R5220D SERIES PWM Step-down DC/DC Converter with Synchronous Rectifier and LDO mode NO.EA-121-0603 OUTLINE The R5220D Series are CMOS-based PWM step-down DC/DC Converters with synchronous rectifier, low supply current and LDO mode. DC/DC converter of the R5220D consists of an oscillator, a PWM control circuit, a reference voltage unit, an error amplifier, a soft-start circuit, protection circuits, a protection against miss operation under low voltage (UVLO), PWM-DC to DC converter / LDO alternative circuit, a chip enable circuit, and a driver transistor. A high efficiency step-down DC/DC converter can be easily composed of this IC with only a few kinds of external components, or an inductor and capacitors. LDO of the R5220D consists of a vortage reference unit, an error amplifier, resistors for voltage setting, output current limit circuit, a driver transistor, and so on. The output voltage is fixed internally in the R5220D. The output voltage of the DC/DC converter and the LDO can be set independently. PWM step-down DC/DC converter / LDO alternative circuit is active with Mode Pin of the R5220D Series. Thus, when the load current is small, the operation can be switching into the LDO operation from PWM operation by the logic of MODE pin and the consumption current of the IC itself will be small at light load current. As protection circuits, the current limit circuit which limits peak current of Lx at each clock cycle, and the latch type protection circuit which works if the term of the over-current condition keeps on a certain time in PWM mode. Latch-type protection circuit works to latch an internal driver with keeping it disable. To release the protection, after disable this IC with a chip enable circuit, enable it again, or restart this IC with power-on or make the supply voltage at UVLO detector threshold level or lower than UVLO. FEATURES * * * * * * * * * * Built-in Driver ON Resistance ......................................... P-channel 0.5, N-channel 0.5 (at VIN=3.6V) Input Voltage ................................................................... 2.8V to 5.5V Built-in Soft-start Function (Typ. 0.2ms), and Latch-type Protection Function (Delay Time; Typ. 3.0ms) Low Supply Current ........................................................ Typ. 5A(LDO) Standby Current .............................................................. Typ. 0.1A Output Current ................................................................ Min. 400mA(DC/DC), Min. 50mA(LDO) Oscillator Frequency ....................................................... Typ. 1.2MHz PWM/LDO alternative with MODE pin Absolute Input Maximum Rating ..................................... 6.5V Output Voltage ................................................................ Stepwise Setting with a step of 0.1V in the range of 1.0V to 3.3V * Package .......................................................................... SON-6 (Maximum height 0.85mm, thin type) APPLICATIONS * Power source for portable equipment such as DSC, DVC, and communication equipment. 1 R5220D BLOCK DIAGRAM VIN OSC OUTPUT CONTROL LX Vref Current Limit Soft Start MODE1 VOUT CE Vref Current Limit GND *1 R5220DxxxA: DCDC mode: Mode pin= "H", VR mode: Mode pin= "L" R5220DxxxB: DCDC mode: Mode pin= "L", VR mode: Mode pin= "H" SELECTION GUIDE In the R5220D Series, the output voltage, the version, and the taping type for the ICs can be selected at the user's request. The selection can be made with designating the part number as shown below; R5220Dxxxx-xx Part Number a bc d Code a b c d 2 Contents Setting Output Voltage (VOUT) or alphanumeric custom code. Setting Output Voltage 1: standard (a: output voltage; DC/DC output voltage = LDO output voltage 2: custom code (a: custom code; DC/DC output voltage LDO output voltage Designation of chip enable and Mode pin polarities A: CE; "H" active, Mode pin; "H"=DC/DC converter mode, "L"=LDO Mode B: CE; "H" active, Mode pin; "L"=DC/DC converter mode, "H"=LDO Mode Designation of Taping Type; (Refer to Taping Specification)"TR" is prescribed as a standard. R5220D PIN CONFIGURATION SON-6 Top View Bottom View 6 5 4 4 5 6 1 2 3 3 2 1 PIN DESCRIPTION Pin No Symbol Description 1 Lx 2 GND 3 MODE 4 CE Chip Enable Pin (active with "H") 5 VOUT Output Pin 6 VIN LX Pin Voltage Supply Pin Ground Pin Mode changer Pin (Refer to the selection guide above.) Voltage Supply Pin * Tab in the parts have GND level. (They are connected to the reverse side of this IC.) Do not connect to other wires or land patterns. ABSOLUTE MAXIMUM RATINGS GND=0V Symbol Item Rating Unit 6.5 V -0.3 to VIN+0.3 V VIN VIN Supply Voltage VLX LX Pin Voltage VCE CE Pin Input Voltage -0.3 to 6.5 V VMODE MODE Pin Input Voltage -0.3 to 6.5 V VOUT VOUT Pin Voltage -0.3 to VIN+0.3 V ILX LX Pin Output Current 600 mA IOUT VOUT Pin Output Current 200 mA PD Power Dissipation* 500 mW Topt Operating Temperature Range -40 to +85 C Tstg Storage Temperature Range -55 to +125 C * ) For Power Dissipation, please refer to PACKAGE INFORMATION to be described. 3 R5220D ELECTRICAL CHARACTERISTICS * R5220DxxxA (Topt=25) Symbol Item VIN Operating Input Voltage Supply Current 1 ISS1 (Standby mode) Supply Current 2 ISS2 (Power Save mode) ISS3 Supply Current 3 DC/DC Part Symbol fosc Oscillator Frequency VR Part Symbol Soft-start Time ON Resistance of Pch Transistor ON Resistance of Nch Transistor LX Leakage Current Output Voltage Temperature Coefficient Oscillator Maximum Duty Cycle LX Current Limit Protection Delay Circuit UVLO Threshold Voltage UVLO Released Voltage MODE "H" Input Voltage MODE "L" Input Voltage Conditions VOUT1 > VIN=3.6V = 1.5V IOUT=50mA VOUT1<1.5V VIN=VSET1+1.5V VOUT1<1.5V VIN=3.6V VOUT1 > = 1.5V VIN=3.6V,ILX=-100mA VIN=3.6V,ILX=-100mA VIN=5.5V,VCE=0V,LX=5.5V/0V -40 < = Topt < = Min. x0.98 -0.03 0.96 Max. 5.5 Unit V 0.1 1.0 A 5 10 A 350 450 A Typ. Max. x1.02 +0.03 1.44 0.30 0.35 VOUT=0V VIN=3.6V VIN=3.6V VIN=VCE=VMODE, VOUT=0V VIN=VCE=VMODE, VOUT=0V 1.20 0.15 0.20 0.5 0.5 -1.0 1.0 150 85 100 500 1.0 2.00 2.05 1.0 0.0 800 3.0 2.35 2.45 Unit V MHz ms A ppm/ 7.0 2.75 2.80 0.3 % mA ms V V V V (Topt=25) Conditions VOUT2 > VIN=VOUT2+1.0V = 1.5V VOUT2 Output Voltage IOUT=10mA VOUT2<1.5V IOUT Output Current VIN=VOUT2+1.0V VOUT2<2.3V VOUT2/ VIN=VOUT2+1.0V Load Regulation < < VOUT2 > IOUT 10A = IOUT = 25mA = 2.3V VOUT2<1.8V VDIF Dropout Voltage IOUT=50mA VOUT2 > = 1.8V IOUT=25mA VOUT2/ Line Regulation VOUT2<2.3V 2.8V < = VIN < = 5.5V VIN VOUT2+0.5V < = 2.3V = VIN < = 5.5V VOUT2 > RR Ripple Rejection Refer to Typical Characteristics IOUT=30mA, VOUT/ Output Voltage Topt Temperature Coefficient -40 < = Topt < = 85 Ilim Short Current Limit VOUT=0V IPDC CE pull-down current VCEH CE "H" Input Voltage VCEL CE "L" Input Voltage 4 Typ. (Topt=25) Output Voltage RONP RONN ILXLEAK VOUT/ Topt Maxduty ILXlim TPROT VUVLO1 VUVLO2 VMODEH VMODEL Min. 2.8 VIN=VOUT1+1.0V,VCE=VMODE=0V VOUT=VSET1:DC/DC Set Output Voltage VIN=VCE=VOUT2+1.0V,VMODE=0V VOUT2:VR Set Output Voltage,IOUT=0mA VIN=VCE=VMODE=3.6V Item VOUT1 TSTART Conditions Item Min. x0.98 -0.03 50 Typ. Max. x1.02 +0.03 Unit V mA 15 25 0.7 0.3 40 50 mV V 0.2 %/V dB 100 0.12 1.0 0.0 60 0.40 ppm/ 0.70 0.3 mA A V V R5220D * R5220DxxxB (Topt=25) Symbol Item VIN Operating Input Voltage Supply Current 1 ISS1 (Standby mode) Supply Current 2 ISS2 (Power Save mode) ISS3 Supply Current 3 DC/DC Part Symbol fosc Oscillator Frequency VR Part Symbol Soft-start Time ON Resistance of Pch Transistor ON Resistance of Nch Transistor LX Leakage Current Output Voltage Temperature Coefficient Oscillator Maximum Duty Cycle LX Current Limit Protection Delay Circuit UVLO Threshold Voltage UVLO Released Voltage MODE "H" Input Voltage MODE "L" Input Voltage Item Output Voltage IOUT VOUT2/ IOUT Output Current VOUT2/ VIN RR VOUT/ Topt Ilim IPDC VCEH VCEL Max. 5.5 Unit V 0.1 1.0 A 5 10 A 350 450 A Conditions VOUT1 > VIN=3.6V = 1.5V IOUT=50mA VOUT1<1.5V VIN=VSET1+1.5V VOUT1<1.5V VIN=3.6V VOUT1 > = 1.5V VIN=3.6V,ILX=-100mA VIN=3.6V,ILX=-100mA VIN=5.5V,VCE=0V,LX=5.5V/0V -40 < = Topt < = Min. x0.98 -0.03 0.96 Typ. Max. x1.02 +0.03 1.44 0.30 0.35 -1.0 1.0 150 85 VOUT=0V VIN=3.6V VIN=3.6V VCE=VIN,VMODE=GND, VOUT=0V VCE=VIN,VMODE=GND, VOUT=0V 1.20 0.15 0.20 0.5 0.5 100 500 1.0 2.00 2.05 1.0 0.0 800 3.0 2.35 2.45 Unit V MHz ms A ppm/ 7.0 2.75 2.80 0.3 % mA ms V V V V (Topt=25) VOUT2 VDIF Typ. (Topt=25) Output Voltage RONP RONN ILXLEAK VOUT/ Topt Maxduty ILXlim TPROT VUVLO1 VUVLO2 VMODEH VMODEL Min. 2.8 VIN=VOUT1+1.0V,VCE=VMODE=0V VOUT=VSET1:DC/DC Set Output Voltage VIN=VCE=VMODE=VOUT2+1.0V, VOUT2:VR Set Output Voltage,IOUT=0mA VIN=VCE=3.6V,VMODE=GND Item VOUT1 TSTART Conditions Load Regulation Dropout Voltage Conditions VIN=VOUT2+1.0V IOUT=10mA VIN=VOUT2+1.0V VIN=VOUT2+1.0V 10A < = IOUT < = 25mA IOUT=50mA VOUT2 > = 1.5V VOUT2<1.5V Min. x0.98 -0.03 50 VOUT2<2.3V VOUT2 > = 2.3V VOUT2<1.8V VOUT2 > = 1.8V IOUT=25mA 2.8V < VOUT2<2.3V = VIN < = 5.5V VOUT2+0.5V < = VIN < = 5.5V VOUT2 > = 2.3V Ripple Rejection Refer to Typical Characteristics IOUT=30mA, Output Voltage Temperature Coefficient -40 < = Topt < = 85 Short Current Limit VOUT=0V CE pull-down current CE "H" Input Voltage CE "L" Input Voltage Typ. Max. x1.02 +0.03 Unit V mA 15 25 0.7 0.3 Line Regulation 40 50 mV V 0.2 %/V dB 100 0.12 1.0 0.0 60 0.40 ppm/ 0.70 0.3 mA A V V 5 R5220D TYPICAL APPLICATION CIN 10F VIN L 4.7H 1 Lx 2 GND VIN 6 VOUT 5 Load COUT 10F 3 MODE CE 4 Parts Recommendation CIN 10F C2012JB0J106K(TDK) COUT 10F C2012JB0J106K(TDK) L 4.7H VLP5610-4R7(TDK) External Components * Set external components such as an inductor, CIN, COUT as close as possible to the IC, in particular, minimize the wiring to VIN pin and GND pin. If VDD line or GND line's impedance is high, the internal voltage level of the IC may fluctuate and the operation may be unstable. Make GND line and VDD line sufficient. Through the VDD line, the GND line, the inductor, Lx pin, and VOUT line, a large current caused by switching may flow, therefore, those lines should be sufficient and avoid the cross talk with other sensitive lines. Use the individual line from the VOUT pin of the IC for the inductor and the capacitor and load. * Use a low ESR ceramic capacitor COUT/CIN with a capacity of 10F or more. * Select an inductor with an inductance range from 4.7H to 10H. The internal phase compensation is secured with these inductance values and COUT value. Choose the inductor with a low DC resistance and enough permissible current and hard to reach magnetic saturation. In terms of inductance value, choose the appropriate value with considering the conditions of the input voltage range and the output voltage, and load current. If the inductance value is too small and the load current is large, the peak current of Lx may reach the Lx current limit, and the protection against over-current may work. * The protection circuit against over-current is affected by the self-heating and the heat radiation environment. Therefore evaluate under the considerable environment of the application. The performance of power source circuits using these ICs extremely depends upon the peripheral circuits. Pay attention in the selection of the peripheral circuits. In particular, design the peripheral circuits in a way that the values such as voltage, current, and power of each component, PCB patterns and the IC do not exceed their respected rated values. 6 R5220D OPERATION of step-down DC/DC converter and Output Current The step-down DC/DC converter charges energy in the inductor when LX transistor is ON, and discharges the energy from the inductor when LX transistor is OFF and controls with less energy loss, so that a lower output voltage than the input voltage is obtained. The operation will be explained with reference to the following diagrams: IL i1 ILmax IOUT VIN Pch Tr VOUT L ILmin Nch Tr topen i2 CL ton toff T=1/fosc Step 1: P-channel Tr. turns on and current IL (=i1) flows, and energy is charged into CL. At this moment, IL increases from ILmin (=0) to reach ILmax in proportion to the on-time period (ton) of P-channel Tr. Step 2: When P-channel Tr. turns off, Synchronous rectifier N-channel Tr. turns on in order that L maintains IL at ILmax, and current IL (=i2) flows. Step 3: IL (=i2) decreases gradually and reaches IL=ILmin=0 after a time period of topen, and N-channel Tr. Turns off. Provided that in the continuous mode, next cycle starts before IL becomes to 0 because toff time is not enough. In this case, IL value increases from this ILmin (>0). I In the case of PWM control system, the output voltage is maintained by controlling the on-time period (ton), with the oscillator frequency (fosc) being maintained constant. The maximum value (ILmax) and the minimum value (ILmin) of the current flowing through the inductor are the same as those when P-channel Tr. turns on and off. The difference between ILmax and ILmin, which is represented by I; I=ILmax-ILmin=VOUTxtopen/L=(VIN-VOUT)xton/L ........................................................ Equation 1 wherein, T=1/fosc=ton+toff duty (%)=ton/Tx100=tonxfoscx100 topen < = toff In Equation 1, VOUTxtopen/L and (VIN - VOUT) xton/L respectively show the change of the current at "ON", and the change of the current at "OFF". 7 R5220D OUTPUT CURRENT AND SELECTION OF EXTERNAL COMPONENTS When P-channel Tr. of LX is ON: (Wherein, Ripple Current P-P value is described as IRP, ON resistance of P-channel Tr. and N-channel Tr. of LX are respectively described as RONP and RONN, and the DC resistor of the inductor is described as RL.) VIN=VOUT+(RONP+RL)xIOUT+LxIRP/ton...............................................................................Equation 3 When P-channel Tr. of LX is "OFF"(N-channel Tr. is "ON"): LxIRP/toff= RLxIOUT+VOUT+RONNxIOUT ...............................................................................Equation 4 Put Equation 4 to Equation 3 and solve for ON duty of P-channel transistor, ton/(toff+ton)=DON, DON = (VOUT - RONNxIOUT + RLxIOUT) / (VIN + RONNxIOUT - RONPxIOUT).................................Equation 5 Ripple Current is as follows; IRP=(VIN-VOUT-RONPxIOUT-RLxIOUT)xDON/f/L ....................................................................Equation 6 wherein, peak current that flows through L, and LX Tr. is as follows; ILmax=IOUT+IRP/2 ...........................................................................................................Equation 7 Consider ILmax, condition of input and output and select external components. The above explanation is directed to the calculation in an ideal case in continuous mode. 8 R5220D TIMING CHART 1) IC start-up The timing chart as shown in the next describes the operation starting the IC is enabled with CE. When the CE pin voltage becomes higher than the threshold voltage, the IC's operations starts. At first, only the voltage regulator (VR) starts. The threshold level of the CE pin is between CE "H" input voltage and CE "L" input voltage. After starting the operation, the output capacitor (COUT) is charged with the output current of the VR, and the output level becomes the set VR output voltage. At this moment, the output of Lx is "off", ("Hi-Z"), the pin voltage, VLX=VOUT through the external inductor L. Secondly, the Mode pin voltage is higher than the threshold voltage, internal operation of DC/DC starts. The threshold level is between Mode "H" input voltage and Mode "L" input voltage. The soft-start circuit inside the DC/DC converter's operation is as follows: (Case 1) DC/DC output voltage < VR output voltage After the soft-start time, while the output voltage level is down from the VR output voltage to DC/DC output voltage, the circuit is waiting for the start of DC/DC operation. When the output voltage reaches so set DC/DC output voltage level, the actual DC/DC operation starts. (Case 2) DC/DC output voltage> VR output voltage The soft-start circuit of DC/DC converter makes the voltage reference unit of the IC rise gradually and be constant. After the voltage reference unit reaches the constant level which the output voltage of DC/DC converter can balance becomes the output voltage of VR, the set output voltage of DC/DC converter may be realized. Therefore, the soft-start time means the time range of starting to the time when the voltage reference unit reaches the constant level, and the soft-start time is different from turning on speed in some cases. The operation starting time depends on the ability of the power supply, the load current, the inductance value, the capacitance value, and the voltage difference between the set VR output and the set DC/DC output. If CE and Mode are on at once, the same operation as above is happened except the VR start-up and Soft-start operation start at the same time. If Mode signal is forced earlier than CE signal, this IC is stand-by until CE signal comes. Therefore when the CE signal is set, the IC operation starts as above. * VOUT voltage rising speed at start-up with power supply is affected by the next conditions: 1.The turning on speed of VIN voltage limited by the power supply to the IC and the input capacitor CIN. The output capacitor, COUT value and load current. * DC/DC operation starting time If the VR output > = DC/DC output, the operation starting time of the DC/DC converter is approximately equal to the next formula. TDCDC_ACT=TSS+ (VOUT_VR-VOUT_DC/DC+15mV) xCOUT / (load current at mode change + 1A) TSS: Soft-start time VOUT_VR: VR output voltage VOUT_DC/DC: DC/DC Output Voltage *1A is the supply current of the IC itself for the output. If the VR output < DC/DC output, the operation starting time is the soft-start time + starting operation time which depends on the power supply, the load current, and the external components. 9 R5220D VCEH CE pin input signal VCEL MODE VMODEH pin input signal VMODEL IC Soft start time DC/DC Voltage Reference Unit A.VR Output=DC/DC Output voltage VOUT Effect from Power Supply, Load Current, Extemal Components L X voltage DC/DC Operation B.VR voltage DC/DC Output VOUT DC/DC does not operate if VR output is larger than DC/DC L X voltage DC/DC Operation C. VR voltage DC/DC voltage VOUT L X voltage DC/DC Operating If CE pin input signal is forced earlier than the supply voltage, the voltage difference between the input and the output which is according to the input voltage to VIN, is maintained and the VOUT is rising up. 10 R5220D TEST CIRCUITS (A) Supply Current 1,2,3 (B) Output Voltage(DCDC) OSCILLOSCOPE Lxx L VVIN Lxx L VOUT V GND GND MODE MODE GND GND A CE (C) Oscillator Frequency VVIN VOUT V MODE MODE CE Lxx L VVIN (D) Soft-start Time OSCILLOSCOPE OSCILLOSCOPE Lxx L GND GND VVIN GND GND VOUT V MODE MODE CE MODE MODE VOUT V (E) Lx Leakage Current CE (F) Lx Current Limit, Output Delay for Protection Lx Pch transistor ON resistance Nch transistor On resistance OSCILLOSCOPE Lxx L A GND GND MODE MODE VVIN VOUT V CE Lxx L GND GND MODE MODE VVIN VOUT V CE 11 R5220D (G) UVLO Detector Threshold UVLO Release Voltage (H) MODE Input Voltage"H","L" Input Current OSCILLOSCOPE OSCILLOSCOPE Lxx L GND GND MODE MODE VVIN Lxx L VOUT V GND GND CE MODE MODE VVIN VOUT V CE A (I) Output Voltage (VR), Load Regulation Line Regulation, Dropout Voltage Lxx L GND GND MODE MODE VVIN (J) RippleRejection Lxx L VOUT V GND GND CE MODE MODE VVIN VOUT V CE Network Analyzer V (K) Short Current Limit Lxx L GND GND MODE MODE (L) CE="H"/"L" Input Voltage/ Input Current VVIN Lxx L VOUT V GND GND CE MODE MODE A 12 VVIN VOUT V CE A V R5220D TYPICAL CHARACTERISTICS 1) DC/DC Converter 1-2) DC/DC Output Voltage vs. Input Voltage R5220D181A 1.84 1.84 1.83 1.83 1.82 1.82 Output Voltage(V) Output Voltage(V) 1-1) DC/DC Output Voltage vs. Output Current R5220D181A 1.81 1.80 1.79 1.78 2.8V 3.6V 5.5V 1.77 100 200 300 Output Current(mA) Supply Current ISS(A) Efficiency(%) 80 60 40 2.8V 3.6V 5.5V 20 1 10 100 Output Current(mA) 1000 1-5) DC/DC Supply Current vs. Input Voltage 3.0 3.5 4.0 4.5 Input Voltage(V) 5.0 5.5 400 380 360 340 320 300 280 260 240 220 200 -50 VIN=VCE=VMODE=3.6V DC/DC_VSET : 1.0V DC/DC_VSET : 1.8V -25 0 25 50 75 Temperature Topt(C) 100 1-6) DC/DC Output Waveform R5220D121A VIN=VCE=VMODE CIN=COUT=Ceramic 10F,L=4.7H VIN=3.6V,IOUT=300mA 1.26 Output Ripple Voltage(V) Supply Current ISS(A) 1mA 50mA 250mA 1.78 1-4) DC/DC Supply Current vs. Temperature 100 400 380 360 340 320 300 280 260 240 220 200 -50 1.79 1.76 2.5 400 1-3) DC/DC Efficiency vs. Output Current R5220D181A 0 0.1 1.80 1.77 1.76 0 1.81 1.24 1.22 1.20 1.18 1.16 1.14 -25 0 25 50 Input Voltage(V) 75 100 0 1 2 3 Time(s) 4 5 13 R5220D 1-7) DC/DC Output Voltage vs. Temperature R5220D181A R5220D181A 1.84 Output Voltage VOUT(V) Output Ripple Voltage(V) 1.86 1.82 1.80 1.78 1.76 1.74 0 1 2 3 Time(s) 4 5 1-8) DC/DC Oscillator Frequency vs. Temperature Frequency fosc(kHz) Frequency fosc(kHz) 1250 1200 1150 1100 1050 1000 -50 -25 0 25 50 75 Temperature Topt() 1250 1200 1150 1100 3.0 3.5 4.0 4.5 Input Voltage(V) 5.0 5.5 2.8 2.7 200 VDD Voltage Level(V) Soft-Start Time (s) 14 100 1-11) UVLO Detector Threshold/ Released Voltage vs. Temperature 250 150 100 DC/DC_VSET : 1.0V 50 0 -50 0 25 50 75 Temperature Topt() 1300 1050 2.5 100 1-10) Soft-start time vs. Temperature -25 1350 1350 1300 IOUT=50mA 1-9) DC/DC Oscillator Frequency vs. Input Voltage R5220D181A VIN=3.6V 1400 1.90 1.88 1.86 1.84 1.82 1.80 1.78 1.76 1.74 1.72 1.70 -50 DC/DC_VSET : 1.8V -25 0 25 50 Temperature Topt( 75 ) 100 UVLO Detector Threshold 2.6 UVLO Released Voltage 2.5 2.4 2.3 2.2 2.1 2.0 -50 -25 0 25 50 Temperature Topt( 75 ) 100 R5220D 1-13) Pch Transistor On Resistance vs. Temperature 0.8 0.8 0.7 0.7 PchTr. On Resistance () MODE Input Voltage VMODE(V) 1-12) MODE Input Voltage vs. temperature 0.6 0.5 0.4 0.3 0.2 0.1 0.0 -50 -25 0 25 50 Temperature Topt( 75 VIN=3.6V 0.6 0.5 0.4 0.3 0.2 0.1 0.0 -50 100 -25 ) 1-14) Nch Transistor On Resistance vs. Temperature 0 25 50 75 Temperature Topt() 100 1-15) DC/DC Lx Current Limit vs. Temperature R5220D131A VIN=3.6V 1200 0.7 Lx Limit Current(mA) NchTr. ON Resistance () 0.8 0.6 0.5 0.4 0.3 0.2 1000 800 600 0.1 0.0 -50 -25 0 25 50 Temperature Topt( 75 400 -50 100 ) -25 0 25 50 Temperature Topt( 75 100 ) 2) VR 2-1) VR Output Voltage vs. Output Current R5220D121A R5220D181A 1.2 1.0 Output Voltage VOUT(V) Output Voltage VOUT(V) 1.4 VIN=2.8V VIN=3.6V VIN=5.5V 0.8 0.6 0.4 0.2 0.0 0 50 100 150 Output Current IOUT(mA) 200 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 VIN=2.8V VIN=3.6V VIN=5.5V 0 50 100 150 Output Current IOUT(mA) 200 15 R5220D 2-2) VR Output Voltage vs. Input Voltage R5220D121A R5220D181A 1.2 Output Voltage VOUT(V) Output Voltage VOUT(V) 1.4 1.0 0.8 0.6 IOUT=1mA IOUT=25mA IOUT=50mA 0.4 0.2 0.0 0 1 2 3 4 Input Voltage VIN(V) 5 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 6 IOUT=1mA IOUT=25mA IOUT=50mA 0 1 8.0 7.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 5 6 75 100 6.0 5.0 4.0 3.0 2.0 1.0 1 2 3 4 Input Voltage VIN(V) 5 6 0 1 2-4) VR Output Voltage vs. Temperature R5220D121A 1.84 1.23 1.83 1.22 1.21 1.20 1.19 1.18 1.17 1.16 -50 -25 0 25 50 Temperature Topt( 75 ) 2 3 4 Input Voltage VIN(V) R5220D181A 1.24 Output Voltage VOUT(V) Output Voltage VOUT(V) 6 0.0 0 16 5 R5220D181A 8.0 Supply Current ISS2(A) Supply Current ISS2(A) 2-3) VR Supply Current vs. Input Voltage R5220D121A 2 3 4 Input Voltage VIN(V) 100 1.82 1.81 1.80 1.79 1.78 1.77 1.76 -50 -25 0 25 50 Temperature Topt( ) R5220D 10 9 8 7 6 5 4 3 2 1 0 -50 R5220D181A Supply Current ISS2(A) Supply Current ISS2(A) 2-5) VR Supply Current vs. Temperature R5220D121A VIN=3.6V VIN=5.5V -25 0 25 50 Temperature Topt( 75 100 10 9 8 7 6 5 4 3 2 1 0 -50 ) 2-6) Dropout Voltage vs. Output Current R5220D121A Dropout Voltage VDIF(V) Dropout Voltage VDIF(V) 600 500 400 300 -40 200 25 100 85 0 10 20 30 40 Output Current IOUT(mA) 150 100 -40 85 0 50 40 f=400Hz f=1kHz f=10kHz f=100kHz 0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 Input Voltage VIN(V) 10 20 30 40 Output Current IOUT(mA) 50 R5220D181A Ripple 0.2Vp-p,IOUT=25mA, CIN=none,COUT=Ceramic10F 80 Ripple Rejection RR(dB) Ripple Rejection RR(dB) 25 50 50 60 10 100 0 70 20 75 ) 200 2-7) Ripple Rejection vs. Input Voltage R5220D121A 30 0 25 50 Temperature Topt( 250 700 80 -25 R5220D181A 800 0 VIN=3.6V VIN=5.5V Ripple 0.2Vp-p,IOUT=25mA, CIN=none,COUT=Ceramic10F 70 60 50 40 30 20 10 f=400Hz f=1kHz f=10kHz f=100kHz 0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 Input Voltage VIN(V) 17 R5220D R5220D181A VIN=2.2V+0.2Vp-p CIN=none COUT=Ceramic10F IOUT=50mA IOUT=25mA IOUT=1mA 1 10 Frequency f (kHz) 100 VIN=2.8V+0.2Vp-p CIN=none COUT=Ceramic10F 100 90 80 70 60 50 40 30 20 10 0 0.1 IOUT=50mA IOUT=25mA IOUT=1mA 1 10 Frequency f (kHz) 2-9) Input Transient Response R5220D121A 1.26 4 1.86 4 1.24 3 1.84 3 1.22 2 1.82 2 1.20 1 1.80 1 1.18 0 1.78 0 1.16 0.0 0.2 0.4 0.6 Time T(ms) 0.8 Output Voltage(V) 1.88 1.76 0.0 1.0 0.2 2-10) Load Transient Response R5220D121A 0mA 1.30 25 1.35 0 1.25 1.20 1.15 1.10 0.0 18 10mA 1.40 0.8 1.6 2.4 Time T(s) 3.2 4.0 Output Voltage(V) 0mA 50 Load Current(mA) Output Voltage(V) 1.35 0.8 1.0 R5220D121A VIN=3.6V,CIN=COUT=Ceramic10F 1.40 0.4 0.6 Time T(ms) 5 Input Voltage(V) IOUT=10mA CIN=none, COUT=Ceramic10F 5 Input Voltage(V) Output Voltage(V) R5220D181A IOUT=10mA CIN=none, COUT=Ceramic10F 1.28 100 VIN=3.6V,CIN=COUT=Ceramic10F 1mA 25mA 1mA 25 0 1.30 1.25 1.20 1.15 1.10 0.0 50 0.8 1.6 2.4 Time (s) 3.2 4.0 Load Current(mA) 100 90 80 70 60 50 40 30 20 10 0 0.1 Ripple Rejection(dB) Ripple Rejection(dB) 2-8) VR Ripple Rejection vs. Frequency R5220D121A R5220D 10mA 0mA 1.90 0 1.85 1.80 1.75 1.70 0.0 0.8 1.6 2.4 Time T(s) 3.2 1mA 1.95 25 Output Voltage(V) 0mA 1.95 VIN=3.6V,CIN=COUT=Ceramic10F 2.00 50 Load Current(mA) VIN=3.6V,CIN=COUT=Ceramic10F 2.00 Output Voltage(V) R5220D181A 1mA 50 25 1.90 0 1.85 1.80 1.75 1.70 0.0 4.0 25mA Load Current(mA) R5220D181A 0.8 1.6 2.4 Time T(s) 3.2 4.0 3) Mode Transient Response between VR and DC/DC Output Voltage(V) 1.55 VOUT 1.50 20 1.60 16 1.55 12 1.45 8 1.40 4 VMODE 1.35 0 Output Voltage(V) 1.60 MODE(V) VIN=3.6V,IOUT=0.5mA CIN=COUT=Ceramic10F 3-2) DC/DC to VR Mode Transient Response R5220D151A VIN=3.6V,IOUT=0.5mA CIN=COUT=Ceramic10F 20 16 VOUT 1.50 12 8 1.45 1.40 4 VMODE 1.35 MODE(V) 3-1) VR to DC/DC Mode Transient Response R5220D151A 0 1.30 1.30 0 200 400 600 Time (s) 800 1000 0 200 400 600 Time (s) 800 1000 19 PACKAGE INFORMATION * PE-SON-6-0510 SON-6 Unit: mm PACKAGE DIMENSIONS 3 0.85MAX. 0.130.05 0.1 1.34 Bottom View (0.3) 1 2.60.2 3.00.15 4 (0.3) 1.60.2 6 Attention: Tab suspension leads in the parts have VDD or GND level.(They are connected to the reverse side of this IC.) Refer to PIN DISCRIPTION. Do not connect to other wires or land patterns. 0.20.1 0.5 4.00.1 3.2 3.50.05 2.00.05 1.9 4.00.1 1.7MAX. 1.10.1 TR User Direction of Feed TAPING REEL DIMENSIONS (1reel=3000pcs) +1 60 0 20.5 210.8 0 180 -1.5 130.2 11.41.0 9.00.3 8.00.3 1.5+0.1 0 0.20.1 1.750.1 TAPING SPECIFICATION PACKAGE INFORMATION PE-SON-6-0510 POWER DISSIPATION (SON-6) This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board. This specification is based on the measurement at the condition below: Measurement Conditions Standard Land Pattern Environment Mounting on Board (Wind velocity=0m/s) Board Material Glass cloth epoxy plactic (Double sided) Board Dimensions 40mm x 40mm x 1.6mm Copper Ratio Top side : Approx. 50% , Back side : Approx. 50% Through-hole 0.5mm x 44pcs Measurement Result (Topt=25C,Tjmax=125C) Standard Land Pattern Free Air Power Dissipation 500mW 250mW Thermal Resistance ja=(125-25C)/0.5W=200C/W - On Board 500 40 400 300 Free Air 250 200 40 Power Dissipation PD(mW) 600 100 0 0 25 50 75 85 100 Ambient Temperature (C) 125 150 Power Dissipation Measurement Board Pattern IC Mount Area (Unit : mm) RECOMMENDED LAND PATTERN 1.05 0.75 0.25 0.5 (Unit: mm) MARK INFORMATION ME-R5220D-0511 R5220D SERIES MARK SPECIFICATION x SON-6 1 2 3 4 1 , 2 : Product Code (refer to Part Number vs. Product Code) 3 , 4 : Lot Number x Part Number vs. Product Code Part Number Product Code 1 2 R5220D101A C A R5220D111A C B R5220D121A C R5220D131A R5220D141A Part Number Product Code 1 2 R5220D101B D A R5220D111B D B C R5220D121B D C C D R5220D131B D D C E R5220D141B D E R5220D151A C F R5220D151B D F R5220D161A C G R5220D161B D G R5220D171A C H R5220D171B D H R5220D181A C J R5220D181B D J R5220D191A C K R5220D191B D K R5220D201A C L R5220D201B D L R5220D211A C M R5220D211B D M R5220D221A C N R5220D221B D N R5220D231A C P R5220D231B D P R5220D241A C Q R5220D241B D Q R5220D251A C R R5220D251B D R R5220D261A C S R5220D261B D S R5220D271A C T R5220D271B D T R5220D281A C U R5220D281B D U R5220D291A C V R5220D291B D V R5220D012A C W R5220D012B D W R5220D022A C X R5220D022B D X R5220D301A C 0 R5220D301B D 0 R5220D311A C 1 R5220D311B D 1 R5220D321A C 2 R5220D321B D 2 R5220D331A C 3 R5220D331B D 3