5V, Vo2=1.8V, Io1=0-20A, Io2=0-20A Fs=350 kHz, Room Temperature, No Air Flow Fig. 35: Bode Plot of 1.8V loop at 0A shows a bandwidth of 39kHz and phase margin of 61 degree. Fig. 36: Bode Plot of 1.8V loop at 20A shows a bandwidth of 43kHz and phase margin of 58 degree. www.irf.com RD-0621 18 TYPICAL OPERATING WAVEFORMS Vin=12V, Vo1=2.5V, Vo2=1.8V, Io1=0-20A, Io2=0-20A Fs=350 kHz, Room Temperature, No Air Flow Fig.37: Thermal Image, Test Points 1, 2, 3, and 4 are Synchronous DirectFET for 2.5V output, Synchronous DirectFET for 1.8V output, Control DirectFET for 2.5V output, and Control DirectFET for 1.8V output, respectively. www.irf.com RD-0621 19 TYPICAL OPERATING WAVEFORMS Vin=12V, Vo1=2.5V, Vo2=1.8V, Io1=0-20A, Io2=0-20A Fs=350 kHz, 45C, 200LFM Air Flow 91.0 90.8 90.6 90.4 90.2 90.0 Efficiency % 89.8 89.6 89.4 89.2 89.0 88.8 88.6 88.4 88.2 88.0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Output Current (Amps) Fig. 38: Efficiency of 2.5V channel versus load current with 200LFM air flow and heat sink at 45C. 6.5 6.0 5.5 5.0 4.5 Watts 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Output Current (Amps) Fig.39: Power loss of 2.5V channel versus load current with 200LFM air flow and heat sink at 45C. www.irf.com RD-0621 20 TYPICAL OPERATING WAVEFORMS Vin=12V, Vo1=2.5V, Vo2=1.8V, Io1=0-20A, Io2=0-20A Fs=350 kHz, 45C, 200LFM Air Flow 87.6 87.4 87.2 87.0 86.8 Efficiency % 86.6 86.4 86.2 86.0 85.8 85.6 85.4 85.2 85.0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Output Current (Amps) Fig.40: Efficiency of 1.8V channel versus load current with heat sink and 200LFM air flow at 45C. 6.0 5.5 5.0 4.5 4.0 Watts 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Output Current (Amps) Fig.41: Power loss of 1.8V channel versus load current with heat sink and 200LFM air flow at 45C. www.irf.com RD-0621 21 FREQUENCY SYNCHRONIZATION Vin=12V, Vo1=2.5V, Vo2=1.8V, Io1=0-20A, Io2=0-20A, Room Temperature, No Air Flow The switching frequency of channels can be synchronized by applying a digital input signal to the Sync pin of the IR3622. This frequency of input is twice as the switching frequency of the channels. Fig.42: Frequency Synchronization. Ch1: VL1(2V5) Ch2: Sync pin Ch3: VL2(1V8) www.irf.com RD-0621 22 OUTPUT VOLTAGE TRACKING AND SEQUENCING Vin=12V, Vo1=2.5V, Vo2=1.8V, Io1=0-20A, Io2=0-20A, Room Temperature, No Air Flow In order to run the IR3622 in the ratio-metric mode, the following steps should be taken: - Remove C29A1, R24A1, R6A1, R16A5 from the board. -Set the value of R16A3 and R16A4 as R15A (6.49K) and R17A (3.01K), respectively. -Connect TP33 to the SEQ input signal. Fig.43: Ratio-metric tracking at the voltage rise to a 20A load. Ch1: SEQ Ch2: VSS1 Ch3: Vo1(2V5) Ch4:Vo2(1V8) Fig.44: Ratio-metric tracking at the voltage fall with a 20A load. Ch1: SEQ Ch2: VSS1 Ch3: Vo1(2V5) Ch4:Vo2(1V8) www.irf.com RD-0621 23 OUTPUT VOLTAGE TRACKING AND SEQUENCING Vin=12V, Vo1=2.5V, Vo2=1.8V, Io1=0-20A, Io2=0-20A, Room Temperature, No Air Flow In order to run the IR3622 in the simultaneously mode, the following steps should be taken: - Remove C29A1, R24A1, R6A1, R16A5 from the board. -Set the value of R16A3 and R16A4 as R18A2 (11.5K) and R18A3 (9.1K), respectively. -Connect TP33 to the controlling input signal. Fig.45: Simultaneously Tracking at the voltage rise to a 20A load Ch1: SEQ Ch2: VSS1 Ch3: Vo1(2V5) Ch4:Vo2(1V8) Fig.46: Simultaneously Seq. at the voltage fall with a 20A load Ch1: SEQ Ch2: VSS1 Ch3: Vo1(2V5) Ch4:Vo2(1V8) www.irf.com RD-0621 24 TAPE & REEL ORIENTATION IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 This product has been designed and qualified for the Industrial market. Visit us at www.irf.com for sales contact information Data and specifications subject to change without notice. 01/23/2007 www.irf.com RD-0621 25