Freescale Semiconductor, Inc
Data Sheet: Technical Data
Document Number: IMX6ULAEC
Rev. 1, 04/2016
MCIMX6GxAxxxxxA
Package Information
Plastic Package
BGA 14 x 14 mm, 0.8 mm pitch
Ordering Information
See Table 1 on page 3
© 2015-2016 Freescale Semiconductor, Inc. All rights reserved.
1 i.MX 6UltraLite Introduction
The i.MX 6UltraLite is a high performance, ultra
efficient processor family featuring Freescale’s
advanced implementation of the single ARM
Cortex®-A7 core, which operates at speeds up to 696
MHz. The i.MX 6UltraLite includes an integrated power
management module that reduces the complexity of the
external power supply and simplifies the power
sequencing. Each processor in this family provides
various memory interfaces, including LPDDR2, DDR3,
DDR3L, Raw and Managed NAND flash, NOR flash,
eMMC, Quad SPI, and a wide range of other interfaces
for connecting peripherals, such as WLAN, Bluetooth™,
GPS, displays, and camera sensors.
The i.MX 6UltraLite is specifically useful for
automotive applications such as:
Telematics
Human Machine Interfaces (HMI)
i.MX 6UltraLite
Automotive Applications
Processors
1. i.MX 6UltraLite Introduction . . . . . . . . . . . . . . . . . . . . . . . 1
1.1. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . 3
1.2. Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2. Architectural Overview . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3. Modules List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1. Special Signal Considerations . . . . . . . . . . . . . . . 17
3.2. Recommended Connections for Unused Analog
Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4. Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1. Chip-Level Conditions . . . . . . . . . . . . . . . . . . . . . 20
4.2. Power Supplies Requirements and Restrictions . 28
4.3. Integrated LDO Voltage Regulator Parameters . . 29
4.4. PLLs Electrical Characteristics . . . . . . . . . . . . . . 31
4.5. On-Chip Oscillators . . . . . . . . . . . . . . . . . . . . . . . 32
4.6. I/O DC Parameters . . . . . . . . . . . . . . . . . . . . . . . 33
4.7. I/O AC Parameters . . . . . . . . . . . . . . . . . . . . . . . 37
4.8. Output Buffer Impedance Parameters . . . . . . . . . 40
4.9. System Modules Timing . . . . . . . . . . . . . . . . . . . 43
4.10. General-Purpose Media Interface (GPMI) Timing 58
4.11. External Peripheral Interface Parameters . . . . . . 66
4.12. A/D converter . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5. Boot Mode Configuration . . . . . . . . . . . . . . . . . . . . . . . 98
5.1. Boot Mode Configuration Pins . . . . . . . . . . . . . . . 98
5.2. Boot Device Interface Allocation . . . . . . . . . . . . . 99
6. Package Information and Contact Assignments . . . . . 106
6.1. 14x14 mm Package Information . . . . . . . . . . . . 106
6.2. GPIO Reset Behaviors during Reset . . . . . . . . . 120
7. Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
2Freescale Semiconductor, Inc.
i.MX 6UltraLite Introduction
The features of the i.MX 6UltraLite processor include1:
Single-core ARM Cortex-A7—The single core A7 provides a cost-effective and power-efficient
solution.
Multilevel memory system—The multilevel memory system of each device is based on the L1
instruction and data caches, L2 cache, and internal and external memory. The device supports
many types of external memory devices, including DDR3, low voltage DDR3, LPDDR2, NOR
Flash, NAND Flash (MLC and SLC), OneNAND™, Quad SPI, and managed NAND, including
eMMC up to rev 4.4/4.41/4.5.
Smart speed technology—Power management implemented throughout the IC that enables
multimedia features and peripherals to consume minimum power in both active and various low
power modes.
Dynamic voltage and frequency scaling—The processor improves the power efficiency by scaling
the voltage and frequency to optimize performance.
Multimedia powerhouse—Multimedia performance is enhanced by a multilevel cache system,
NEON™ MPE (Media Processor Engine) co-processor, a programmable smart DMA (SDMA)
controller, an asynchronous audio sample rate converter, and a Pixel processing pipeline (PXP) to
support 2D image processing, including color-space conversion, scaling, alpha-blending, and
rotation.
Ethernet interfaces—10/100 Mbps Ethernet controllers.
Human-machine interface—Support digital parallel display interface.
Interface flexibility—Each processor supports connections to a variety of interfaces: High-speed
USB on-the-go with PHY, multiple expansion card port (high-speed MMC/SDIO host and other),
12-bit ADC module, CAN port, smart card interface compatible with EMV Standard v4.3, and a
variety of other popular interfaces (such as UART, I2C, and I2S serial audio).
Automotive environment support—Each processor includes interfaces, such as CAN, three SAI
audio interfaces, and an asynchronous sample rate converter for multichannel/multisource audio.
Advanced security—The processor delivers hardware-enabled security features that enable secure
e-commerce, digital rights management (DRM), information encryption, secure boot, and secure
software downloads. The security features are discussed in detail in the i.MX 6UltraLite Security
Reference Manual (IMX6ULSRM).
Integrated power management—The processor integrates linear regulators and internally generate
voltage levels for different domains. This significantly simplifies system power management
structure.
For a comprehensive list of the i.MX 6UltraLite features, see Section 1.2, “Features”.
1. The actual feature set depends on the part numbers as described in the Ta ble 1 and Table 2.
i.MX 6UltraLite Introduction
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 3
1.1 Ordering Information
Table 1 provides examples of orderable part numbers covered by this data sheet. The automotive parts in
this subset of the i.MX 6UltraLite derivatives are single core devices offered in a 14x14 mm, 0.8 pitch
BGA whose temperature range is -40 o C to 125 o C. Each of these devices have differences in
characteristics or features according to the Table 2..
Figure 1 describes the part number nomenclature so that characteristics of a specific part number can be
identified (for example, cores, frequency, temperature grade, fuse options, and silicon revision). The
primary characteristic which describes which data sheet applies to a specific part is the temperature grade
(junction) field.
The i.MX 6UltraLite Automotive Applications Processors Data Sheet (IMX6ULAEC) covers parts
listed with an “A (Automotive temp)”
Ensure to have the proper data sheet for specific part by verifying the temperature grade (junction) field
and matching it to the proper data sheet. If there are any questions, visit the web page nxp.com/imx6series
or contact an NXP representative for details.
Table 1. Ordering Information
Part Number Core
Frequency
eFuse
Bits
Ethernet Ports
(10/100M) CAN ADC CSI LCD IF
MCIMX6G1AVM05AA 528 MHz 1024 1 1 1 No No
MCIMX6G1AVM07AA 696 MHz 1024 1 1 1 No No
MCIMX6G2AVM05AA 528 MHz 1536 2 2 2 Yes Yes
MCIMX6G2AVM07AA 696 MHz 1536 2 2 2 Yes Yes
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
4Freescale Semiconductor, Inc.
i.MX 6UltraLite Introduction
Figure 1. Part Number Nomenclature—i.MX 6UltraLite
Table 2 shows the detailed information about peripherals.
Table 2. Detailed Peripherals Information 1,2,3
Peripheral Name Instance G0 G1 G2 G3
Ethernet ENET1 Y Y Y Y
ENET2 NA NA Y Y
USB with PHY OTG1 Y Y Y Y
OTG2 NA Y Y Y
CAN FLEXCAN1 NA Y Y Y
FLEXCAN2 NA NA Y Y
CSI CSI NA NA Y Y
LCD LCDIF NA NA Y Y
QSPI QSPI Y Y Y Y
Junction Temperature (Tj)
+
Commercial: 0 to + 95 °C D
Industrial: -40 to +105 °C C
Auto: -40 to + 125 °C A
ARM Cortex-A7 Frequency $$
528 MHz 05
696 MHz 07
Package Type
ROHS
MAPBGA 14x14 0.8 mm VM
Qualification Level MC
Prototype Samples PC
Mass Production MC
Special SC
i.MX 6 Family X
i.MX 6UltraLite G
Silicon Rev A
Rev 1.1 (Maskset ID:
1N52P)
A
Rev 1.0 (Maskset ID:
0N52P)
Fuse Option %
Reserved A
MC IMX6 X @+VV $$ %A
Part Differentiator
@
Pac
kage
Enha
nced
Secur
ity
Stand
ard
Secur
ity
eFuse
bit
USB
with
PHY
Ethernet
(10/100M)
C
A
N
U
A
R
T
I2
C
SPI
I2S
Timer
/PWM
ADC
CSI
L
C
D
Commercial
VM
Y
Y
2048
22
2
84 4 3 4/8 2
Y
Y
3
Industrial
Y
Y
2048
22
2
84 4 3 4/8 2
Y
Y
Commercial
VK
Y
Y
2048
22
2
84 4 3 4/8 2
Y
Y
Industrial
Y
Y
2048
22
2
84 4 3 4/8 2
Y
Y
Automotive
VM
-
Y
1536
22
2
84 4 3 4/8 2
Y
Y
2
Commercial
Y
1536
22
2
84 4 3 4/8 2
Y
Y
Industrial
-
Y
1536
22
2
84 4 3 4/8 2
Y
Y
Commercial
VK
Y
1536
22
2
84 4 3 4/8 2
Y
Y
Industrial
-
Y
1536
22
2
84 4 3 4/8 2
Y
Y
Automotive
VM
-
Y
1024
21
1
84 4 3 4/8 1
-
-
1
Industrial
-
Y
1024
21
1
84 4 3 4/8 1
-
-
Commercial
VM
-
-
512
11
0
42 2 1 2/4 1
-
-
0
i.MX 6UltraLite Introduction
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 5
SDIO uSDHC1 Y Y Y Y
uSDHC2 Y Y Y Y
UART UART1 Y Y Y Y
UART2 Y Y Y Y
UART3 Y Y Y Y
UART4 Y Y Y Y
UART5 NA Y Y Y
UART6 NA Y Y Y
UART7 NA Y Y Y
UART8 NA Y Y Y
ISO7816-3 SIM1 NA Y Y Y
SIM2 NA Y Y Y
I2C I2C1 Y Y Y Y
I2C2 Y Y Y Y
I2C3 NA Y Y Y
I2C4 NA Y Y Y
SPI ECSPI1 Y Y Y Y
ECSPI2 Y Y Y Y
ECSPI3 NA Y Y Y
ECSPI4 NA Y Y Y
I2S/SAI SAI1 Y Y Y Y
SAI2 NA Y Y Y
SAI3 NA Y Y Y
Table 2. Detailed Peripherals Information (continued)1,2,3
Peripheral Name Instance G0 G1 G2 G3
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
6Freescale Semiconductor, Inc.
i.MX 6UltraLite Introduction
1.2 Features
The i.MX 6UltraLite processors are based on ARM Cortex-A7 MPCore™ Platform, which has the
following features:
Supports single ARM Cortex-A7 MPCore (with TrustZone) with:
32 KBytes L1 Instruction Cache
32 KBytes L1 Data Cache
Private Timer
Cortex-A7 NEON Media Processing Engine (MPE) Co-processor
General Interrupt Controller (GIC) with 128 interrupts support
Global Timer
Snoop Control Unit (SCU)
128 KB unified I/D L2 cache
Single Master AXI bus interface output of L2 cache
Frequency of the core (including Neon and L1 cache), as per Table 10, "Operating Ranges," on
page 22.
Timer/PWM EPIT1 Y Y Y Y
EPIT2 NA Y Y Y
GPT1 Y Y Y Y
GPT2 NA Y Y Y
PWM1 Y Y Y Y
PWM2 Y Y Y Y
PWM3 Y Y Y Y
PWM4 Y Y Y Y
PWM5 NA Y Y Y
PWM6 NA Y Y Y
PWM7 NA Y Y Y
PWM8 NA Y Y Y
ADC ADC1 Y Y Y Y
ADC2 NA NA Y Y
1For detailed pin mux information, please refer to “Chapter 4 External Signals and Pin Multiplexing” of i.MX 6UltraLite
Reference Manual (IMX6ULRM).
2Y stands for yes, NA stands for not available.
3G0 and G3 are offered in automotive grade.
Table 2. Detailed Peripherals Information (continued)1,2,3
Peripheral Name Instance G0 G1 G2 G3
i.MX 6UltraLite Introduction
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 7
The SoC-level memory system consists of the following additional components:
Boot ROM, including HAB (96 KB)
Internal multimedia/shared, fast access RAM (OCRAM, 128 KB)
Secure/non-secure RAM (32 KB)
External memory interfaces: The i.MX 6UltraLite processors support handheld DRAM, NOR, and
NAND Flash memory standards.
16-bit LP-DDR2-800, 16-bit DDR3-800 and LV-DDR3-800
8-bit NAND-Flash, including support for Raw MLC/SLC, 2 KB, 4 KB, and 8 KB page size,
BA-NAND, PBA-NAND, LBA-NAND, OneNAND™ and others. BCH ECC up to 40 bits.
16/8-bit NOR Flash. All EIMv2 pins are muxed on other interfaces.
Each i.MX 6UltraLite processor enables the following interfaces to external devices (some of them are
muxed and not available simultaneously):
•Displays:
One parallel display port supports max 85 MHz display clock and up to WXGA (1366 x 768)
at 60 Hz
Support 24-bit, 18-bit, 16-bit, and 8-bit parallel display
Camera sensors1:
One parallel camera port, up to 24 bit and 148.5 MHz pixel clock
Support 24-bit, 16-bit, 10-bit, and 8-bit input
Support BT.656 interface
Expansion cards:
Two MMC/SD/SDIO card ports all supporting:
1-bit or 4-bit transfer mode specifications for SD and SDIO cards up to UHS-I SDR-104
mode (104 MB/s max)
1-bit, 4-bit, or 8-bit transfer mode specifications for MMC cards up to 52 MHz in both SDR
and DDR modes (104 MB/s max)
4-bit or 8-bit transfer mode specifications for eMMC chips up to 200 MHz in HS200 mode
(200 MB/s max)
•USB
:
Two high speed (HS) USB 2.0 OTG (Up to 480 Mbps) with integrated HS USB Phy
Miscellaneous IPs and interfaces:
Three SAI supporting up to three I2S
Sony Philips Digital Interconnect Format (SPDIF), Rx and Tx
Eight UARTs, up to 5.0 Mbps each:
Providing RS232 interface
Supporting 9-bit RS485 multidrop mode
Support RTS/CTS for hardware flow control
Four enhanced CSPI (eCSPI)
1. G2 and G3 only
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
8Freescale Semiconductor, Inc.
i.MX 6UltraLite Introduction
Four I2C
Two 10/100M Ethernet Controller (IEEE1588 compliant)
Eight Pulse Width Modulators (PWM)
System JTAG Controller (SJC)
GPIO with interrupt capabilities
8x8 Key Pad Port (KPP)
One Quad SPI
Two Flexible Controller Area Network (FlexCAN)
Three Watchdog timers (WDOG)
Two 12-bit Analog to Digital Converters (ADC) with up to 10 input channels in total
Touch Screen Controller (TSC)
The i.MX 6UltraLite processors integrate advanced power management unit and controllers:
Provide PMU, including LDO supplies, for on-chip resources
Use Temperature Sensor for monitoring the die temperature
Use Voltage Sensor for monitoring the die voltage
Support DVFS techniques for low power modes
Use SW State Retention and Power Gating for ARM and NEON
Support various levels of system power modes
Use flexible clock gating control scheme
Two smart card interfaces compatible with EVM Standard 4.3
The i.MX 6UltraLite processors use dedicated hardware accelerators to meet the targeted multimedia
performance. The use of hardware accelerators is a key factor in obtaining high performance at low power
consumption, while having the CPU core relatively free for performing other tasks.
The i.MX 6UltraLite processors incorporate the following hardware accelerators:
PXP—Pixel Processing Pipeline for imagine resize, rotation, overlay and CSC1. Off loading key
pixel processing operations are required to support the LCD display applications.
ASRC—Asynchronous Sample Rate Converter
Security functions are enabled and accelerated by the following hardware:
ARM TrustZone including the TZ architecture (separation of interrupts, memory mapping, etc.)
SJC—System JTAG Controller. Protecting JTAG from debug port attacks by regulating or
blocking the access to the system debug features.
CAAM—Cryptographic Acceleration and Assurance Module, containing cryptographic and hash
engines, 32 KB secure RAM, and True and Pseudo Random Number Generator (NIST certified).
SNVS—Secure Non-Volatile Storage, including Secure Real Time Clock.
CSU—Central Security Unit. CSU is configured during boot and by eFUSEs and determine the
security level operation mode as well as the TZ policy.
1. G2 and G3 only
i.MX 6UltraLite Introduction
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 9
A-HAB—Advanced High Assurance Boot—HABv4 with the new embedded enhancements:
SHA-256, 2048-bit RSA key, version control mechanism, warm boot, CSU, and TZ initialization.
NOTE
The actual feature set depends on the part numbers as described in Table 1
and Table 2. Functions such as display and camera interfaces, connectivity
interfaces, and security features are not offered on all derivatives.
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
10 Freescale Semiconductor, Inc.
Architectural Overview
2 Architectural Overview
The following subsections provide an architectural overview of the i.MX 6UltraLite processor system.
2.1 Block Diagram
Figure 2 shows the functional modules in the i.MX 6UltraLite processor system.
.
Figure 2. i.MX 6UltraLite System Block Diagram1
1. Some modules shown in this block diagram are not offered on all derivatives. See Ta b l e 2 for exceptions.
'HEXJ
'$3
73,8
&7,V
6-&
63%$
&ORFN5HVHW
3//
&&0
*3&
65&
;7$/26&
.26&
7LPHU&RQWURO
:'2*
*37
(3,7
7HPS0RQLWRU
,PDJH3URFVVLQJ
3L[HO3URFHVVLQJ3LSHOLQH
3;3
6HFXULW\
&68
)XVH%R[
6196
657&
&$$0
.%5$0
3RZHU0DQDJHPHQW
/'2V
:/$1 0RGHP,& 'LJLWDO$XGLR
&0266HQVRU
/&'3DQHO
125)/$6+
4XDG63,
125)/$6+
3DUDOOHO
86%27*
GHYKRVW
/3''5
''5
.H\SDG
0
(WKHUQHW [
&RQWUROOHU$UHD
1HWZRUN
-7$*
,(((
7RXFK3DQHO
&RQWURO
6HQVRUV
%DWWHU\&WUO
'HYLFH
00&6'
6';&
00&6'
H00&H6'
&U\VWDO
&ORFN6RXUFH
1$1')/$6+
'LVSOD\,QWHUIDFH
/&',)
6PDUW'0$
6'0$
&$1[
([WHUQDO0HPRU\
00'&
(,0
*30,%&+
463,
,QWHUQDO0HPRU\
2&5$0.%
520.%
$50&RUWH[$
03&RUH3ODWIRUP
&RUWH[$&RUH
, .% ' .%
1(21 (70
6&87LPHU
/&DFKH.%
6KDUHG3HULSKHUDOV
H&63,
63',)7[ 5[
6$,
8$57 
$33HULSKHUDOV
X6'+&
,&
3:0
2&273
,208;&
.33
*3,2
(WKHUQHW
86%27*
&$1
76&
&DPHUD,QWHUIDFH
&6,
6,0Y
(096,0
$;,DQG$+%6ZLWFK)DEULF

$65&
046
Modules List
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 11
3 Modules List
The i.MX 6UltraLite processors contain a variety of digital and analog modules. Table 3 describes these
modules in alphabetical order.1
1. Note that some modules listed in this table are not offered on all derivatives. See Ta b le 2 for exceptions.
Table 3. i.MX 6UltraLite Modules List
Block Mnemonic Block Name Subsystem Brief Description
ADC1
ADC2
Analog to Digital
Converter
The ADC is a 12-bit general purpose analog to digital
converter.
ARM ARM Platform ARM The ARM Core Platform includes 1x Cortex-A7 core. It
also includes associated sub-blocks, such as the Level
2 Cache Controller, SCU (Snoop Control Unit), GIC
(General Interrupt Controller), private timers, watchdog,
and CoreSight debug modules.
ASRC Asynchronous Sample
Rate Converter
Multimedia
Peripherals
The Asynchronous Sample Rate Converter (ASRC)
converts the sampling rate of a signal associated to an
input clock into a signal associated to a different output
clock. The ASRC supports concurrent sample rate
conversion of up to 10 channels of about -120dB
THD+N. The sample rate conversion of each channel is
associated to a pair of incoming and outgoing sampling
rates. The ASRC supports up to three sampling rate
pairs.
BCH Binary-BCH ECC
Processor
System Control
Peripherals
The BCH module provides up to 40-bit ECC for NAND
Flash controller (GPMI)
CAAM Cryptographic
accelerator and
assurance module
Security CAAM is a cryptographic accelerator and assurance
module. CAAM implements several encryption and
hashing functions, a run-time integrity checker, and a
Pseudo Random Number Generator (PRNG). The
pseudo random number generator is certified by
Cryptographic Algorithm Validation Program (CAVP) of
National Institute of Standards and Technology (NIST).
Its deterministic random bit generator (DRBG)
validation number is 94 and its SHS validation number
is 1455.
CAAM also implements a Secure Memory mechanism.
In i.MX 6UltraLite processors, the security memory
provided is 32 KB.
CCM
GPC
SRC
Clock Control Module,
General Power
Controller, System Reset
Controller
Clocks, Resets, and
Power Control
These modules are responsible for clock and reset
distribution in the system, and also for the system
power management.
CSI Parallel CSI Multimedia
Peripherals
The CSI IP provides parallel CSI standard camera
interface port. The CSI parallel data ports are up to 24
bits. It is designed to support 24-bit RGB888/YUV444,
CCIR656 video interface, 8-bit YCbCr, YUV or RGB,
and 8-bit/10-bit/16-bit Bayer data input.
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
12 Freescale Semiconductor, Inc.
Modules List
CSU Central Security Unit Security The Central Security Unit (CSU) is responsible for
setting comprehensive security policy within the i.MX
6UltraLite platform.
DAP Debug Access Port System Control
Peripherals
The DAP provides real-time access for the debugger
without halting the core to:
System memory and peripheral registers
All debug configuration registers
The DAP also provides debugger access to JTAG scan
chains. The DAP module is internal to the Cortex-A7
Core Platform.
eCSPI1
eCSPI2
eCSPI3
eCSPI4
Configurable SPI Connectivity
Peripherals
Full-duplex enhanced Synchronous Serial Interface,
with data rate up to 52 Mbit/s. It is configurable to
support Master/Slave modes, four chip selects to
support multiple peripherals.
EIM NOR-Flash /PSRAM
interface
Connectivity
Peripherals
The EIM NOR-FLASH / PSRAM provides:
Support 16-bit PSRAM memories (sync and async
operating modes), at slow frequency
Support 16-bit NOR-Flash memories, at slow
frequency
Multiple chip selects
EMV SIM1
EMV SIM2
Europay, Master and Visa
Subscriber Identification
Module
Connectivity
peripherals
EMV SIM is designed to facilitate communication to
Smart Cards compatible to the EMV version 4.3
standard (Book 1) and Smart Cards compatible with
ISO/IEC 7816-3 standard.
ENET1
ENET2
Ethernet Controller Connectivity
Peripherals
The Ethernet Media Access Controller (MAC) is
designed to support 10/100 Mbit/s Ethernet/IEEE 802.3
networks. An external transceiver interface and
transceiver function are required to complete the
interface to the media. The module has dedicated
hardware to support the IEEE 1588 standard. See the
ENET chapter of the reference manual for details.
EPIT1
EPIT2
Enhanced Periodic
Interrupt Timer
Timer Peripherals Each EPIT is a 32-bit “set and forget” timer that starts
counting after the EPIT is enabled by software. It is
capable of providing precise interrupts at regular
intervals with minimal processor intervention. It has a
12-bit prescaler for division of input clock frequency to
get the required time setting for the interrupts to occur,
and counter value can be programmed on the fly.
FLEXCAN1
FLEXCAN2
Flexible Controller Area
Network
Connectivity
Peripherals
The CAN protocol was primarily, but not only, designed
to be used as a vehicle serial data bus, meeting the
specific requirements of this field: real-time processing,
reliable operation in the Electromagnetic interference
(EMI) environment of a vehicle, cost-effectiveness and
required bandwidth. The FlexCAN module is a full
implementation of the CAN protocol specification,
Version 2.0 B, which supports both standard and
extended message frames.
Table 3. i.MX 6UltraLite Modules List (continued)
Block Mnemonic Block Name Subsystem Brief Description
Modules List
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 13
GPIO1
GPIO2
GPIO3
GPIO4
GPIO5
General Purpose I/O
Modules
System Control
Peripherals
Used for general purpose input/output to external ICs.
Each GPIO module supports up to 32 bits of I/O.
GPMI General Purpose
Memory Interface
Connectivity
Peripherals
The GPMI module supports up to 8x NAND devices and
40-bit ECC for NAND Flash Controller (GPMI2). GPMI
supports separate DMA channels for each NAND
device.
GPT1
GPT2
General Purpose Timer Timer peripherals Each GPT is a 32-bit “free-running” or “set and forget”
mode timer with programmable prescaler and compare
and capture register. A timer counter value can be
captured using an external event and can be configured
to trigger a capture event on either the leading or trailing
edges of an input pulse. When the timer is configured to
operate in “set and forget” mode, it is capable of
providing precise interrupts at regular intervals with
minimal processor intervention. The counter has output
compare logic to provide the status and interrupt at
comparison. This timer can be configured to run either
on an external clock or on an internal clock.
LCDIF LCD interface Connectivity
peripherals
The LCDIF is a general purpose display controller used
to drive a wide range of display devices varying in size
and capability. The LCDIF is designed to support dumb
(synchronous 24-bit Parallel RGB interface) and smart
(asynchronous parallel MPU interface) LCD devices.
MQS Medium Quality Sound Multimedia
Peripherals
MQS is used to generate 2-channel medium quality
PWM-like audio via two standard digital GPIO pins.
PWM1
PWM2
PWM3
PWM4
PWM5
PWM6
PWM7
PWM8
Pulse Width Modulation Connectivity
peripherals
The pulse-width modulator (PWM) has a 16-bit counter
and is optimized to generate sound from stored sample
audio images and it can also generate tones. It uses
16-bit resolution and a 4x16 data FIFO to generate
sound.
PXP Pixel Processing Pipeline Display peripherals A high-performance pixel processor capable of 1
pixel/clock performance for combined operations, such
as color-space conversion, alpha blending,
gamma-mapping, and rotation. The PXP is enhanced
with features specifically for gray scale applications. In
addition, the PXP supports traditional pixel/frame
processing paths for still-image and video processing
applications, allowing it to interface with the integrated
EPD.
Table 3. i.MX 6UltraLite Modules List (continued)
Block Mnemonic Block Name Subsystem Brief Description
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
14 Freescale Semiconductor, Inc.
Modules List
QSPI Quad SPI Connectivity
peripherals
Quad SPI module act as an interface to external serial
flash devices. This module contains the following
features:
Flexible sequence engine to support various flash
vendor devices
Single pad/Dual pad/Quad pad mode of operation
Single Data Rate/Double Data Rate mode of
operation
Parallel Flash mode
DMA support
Memory mapped read access to connected flash
devices
Multi-master access with priority and flexible and
configurable buffer for each master
SAI1
SAI2
SAI3
The SAI module provides a synchronous audio
interface (SAI) that supports full duplex serial interfaces
with frame synchronization, such as I2S, AC97, TDM,
and codec/DSP interfaces.
SDMA Smart Direct Memory
Access
System Control
Peripherals
The SDMA is multi-channel flexible DMA engine. It
helps in maximizing system performance by off-loading
the various cores in dynamic data routing. It has the
following features:
Powered by a 16-bit instruction-set micro-RISC
engine
Multi-channel DMA supporting up to 32 time-division
multiplexed DMA channels
48 events with total flexibility to trigger any
combination of channels
Memory accesses including linear, FIFO, and 2D
addressing
Shared peripherals between ARM and SDMA
Very fast context-switching with 2-level priority based
preemptive multi-tasking
DMA units with auto-flush and prefetch capability
Flexible address management for DMA transfers
(increment, decrement, and no address changes on
source and destination address)
DMA ports can handle unit-directional and
bi-directional flows (copy mode)
Support of byte-swapping
Library of Scripts and API is available
2x SIMv2 Smart Card Connectivity
peripherals
Smart card interface compliant with ISO7816.
Table 3. i.MX 6UltraLite Modules List (continued)
Block Mnemonic Block Name Subsystem Brief Description
Modules List
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 15
SJC System JTAG Controller System Control
Peripherals
The SJC provides JTAG interface, which complies with
JTAG TAP standards, to internal logic. The i.MX
6UltraLite processors use JTAG port for production,
testing, and system debugging. In addition, the SJC
provides BSR (Boundary Scan Register) standard
support, which complies with IEEE1149.1 and
IEEE1149.6 standards.
The JTAG port must be accessible during platform initial
laboratory bring-up, for manufacturing tests and
troubleshooting, as well as for software debugging by
authorized entities. The i.MX 6UltraLite SJC
incorporates three security modes for protecting
against unauthorized accesses. Modes are selected
through eFUSE configuration.
SNVS Secure Non-Volatile
Storage
Security Secure Non-Volatile Storage, including Secure Real
Time Clock, Security State Machine, Master Key
Control, and Violation/Tamper Detection and reporting.
SPDIF Sony Philips Digital
Interconnect Format
Multimedia
Peripherals
A standard audio file transfer format, developed jointly
by the Sony and Phillips corporations. Has Transmitter
and Receiver functionality.
System Counter The system counter module is a programmable system
counter which provides a shared time base to the
Cortex A series cores as part of ARM’s generic timer
architecture. It is intended for use in application where
the counter is always powered on and supports
multiple, unrelated clocks.
TSC Touch Screen Touch Controller With touch controller to support 4-wire and 5-wire
resistive touch panel.
TZASC Trust-Zone Address
Space Controller
Security The TZASC (TZC-380 by ARM) provides security
address region control functions required for intended
application. It is used on the path to the DRAM
controller.
UART1
UART2
UART3
UART4
UART5
UART6
UART7
UART8
UART Interface Connectivity
Peripherals
Each of the UART modules support the following serial
data transmit/receive protocols and configurations:
7- or 8-bit data words, 1 or 2 stop bits, programmable
parity (even, odd or none)
Programmable baud rates up to 5 Mbps.
32-byte FIFO on Tx and 32 half-word FIFO on Rx
supporting auto-baud
Table 3. i.MX 6UltraLite Modules List (continued)
Block Mnemonic Block Name Subsystem Brief Description
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
16 Freescale Semiconductor, Inc.
Modules List
uSDHC1
uSDHC2
SD/MMC and SDXC
Enhanced Multi-Media
Card / Secure Digital Host
Controller
Connectivity
Peripherals
i.MX 6UltraLite specific SoC characteristics:
All four MMC/SD/SDIO controller IPs are identical and
are based on the uSDHC IP. They are:
Fully compliant with MMC command/response sets
and Physical Layer as defined in the Multimedia
Card System Specification, v4.5/4.2/4.3/4.4/4.41/
including high-capacity (size > 2 GB) cards HC
MMC.
Fully compliant with SD command/response sets
and Physical Layer as defined in the SD Memory
Card Specifications, v3.0 including high-capacity
SDXC cards up to 2 TB.
Fully compliant with SDIO command/response sets
and interrupt/read-wait mode as defined in the SDIO
Card Specification, Part E1, v3.0
Two ports support:
1-bit or 4-bit transfer mode specifications for SD and
SDIO cards up to UHS-I SDR104 mode (104 MB/s
max)
1-bit, 4-bit, or 8-bit transfer mode specifications for
MMC cards up to 52 MHz in both SDR and DDR
modes (104 MB/s max)
4-bit or 8-bit transfer mode specifications for eMMC
chips up to 200 MHz in HS200 mode (200 MB/s max)
USB Universal Serial Bus 2.0 Connectivity
Peripherals
USBO2 (USB OTG1 and USB OTG2) contains:
Two high-speed OTG 2.0 modules with integrated
HS USB PHYs
Support eight Transmit (TX) and eight Receive (Rx)
endpoints, including endpoint 0
WDOG1
WDOG3
Watch Dog Timer Peripherals The Watch Dog Timer supports two comparison points
during each counting period. Each of the comparison
points is configurable to evoke an interrupt to the ARM
core, and a second point evokes an external event on
the WDOG line.
WDOG2
(TZ)
Watch Dog (TrustZone) Timer Peripherals The TrustZone Watchdog (TZ WDOG) timer module
protects against TrustZone starvation by providing a
method of escaping normal mode and forcing a switch
to the TZ mode. TZ starvation is a situation where the
normal OS prevents switching to the TZ mode. Such
situation is undesirable as it can compromise the
system’s security. Once the TZ WDOG module is
activated, it must be serviced by TZ software on a
periodic basis. If servicing does not take place, the timer
times out. Upon a time-out, the TZ WDOG asserts a TZ
mapped interrupt that forces switching to the TZ mode.
If it is still not served, the TZ WDOG asserts a security
violation signal to the CSU. The TZ WDOG module
cannot be programmed or deactivated by a normal
mode SW.
Table 3. i.MX 6UltraLite Modules List (continued)
Block Mnemonic Block Name Subsystem Brief Description
Modules List
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 17
3.1 Special Signal Considerations
Table 4 lists special signal considerations for the i.MX 6UltraLite processors. The signal names are listed
in alphabetical order.
The package contact assignments can be found in Section 6, “Package Information and Contact
Assignments.” Signal descriptions are provided in the i.MX 6UltraLite Reference Manual
(IMX6ULRM).
Table 4. Special Signal Considerations
Signal Name Remarks
CCM_CLK1_P/
CCM_CLK1_N
One general purpose differential high speed clock Input/output is provided.
It can be used:
To feed external reference clock to the PLLs and further to the modules inside SoC.
To output internal SoC clock to be used outside the SoC as either reference clock or as a
functional clock for peripherals.
See the i.MX 6UltraLite Reference Manual (IMX6ULRM) for details on the respective clock trees.
Alternatively one may use single ended signal to drive CLK1_P input. In this case corresponding
CLK1_N input should be tied to the constant voltage level equal 1/2 of the input signal swing.
Termination should be provided in case of high frequency signals.
After initialization, the CLK1 input/output can be disabled (if not used). If unused either or both of
the CLK1_N/P pairs may be left floating.
RTC_XTALI/RTC_XTALO If the user wishes to configure RTC_XTALI and RTC_XTALO as an RTC oscillator, a 32.768 kHz
crystal, (100 k ESR, 10 pF load) should be connected between RTC_XTALI and RTC_XTALO.
Keep in mind the capacitors implemented on either side of the crystal are about twice the crystal
load capacitor. To hit the exact oscillation frequency, the board capacitors need to be reduced to
account for board and chip parasitics. The integrated oscillation amplifier is self biasing, but
relatively weak. Care must be taken to limit parasitic leakage from RTC_XTALI and RTC_XTALO
to either power or ground (>100 M). This will debias the amplifier and cause a reduction of startup
margin. Typically RTC_XTALI and RTC_XTALO should bias to approximately 0.5 V.
If it is desired to feed an external low frequency clock into RTC_XTALI the RTC_XTALO pin should
be left floating or driven with a complimentary signal. The logic level of this forcing clock should not
exceed VDD_SNVS_CAP level and the frequency should be <100 kHz under typical conditions.
In case when high accuracy real time clock are not required system may use internal low frequency
ring oscillator. It is recommended to connect RTC_XTALI to GND and keep RTC_XTALO floating.
XTALI/XTALO A 24.0 MHz crystal should be connected between XTALI and XTALO.
The crystal must be rated for a maximum drive level of 250 W. An ESR (equivalent series
resistance) of typical 80 is recommended. Freescale BSP (board support package) software
requires 24 MHz on XTALI/XTALO.
The crystal can be eliminated if an external 24 MHz oscillator is available in the system. In this
case, XTALO must be directly driven by the external oscillator and XTALI is mounted with 18 pF
capacitor. Please refer to the EVK board reference design for details. The logic level of this forcing
clock cannot exceed NVCC_PLL level.
If this clock is used as a reference for USB, then there are strict frequency tolerance and jitter
requirements. See OSC24M chapter and relevant interface specifications chapters for details.
DRAM_VREF When using DDR_VREF with DDR I/O, the nominal reference voltage must be half of the
NVCC_DRAM supply. The user can tie DDR_VREF to a precision external resistor divider. Use a
1k0.5% resistor to GND and a 1 k0.5% resistor to NVCC_DRAM. Shunt each resistor with a
closely-mounted 0.1 µF capacitor.
To reduce supply current, a pair of 1.5 k0.1% resistors can be used. Using resistors with
recommended tolerances ensures the ± 2% DDR_VREF tolerance (per the DDR3 specification) is
maintained when two DDR3 ICs plus the i.MX 6UltraLite are drawing current on the resistor divider.
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
18 Freescale Semiconductor, Inc.
Modules List
ZQPAD DRAM calibration resistor 240 1% used as reference during DRAM output buffer driver
calibration should be connected between this pad and GND.
GPANAIO This signal is reserved for Freescale manufacturing use only. User must leave this connection
floating.
JTAG_nnnn The JTAG interface is summarized in Table 5. Use of external resistors is unnecessary. However,
if external resistors are used, the user must ensure that the on-chip pull-up/down configuration is
followed. For example, do not use an external pull down on an input that has on-chip pull-up.
JTAG_TDO is configured with a keeper circuit such that the floating condition is eliminated if an
external pull resistor is not present. An external pull resistor on JTAG_TDO is detrimental and
should be avoided.
JTAG_MOD is referenced as SJC_MOD in the i.MX 6UltraLite reference manual. Both names refer
to the same signal. JTAG_MOD must be externally connected to GND for normal operation.
Termination to GND through an external pull-down resistor (such as 1 k) is allowed. JTAG_MOD
set to hi configures the JTAG interface to mode compliant with IEEE1149.1 standard. JTAG_MOD
set to low configures the JTAG interface for common SW debug adding all the system TAPs to the
chain.
NC These signals are No Connect (NC) and should be floated by the user.
POR_B This cold reset negative logic input resets all modules and logic in the IC.
May be used in addition to internally generated power on reset signal (logical AND, both internal
and external signals are considered active low).
ONOFF ONOFF can be configured in debounce, off to on time, and max time-out configurations. The
debounce and off to on time configurations supports 0, 50, 100 and 500 ms. Debounce is used to
generate the power off interrupt. While in the ON state, if ONOFF button is pressed longer than the
debounce time, the power off interrupt is generated. Off to on time supports the time it takes to
request power on after a configured button press time has been reached. While in the OFF state,
if ONOFF button is pressed longer than the off to on time, the state will transition from OFF to ON.
Max time-out configuration supports 5, 10, 15 seconds and disable. Max time-out configuration
supports the time it takes to request power down after ONOFF button has been pressed for the
defined time.
TEST_MODE TEST_MODE is for Freescale factory use. The user must tie this pin directly to GND.
Table 5. JTAG Controller Interface Summary
JTAG I/O Type On-chip Termination
JTAG_TCK Input 47 kpull-up
JTAG_TMS Input 47 kpull-up
JTAG_TDI Input 47 kpull-up
JTAG_TDO 3-state output Keeper
JTAG_TRSTB Input 47 kpull-up
JTAG_MOD Input 100 kpull-up
Table 4. Special Signal Considerations (continued)
Signal Name Remarks
Modules List
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 19
3.2 Recommended Connections for Unused Analog Interfaces
Table 6 shows the recommended connections for unused analog interfaces.
Table 6. Recommended Connections for Unused Analog Interfaces
Module Pad Name Recommendations
if Unused
CCM CCM_CLK1_N, CCM_CLK1_P Float
USB USB_OTG1_CHD_B, USB_OTG1_DN, USB_OTG1_DP, USB_OTG1_VBUS,
USB_OTG2_CHD_B, USB_OTG2_DN, USB_OTG2_DP, USB_OTG2_VBUS
Float
ADC ADC_VREFH Tie to
VDDA_ADC_3P3
VDDA_ADC_3P3 VDDA_ADC_3P3
must be powered
even if the ADC is
not used.
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
20 Freescale Semiconductor, Inc.
Electrical Characteristics
4 Electrical Characteristics
This section provides the device and module-level electrical characteristics for the i.MX 6UltraLite
processors.
4.1 Chip-Level Conditions
This section provides the device-level electrical characteristics for the IC. See Table 7 for a quick reference
to the individual tables and sections.
4.1.1 Absolute Maximum Ratings
CAUTION
Stress beyond those listed under Table 8 may cause permanent damage to the device. These are stress
ratings only. Functional operation of the device at these or any other conditions beyond those indicated
under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated
conditions for extended periods may affect device reliablility.
Table 8 shows the absolute maximum operating ratings.
Table 7. i.MX 6UltraLite Chip-Level Conditions
For these characteristics Topic appears
Absolute Maximum Ratings on page 20
Thermal Resistance on page 21
Operating Ranges on page 22
External Clock Sources on page 24
Maximum Supply Currents on page 25
Low Power Mode Supply Currents on page 26
USB PHY Current Consumption on page 27
Table 8. Absolute Maximum Ratings
Parameter Description Symbol Min Max Unit
Core Supplies Input Voltage
(LDO Enabled)
VDD_SOC_IN -0.3 1.6 V
Core Supplies Input Voltage
(LDO Bypass)
VDD_SOC_IN -0.3 1.4 V
VDD_HIGH_IN Supply voltage
(LDO Enabled)
VDD_HIGH_IN -0.3 3.7 V
VDD_HIGH_IN Supply voltage
(LDO Bypass)
VDD_HIGH_IN -0.3 2.85 V
Electrical Characteristics
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 21
4.1.2 Thermal Resistance
4.1.2.1 14x14 MM (VM) Package Thermal Resistance
Table 9 displays the 14x14 MM (VM) package thermal resistance data.
Core Supplies Output Voltage (LDO
Enabled)
VDD_ARM_CAP
VDD_SOC_CAP
-0.3 1.4 V
VDD_HIGH_CAP LDO Output Supply
Voltage
VDD_HIGH_CAP -0.3 2.6 V
Supply Input Voltage to Secure
Non-Volatile Storage and Real Time Clock
VDD_SNVS_IN -0.3 3.4
USB VBUS Supply USB_OTG_VBUS 5.35 V
IO Supply for DDR Interface NVCC_DRAM -0.4 1.675 V
Supply for DDR pre-drivers NVCC_DRAM_2P5 -0.3 2.85 V
IO Supply for GPIO Type Pins NVCC_CSI
NVCC_ENET
NVCC_GPIO
NVCC_LCD
NVCC_NAND
NVCC_SD1
-0.5 3.7 V
Supply for ADC 3P3V VDDA_ADC_3P3 3.7 V
MLB I/O Supply Voltage Supplies denoted as I/O Supply -0.3 2.8 V
Input/Output Voltage range Vin/Vout -0.5 OVDD+0.31V
Storage Temperature range TSTORAGE -40 150 o C
1OVDD is the I/O supply voltage.
Table 9. 14x14 MM (VM) Thermal Resistance Data1
Rating Test Conditions Symbol Value Unit Notes
Junction to Ambient
Natural convection
Single-layer board (1s) RJA 58.4 oC/W 2,3
Junction to Ambient
Natural convection
Four-layer board (2s2p) RJA 37.6 oC/W 3,3,4
Junction to Ambient (@200
ft/min)
Single layer board (1s) RJMA 48.6 oC/W 2,4
Junction to Ambient (@200
ft/min)
Four layer board (2s2p) RJMA 32.9 oC/W 2,4
Junction to Board RJB 21.8 oC/W 5
Junction to Case RJC 19.3 oC/W 6
Junction to Package Top Natural Convection JT 2.3 oC/W 7
Junction to Package Bottom Natural Convection JB 12.0 oC/W 8
Table 8. Absolute Maximum Ratings (continued)
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
22 Freescale Semiconductor, Inc.
Electrical Characteristics
4.1.3 Operating Ranges
Table 10 provides the operating ranges of the i.MX 6UltraLite processors. For details on the chip's power
structure, see the “Power Management Unit (PMU)” chapter of the i.MX 6UltraLite Reference Manual
(IMX6ULRM).
1As per JEDEC JESD51-2 the intent of (thermal resistance) measurement is soley for a thermal performance comparison of
one package to another in a standardized enviroment. This methodology is not meant to and will not predict the performance
of a package in an application-specific enviroment.
2Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal
resistance.
3Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.
4Per JEDEC JESD51-6 with the board horizontal.
5Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on
the top surface of the board near the package.
6Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method
1012.1).
7Thermal characterization parameter indicating the temperature difference between package top and the junction temperature
per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.
8Thermal characterization parameter indicating the temperature difference between package bottom center and the junction
temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is written
as Psi-JB
Table 10. Operating Ranges
Parameter
Description Symbol Operating
Conditions Min Typ Max1Unit Comment
Run Mode: LDO
Enabled
VDD_SOC_IN 1.275 1.5 V VDD_SOC_IN must be 125 mV
higher than the LDO Output Set
Point (VDD_ARM_CAP and
VDD_SOC_CAP) for correct
supply voltage regulation.
VDD_ARM_CAP A7 core at 696
MHz
1.25 1.3 V Output voltage must be set to the
following rules:
VDD_ARM_CAP <=
VDD_SOC_CAP
VDD_SOC_CAP -
VDD_ARM_CAP < 330 mV
A7 core at 528
MHz
1.15 1.3
A7 core at 396
MHz
1.00 1.3
A7 core at 198
MHz
0.925 1.3
VDD_SOC_CAP 1.15 1.3 V
Run Mode: LDO
Bypassed
VDD_SOC_IN A7 core
operation at 528
MHz or below
1.15 1.3 V A7 core operation above 528 MHz
is not supported when LDO is
bypassed.
Electrical Characteristics
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 23
Table 11 shows on-chip LDO regulators that can supply on-chip loads.
SUSPEND (DSM)
Mode
VDD_SOC_IN 0.90 1.3 V Refer to Table 14 Low Power Mode
Current and Power Consumption
on page 14
VDD_HIGH
internal Regulator
VDD_HIGH_IN 2.80 3.6 V Must match the range of voltages
that the rechargeable backup
battery supports.
Backup battery
supply range
VDD_SNVS_IN2 2.40 3.6 V Can be combined with
VDDHIGH_IN, if the system does
not require keeping real time and
other data on OFF state.
USB supply
voltages
USB_OTG1_VBUS 4.40 5.5 V
USB_OTG2_VBUS 4.40 5.5 V
DDR I/O supply NVCC_DRAM LPDDR2 1.14 1.2 1.3 V
DDR3L 1.28 1.35 1.45 V
DDR3 1.43 1.5 1.575 V
NVCC_DRAM2P5 2.25 2.5 2.75 V
GPIO supplies NVCC_CSI 1.65 1.8,
2.8,
3.3
3.6 V All digital I/O supplies
(NVCC_xxxx) must be powered
(unless otherwise specified in this
data sheet) under normal
conditions whether the associated
I/O pins are in use or not.
NVCC_ENET
NVCC_GPIO
NVCC_UART
NVCC_LCD
NVCC_NAND
NVCC_SD1
A/D converter VDDA_ADC_3P3 3.0 3.15 3.6 V VDDA_ADC_3P3 must be
powered even if the ADC is not
used.
VDDA_ADC_3P3 cannot be
powered when the other SoC
supplies (except VDD_SNVS_IN)
are off.
Temperature Operating Ranges
Junction
temperature
TJ Automotive -40 125 oC See the application note, i.MX
6UltraLite Product Lifetime Usage
Estimates for information on
product lifetime (power-on years)
for this processor.
1Applying the maximum voltage results in maximum power consumption and heat generation. Freescale recommends a
voltage set point = (Vmin + the supply tolerance). This result in an optimized power/speed ratio.
2In setting VDD_SNVS_IN voltage with regards to Charging Currents and RTC, refer to the i.MX 6UltraLite Hardware
Development Guide (IMX6ULHDG).
Table 10. Operating Ranges (continued)
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
24 Freescale Semiconductor, Inc.
Electrical Characteristics
4.1.4 External Clock Sources
Each i.MX 6UltraLite processor has two external input system clocks: a low frequency (RTC_XTALI) and
a high frequency (XTALI).
The RTC_XTALI is used for low-frequency functions. It supplies the clock for wake-up circuit,
power-down real time clock operation, and slow system and watch-dog counters. The clock input can be
connected to either external oscillator or a crystal using internal oscillator amplifier. Additionally, there is
an internal ring oscillator, which can be used instead of the RTC_XTALI if accuracy is not important.
The system clock input XTALI is used to generate the main system clock. It supplies the PLLs and other
peripherals. The system clock input can be connected to either external oscillator or a crystal using internal
oscillator amplifier.
Table 12 shows the interface frequency requirements.
The typical values shown in Table 12 are required for use with Freescale BSPs to ensure precise time
keeping and USB operation. For RTC_XTALI operation, two clock sources are available.
On-chip 40 kHz ring oscillator—this clock source has the following characteristics:
Approximately 25 µA more Idd than crystal oscillator
Approximately ±50% tolerance
No external component required
Starts up quicker than 32 kHz crystal oscillator
External crystal oscillator with on-chip support circuit:
At power up, ring oscillator is utilized. After crystal oscillator is stable, the clock circuit
switches over to the crystal oscillator automatically.
Higher accuracy than ring oscillator
If no external crystal is present, then the ring oscillator is utilized
Table 11. On-Chip LDOs1 and their On-Chip Loads
1On-chip LDOs are designed to supply i.MX6UltraLite loads and must not be used to supply external loads.
Voltage Source Load Comment
VDD_HIGH_CAP NVCC_DRAM_2P5 Board-level connection to VDD_HIGH_CAP
Table 12. External Input Clock Frequency
Parameter Description Symbol Min Typ Max Unit
RTC_XTALI Oscillator1,2
1External oscillator or a crystal with internal oscillator amplifier.
2The required frequency stability of this clock source is application dependent. For recommendations, see the Hardware
Development Guide for i.MX 6UltraLite Applications Processors (IMX6ULHDG).
fckil 32.7683/32.0
3Recommended nominal frequency 32.768 kHz.
—kHz
XTALI Oscillator2,4
4External oscillator or a fundamental frequency crystal with internal oscillator amplifier.
fxtal —24MHz
Electrical Characteristics
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 25
The decision of choosing a clock source should be taken based on real-time clock use and precision
time-out.
4.1.5 Maximum Supply Currents
The data shown in Table 13 represent a use case designed specifically to show the maximum current
consumption possible. All cores are running at the defined maximum frequency and are limited to L1
cache accesses only to ensure no pipeline stalls. Although a valid condition, it would have a very limited
practical use case, if at all, and be limited to an extremely low duty cycle unless the intention was to
specifically show the worst case power consumption.
See the i.MX 6UltraLite Power Consumption Measurement Application Note (AN5170) for more details
on typical power consumption under various use case definitions.
Table 13. Maximum Supply Currents
Power Line Conditions Max Current Unit
VDD_SOC_IN 696 MHz ARM clock
based on Dhrystone
test
600 mA
VDD_SOC_IN 528 MHz ARM clock
based on Dhrystone
test
500 mA
VDD_HIGH_IN 1251
1The actual maximum current drawn from VDD_HIGH_IN will be as shown plus any additional current drawn from the
VDD_HIGH_CAP outputs, depending upon actual application configuration (for example, NVCC_DRAM_2P5 supplies).
mA
VDD_SNVS_IN 5002A
USB_OTG1_VBUS
USB_OTG2_VBUS
—50
3mA
VDDA_ADC_3P3 100 Ohm maximum
loading for touch panel
35 mA
Primary Interface (IO) Supplies
NVCC_DRAM (See4)—
NVCC_DRAM_2P5 50 mA
NVCC_GPIO N=16 Use maximum IO Equation5
NVCC_UART N=16 Use maximum IO equation5
NVCC_ENET N=16 Use maximum IO equation5
NVCC_LCD N=29 Use maximum IO equation5
NVCC_NAND N=17 Use maximum IO equation5
NVCC_SD1 N=6 Use maximum IO equation5
NVCC_CSI N=12 Use maximum IO equation5
MISC
DRAM_VREF 1 mA
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
26 Freescale Semiconductor, Inc.
Electrical Characteristics
4.1.6 Low Power Mode Supply Currents
Table 14 shows the current core consumption (not including I/O) of i.MX 6UltraLite processors in selected
low power modes.
2The maximum VDD_SNVS_IN current may be higher depending on specific operating configurations, such as
BOOT_MODE[1:0] not equal to 00, or use of the Tamper feature. During initial power on, VDD_SNVS_IN can draw up to 1
mA, if available. VDD_SNVS_CAP charge time will increase if less than 1 mA is available.
3This is the maximum current per active USB physical interface.
4The DRAM power consumption is dependent on several factors, such as external signal termination. DRAM power
calculators are typically available from the memory vendors. They take in account factors, such as signal termination. See
the i.MX 6UltraLite Power Consumption Measurement Application Note (AN5170) or examples of DRAM power consumption
during specific use case scenarios.
5General equation for estimated, maximum power consumption of an IO power supply:
Imax = N x C x V x (0.5 x F)
Where:
N—Number of IO pins supplied by the power line
C—Equivalent external capacitive load
V—IO voltage
(0.5 xF)—Data change rate. Up to 0.5 of the clock rate (F)
In this equation, Imax is in Amps, C in Farads, V in Volts, and F in Hertz.
Table 14. Low Power Mode Current and Power Consumption
Mode Test Conditions Supply Typical1Units
SYSTEM IDLE:
LDO Enabled
LDO_ARM and LDO_SOC are set to 1.15 V
LDO_2P5 set to 2.5 V, LDO_1P1 set to 1.1 V
CPU in WFI, CPU clock gated
DDR is in self refresh
24 MHz XTAL is ON
528 PLL is active, other PLLS are power down
High-speed peripheral clock gated, but remain
powered
VDD_SOC_IN (1.275 V) 7.7 mA
VDD_HIGH_IN (3.0 V) 10.5
VDD_SNVS_IN (3.0 V) 0.06
Tota l 41. 5 m W
SYSTEM IDLE:
LDO Bypassed
LDO_ARM and LDO_SOC are set to bypass
mode
LDO_2P5 set to 2.5 V, LDO_1P1 set to 1.1 V
CPU in WFI, CPU clock gated
DDR is in self refresh
24 MHz XTAL is ON
528 PLL is active, other PLLs are power down
High-speed peripheral clock gated, but remain
powered
VDD_SOC_IN (1.15 V) 7.5 mA
VDD_HIGH_IN (3.0 V) 9.5
VDD_SNVS_IN (3.0 V) 0.06
Tota l 37. 3 m W
LOW POWER IDLE:
LDO Enabled
LDO_SOC is set to 1.15 V, LDO_ARM is in PG
mode
LDO_2P5 and LDO_1P1 are set to weak mode
CPU in power gate mode
DDR is in self refresh
All PLLs are power down
24 MHz XTAL is off, 24 MHz RCOSC used as
clock source
High-speed peripheral are powered off
VDD_SOC_IN (1.275 V) 3.2 mA
VDD_HIGH_IN (3.0 V) 1.5
VDD_SNVS_IN (3.0 V) 0.05
Tota l 8.7 mW
Electrical Characteristics
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 27
4.1.7 USB PHY Current Consumption
4.1.7.1 Power Down Mode
In power down mode, everything is powered down, including the USB VBUS valid detectors in typical
condition. Table 15 shows the USB interface current consumption in power down mode.
NOTE
The currents on the VDD_HIGH_CAP and VDD_USB_CAP were
identified to be the voltage divider circuits in the USB-specific level
shifters.
LOW POWER IDLE:
LDO Bypassed
LDO_SOC is in bypass mode, LDO_ARM is in PG
mode
LDO-2P5 and LDO_1P1 are set to weak mode
CPU in power gate mode
DDR is in self refresh
All PLLs are power down
24 MHz XTAL is off, 24 MHz RCOSC used as
clock source
High-speed peripheral are powered off
VDD_SOC_IN (1.15 V) 2.8 mA
VDD_HIGH_IN (3.0 V) 0.4
VDD_SNVS_IN (3.0 V) 0.05
Tota l 4.5 7 m W
SUSPEND
(DSM)
LDO_SOC is in bypass mode, LDO_ARM is in PG
mode
LDO_2P5 and LDO_1P1 are shut off
CPU in power gate mode
DDR is in self refresh
All PLLs are power down
24 MHz XTAL is off, 24 MHz RCOSC is off
All clocks are shut off, except 32 kHz RTC
High-speed peripheral are powered off
VDD_SOC_IN (0.9 V) 0.44 mA
VDD_HIGH_IN (3.0 V) 0.03
VDD_SNVS_IN (3.0 V) 0.03
Tota l 0.5 8 m W
SNVS (RTC) All SOC digital logic, analog module are shut off
32 kHz RTC is alive
Tamper detection circuit remains active
VDD_SOC_IN (0 V) 0 mA
VDD_HIGH_IN (0 V) 0
VDD_SNVS_IN (3.0 V) 0.02
Tota l 0.0 6 m W
1Typical process material in fab
Table 15. USB PHY Current Consumption in Power Down Mode
VDD_USB_CAP (3.0 V) VDD_HIGH_CAP (2.5 V) NVCC_PLL (1.1 V)
Current 5.1 A 1.7 A < 0.5 A
Table 14. Low Power Mode Current and Power Consumption (continued)
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
28 Freescale Semiconductor, Inc.
Electrical Characteristics
4.2 Power Supplies Requirements and Restrictions
The system design must comply with power-up sequence, power-down sequence, and steady state
guidelines as described in this section to guarantee the reliable operation of the device. Any deviation
from these sequences may result in the following situations:
Excessive current during power-up phase
Prevention of the device from booting
Irreversible damage to the processor (worst-case scenario)
4.2.1 Power-Up Sequence
The below restrictions must be followed:
VDD_SNVS_IN supply must be turned on before any other power supply or be connected
(shorted) with VDD_HIGH_IN supply.
If a coin cell is used to power VDD_SNVS_IN, then ensure that it is connected before any other
supply is switched on.
VDD_HIGH_IN should be turned on before VDD_SOC_IN.
NOTE
The POR_B input (if used) must be immediately asserted at power-up and
remain asserted until after the last power rail reaches its working voltage. In
the absence of an external reset feeding the POR_B input, the internal POR
module takes control. See the i.MX 6UltraLite Reference Manual
(IMX6ULRM) for further details and to ensure that all necessary
requirements are being met.
NOTE
Need to ensure that there is no back voltage (leakage) from any supply on
the board towards the 3.3 V supply (for example, from the external
components that use both the 1.8 V and 3.3 V supplies).
NOTE
USB_OTG1_VBUS, USB_OTG2_VBUS, and VDDA_ADC_3P3 are not
part of the power supply sequence and may be powered at any time.
4.2.2 Power-Down Sequence
The following restrictions must be followed:
VDD_SNVS_IN supply must be turned off after any other power supply or be connected (shorted)
with VDD_HIGH_IN supply.
If a coin cell is used to power VDD_SNVS_IN, then ensure that it is removed after any other supply
is switched off.
NOTE
VDD_HIGH_IN should be turned off after VDD_SOC_IN is switched off.
Electrical Characteristics
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 29
4.2.3 Power Supplies Usage
All I/O pins should not be externally driven while the I/O power supply for the pin (NVCC_xxx) is OFF.
This can cause internal latch-up and malfunctions due to reverse current flows. For information about I/O
power supply of each pin, see “Power Rail” columns in pin list tables of Section 6, “Package Information
and Contact Assignments.”
4.3 Integrated LDO Voltage Regulator Parameters
Various internal supplies can be powered ON from internal LDO voltage regulators. All the supply pins
named *_CAP must be connected to external capacitors. The onboard LDOs are intended for internal use
only and should not be used to power any external circuitry. See the i.MX 6UltraLite Reference Manual
(IMX6ULRM) for details on the power tree scheme.
NOTE
The *_CAP signals should not be powered externally. These signals are
intended for internal LDO operation only.
4.3.1 Digital Regulators (LDO_ARM, LDO_SOC)
There are two digital LDO regulators (“Digital”, because of the logic loads that they drive, not because of
their construction). The advantages of the regulators are to reduce the input supply variation because of
their input supply ripple rejection and their on-die trimming. This translates into more stable voltage for
the on-chip logics.
These regulators have two basic modes:
Power Gate. The regulation FET is switched fully off limiting the current draw from the supply.
The analog part of the regulator is powered down here limiting the power consumption.
Analog regulation mode. The regulation FET is controlled such that the output voltage of the
regulator equals the programmed target voltage. The target voltage is fully programmable in 25 mV
steps.
For additional information, see the i.MX 6UltraLite Reference Manual (IMX6ULRM).
4.3.2 Regulators for Analog Modules
4.3.2.1 LDO_1P1
The LDO_1P1 regulator implements a programmable linear-regulator function from VDD_HIGH_IN (see
Table 10 for minimum and maximum input requirements). Typical Programming Operating Range is 1.0
V to 1.2 V with the nominal default setting as 1.1 V. The LDO_1P1 supplies the USB Phy, and PLLs. A
programmable brown-out detector is included in the regulator that can be used by the system to determine
when the load capability of the regulator is being exceeded to take the necessary steps. Current-limiting
can be enabled to allow for in-rush current requirements during start-up, if needed. Active-pull-down can
also be enabled for systems requiring this feature.
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
30 Freescale Semiconductor, Inc.
Electrical Characteristics
For information on external capacitor requirements for this regulator, see the Hardware Development
Guide for i.MX 6UltraLite Applications Processors (IMX6ULHDG).
For additional information, see the i.MX 6UltraLite Reference Manual (IMX6ULRM).
4.3.2.2 LDO_2P5
The LDO_2P5 module implements a programmable linear-regulator function from VDD_HIGH_IN (see
Table 10 for minimum and maximum input requirements). Typical Programming Operating Range is
2.25 V to 2.75 V with the nominal default setting as 2.5 V. LDO_2P5 supplies the DDR IOs, USB Phy,
E-fuse module, and PLLs. A programmable brown-out detector is included in the regulator that can be
used by the system to determine when the load capability of the regulator is being exceeded, to take the
necessary steps. Current-limiting can be enabled to allow for in-rush current requirements during start-up,
if needed. Active-pull-down can also be enabled for systems requiring this feature. An alternate self-biased
low-precision weak-regulator is included that can be enabled for applications needing to keep the output
voltage alive during low-power modes where the main regulator driver and its associated global bandgap
reference module are disabled. The output of the weak-regulator is not programmable and is a function of
the input supply as well as the load current. Typically, with a 3 V input supply the weak-regulator output
is 2.525 V and its output impedance is approximately 40 .
For information on external capacitor requirements for this regulator, see the Hardware Development
Guide for i.MX 6UltraLite Applications Processors (IMX6ULHDG).
For additional information, see the i.MX 6UltraLite Reference Manual (IMX6ULRM).
4.3.2.3 LDO_USB
The LDO_USB module implements a programmable linear-regulator function from the USB VUSB
voltages (4.4 V–5.5 V) to produce a nominal 3.0 V output voltage. A programmable brown-out detector
is included in the regulator that can be used by the system to determine when the load capability of the
regulator is being exceeded, to take the necessary steps. This regulator has a built in power-mux that allows
the user to select to run the regulator from either USB VBUS supply, when both are present. If only one
of the USB VBUS voltages is present, then, the regulator automatically selects this supply. Current limit
is also included to help the system meet in-rush current targets.
For information on external capacitor requirements for this regulator, see the Hardware Development
Guide for i.MX 6UltraLite Applications Processors (IMX6ULHDG).
For additional information, see the i.MX 6UltraLite Reference Manual (IMX6ULRM).
Electrical Characteristics
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 31
4.4 PLLs Electrical Characteristics
4.4.1 Audio/Video PLLs Electrical Parameters
4.4.2 528 MHz PLL
4.4.3 Ethernet PLL
4.4.4 480 MHz PLL
Table 16. Audio/Video PLLs Electrical Parameters
Parameter Value
Clock output range 650 MHz ~1.3 GHz
Reference clock 24 MHz
Lock time <11250 reference cycles
Table 17. 528 MHz PLLs Electrical Parameters
Parameter Value
Clock output range 528 MHz PLL output
Reference clock 24 MHz
Lock time <11250 reference cycles
Table 18. Ethernet PLLs Electrical Parameters
Parameter Value
Clock output range 500 MHz
Reference clock 24 MHz
Lock time <11250 reference cycles
Table 19. 480 MHz PLLs Electrical Parameters
Parameter Value
Clock output range 480 MHz PLL output
Reference clock 24 MHz
Lock time <383 reference cycles
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
32 Freescale Semiconductor, Inc.
Electrical Characteristics
4.4.5 ARM PLL
4.5 On-Chip Oscillators
4.5.1 OSC24M
This block implements an amplifier that when combined with a suitable quartz crystal and external load
capacitors implement an oscillator. The oscillator is powered from NVCC_PLL.
The system crystal oscillator consists of a Pierce-type structure running off the digital supply. A straight
forward biased-inverter implementation is used.
4.5.2 OSC32K
This block implements an amplifier that when combined with a suitable quartz crystal and external load
capacitors implement a low power oscillator. It also implements a power mux such that it can be powered
from either a ~3 V backup battery (VDD_SNVS_IN) or VDD_HIGH_IN such as the oscillator consumes
power from VDD_HIGH_IN when that supply is available and transitions to the backup battery when
VDD_HIGH_IN is lost.
In addition, if the clock monitor determines that the OSC32K is not present, then the source of the 32 K
will automatically switch to a crude internal ring oscillator. The frequency range of this block is
approximately 10–45 kHz. It highly depends on the process, voltage, and temperature.
The OSC32k runs from VDD_SNVS_CAP supply, which comes from the
VDD_HIGH_IN/VDD_SNVS_IN. The target battery is a ~3 V coin cell. Proper choice of coin cell type
is necessary for chosen VDD_HIGH_IN range. Appropriate series resistor (Rs) must be used when
connecting the coin cell. Rs depends on the charge current limit that depends on the chosen coin cell. For
example, for Panasonic ML621:
Average Discharge Voltage is 2.5 V
Maximum Charge Current is 0.6 mA
For a charge voltage of 3.2 V, Rs = (3.2-2.5)/0.6 m = 1.17 k.
Table 20. ARM PLL’s Electrical Parameters
Parameter Value
Clock output range 648 MHz ~ 1296 MHz
Reference clock 24 MHz
Lock time <2250 reference cycles
Electrical Characteristics
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 33
4.6 I/O DC Parameters
This section includes the DC parameters of the following I/O types:
XTALI and RTC_XTALI (Clock Inputs) DC Parameters
General Purpose I/O (GPIO)
Double Data Rate I/O (DDR) for LPDDR2 and DDR3 modes
LVDS I/O DC Parameters
NOTE
The term ‘OVDD’ in this section refers to the associated supply rail of an
input or output.
Table 21. OSC32K Main Characteristics
Min Typ Max Comments
Fosc 32.768 KHz This frequency is nominal and determined mainly by the crystal selected.
32.0 K would work as well.
Current consumption 4 A The 4 A is the consumption of the oscillator alone (OSC32k). Total supply
consumption will depend on what the digital portion of the RTC consumes.
The ring oscillator consumes 1 A when ring oscillator is inactive, 20 A
when the ring oscillator is running. Another 1.5 A is drawn from vdd_rtc in
the power_detect block. So, the total current is 6.5 A on vdd_rtc when the
ring oscillator is not running.
Bias resistor 14 M This integrated bias resistor sets the amplifier into a high gain state. Any
leakage through the ESD network, external board leakage, or even a
scope probe that is significant relative to this value will debias the amp. The
debiasing will result in low gain, and will impact the circuit's ability to start
up and maintain oscillations.
Crystal Properties
Cload 10 pF Usually crystals can be purchased tuned for different Cloads. This Cload
value is typically 1/2 of the capacitances realized on the PCB on either side
of the quartz. A higher Cload will decrease oscillation margin, but
increases current oscillating through the crystal.
ESR — 50 k 100 kEquivalent series resistance of the crystal. Choosing a crystal with a higher
value will decrease the oscillating margin.
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
34 Freescale Semiconductor, Inc.
Electrical Characteristics
Figure 3. Circuit for Parameters Voh and Vol for I/O Cells
4.6.1 XTALI and RTC_XTALI (Clock Inputs) DC Parameters
Table 22 shows the DC parameters for the clock inputs.
4.6.2 Single Voltage General Purpose I/O (GPIO) DC Parameters
Table 23 shows DC parameters for GPIO pads. The parameters in Table 23 are guaranteed per the
operating ranges in Table 10, unless otherwise noted.
Table 22. XTALI and RTC_XTALI DC Parameters1
1The DC parameters are for external clock input only.
Parameter Symbol Test Conditions Min Max Unit
XTALI high-level DC input voltage Vih 0.8 x NVCC_PLL NVCC_PLL V
XTALI low-level DC input voltage Vil 0 0.2 V
RTC_XTALI high-level DC input voltage Vih 0.8 1.1 V
RTC_XTALI low-level DC input voltage Vil 0 0.2 V
Table 23. Single Voltage GPIO DC Parameters
Parameter Symbol Test Conditions Min Max Units
High-level output voltage1VOH Ioh= -0.1mA (ipp_dse=001,010)
Ioh= -1mA
(ipp_dse=011,100,101,110,111)
OVDD-0.15 V
Low-level output voltage1VOL Iol= 0.1mA (ipp_dse=001,010)
Iol= 1mA
(ipp_dse=011,100,101,110,111)
–0.15V
High-Level input voltage1,2 VIH 0.7*OVDD OVDD V
Low-Level input voltage1,2 VIL 0 0.3*OVDD V
Input Hysteresis (OVDD= 1.8V) VHYS_LowVDD OVDD=1.8V 250 mV
Input Hysteresis (OVDD=3.3V) VHYS_HighVDD OVDD=3.3V 250 mV
Schmitt trigger VT+2,3 VTH+ 0.5*OVDD mV
Electrical Characteristics
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 35
4.6.3 DDR I/O DC Parameters
The DDR I/O pads support LPDDR2 and DDR3/DDR3L operational modes. The Multi-mode DDR
Controller (MMDC) is compatible with JEDEC-compliant SDRAMs.
The i.MX 6UltraLite MMDC supports the following memory types:
LPDDR2 SDRAM compliant to JESD209-2B LPDDR2 JEDEC standard release June, 2009
DDR3 SDRAM compliant to JESD79-3E DDR3 JEDEC standard release July, 2010
MMDC operation with the standards stated above is contingent upon the board DDR design adherence to
the DDR design and layout requirements stated in the Hardware Development Guide for the i.MX
6UltraLite Applications Processor (IMX6ULHDG).
4.6.3.1 LPDDR2 Mode I/O DC Parameters
Schmitt trigger VT-2,3 VTH- 0.5*OVDD mV
Pull-up resistor (22_k PU) RPU_22K Vin=0V 212 A
Pull-up resistor (22_k PU) RPU_22K Vin=OVDD 1 A
Pull-up resistor (47_k PU) RPU_47K Vin=0V 100 A
Pull-up resistor (47_k PU) RPU_47K Vin=OVDD 1 A
Pull-up resistor (100_k PU) RPU_100K Vin=0V 48 A
Pull-up resistor (100_k PU) RPU_100K Vin=OVDD 1 A
Pull-down resistor (100_k PD) RPD_100K Vin=OVDD 48 A
Pull-down resistor (100_k PD) RPD_100K Vin=0V 1 A
Input current (no PU/PD) IIN VI = 0, VI = OVDD -1 1 A
Keeper Circuit Resistance R_Keeper VI =0.3*OVDD, VI = 0.7* OVDD 105 175 k
1Overshoot and undershoot conditions (transitions above OVDD and below GND) on switching pads must be held below 0.6 V,
and the duration of the overshoot/undershoot must not exceed 10% of the system clock cycle. Overshoot/ undershoot must
be controlled through printed circuit board layout, transmission line impedance matching, signal line termination, or other
methods. Non-compliance to this specification may affect device reliability or cause permanent damage to the device.
2To maintain a valid level, the transition edge of the input must sustain a constant slew rate (monotonic) from the current DC
level through to the target DC level, Vil or Vih. Monotonic input transition time is from 0.1 ns to 1 s.
3Hysteresis of 250 mV is guaranteed over all operating conditions when hysteresis is enabled.
Table 24. LPDDR2 I/O DC Electrical Parameters1
Parameters Symbol Test Conditions Min Max Unit
High-level output voltage VOH Ioh= -0.1mA 0.9*OVDD V
Low-level output voltage VOL Iol= 0.1mA 0.1*OVDD V
Input Reference Voltage Vref 0.49*OVDD 0.51*OVDD V
Table 23. Single Voltage GPIO DC Parameters (continued)
Parameter Symbol Test Conditions Min Max Units
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
36 Freescale Semiconductor, Inc.
Electrical Characteristics
4.6.3.2 DDR3/DDR3L Mode I/O DC Parameters
The parameters in Table 26 are guaranteed per the operating ranges in Table 10, unless otherwise noted.
DC High-Level input voltage Vih_DC Vref+0.13 OVDD V
DC Low-Level input voltage Vil_DC OVSS Vref-0.13 V
Differential Input Logic High Vih_diff 0.26
Differential Input Logic Low Vil_diff Note2-0.26
Pull-up/Pull-down Impedance Mismatch Mmpupd -15 15 %
240 unit calibration resolution Rres 10
Keeper Circuit Resistance Rkeep 110 175 k
Input current (no pull-up/down) Iin VI = 0, VI = OVDD -2.5 2.5 A
1Note that the JEDEC LPDDR2 specification (JESD209_2B) supersedes any specification in this document.
Table 26. DDR3/DDR3L I/O DC Electrical Characteristics
Parameters Symbol Test Conditions Min Max Unit
High-level output voltage VOH Ioh= -0.1mA
Voh (for ipp_dse=001)
0.8*OVDD1
1OVDD – I/O power supply (1.425 V–1.575 V for DDR3 and 1.283 V–1.45 V for DDR3L)
—V
Low-level output voltage VOL Iol= 0.1mA
Vol (for ipp_dse=001)
0.2*OVDD V
High-level output voltage VOH Ioh= -1mA
Voh (for all except ipp_dse=001)
0.8*OVDD V
Low-level output voltage VOL Iol= 1mA
Vol (for all except ipp_dse=001)
0.2*OVDD V
Input Reference Voltage Vref 0.49*ovdd 0.51*ovdd V
DC High-Level input voltage Vih_DC Vref2+0.1
2Vref – DDR3/DDR3L external reference voltage
OVDD V
DC Low-Level input voltage Vil_DC OVSS Vref-0.1 V
Differential Input Logic High Vih_diff 0.2 See Note3V
Differential Input Logic Low Vil_diff See Note3-0.2 V
Termination Voltage Vtt Vtt tracking OVDD/2 0.49*OVDD 0.51*OVDD V
Pull-up/Pull-down Impedance Mismatch Mmpupd -10 10 %
240 unit calibration resolution Rres 10
Keeper Circuit Resistance Rkeep 105 165 k
Input current (no pull-up/down) Iin VI = 0,VI = OVDD -2.9 2.9 A
Table 24. LPDDR2 I/O DC Electrical Parameters1 (continued)
Parameters Symbol Test Conditions Min Max Unit
Electrical Characteristics
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 37
4.6.4 LVDS I/O DC Parameters
The LVDS interface complies with TIA/EIA 644-A standard. See TIA/EIA STANDARD 644-A,
“Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits” for details.
Table 27 shows the Low Voltage Differential Signaling (LVDS) I/O DC parameters.
4.7 I/O AC Parameters
This section includes the AC parameters of the following I/O types:
General Purpose I/O (GPIO)
Double Data Rate I/O (DDR) for LPDDR2 and DDR3/DDR3L modes
The GPIO and DDR I/O load circuit and output transition time waveforms are shown in Figure 4 and
Figure 5.
Figure 4. Load Circuit for Output
Figure 5. Output Transition Time Waveform
4.7.1 General Purpose I/O AC Parameters
The I/O AC parameters for GPIO in slow and fast modes are presented in the Table 28 and Table 29,
respectively. Note that the fast or slow I/O behavior is determined by the appropriate control bits in the
IOMUXC control registers.
3The single-ended signals need to be within the respective limits (Vih(dc) max, Vil(dc) min) for single-ended signals as well as
the limitations for overshoot and undershoot.
Table 27. LVDS I/O DC Characteristics
Parameter Symbol Test Conditions Min Typ Max Unit
Output Differential Voltage VOD Rload-100 Diff 250 350 450 mV
Output High Voltage VOH IOH = 0 mA 1.25 1.375 1.6 V
Output Low Voltage VOL IOL = 0 mA 0.9 1.025 1.25 V
Offset Voltage VOS 1.125 1.2 1.375 V
Test Point
From Output
Under Test
CL
CL includes package, probe and fixture capacitance
0V
OVDD
20%
80% 80%
20%
tr tf
Output (at pad)
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
38 Freescale Semiconductor, Inc.
Electrical Characteristics
4.7.2 DDR I/O AC Parameters
The Multi-mode DDR Controller (MMDC) is compatible with JEDEC-compliant SDRAMs.
The i.MX 6UltraLite MMDC supports the following memory types:
LPDDR2 SDRAM compliant to JESD209-2B LPDDR2 JEDEC standard release June, 2009
DDR3 SDRAM compliant to JESD79-3E DDR3 JEDEC standard release July, 2010
MMDC operation with the standards stated above is contingent upon the board DDR design adherence to
the DDR design and layout requirements stated in the Hardware Development Guide for the i.MX
6UltraLite Applications Processor (IMX6ULHDG).
Table 30 shows the AC parameters for DDR I/O operating in LPDDR2 mode.
Table 28. General Purpose I/O AC Parameters 1.8 V Mode
Parameter Symbol Test Condition Min Typ Max Unit
Output Pad Transition Times, rise/fall
(Max Drive, ipp_dse=111)
tr, tf 15 pF Cload, slow slew rate
15 pF Cload, fast slew rate —— 2.72/2.79
1.51/1.54
ns
Output Pad Transition Times, rise/fall
(High Drive, ipp_dse=101)
tr, tf 15 pF Cload, slow slew rate
15 pF Cload, fast slew rate —— 3.20/3.36
1.96/2.07
Output Pad Transition Times, rise/fall
(Medium Drive, ipp_dse=100)
tr, tf 15 pF Cload, slow slew rate
15 pF Cload, fast slew rate —— 3.64/3.88
2.27/2.53
Output Pad Transition Times, rise/fall
(Low Drive. ipp_dse=011)
tr, tf 15 pF Cload, slow slew rate
15 pF Cload, fast slew rate —— 4.32/4.50
3.16/3.17
Input Transition Times1
1Hysteresis mode is recommended for inputs with transition times greater than 25 ns.
trm 25 ns
Table 29. General Purpose I/O AC Parameters 3.3 V Mode
Parameter Symbol Test Condition Min Typ Max Unit
Output Pad Transition Times, rise/fall
(Max Drive, ipp_dse=101)
tr, tf 15 pF Cload, slow slew rate
15 pF Cload, fast slew rate —— 1.70/1.79
1.06/1.15
ns
ns
Output Pad Transition Times, rise/fall
(High Drive, ipp_dse=011)
tr, tf 15 pF Cload, slow slew rate
15 pF Cload, fast slew rate —— 2.35/2.43
1.74/1.77
Output Pad Transition Times, rise/fall
(Medium Drive, ipp_dse=010)
tr, tf 15 pF Cload, slow slew rate
15 pF Cload, fast slew rate —— 3.13/3.29
2.46/2.60
Output Pad Transition Times, rise/fall
(Low Drive. ipp_dse=001)
tr, tf 15 pF Cload, slow slew rate
15 pF Cload, fast slew rate —— 5.14/5.57
4.77/5.15
Input Transition Times1
1Hysteresis mode is recommended for inputs with transition times greater than 25 ns.
trm 25 ns
Electrical Characteristics
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 39
Table 31 shows the AC parameters for DDR I/O operating in DDR3/DDR3L mode.
Table 30. DDR I/O LPDDR2 Mode AC Parameters1
1Note that the JEDEC LPDDR2 specification (JESD209_2B) supersedes any specification in this document.
Parameter Symbol Test Condition Min Max Unit
AC input logic high Vih(ac) Vref + 0.22 OVDD V
AC input logic low Vil(ac) 0 Vref - 0.22 V
AC differential input high voltage2
2Vid(ac) specifies the input differential voltage | Vtr - Vcp | required for switching, where Vtr is the “true” input signal and Vcp
is the “complementary” input signal. The Minimum value is equal to Vih(ac) - Vil(ac).
Vidh(ac) 0.44 V
AC differential input low voltage Vidl(ac) 0.44 V
Input AC differential cross point voltage3
3The typical value of Vix(ac) is expected to be about 0.5 x OVDD. and Vix(ac) is expected to track variation of OVDD. Vix(ac)
indicates the voltage at which differential input signal must cross.
Vix(ac) Relative to Vref -0.12 0.12 V
Over/undershoot peak Vpeak 0.35 V
Over/undershoot area (above OVDD
or below OVSS)
Varea 400 MHz 0.3 V-ns
Single output slew rate, measured between
Vol (ac) and Voh (ac)
tsr 50 to Vref.
5 pF load.
Drive impedance = 40 
± 30%
1.5 3.5 V/ns
50 to Vref.
5pF load.Drive
impedance = 60 ±
30%
12.5
Skew between pad rise/fall asymmetry + skew
caused by SSN
tSKD clk = 400 MHz 0.1 ns
Table 31. DDR I/O DDR3/DDR3L Mode AC Parameters1
Parameter Symbol Test Condition Min Typ Max Unit
AC input logic high Vih(ac) Vref + 0.175 OVDD V
AC input logic low Vil(ac) 0 Vref - 0.175 V
AC differential input voltage2Vid(ac) 0.35 V
Input AC differential cross point voltage3Vix(ac) Relative to Vref Vref - 0.15 Vref + 0.15 V
Over/undershoot peak Vpeak 0.4 V
Over/undershoot area (above OVDD
or below OVSS)
Varea 400 MHz 0.5 V-ns
Single output slew rate, measured between Vol
(ac) and Voh (ac)
tsr Driver impedance = 34 2.5 5 V/ns
Skew between pad rise/fall asymmetry + skew
caused by SSN
tSKD clk = 400 MHz ——
0.1 ns
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
40 Freescale Semiconductor, Inc.
Electrical Characteristics
4.8 Output Buffer Impedance Parameters
This section defines the I/O impedance parameters of the i.MX 6UltraLite processors for the following
I/O types:
Single Voltage General Purpose I/O (GPIO)
Double Data Rate I/O (DDR) for LPDDR2, and DDR3/DDR3L modes
NOTE
GPIO and DDR I/O output driver impedance is measured with “long”
transmission line of impedance Ztl attached to I/O pad and incident wave
launched into transmission line. Rpu/Rpd and Ztl form a voltage divider that
defines specific voltage of incident wave relative to OVDD. Output driver
impedance is calculated from this voltage divider (see Figure 6).
1Note that the JEDEC JESD79_3D specification supersedes any specification in this document.
2Vid(ac) specifies the input differential voltage | Vtr-Vcp | required for switching, where Vtr is the “true” input signal and Vcp is
the “complementary” input signal. The Minimum value is equal to Vih(ac) - Vil(ac).
3The typical value of Vix(ac) is expected to be about 0.5 x OVDD. and Vix(ac) is expected to track variation of OVDD. Vix(ac)
indicates the voltage at which differential input signal must cross.
Electrical Characteristics
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 41
Figure 6. Impedance Matching Load for Measurement
ipp_do
Cload = 1p
Ztl , L = 20 inches
predriver
PMOS (Rpu)
NMOS (Rpd)
pad
OVDD
OVSS
t,(ns)
0
U,(V)
OVDD
t,(ns)
0
VDD
Vin (do)
Vout (pad)
U,(V)
Vref
Rpu = Vovdd - Vref1
Vref1
Ztl
Rpd = Ztl
Vref2
Vovdd - Vref2
Vref1 Vref2
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
42 Freescale Semiconductor, Inc.
Electrical Characteristics
4.8.1 Single Voltage GPIO Output Buffer Impedance
Table 32 shows the GPIO output buffer impedance (OVDD 1.8 V).
Table 33 shows the GPIO output buffer impedance (OVDD 3.3 V).
4.8.2 DDR I/O Output Buffer Impedance
Table 34 shows DDR I/O output buffer impedance of i.MX 6UltraLite processors.
Note:
1. Output driver impedance is controlled across PVTs using ZQ calibration procedure.
2. Calibration is done against 240 external reference resistor.
3. Output driver impedance deviation (calibration accuracy) is ±5% (max/min impedance) across PVTs.
4. It is recommended to use a strong driver strength (<= 48 ) for all DDR pads and all DDR type (DDR3/DDR3L/LPDDR2).
Table 32. GPIO Output Buffer Average Impedance (OVDD 1.8 V)
Parameter Symbol Drive Strength (DSE) Typ Value Unit
Output Driver
Impedance
Rdrv
001
010
011
100
101
110
111
260
130
88
65
52
43
37
Table 33. GPIO Output Buffer Average Impedance (OVDD 3.3 V)
Parameter Symbol Drive Strength (DSE) Typ Value Unit
Output Driver
Impedance
Rdrv
001
010
011
100
101
110
111
157
78
53
39
32
26
23
Table 34. DDR I/O Output Buffer Impedance
Parameter Symbol Test Conditions DSE
(Drive Strength)
Typical
Unit
NVCC_DRAM=1.5 V
(DDR3)
DDR_SEL=11
NVCC_DRAM=1.2 V
(LPDDR2)
DDR_SEL=10
Output Driver
Impedance Rdrv
000
001
010
011
100
101
110
111
Hi-Z
240
120
80
60
48
40
34
Hi-Z
240
120
80
60
48
40
34
Electrical Characteristics
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 43
4.9 System Modules Timing
This section contains the timing and electrical parameters for the modules in each i.MX 6UltraLite
processor.
4.9.1 Reset Timings Parameters
Figure 7 shows the reset timing and Table 35 lists the timing parameters.
Figure 7. Reset Timing Diagram
4.9.2 WDOG Reset Timing Parameters
Figure 8 shows the WDOG reset timing and Table 36 lists the timing parameters.
Figure 8. WDOGn_B Timing Diagram
NOTE
RTC_XTALI is approximately 32 kHz. RTC_XTALI cycle is one period or
approximately 30 s.
NOTE
WDOG1_B output signals (for each one of the Watchdog modules) do not
have dedicated pins, but are muxed out through the IOMUX. See the IOMUX
manual for detailed information.
Table 35. Reset Timing Parameters
ID Parameter Min Max Unit
CC1 Duration of POR_B to be qualified as valid. 1 RTC_XTALI cycle
Table 36. WDOGn_B Timing Parameters
ID Parameter Min Max Unit
CC3 Duration of WDOGn_B Assertion 1 RTC_XTALI cycle
POR_B
CC1
(Input)
WDOGn_B
CC3
(Output)
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
44 Freescale Semiconductor, Inc.
Electrical Characteristics
4.9.3 External Interface Module (EIM)
The following subsections provide information on the EIM. Maximum operating frequency for EIM data
transfer is 104 MHz. Timing parameters in this section that are given as a function of register settings or
clock periods are valid for the entire range of allowed frequencies (0–104 MHz).
4.9.3.1 EIM Interface Pads Allocation
EIM supports 16-bit and 8-bit devices operating in address/data separate or multiplexed modes. Table 37
provides EIM interface pads allocation in different modes.
Table 37. EIM Internal Module Multiplexing1
1For more information on configuration ports mentioned in this table, see the i.MX 6UltraLite Reference Manual (IMX6ULRM).
Setup
Non Multiplexed Address/Data Mode
Multiplexed
Address/Data
mode
8 Bit 16 Bit 16 Bit
MUM = 0,
DSZ = 100
MUM = 0,
DSZ = 101
MUM = 0,
DSZ = 110
MUM = 0,
DSZ = 111
MUM = 0,
DSZ = 001
MUM = 0,
DSZ = 010
MUM = 1,
DSZ = 001
EIM_ADDR
[15:00]
EIM_AD
[15:00]
EIM_AD
[15:00]
EIM_AD
[15:00]
EIM_AD
[15:00]
EIM_AD
[15:00]
EIM_AD
[15:00]
EIM_AD
[15:00]
EIM_ADDR
[26:16]
EIM_ADDR
[26:16]
EIM_ADDR
[26:16]
EIM_ADDR
[26:16]
EIM_ADDR
[26:16]
EIM_ADDR
[26:16]
EIM_ADDR
[26:16]
EIM_ADDR
[26:16]
EIM_DATA
[07:00],
EIM_EB0_B
EIM_DATA
[07:00]
Reserved Reserved EIM_DATA
[07:00]
Reserved EIM_AD
[07:00]
EIM_DATA
[15:08],
EIM_EB1_B
—EIM_DATA
[15:08]
Reserved Reserved EIM_DATA
[15:08]
Reserved EIM_AD
[15:08]
Electrical Characteristics
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 45
General EIM Timing-Synchronous Mode
Figure 9, Figure 10, and Table 38 specify the timings related to the EIM module. All EIM output control
signals may be asserted and deasserted by an internal clock synchronized to the EIM_BCLK rising edge
according to corresponding assertion/negation control fields.
,
Figure 9. EIM Outputs Timing Diagram
Figure 10. EIM Inputs Timing Diagram
4.9.3.2 Examples of EIM Synchronous Accesses
Table 38. EIM Bus Timing Parameters
ID Parameter Min1Max1Unit
WE1 EIM_BCLK Cycle time2t x (k + 1) ns
WE2 EIM_BCLK Low Level Width 0.4 x t x (k + 1) ns
WE3 EIM_BCLK High Level Width 0.4 x t x (k + 1) ns
WE4 Clock rise to address valid -0.5 x t x (k + 1) - 1.25 -0.5 x t x (k + 1) + 2.25 ns
WE4
EIM_ADDRxx
EIM_CSx_B
EIM_WE_B
EIM_OE_B
EIM_BCLK
EIM_EBx_B
EIM_LBA_B
Output Data
...
WE5
WE6 WE7
WE8 WE9
WE10 WE11
WE12 WE13
WE14 WE15
WE16 WE17
WE3
WE2
WE1
Input Data
EIM_WAIT_B
EIM_BCLK
WE19
WE18
WE21
WE20
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
46 Freescale Semiconductor, Inc.
Electrical Characteristics
Figure 11 to Figure 14 provide few examples of basic EIM accesses to external memory devices with the
timing parameters mentioned previously for specific control parameters settings.
Figure 11. Synchronous Memory Read Access, WSC=1
WE5 Clock rise to address invalid -0.5 x t x (k + 1) - 1.25 -0.5 x t x (k + 1) + 2.25 ns
WE6 Clock rise to EIM_CSx_B valid -0.5 x t x (k + 1) - 1.25 -0.5 x t x (k + 1) + 2.25 ns
WE7 Clock rise to EIM_CSx_B invalid -0.5 x t x (k + 1) - 1.25 -0.5 x t x (k + 1) + 2.25 ns
WE8 Clock rise to EIM_WE_B Valid -0.5 x t x (k + 1) - 1.25 -0.5 x t x (k + 1) + 2.25 ns
WE9 Clock rise to EIM_WE_B Invalid -0.5 x t x (k + 1) - 1.25 -0.5 x t x (k + 1) + 2.25 ns
WE10 Clock rise to EIM_OE_B Valid -0.5 x t x (k + 1) - 1.25 -0.5 x t x (k + 1) + 2.25 ns
WE11 Clock rise to EIM_OE_B Invalid -0.5 x t x (k + 1) - 1.25 -0.5 x t x (k + 1) + 2.25 ns
WE12 Clock rise to EIM_EBx_B Valid -0.5 x t x (k + 1) - 1.25 -0.5 x t x (k + 1) + 2.25 ns
WE13 Clock rise to EIM_EBx_B Invalid -0.5 x t x (k + 1) - 1.25 -0.5 x t x (k + 1) + 2.25 ns
WE14 Clock rise to EIM_LBA_B Valid -0.5 x t x (k + 1) - 1.25 -0.5 x t x (k + 1) + 2.25 ns
WE15 Clock rise to EIM_LBA_B Invalid -0.5 x t x (k + 1) - 1.25 -0.5 x t x (k + 1) + 2.25 ns
WE16 Clock rise to Output Data Valid -0.5 x t x (k + 1) - 1.25 -0.5 x t x (k + 1) + 2.25 ns
WE17 Clock rise to Output Data Invalid -0.5 x t x (k + 1) - 1.25 -0.5 x t x (k + 1) + 2.25 ns
WE18 Input Data setup time to Clock rise 2.3 ns
WE19 Input Data hold time from Clock rise 2 ns
WE20 EIM_WAIT_B setup time to Clock rise 2 ns
WE21 EIM_WAIT_B hold time from Clock
rise
2—ns
1k represents register setting BCD value.
2t is clock period (1/Freq.) For 104 MHz, t = 9.165 ns.
Table 38. EIM Bus Timing Parameters (continued)
ID Parameter Min1Max1Unit
Last Valid Address Address v1
D(v1)
EIM_BCLK
EIM_ADDRxx
EIM_DATAxx
EIM_WE_B
EIM_LBA_B
EIM_OE_B
EIM_EBx_B
EIM_CSx_B
WE4 WE5
WE6 WE7
WE10 WE11
WE13
WE12
WE14
WE15
WE18
WE19
Electrical Characteristics
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 47
Figure 12. Synchronous Memory, Write Access, WSC=1, WBEA=0 and WADVN=0
Figure 13. Muxed Address/Data (A/D) Mode, Synchronous Write Access, WSC=6, ADVA=0, ADVN=1, and
ADH=1
NOTE
In 32-bit muxed address/data (A/D) mode the 16 MSBs are driven on the
data bus.
Last Valid Address Address V1
D(V1)
EIM_BCLK
EIM_ADDRxx
EIM_DATAxx
EIM_WE_B
EIM_LBA_B
EIM_OE_B
EIM_EBx_B
EIM_CSx_B
WE4 WE5
WE6 WE7
WE8 WE9
WE12
WE13
WE14
WE15
WE16 WE17
EIM_BCLK
EIM_WE_B
EIM_LBA_B
EIM_OE_B
EIM_EBx_B
EIM_CSx_B
Address V1 Write Data
WE4
WE16
WE6
WE7
WE9
WE8
WE10
WE11
WE14 WE15
WE17
WE5
Last Valid Address
EIM_ADDRxx/
EIM_ADxx
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
48 Freescale Semiconductor, Inc.
Electrical Characteristics
Figure 14. 16-Bit Muxed A/D Mode, Synchronous Read Access, WSC=7, RADVN=1, ADH=1, OEA=0
4.9.3.3 General EIM Timing-Asynchronous Mode
Figure 15 through Figure 19, and Table 39 help to determine timing parameters relative to the chip select
(CS) state for asynchronous and DTACK EIM accesses with corresponding EIM bit fields and the timing
parameters mentioned above.
Asynchronous read & write access length in cycles may vary from what is shown in Figure 15 through
Figure 18 as RWSC, OEN and CSN is configured differently. See the i.MX 6UltraLite Reference Manual
(IMX6ULRM) for the EIM programming model.
Figure 15. Asynchronous Memory Read Access (RWSC = 5)
Last
EIM_BCLK
EIM_ADDRxx/
EIM_WE_B
EIM_LBA_B
EIM_OE_B
EIM_EBx_B
EIM_CSx_B
Address V1 Data
Valid Address
EIM_ADxx
WE5
WE6
WE7
WE14 WE15
WE10
WE11
WE12 WE13
WE18
WE19
WE4
Last Valid Address Address V1
D(V1)
EIM_ADDRxx/
EIM_DATAxx[7:0]
EIM_WE_B
EIM_LBA_B
EIM_OE_B
EIM_EBx_B
EIM_CSx_B
Next Address
WE39
WE35
WE37
WE32
WE36
WE38
WE43
WE40
WE31
WE44
INT_CLK
start of
access
end of
access
MAXDI
MAXCSO
MAXCO
EIM_ADxx
Electrical Characteristics
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 49
Figure 16. Asynchronous A/D Muxed Read Access (RWSC = 5)
Figure 17. Asynchronous Memory Write Access
Addr. V1 D(V1)
EIM_ADDRxx/
EIM_WE_B
EIM_LBA_B
EIM_OE_B
EIM_EBx_B
EIM_CSx_B
WE39
WE35A
WE37
WE36
WE38
WE40A
WE31
WE44
INT_CLK
start of
access
end of
access
MAXDI
MAXCSO
MAXCO
WE32A
EIM_ADxx
Last Valid Address Address V1
D(V1)
EIM_ADDRxx
EIM_DATAxx
EIM_WE_B
EIM_LBA_B
EIM_OE_B
EIM_EBx_B
EIM_CSx_B
Next Address
WE31
WE39
WE33
WE45
WE32
WE40
WE34
WE46
WE42
WE41
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
50 Freescale Semiconductor, Inc.
Electrical Characteristics
Figure 18. Asynchronous A/D Muxed Write Access
Figure 19. DTACK Mode Read Access (DAP=0)
EIM_WE_B
EIM_OE_B
EIM_EBx_B
EIM_CSx_B
WE33
WE45
WE34
WE46
WE42
Addr. V1 D(V1)
EIM_ADDRxx/
WE31
WE42
WE41
WE32A
EIM_DATAxx
EIM_LBA_B
WE39
WE40A
Last Valid Address Address V1
D(V1)
EIM_ADDRxx
EIM_DATAxx[7:0]
EIM_WE_B
EIM_LBA_B
EIM_OE_B
EIM_EBx_B
EIM_CSx_B
Next Address
WE39
WE35
WE37
WE32
WE36
WE38
WE43
WE40
WE31
WE44
EIM_DTACK_B
WE47
WE48
Electrical Characteristics
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 51
Figure 20. DTACK Mode Write Access (DAP=0)
Table 39. EIM Asynchronous Timing Parameters Table Relative Chip to Select1,2
Ref No. Parameter
Determination by
Synchronous measured
parameters
Min Max Unit
WE31 EIM_CSx_B valid to
Address Valid
WE4 - WE6 - CSA x t -3.5 - CSA x t 3.5 - CSA x t ns
WE32 Address Invalid to
EIM_CSx_B Invalid
WE7 - WE5 - CSN x t -3.5 - CSN x t 3.5 - CSN x t ns
WE32A(mu
xed A/D
EIM_CSx_B valid to
Address Invalid
t + WE4 - WE7 + (ADVN +
ADVA + 1 - CSA) x t
t - 3.5 + (ADVN + ADVA
+ 1 - CSA) x t
t + 3.5 + (ADVN +
ADVA + 1 - CSA) x t
ns
WE33 EIM_CSx_B Valid to
EIM_WE_B Valid
WE8 - WE6 + (WEA - WCSA) x
t
-3.5 + (WEA - WCSA) x t 3.5 + (WEA - WCSA) x t ns
WE34 EIM_WE_B Invalid
to EIM_CSx_B
Invalid
WE7 - WE9 + (WEN - WCSN) x
t
-3.5 + (WEN - WCSN) x t 3.5 + (WEN - WCSN) x t ns
WE35 EIM_CSx_B Valid to
EIM_OE_B Valid
WE10 - WE6 + (OEA - RCSA) x
t
-3.5 + (OEA - RCSA) x t 3.5 + (OEA - RCSA) x t ns
WE35A
(muxed
A/D)
EIM_CSx_B Valid to
EIM_OE_B Valid
WE10 - WE6 + (OEA + RADVN
+ RADVA + ADH + 1 - RCSA) x
t
-3.5 + (OEA + RADVN +
RADVA + ADH + 1 -
RCSA) x t
3.5 + (OEA + RADVN +
RADVA + ADH + 1 -
RCSA) x t
ns
WE36 EIM_OE_B Invalid
to EIM_CSx_B
Invalid
WE7 - WE11 + (OEN - RCSN) x
t
-3.5 + (OEN - RCSN) x t 3.5 + (OEN - RCSN) x t ns
Last Valid Address Address V1
D(V1)
EIM_ADDRxx
EIM_DATAxx
EIM_WE_B
EIM_LBA_B
EIM_OE_B
EIM_EBx_B
EIM_CSx_B
Next Address
WE31
WE39
WE33
WE45
WE32
WE40
WE34
WE46
WE42
WE41
EIM_DTACK_B
WE48
WE47
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
52 Freescale Semiconductor, Inc.
Electrical Characteristics
WE37 EIM_CSx_B Valid to
EIM_EBx_B Valid
(Read access)
WE12 - WE6 + (RBEA - RCSA)
x t
-3.5 + (RBEA - RCSA) x t 3.5 + (RBEA - RCSA) x
t
ns
WE38 EIM_EBx_B Invalid
to EIM_CSx_B
Invalid (Read
access)
WE7 - WE13 + (RBEN - RCSN)
x t
-3.5 + (RBEN - RCSN) x t 3.5 + (RBEN- RCSN) x t ns
WE39 EIM_CSx_B Valid to
EIM_LBA_B Valid
WE14 - WE6 + (ADVA - CSA) x
t
-3.5 + (ADVA - CSA) x t 3.5 + (ADVA - CSA) x t ns
WE40 EIM_LBA_B Invalid
to EIM_CSx_B
Invalid (ADVL is
asserted)
WE7 - WE15 - CSN x t -3.5 - CSN x t 3.5 - CSN x t ns
WE40A
(muxed
A/D)
EIM_CSx_B Valid to
EIM_LBA_B Invalid
WE14 - WE6 + (ADVN + ADVA
+ 1 - CSA) x t
-3.5 + (ADVN + ADVA +
1 - CSA) x t
3.5 + (ADVN + ADVA +
1 - CSA) x t
ns
WE41 EIM_CSx_B Valid to
Output Data Valid
WE16 - WE6 - WCSA x t -3.5 - WCSA x t 3.5 - WCSA x t ns
WE41A
(muxed
A/D)
EIM_CSx_B Valid to
Output Data Valid
WE16 - WE6 + (WADVN +
WADVA + ADH + 1 - WCSA) x t
-3.5 + (WADVN +
WADVA + ADH + 1 -
WCSA) x t
3.5 + (WADVN +
WADVA + ADH + 1 -
WCSA) x t
ns
WE42 Output Data Invalid
to EIM_CSx_B
Invalid
WE17 - WE7 - CSN x t -3.5 - CSN x t 3.5 - CSN x t ns
MAXCO Output maximum
delay from internal
driving
EIM_ADDRxx/contr
ol flip-flops to chip
outputs
10 10 ns
MAXCSO Output maximum
delay from internal
chip selects driving
flip-flops to
EIM_CSx_B out
10 10 ns
MAXDI EIM_DATAxx
maximum delay
from chip input data
to its internal flip-flop
5—5ns
WE43 Input Data Valid to
EIM_CSx_B Invalid
MAXCO - MAXCSO + MAXDI MAXCO - MAXCSO +
MAXDI
—ns
WE44 EIM_CSx_B Invalid
to Input Data Invalid
00ns
Table 39. EIM Asynchronous Timing Parameters Table Relative Chip to Select1,2
Ref No. Parameter
Determination by
Synchronous measured
parameters
Min Max Unit
Electrical Characteristics
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 53
WE45 EIM_CSx_B Valid to
EIM_EBx_B Valid
(Write access)
WE12 - WE6 + (WBEA -
WCSA) x t
-3.5 + (WBEA - WCSA) x
t
3.5 + (WBEA - WCSA)
x t
ns
WE46 EIM_EBx_B Invalid
to EIM_CSx_B
Invalid (Write
access)
WE7 - WE13 + (WBEN -
WCSN) x t
-3.5 + (WBEN - WCSN) x
t
3.5 + (WBEN - WCSN)
x t
ns
MAXDTI MAXIMUM delay
from
EIM_DTACK_B to
its internal flip-flop +
2 cycles for
synchronization
10 10
WE47 EIM_DTACK_B
Active to
EIM_CSx_B Invalid
MAXCO - MAXCSO + MAXDTI MAXCO - MAXCSO +
MAXDTI
—ns
WE48 EIM_CSx_B Invalid
to EIM_DTACK_B
Invalid
00ns
1For more information on configuration parameters mentioned in this table, see the i.MX 6UltraLite Reference Manual
(IMX6ULRM).
2In this table, CSA means WCSA when write operation or RCSA when read operation
— t means clock period from axi_clk frequency.
—CSA means register setting for WCSA when in write operations or RCSA when in read operations.
—CSN means register setting for WCSN when in write operations or RCSN when in read operations.
—ADVN means register setting for WADVN when in write operations or RADVN when in read operations.
—ADVA means register setting for WADVA when in write operations or RADVA when in read operations.
Table 39. EIM Asynchronous Timing Parameters Table Relative Chip to Select1,2
Ref No. Parameter
Determination by
Synchronous measured
parameters
Min Max Unit
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
54 Freescale Semiconductor, Inc.
Electrical Characteristics
4.9.4 DDR SDRAM Specific Parameters (DDR3 and LPDDR2)
4.9.4.1 DDR3 Parameters
The i.MX 6UltraLite supports single Chip Select DDR3 memory with CS0_B, ODT0, and SDCKE0.
Figure 21 shows the DDR3 basic timing diagram with the timing parameters provided in Table 40.
Figure 21. DDR3 Command and Address Timing Diagram
1All measurements are in reference to Vref level.
Table 40. DDR3 Timing Parameters
ID Parameter Symbol
CK = 400 MHz
Unit
Min Max
DDR1 DRAM_SDCLKx_P clock high-level width tCH 0.47 0.53 tCK
DDR2 DRAM_SDCLKx_P clock low-level width tCL 0.47 0.53 tCK
DDR4 DRAM_CSx_B, DRAM_RAS_B, DRAM_CAS_B, DRAM_SDCKE, DRAM_SDWE_B,
DRAM_SDODTx setup time
tIS 515 ps
DDR5 DRAM_CSx_B, DRAM_RAS_B, DRAM_CAS_B, DRAM_SDCKE, DRAM_SDWE_B,
DRAM_SDODTx hold time
tIH 425 ps
DDR6 Address output setup time tIS 515 ps
DDR7 Address output hold time tIH 425 ps
DRAM_SDWE_B
DRAM_ADDRxx ROW/BA COL/BA
DDR1
DDR2
DDR4
DDR4
DDR5
DDR5
DDR5
DDR5
DDR6
DDR7
DRAM_SDCLKx_P
DRAM_
ODTx /
DDR4
DRAM_
SDCKEx
DRAM_SDCLKx_N
DRAM_CSx_B
DRAM_RAS_B
DRAM_CAS_B
DDR4
Electrical Characteristics
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 55
2Measurements were done using balanced load and 25 resistor from outputs to VDD_REF.
Figure 22 shows the DDR3 write timing diagram. The timing parameters for this diagram appear in Table
41.
Figure 22. DDR3 Write Cycle
1To receive the reported setup and hold values, write calibration should be performed in order to locate the DRAM_SDQSx_P in
the middle of DRAM_DATAxx window.
2All measurements are in reference to Vref level.
3Measurements were taken using balanced load and 25 resistor from outputs to DDR_VREF.
Table 41. DDR3 Write Cycle
ID Parameter Symbol
CK = 400MHz
Unit
Min Max
DDR17 DRAM_DATAxx and DRAM_DQMx setup time to DRAM_SDQSx_P
(differential strobe)
tDS 175 ps
DDR18 DRAM_DATAxx and DRAM_DQMx hold time to DRAM_SDQSx_P
(differential strobe)
tDH 200 ps
DDR21 DRAM_SDQSx_P latching rising transitions to associated clock edges tDQSS -0.25 +0.25 tCK
DDR22 DRAM_SDQSx_P high level width tDQSH 0.45 0.55 tCK
DDR23 DRAM_SDQSx_P low level width tDQSL 0.45 0.55 tCK
DRAM_SDCLKx_P
DRAM_SDCLKx_N
DRAM_SDQSx_P
DRAM_DATAxx
DRAM_DQMx
Data Data Data Data Data Data Data Data
DM DM DM DM DM DM DM DM
DDR17
DDR17
DDR17
DDR17
DDR18 DDR18
DDR18 DDR18
DDR21
DDR23
DDR22
(output)
(output)
(output)
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
56 Freescale Semiconductor, Inc.
Electrical Characteristics
Figure 23 shows the DDR3 read timing diagram. The timing parameters for this diagram appear in Table
42.
Figure 23. DDR3 Read Cycle
1To receive the reported setup and hold values, read calibration should be performed in order to locate the DRAM_SDQSx_P
in the middle of DRAM_DATAxx window.
2All measurements are in reference to Vref level.
3Measurements were done using balanced load and 25 resistor from outputs to VDD_REF.
4.9.4.2 LPDDR2 Parameters
The i.MX 6UltraLite supports a maximum of two die loads on the data bus signals: SDCKE0/1 and CS0/1.
Figure 24 shows the LPDDR2 basic timing diagram. The timing parameters for this diagram appear in
Table 43.
Figure 24. LPDDR2 Command and Address Timing Diagram
Table 42. DDR3 Read Cycle
ID Parameter Symbol
CK = 400 MHz
Unit
Min Max
DDR26 Minimum required DRAM_DATAxx valid window width 450 ps
DRAM_SDCLKx_P
DRAM_SDCLKx_N
DRAM_SDQSx_P
DRAM_DATAxx
DATA
DATA
DATA
DATADATA
DATA
DATADATA
DDR26
(input)
(input)
DRAM_SDCLKx_P
DRAM_CSx_B
DRAM_SDCKEx
DRAM_CAS_B
LP4
LP4
LP3
LP4
LP3
LP2
LP3
LP3
LP1
Electrical Characteristics
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 57
1All measurements are in reference to Vref level.
2Measurements were done using balanced load and 25 resistor from outputs to DDR_VREF.
Figure 25 shows the LPDDR2 write timing diagram. The timing parameters for this diagram appear in
Table 44.
Figure 25. LPDDR2 Write Cycle
Table 43. LPDDR2 Timing Parameter
ID Parameter Symbol
CK = 400 MHz
Unit
Min Max
LP1 SDRAM clock high-level width tCH 0.45 0.55 tCK
LP2 SDRAM clock low-level width tCL 0.45 0.55 tCK
LP3 DRAM_CSx_B, DRAM_SDCKEx setup time tIS 490 ps
LP4 DRAM_CSx_B, DRAM_SDCKEx hold time tIH 440 ps
LP3 DRAM_CAS_B setup time tIS 490 ps
LP4 DRAM_CAS_B hold time tIH 440 ps
Table 44. LPDDR2 Write Cycle
ID Parameter Symbol
CK = 400 MHz
Unit
Min Max
LP17 DRAM_DATAxx and DRAM_DQMx setup time to DRAM_SDQSx_P
(differential strobe)
tDS 320 ps
LP18 DRAM_DATAxx and DRAM_DQMx hold time to DRAM_SDQSx_P
(differential strobe)
tDH 320 ps
LP21 DRAM_SDQSx_P latching rising transitions to associated clock edges tDQSS -0.25 +0.25 tCK
LP22 DRAM_SDQSx_P high level width tDQSH 0.4 tCK
LP23 DRAM_SDQSx_P low level width tDQSL 0.4 tCK
DRAM_SDCLKx_P
DRAM_SDCLKx_N
DRAM_SDCLKx_P
DRAM_DATAxx
DRAM_DQMx
Data Data Data Data Data Data Data Data
DM DM DM DM DM DM DM DM
LP17
LP17
LP17
LP17
LP18
LP18
LP18 LP18
LP21
LP23
LP22
(output)
(output)
(output)
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
58 Freescale Semiconductor, Inc.
Electrical Characteristics
1To receive the reported setup and hold values, write calibration should be performed in order to locate the DRAM_SDQS in
the middle of DRAM_DATAxx window.
2All measurements are in reference to Vref level.
3Measurements were done using balanced load and 25 resistor from outputs to DDR_VREF.
Figure 26 shows the LPDDR2 read timing diagram. The timing parameters for this diagram appear in
Table 45.
Figure 26. LPDDR2 Read Cycle
1To receive the reported setup and hold values, read calibration should be performed in order to locate the DRAM_SDQSx_P
in the middle of DRAM_DATA_xx window.
2All measurements are in reference to Vref level.
3Measurements were done using balanced load and 25 resistor from outputs to DDR_VREF.
4.10 General-Purpose Media Interface (GPMI) Timing
The i.MX 6UltraLite GPMI controller is a flexible interface NAND Flash controller with 8-bit data width,
up to 200 MB/s I/O speed and individual chip select.
It supports Asynchronous timing mode, Source Synchronous timing mode and Samsung Toggle timing
mode separately described in the following subsections.
4.10.1 Asynchronous Mode AC Timing (ONFI 1.0 Compatible)
Asynchronous mode AC timings are provided as multiplications of the clock cycle and fixed delay. The
maximum I/O speed of GPMI in asynchronous mode is about 50 MB/s. Figure 27 through Figure 30
depicts the relative timing between GPMI signals at the module level for different operations under
asynchronous mode. Table 46 describes the timing parameters (NF1–NF17) that are shown in the figures.
Table 45. LPDDR2 Read Cycle
ID Parameter Symbol
CK = 400 MHz
Unit
Min Max
LP26 Minimum required DRAM_DATAxx valid window width for LPDDR2 270 ps
DRAM_SDCLKx_P
DRAM_SDCLKx_N
DRAM_SDQSx_P
DRAM_DATAxx
DATA
DATA
DATA
DATADATA
DATA
DATADATA
LP26
(input)
(input)
Electrical Characteristics
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 59
Figure 27. Command Latch Cycle Timing Diagram
Figure 28. Address Latch Cycle Timing Diagram
Figure 29. Write Data Latch Cycle Timing Diagram
Figure 30. Read Data Latch Cycle Timing Diagram (Non-EDO Mode)
ŽŵŵĂŶĚ
.!.$?#,%
.!.$?#%?"
.!.$?7%?"
.!.$?!,%
.!.$?$!4!XX
E&ϴ E&ϵ
E&ϳ
E&ϲ
E&ϱ
E&Ϯ
E&ϭ
E&ϯ E&ϰ
ĚĚƌĞƐƐ
E&ϭϬ
E&ϭϭ
E&ϵE&ϴ
E&ϳ
E&ϲ
E&ϱ
E&ϭ
E&ϯ
.!.$?#,%
.!.$?#%?"
.!.$?7%?"
.!.$?!,%
EEͺddždž
ĂƚĂƚŽE&
E&ϭϬ
E&ϭϭ
E&ϳ
E&ϲ
E&ϱ
E&ϭ
E&ϯ
.!.$?#,%
.!.$?#%?"
.!.$?7%?"
.!.$?!,%
.!.$?$!4!XX
E&ϵ
E&ϴ
ĂƚĂĨƌŽŵE&
E&ϭϰ
E&ϭϱ
E&ϭϳ
E&ϭϲ
E&ϭϮ
E&ϭϯ
.!.$?#,%
.!.$?#%?"
.!.$?2%?"
.!.$?2%!$9?"
.!.$?$!4!XX
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
60 Freescale Semiconductor, Inc.
Electrical Characteristics
Figure 31. Read Data Latch Cycle Timing Diagram (EDO Mode)
Table 46. Asynchronous Mode Timing Parameters1
1GPMI’s Async Mode output timing can be controlled by the module’s internal registers
HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD.
This AC timing depends on these registers settings. In the table, AS/DS/DH represents each of these settings.
ID Parameter Symbol
Timing
T = GPMI Clock Cycle Unit
Min. Max.
NF1 NAND_CLE setup time tCLS (AS + DS) T - 0.12 [see 2,3]
2 AS minimum value can be 0, while DS/DH minimum value is 1.
3T = GPMI clock period -0.075ns (half of maximum p-p jitter).
ns
NF2 NAND_CLE hold time tCLH DH T - 0.72 [see 2]ns
NF3 NAND_CE0_B setup time tCS (AS + DS + 1) T [see 3,2]ns
NF4 NAND_CE0_B hold time tCH (DH+1) T - 1 [see 2]ns
NF5 NAND_WE_B pulse width tWP DS T [see 2]ns
NF6 NAND_ALE setup time tALS (AS + DS) T - 0.49 [see 3,2]ns
NF7 NAND_ALE hold time tALH (DH T - 0.42 [see 2]ns
NF8 Data setup time tDS DS T - 0.26 [see 2]ns
NF9 Data hold time tDH DH T - 1.37 [see 2]ns
NF10 Write cycle time tWC (DS + DH) T [see 2]ns
NF11 NAND_WE_B hold time tWH DH T [see 2]ns
NF12 Ready to NAND_RE_B low tRR4
4NF12 is guaranteed by the design.
(AS + 2) T [see 3,2]—ns
NF13 NAND_RE_B pulse width tRP DS T [see 2]ns
NF14 READ cycle time tRC (DS + DH) T [see 2]ns
NF15 NAND_RE_B high hold time tREH DH T [see 2]ns
NF16 Data setup on read tDSR (DS T -0.67)/18.38 [see 5,6]
5Non-EDO mode.
6EDO mode, GPMI clock 100 MHz
(AS=DS=DH=1, GPMI_CTL1 [RDN_DELAY] = 8, GPMI_CTL1 [HALF_PERIOD] = 0).
ns
NF17 Data hold on read tDHR 0.82/11.83 [see 5,6]—ns
ĂƚĂĨƌŽŵE&
E&ϭϰ
E&ϭϱ
E&ϭϳ
E&ϭϲ
E&ϭϮ
E&ϭϯ
.!.$?#,%
.!.$?#%?"
.!.$?2%?"
.!.$?2%!$9?"
EEͺddždž
Electrical Characteristics
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 61
In EDO mode (Figure 30), NF16/NF17 is different from the definition in non-EDO mode (Figure 29).
They are called tREA/tRHOH (RE# access time/RE# HIGH to output hold). The typical values for them
are 16 ns (max for tREA)/15 ns (min for tRHOH) at 50 MB/s EDO mode. In EDO mode, GPMI will
sample NAND_DATAxx at rising edge of delayed NAND_RE_B provided by an internal DPLL. The
delay value can be controlled by GPMI_CTRL1.RDN_DELAY (see the GPMI chapter of the i.MX
6UltraLite Reference Manual). The typical value of this control register is 0x8 at 50 MT/s EDO mode. But
if the board delay is big enough and cannot be ignored, the delay value should be made larger to
compensate the board delay.
4.10.2 Source Synchronous Mode AC Timing (ONFI 2.x Compatible)
Figure 32 to Figure 34 show the write and read timing of Source Synchronous Mode.
Figure 32. Source Synchronous Mode Command and Address Timing Diagram
1)
1) 1)
1) 1)
1)
1)
1)
1)
1)
1)
1)
1)
&0' $''
.!.$?#%?"
1$1'B&/(
1$1'B$/(
1$1'B:(5(B%
1$1'B&/.
1$1'B'46
1$1'B'46
2XWSXWHQDEOH
1$1'B'$7$>@
1$1'B'$7$>@
2XWSXWHQDEOH
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
62 Freescale Semiconductor, Inc.
Electrical Characteristics
Figure 33. Source Synchronous Mode Data Write Timing Diagram
Figure 34. Source Synchronous Mode Data Read Timing Diagram
1)
1)
1)
1)
1)
1)
1)
1) 1)
1) 1)
1) 1)
1)
1)
1)
1)
.!.$?#%?"
.!.$?#,%
.!.$?!,%
1$1'B:(5(B%
.!.$?#,+
.!.$?$13
.!.$?$13
2XWSXWHQDEOH
.!.$?$1;=
.!.$?$1;=
2XWSXWHQDEOH
1)
1)
1)
1)
1)
1)
1) 1)
1)
1)
1)
1)
1)
.!.$?#%?"
.!.$?#,%
1$1'B$/(
.!.$?7%2%
.!.$?#,+
.!.$?$13
.!.$?$13
/UTPUTENABLE
.!.$?$!4!;=
.!.$?$!4!;=
/UTPUTENABLE
1)
Electrical Characteristics
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 63
Figure 35. NAND_DQS/NAND_DQ Read Valid Window
For DDR Source sync mode, Figure 35 shows the timing diagram of NAND_DQS/NAND_DATAxx read
valid window. The typical value of tDQSQ is 0.85ns (max) and 1ns (max) for tQHS at 200MB/s. GPMI
will sample NAND_DATA[7:0] at both rising and falling edge of a delayed NAND_DQS signal, which
can be provided by an internal DPLL. The delay value can be controlled by GPMI register
GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the i.MX 6UltraLite
Reference Manual). Generally, the typical delay value of this register is equal to 0x7 which means 1/4
clock cycle delay expected. But if the board delay is big enough and cannot be ignored, the delay value
should be made larger to compensate the board delay.
Table 47. Source Synchronous Mode Timing Parameters1
1GPMI’s source synchronous mode output timing can be controlled by the module’s internal registers
GPMI_TIMING2_CE_DELAY, GPMI_TIMING_PREAMBLE_DELAY, GPMI_TIMING2_POST_DELAY. This AC timing
depends on these registers settings. In the table, CE_DELAY/PRE_DELAY/POST_DELAY represents each of these settings.
ID Parameter Symbol
Timing
T = GPMI Clock Cycle Unit
Min. Max.
NF18 NAND_CE0_B access time tCE CE_DELAY T - 0.79 [see 2]
2T = tCK(GPMI clock period) -0.075ns (half of maximum p-p jitter).
ns
NF19 NAND_CE0_B hold time tCH 0.5 tCK - 0.63 [see 2]ns
NF20 Command/address NAND_DATAxx setup time tCAS 0.5 tCK - 0.05 ns
NF21 Command/address NAND_DATAxx hold time tCAH 0.5 tCK - 1.23 ns
NF22 Clock period tCK ns
NF23 Preamble delay tPRE PRE_DELAY T - 0.29 [see 2]ns
NF24 Postamble delay tPOST POST_DELAY T - 0.78 [see 2]ns
NF25 NAND_CLE and NAND_ALE setup time tCALS 0.5 tCK - 0.86 ns
NF26 NAND_CLE and NAND_ALE hold time tCALH 0.5 tCK - 0.37 ns
NF27 NAND_CLK to first NAND_DQS latching transition tDQSS T - 0.41 [see 2]ns
NF28 Data write setup 0.25 tCK - 0.35
NF29 Data write hold 0.25 tCK - 0.85
NF30 NAND_DQS/NAND_DQ read setup skew 2.06
NF31 NAND_DQS/NAND_DQ read hold skew 1.95
Ϭ ϭ Ϯ ϯ
.!.$?$13
.!.$?$!4!;=
E&ϯϬ
E&ϯϭ
E&ϯϬ
E&ϯϭ
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
64 Freescale Semiconductor, Inc.
Electrical Characteristics
4.10.3 Samsung Toggle Mode AC Timing
4.10.3.1 Command and Address Timing
NOTE
Samsung Toggle Mode command and address timing is the same as ONFI
1.0 compatible Async mode AC timing. See Section 4.10.1, “Asynchronous
Mode AC Timing (ONFI 1.0 Compatible),” for details.
4.10.3.2 Read and Write Timing
Figure 36. Samsung Toggle Mode Data Write Timing
.!.$?$!4!;=
DEV?CLK
.!.$?#%X?"
.!.$?#,%
.!.$?!,%
.!.$?7%?"
.!.$?2%?"
.!.$?$13
T#+
.& .&
T#+
Electrical Characteristics
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 65
Figure 37. Samsung Toggle Mode Data Read Timing
Table 48. Samsung Toggle Mode Timing Parameters1
ID Parameter Symbol
Timing
T = GPMI Clock Cycle Unit
Min. Max.
NF1 NAND_CLE setup time tCLS (AS + DS) T - 0.12 [see 2,3]—
NF2 NAND_CLE hold time tCLH DH T - 0.72 [see 2]—
NF3 NAND_CE0_B setup time tCS (AS + DS) T - 0.58 [see 3,2]—
NF4 NAND_CE0_B hold time tCH DH T - 1 [see 2]—
NF5 NAND_WE_B pulse width tWP DS T [see 2]—
NF6 NAND_ALE setup time tALS (AS + DS) T - 0.49 [see 3,2]—
NF7 NAND_ALE hold time tALH DH T - 0.42 [see 2]—
NF8 Command/address NAND_DATAxx setup time tCAS DS T - 0.26 [see 2]—
NF9 Command/address NAND_DATAxx hold time tCAH DH T - 1.37 [see 2]—
NF18 NAND_CEx_B access time tCE CE_DELAY T [see 4,2]—ns
NF22 clock period tCK ns
NF23 preamble delay tPRE PRE_DELAY T [see 5,2]—ns
NF24 postamble delay tPOST POST_DELAY T +0.43 [see 2]— ns
DEV?CLK
.!.$?#%X?"
.!.$?#,%
.!.$?!,%
.!.$?7%?"
.!.$?2%?"
.!.$?$13
.!.$?$!4!;=
.&
T#+
T#+
.&
T#+
T#+
.& T#+
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
66 Freescale Semiconductor, Inc.
Electrical Characteristics
For DDR Toggle mode, Figure 35 shows the timing diagram of NAND_DQS/NAND_DATAxx read valid
window. The typical value of tDQSQ is 1.4 ns (max) and 1.4 ns (max) for tQHS at 133 MB/s. GPMI will
sample NAND_DATA[7:0] at both rising and falling edge of an delayed NAND_DQS signal, which is
provided by an internal DPLL. The delay value of this register can be controlled by GPMI register
GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the i.MX 6UltraLite
Reference Manual). Generally, the typical delay value is equal to 0x7 which means 1/4 clock cycle delay
expected. But if the board delay is big enough and cannot be ignored, the delay value should be made larger
to compensate the board delay.
4.11 External Peripheral Interface Parameters
The following subsections provide information on external peripheral interfaces.
4.11.1 CMOS Sensor Interface (CSI) Timing Parameters
4.11.1.0.1 Gated Clock Mode Timing
Figure 38 and Figure 39 shows the gated clock mode timings for CSI, and Table 49 describes the timing
parameters (P1–P7) shown in the figures. A frame starts with a rising/falling edge on CSI_VSYNC
NF28 Data write setup tDS60.25 tCK - 0.32 ns
NF29 Data write hold tDH60.25 tCK - 0.79 ns
NF30 NAND_DQS/NAND_DQ read setup skew tDQSQ7—3.18
NF31 NAND_DQS/NAND_DQ read hold skew tQHS7—3.27
1The GPMI toggle mode output timing can be controlled by the module’s internal registers
HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD.
This AC timing depends on these registers settings. In the table, AS/DS/DH represents each of these settings.
2 AS minimum value can be 0, while DS/DH minimum value is 1.
3T = tCK (GPMI clock period) -0.075ns (half of maximum p-p jitter).
4CE_DELAY represents HW_GPMI_TIMING2[CE_DELAY]. NF18 is guaranteed by the design. Read/Write operation is started
with enough time of ALE/CLE assertion to low level.
5PRE_DELAY+1) (AS+DS)
6Shown in Figure 36.
7Shown in Figure 37.
Table 48. Samsung Toggle Mode Timing Parameters1 (continued)
ID Parameter Symbol
Timing
T = GPMI Clock Cycle Unit
Min. Max.
Electrical Characteristics
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 67
(VSYNC), then CSI_HSYNC (HSYNC) is asserted and holds for the entire line. The pixel clock,
CSI_PIXCLK (PIXCLK), is valid as long as HSYNC is asserted.
Figure 38. CSI Gated Clock Mode—Sensor Data at Falling Edge, Latch Data at Rising Edge
Figure 39. CSI Gated Clock Mode—Sensor Data at Rising Edge, Latch Data at Falling Edge
Table 49. CSI Gated Clock Mode Timing Parameters
ID Parameter Symbol Min. Max. Units
P1 CSI_VSYNC to CSI_HSYNC time tV2H 33.5 ns
P2 CSI_HSYNC setup time tHsu 1 ns
P3 CSI DATA setup time tDsu 1 ns
CSI_PIXCLK
CSI_VSYNC
CSI_DATA[23:00]
P5
P1
P3 P4
CSI_HSYNC
P2 P6
P7
CSI_PIXCLK
CSI_VSYNC
CSI_DATA[23:00]
P6
P1
P3 P4
CSI_HSYNC
P2 P5
P7
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
68 Freescale Semiconductor, Inc.
Electrical Characteristics
4.11.1.0.2 Ungated Clock Mode Timing
Figure 40 shows the ungated clock mode timings of CSI, and Table 50 describes the timing parameters
(P1–P6) that are shown in the figure. In ungated mode the CSI_VSYNC and CSI_PIXCLK signals are
used, and the CSI_HSYNC signal is ignored.
Figure 40. CSI Ungated Clock Mode—Sensor Data at Falling Edge, Latch Data at Rising Edge
The CSI enables the chip to connect directly to external CMOS image sensors, which are classified as
dumb or smart as follows:
Dumb sensors only support traditional sensor timing (vertical sync (VSYNC) and horizontal sync
(HSYNC)) and output-only Bayer and statistics data.
Smart sensors support CCIR656 video decoder formats and perform additional processing of the
image (for example, image compression, image pre-filtering, and various data output formats).
P4 CSI DATA hold time tDh 1 ns
P5 CSI pixel clock high time tCLKh 3.75 ns
P6 CSI pixel clock low time tCLKl 3.75 ns
P7 CSI pixel clock frequency fCLK 133 MHz
Table 50. CSI Ungated Clock Mode Timing Parameters
ID Parameter Symbol Min. Max. Units
P1 CSI_VSYNC to pixel clock time tVSYNC 33.5 ns
P2 CSI DATA setup time tDsu 1 ns
P3 CSI DATA hold time tDh 1 ns
P4 CSI pixel clock high time tCLKh 3.75 ns
P5 CSI pixel clock low time tCLKl 3.75 ns
P6 CSI pixel clock frequency fCLK 133 MHz
Table 49. CSI Gated Clock Mode Timing Parameters (continued)
ID Parameter Symbol Min. Max. Units
CSI_PIXCLK
CSI_VSYNC
CSI_DATA[23:00]
P4
P1
P2 P3
P5
P6
Electrical Characteristics
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 69
The following subsections describe the CSI timing in gated and ungated clock modes.
4.11.2 ECSPI Timing Parameters
This section describes the timing parameters of the ECSPI blocks. The ECSPI have separate timing
parameters for master and slave modes.
4.11.2.1 ECSPI Master Mode Timing
Figure 41 depicts the timing of ECSPI in master mode. Table 51 lists the ECSPI master mode timing
characteristics.
Figure 41. ECSPI Master Mode Timing Diagram
Table 51. ECSPI Master Mode Timing Parameters
ID Parameter Symbol Min Max Unit
CS1 ECSPIx_SCLK Cycle Time–Read
ECSPIx_SCLK Cycle Time–Write
tclk 43
15
—ns
CS2 ECSPIx_SCLK High or Low Time–Read
ECSPIx_SCLK High or Low Time–Write
tSW 21.5
7
—ns
CS3 ECSPIx_SCLK Rise or Fall1
1See specific I/O AC parameters Section 4.7, “I/O AC Parameters.”
tRISE/FALL ——ns
CS4 ECSPIx_SS_B pulse width tCSLH Half ECSPIx_SCLK period ns
CS5 ECSPIx_SS_B Lead Time (CS setup time) tSCS Half ECSPIx_SCLK period - 4 ns
CS6 ECSPIx_SS_B Lag Time (CS hold time) tHCS Half ECSPIx_SCLK period - 2 ns
CS7 ECSPIx_MOSI Propagation Delay (CLOAD =20pF) t
PDmosi -1 1 ns
CS8 ECSPIx_MISO Setup Time tSmiso 14 ns
CS9 ECSPIx_MISO Hold Time tHmiso 0—ns
CS10 RDY to ECSPIx_SS_B Time2tSDRY 5—ns
CS7
CS2
CS2
CS4
CS6 CS5
CS8 CS9
ECSPIx_SCLK
ECSPIx_SS_B
ECSPIx_MOSI
ECSPIx_MISO
ECSPIx_RDY_B
CS10
CS3
CS3
CS1
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
70 Freescale Semiconductor, Inc.
Electrical Characteristics
4.11.2.2 ECSPI Slave Mode Timing
Figure 42 depicts the timing of ECSPI in slave mode. Table 52 lists the ECSPI slave mode timing
characteristics.
Figure 42. ECSPI Slave Mode Timing Diagram
2SPI_RDY is sampled internally by ipg_clk and is asynchronous to all other CSPI signals.
Table 52. ECSPI Slave Mode Timing Parameters
ID Parameter Symbol Min Max Unit
CS1 ECSPIx_SCLK Cycle Time–Read
ECSPI_SCLK Cycle Time–Write
tclk 15
43
—ns
CS2 ECSPIx_SCLK High or Low Time–Read
ECSPIx_SCLK High or Low Time–Write
tSW 7
21.5
—ns
CS4 ECSPIx_SS_B pulse width tCSLH Half ECSPIx_SCLK period ns
CS5 ECSPIx_SS_B Lead Time (CS setup time) tSCS 5—ns
CS6 ECSPIx_SS_B Lag Time (CS hold time) tHCS 5—ns
CS7 ECSPIx_MOSI Setup Time tSmosi 4—ns
CS8 ECSPIx_MOSI Hold Time tHmosi 4—ns
CS9 ECSPIx_MISO Propagation Delay (CLOAD =20pF) t
PDmiso 419ns
CS1
CS7 CS8
CS2
CS2
CS4
CS6 CS5
CS9
ECSPIx_SCLK
ECSPIx_SS_B
ECSPIx_MISO
ECSPIx_MOSI
Electrical Characteristics
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 71
4.11.3 Ultra High Speed SD/SDIO/MMC Host Interface (uSDHC) AC
timing
This section describes the electrical information of the uSDHC, which includes SD/eMMC4.3 (Single
Data Rate) timing, eMMC4.4/4.41/4.5 (Dual Date Rate) timing and SDR104/50(SD3.0) timing.
4.11.3.1 SD/eMMC4.3 (Single Data Rate) AC Timing
Figure 43 depicts the timing of SD/eMMC4.3, and Table 53 lists the SD/eMMC4.3 timing characteristics.
Figure 43. SD/eMMC4.3 Timing
Table 53. SD/eMMC4.3 Interface Timing Specification
ID Parameter Symbols Min Max Unit
Card Input Clock
SD1 Clock Frequency (Low Speed) fPP10 400 kHz
Clock Frequency (SD/SDIO Full Speed/High Speed) fPP20 25/50 MHz
Clock Frequency (MMC Full Speed/High Speed) fPP30 20/52 MHz
Clock Frequency (Identification Mode) fOD 100 400 kHz
SD2 Clock Low Time tWL 7—ns
SD3 Clock High Time tWH 7—ns
SD4 Clock Rise Time tTLH —3ns
SD5 Clock Fall Time tTHL —3ns
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx (Reference to CLK)
SD6 uSDHC Output Delay tOD -6.6 3.6 ns
SD1
SD3
SD5
SD4
SD7
SDx_CLK
SD2
SD8
SD6
Output from uSDHC to card
Input from card to uSDHC
SDx_DATA[7:0]
SDx_DATA[7:0]
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
72 Freescale Semiconductor, Inc.
Electrical Characteristics
4.11.3.2 eMMC4.4/4.41 (Dual Data Rate) AC Timing
Figure 44 depicts the timing of eMMC4.4/4.41. Table 54 lists the eMMC4.4/4.41 timing characteristics.
Be aware that only DATA is sampled on both edges of the clock (not applicable to CMD).
Figure 44. eMMC4.4/4.41 Timing
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx (Reference to CLK)
SD7 uSDHC Input Setup Time tISU 2.5 ns
SD8 uSDHC Input Hold Time4tIH 1.5 ns
1In low speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V.
2In normal (full) speed mode for SD/SDIO card, clock frequency can be any value between 025 MHz. In high-speed mode,
clock frequency can be any value between 050 MHz.
3In normal (full) speed mode for MMC card, clock frequency can be any value between 020 MHz. In high-speed mode, clock
frequency can be any value between 052 MHz.
4To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2 ns.
Table 54. eMMC4.4/4.41 Interface Timing Specification
ID Parameter Symbols Min Max Unit
Card Input Clock
SD1 Clock Frequency (eMMC4.4/4.41 DDR) fPP 052MHz
SD1 Clock Frequency (SD3.0 DDR) fPP 050MHz
uSDHC Output / Card Inputs SD_CMD, SDx_DATAx (Reference to CLK)
SD2 uSDHC Output Delay tOD 2.5 7.1 ns
uSDHC Input / Card Outputs SD_CMD, SDx_DATAx (Reference to CLK)
SD3 uSDHC Input Setup Time tISU 2.6 ns
SD4 uSDHC Input Hold Time tIH 1.5 ns
Table 53. SD/eMMC4.3 Interface Timing Specification (continued)
ID Parameter Symbols Min Max Unit
SD1
SD2
SD3
Output from eSDHCv3 to card
Input from card to eSDHCv3
SDx_DATA[7:0]
SDx_CLK
SD4
SD2
......
......
SDx_DATA[7:0]
Electrical Characteristics
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 73
4.11.3.3 SDR50/SDR104 AC Timing
Figure 45 depicts the timing of SDR50/SDR104, and Table 55 lists the SDR50/SDR104 timing
characteristics.
Figure 45. SDR50/SDR104 Timing
Table 55. SDR50/SDR104 Interface Timing Specification
ID Parameter Symbols Min Max Unit
Card Input Clock
SD1 Clock Frequency Period tCLK 5.0 ns
SD2 Clock Low Time tCL 0.46*tCLK 0.54*tCLK ns
SD3 Clock High Time tCH 0.46*tCLK 0.54*tCLK ns
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR50 (Reference to CLK)
SD4 uSDHC Output Delay tOD –3 1 ns
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR104 (Reference to CLK)
SD5 uSDHC Output Delay tOD –1.6 1 ns
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR50 (Reference to CLK)
SD6 uSDHC Input Setup Time tISU 2.5 ns
SD7 uSDHC Input Hold Time tIH 1.5 ns
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR104 (Reference to CLK)1
1Data window in SDR104 mode is variable.
SD8 Card Output Data Window tODW 0.5*tCLK —ns
6&.
ELWRXWSXWIURPX6'+&WRFDUG
ELWLQSXWIURPFDUGWRX6'+&
6'
6'
6'
6'6'
6' 6'
6'
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
74 Freescale Semiconductor, Inc.
Electrical Characteristics
4.11.3.4 HS200 Mode Timing
Figure 46 depicts the timing of HS200 mode, and Table 56 lists the HS200 timing characteristics.
Figure 46. HS200 Mode Timing
4.11.3.5 Bus Operation Condition for 3.3 V and 1.8 V Signaling
Signaling level of SD/eMMC4.3 and eMMC4.4/4.41 modes is 3.3 V. Signaling level of SDR104/SDR50
mode is 1.8 V. The DC parameters for the NVCC_SD1 supply are identical to those shown in Table 23,
"Single Voltage GPIO DC Parameters," on page 34.
4.11.4 Ethernet Controller (ENET) AC Electrical Specifications
The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive
at timing specs/constraints for the physical interface.
Table 56. HS200 Interface Timing Specification
ID Parameter Symbols Min Max Unit
Card Input Clock
SD1 Clock Frequency Period tCLK 5.0 ns
SD2 Clock Low Time tCL 0.3*tCLK 0.7*tCLK ns
SD2 Clock High Time tCH 0.3*tCLK 0.7*tCLK ns
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK)
SD5 uSDHC Output Delay tOD –1.6 1 ns
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK)1
1HS200 is for 8 bits while SDR104 is for 4 bits.
SD8 Card Output Data Window tODW 0.5*tCLK —ns
6&.
ELWRXWSXWIURPX6'+&WRH00&
ELWLQSXWIURPH00&WRX6'+&
6'
6'
6'
6'6'
6' 6'
6'
Electrical Characteristics
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 75
4.11.4.1 ENET MII Mode Timing
This subsection describes MII receive, transmit, asynchronous inputs, and serial management signal
timings.
4.11.4.1.1 MII Receive Signal Timing (ENET_RX_DATA3,2,1,0, ENET_RX_EN,
ENET_RX_ER, and ENET_RX_CLK)
The receiver functions correctly up to an ENET_RX_CLK maximum frequency of 25 MHz + 1%. There
is no minimum frequency requirement. Additionally, the processor clock frequency must exceed twice the
ENET_RX_CLK frequency.
Figure 47 shows MII receive signal timings. Table 57 describes the timing parameters (M1–M4) shown in
the figure.
Figure 47. MII Receive Signal Timing Diagram
1 ENET_RX_EN, ENET_RX_CLK, and ENET0_RXD0 have the same timing in 10 Mbps 7-wire interface mode.
4.11.4.1.2 MII Transmit Signal Timing (ENET_TX_DATA3,2,1,0, ENET_TX_EN,
ENET_TX_ER, and ENET_TX_CLK)
The transmitter functions correctly up to an ENET_TX_CLK maximum frequency of 25 MHz + 1%.
There is no minimum frequency requirement. Additionally, the processor clock frequency must exceed
twice the ENET_TX_CLK frequency.
Table 57. MII Receive Signal Timing
ID Characteristic1Min. Max. Unit
M1 ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER to
ENET_RX_CLK setup
5— ns
M2 ENET_RX_CLK to ENET_RX_DATA3,2,1,0, ENET_RX_EN,
ENET_RX_ER hold
5— ns
M3 ENET_RX_CLK pulse width high 35% 65% ENET_RX_CLK period
M4 ENET_RX_CLK pulse width low 35% 65% ENET_RX_CLK period
ENET_RX_CLK (input)
ENET_RX_DATA3,2,1,0
M3
M4
M1 M2
ENET_RX_ER
ENET_RX_EN
(inputs)
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
76 Freescale Semiconductor, Inc.
Electrical Characteristics
Figure 48 shows MII transmit signal timings. Table 58 describes the timing parameters (M5–M8) shown
in the figure.
Figure 48. MII Transmit Signal Timing Diagram
1 ENET_TX_EN, ENET_TX_CLK, and ENET0_TXD0 have the same timing in 10-Mbps 7-wire interface mode.
4.11.4.1.3 MII Asynchronous Inputs Signal Timing (ENET_CRS and ENET_COL)
Figure 49 shows MII asynchronous input timings. Table 59 describes the timing parameter (M9) shown in
the figure.
Figure 49. MII Async Inputs Timing Diagram
1 ENET_COL has the same timing in 10-Mbit 7-wire interface mode.
Table 58. MII Transmit Signal Timing
ID Characteristic1Min. Max. Unit
M5 ENET_TX_CLK to ENET_TX_DATA3,2,1,0, ENET_TX_EN,
ENET_TX_ER invalid
5— ns
M6 ENET_TX_CLK to ENET_TX_DATA3,2,1,0, ENET_TX_EN,
ENET_TX_ER valid
—20 ns
M7 ENET_TX_CLK pulse width high 35% 65% ENET_TX_CLK period
M8 ENET_TX_CLK pulse width low 35% 65% ENET_TX_CLK period
Table 59. MII Asynchronous Inputs Signal Timing
ID Characteristic Min. Max. Unit
M91ENET_CRS to ENET_COL minimum pulse width 1.5 ENET_TX_CLK period
ENET_TX_CLK (input)
ENET_TX_DATA3,2,1,0
M7
M8
M5
M6
ENET_TX_ER
ENET_TX_EN
(outputs)
ENET_CRS, ENET_COL
M9
Electrical Characteristics
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 77
4.11.4.1.4 MII Serial Management Channel Timing (ENET_MDIO and ENET_MDC)
The MDC frequency is designed to be equal to or less than 2.5 MHz to be compatible with the IEEE 802.3
MII specification. However the ENET can function correctly with a maximum MDC frequency of
15 MHz.
Figure 50 shows MII asynchronous input timings. Table 60 describes the timing parameters (M10–M15)
shown in the figure.
Figure 50. MII Serial Management Channel Timing Diagram
4.11.4.2 RMII Mode Timing
In RMII mode, ENET_CLK is used as the REF_CLK, which is a 50 MHz ± 50 ppm continuous reference
clock. ENET_RX_EN is used as the ENET_RX_EN in RMII. Other signals under RMII mode include
ENET_TX_EN, ENET_TX_DATA[1:0], ENET_RX_DATA[1:0] and ENET_RX_ER.
Table 60. MII Serial Management Channel Timing
ID Characteristic Min. Max. Unit
M10 ENET_MDC falling edge to ENET_MDIO output invalid (min.
propagation delay)
0— ns
M11 ENET_MDC falling edge to ENET_MDIO output valid (max.
propagation delay)
—5 ns
M12 ENET_MDIO (input) to ENET_MDC rising edge setup 18 ns
M13 ENET_MDIO (input) to ENET_MDC rising edge hold 0 ns
M14 ENET_MDC pulse width high 40% 60% ENET_MDC period
M15 ENET_MDC pulse width low 40% 60% ENET_MDC period
ENET_MDC (output)
ENET_MDIO (output)
M14
M15
M10
M11
M12 M13
ENET_MDIO (input)
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
78 Freescale Semiconductor, Inc.
Electrical Characteristics
Figure 51 shows RMII mode timings. Table 61 describes the timing parameters (M16–M21) shown in the
figure.
Figure 51. RMII Mode Signal Timing Diagram
4.11.5 Flexible Controller Area Network (FLEXCAN) AC Electrical
Specifications
The Flexible Controller Area Network (FlexCAN) module is a communication controller implementing
the CAN protocol according to the CAN 2.0B protocol specification. The processor has two CAN modules
available for systems design. Tx and Rx ports for both modules are multiplexed with other I/O pins. See
the IOMUXC chapter of the i.MX 6UltraLite Reference Manual (IMX6ULRM) to see which pins expose
Tx and Rx pins; these ports are named FLEXCAN_TX and FLEXCAN_RX, respectively.
Table 61. RMII Signal Timing
ID Characteristic Min. Max. Unit
M16 ENET_CLK pulse width high 35% 65% ENET_CLK period
M17 ENET_CLK pulse width low 35% 65% ENET_CLK period
M18 ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA invalid 4 ns
M19 ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA valid 13 ns
M20 ENET_RX_DATAD[1:0], ENET_RX_EN(ENET_RX_EN), ENET_RX_ER
to ENET_CLK setup
2— ns
M21 ENET_CLK to ENET_RX_DATAD[1:0], ENET_RX_EN, ENET_RX_ER
hold
2— ns
ENET_CLK (input)
ENET_TX_EN
M16
M17
M18
M19
M20 M21
ENET_RX_DATA[1:0]
ENET_TX_DATA (output)
ENET_RX_ER
ENET_RX_EN (input)
Electrical Characteristics
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 79
4.11.6 I2C Module Timing Parameters
This section describes the timing parameters of the I2C module. Figure 52 depicts the timing of I2C
module, and Table 62 lists the I2C module timing characteristics.
Figure 52. I2C Bus Timing
Table 62. I2C Module Timing Parameters
ID Parameter
Standard Mode Fast Mode
Unit
Min Max Min Max
IC1 I2Cx_SCL cycle time 10 2.5 µs
IC2 Hold time (repeated) START condition 4.0 0.6 µs
IC3 Set-up time for STOP condition 4.0 0.6 µs
IC4 Data hold time 01
1A device must internally provide a hold time of at least 300 ns for I2Cx_SDA signal to bridge the undefined region of the falling
edge of I2Cx_SCL.
3.452
2The maximum hold time has only to be met if the device does not stretch the LOW period (ID no IC5) of the I2Cx_SCL signal.
010.92µs
IC5 HIGH Period of I2Cx_SCL Clock 4.0 0.6 µs
IC6 LOW Period of the I2Cx_SCL Clock 4.7 1.3 µs
IC7 Set-up time for a repeated START condition 4.7 0.6 µs
IC8 Data set-up time 250 1003
3A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the requirement of Set-up time (ID No IC7)
of 250 ns must be met. This automatically is the case if the device does not stretch the LOW period of the I2Cx_SCL signal.
If such a device does stretch the LOW period of the I2Cx_SCL signal, it must output the next data bit to the I2Cx_SDA line
max_rise_time (IC9) + data_setup_time (IC7) = 1000 + 250 = 1250 ns (according to the Standard-mode I2C-bus specification)
before the I2Cx_SCL line is released.
—ns
IC9 Bus free time between a STOP and START condition 4.7 1.3 µs
IC10 Rise time of both I2Cx_SDA and I2Cx_SCL signals 1000 20 + 0.1Cb4
4Cb = total capacitance of one bus line in pF.
300 ns
IC11 Fall time of both I2Cx_SDA and I2Cx_SCL signals 300 20 + 0.1Cb4300 ns
IC12 Capacitive load for each bus line (Cb) 400 400 pF
IC10 IC11 IC9
IC2 IC8 IC4 IC7 IC3
IC6
IC10
IC5
IC11 START STOP START
START
I2Cx_SDA
I2Cx_SCL
IC1
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
80 Freescale Semiconductor, Inc.
Electrical Characteristics
4.11.7 Pulse Width Modulator (PWM) Timing Parameters
This section describes the electrical information of the PWM. The PWM can be programmed to select one
of three clock signals as its source frequency. The selected clock signal is passed through a prescaler before
being input to the counter. The output is available at the pulse-width modulator output (PWMO) external
pin.
Figure 53 depicts the timing of the PWM, and Table 63 lists the PWM timing parameters.
Figure 53. PWM Timing
4.11.8 LCD Controller (LCDIF) Timing Parameters
Figure 54 shows the LCDIF timing and Table 64 lists the timing parameters.
Figure 54. LCD Timing
Table 63. PWM Output Timing Parameters
ID Parameter Min Max Unit
PWM Module Clock Frequency 0 ipg_clk MHz
P1 PWM output pulse width high 15 ns
P2 PWM output pulse width low 15 ns
07-N?/54
0 0
/ / /
/
/&'QB&/.
IDOOLQJHGJHFDSWXUH
/&'QB&/.
ULVLQJHGJHFDSWXUH
/&'QB'$7$>@
/&'Q&RQWURO6LJQDOV
/
/
/
Electrical Characteristics
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 81
4.11.9 QUAD SPI (QSPI) Timing Parameters
Measurement conditions are with 35 pF load on SCK and SIO pins and input slew rate of 1 V/ns.
4.11.9.1 SDR Mode
Figure 55. QuadSPI Input/Read Timing (SDR mode with internal sampling)
Figure 56. QuadSPI Input/Read Timing (SDR mode with loopback DQS sampling)
Table 64. LCD Timing Parameters
ID Parameter Symbol Min Max Unit
L1 LCD pixel clock frequency tCLK(LCD) 150 MHz
L2 LCD pixel clock high (falling edge capture) tCLKH(LCD) 3 ns
L3 LCD pixel clock low (rising edge capture) tCLKL(LCD) 3 ns
L4 LCD pixel clock high to data valid (falling edge capture) td(CLKH-DV) -1 1 ns
L5 LCD pixel clock low to data valid (rising edge capture) td(CLKL-DV) -1 1 ns
L6 LCD pixel clock high to control signal valid (falling edge capture) td(CLKH-CTRLV) -1 1 ns
L7 LCD pixel clock low to control signal valid (rising edge capture) td(CLKL-CTRLV) -1 1 ns
Table 65. QuadSPI Input Timing (SDR mode with internal sampling)
Symbol Parameter
Value
Unit
Min Max
TIS Setup time for incoming data 8.67 ns
TIH Hold time requirement for incoming data 0 ns
7,6 7,+ 7,6 7,+
463,[B6&/.
463,[B'$7$>@

7
,6
7
,6
7
,+
7
,+
463,[B6&/.
463,[B'$7$>@
463,[B'46
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
82 Freescale Semiconductor, Inc.
Electrical Characteristics
NOTE
For internal sampling, the timing values assumes using sample point 0,
that is QuadSPIx_SMPR[SDRSMP] = 0.
For loopback DQS sampling, the data strobe is output to the DQS pad
together with the serial clock. The data strobe is looped back from DQS
pad and used to sample input data.
Figure 57. QuadSPI Output/Write Timing (SDR mode)
NOTE
Tcss and Tcsh are configured by the QuadSPIx_FLSHCR register, the default
value of 3 are shown on the timing. Please refer to the i.MX 6UltraLite
Reference Manual (IMX6ULRM) for more details.
Table 66. QuadSPI Input/Read Timing (SDR mode with loopback DQS sampling)
Symbol Parameter
Value
Unit
Min Max
TIS Setup time for incoming data 2 ns
TIH Hold time requirement for incoming data 1 ns
Table 67. QuadSPI Output/Write Timing (SDR mode)
Symbol Parameter
Value
Unit
Min Max
TDVO Output data valid time 2 ns
TDHO Output data hold time 0 ns
TCK SCK clock period 10 ns
TCSS Chip select output setup time 3 SCK cycle(s)
TCSH Chip select output hold time 3 SCK cycle(s)
7&66
7
&. 7&6+
7
'92
7
'+2
7'92
7
'+2
463,[B6&/.
463,[B&6
463,[B6,2
Electrical Characteristics
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 83
4.11.9.2 DDR Mode
Figure 58. QuadSPI Input/Read Timing (DDR mode with internal sampling)
Figure 59. QuadSPI Input/Read Timing (DDR mode with loopback DQS sampling)
NOTE
For internal sampling, the timing values assumes using sample point 0,
that is QuadSPIx_SMPR[SDRSMP] = 0.
Table 68. QuadSPI Input/Read Timing (DDR mode with internal sampling)
Symbol Parameter
Value
Unit
Min Max
TIS Setup time for incoming data 8.67 ns
TIH Hold time requirement for incoming data 0 ns
Table 69. QuadSPI Input/Read Timing (DDR mode with loopback DQS sampling)
Symbol Parameter
Value
Unit
Min Max
TIS Setup time for incoming data 2 ns
TIH Hold time requirement for incoming data 1 ns
7,6 7,+
7
,6
7
,+
463,[B6&/.
463,[B'$7$>@

7
,6
7
,+
7
,6
7
,+
463,[B6&/.
463,[B'$7$>@
463,[B'46
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
84 Freescale Semiconductor, Inc.
Electrical Characteristics
For loopback DQS sampling, the data strobe is output to the DQS pad
together with the serial clock. The data strobe is looped back from DQS
pad and used to sample input data.
Figure 60. QuadSPI Output/Write Timing (DDR mode)
NOTE
Tcss and Tcsh are configured by the QuadSPIx_FLSHCR register, the default
value of 3 are shown on the timing. Please refer to the i.MX 6UltraLite
Reference Manual (IMX6ULRM) for more details.
4.11.10 SAI/I2S Switching Specifications
This section provides the AC timings for the SAI in master (clocks driven) and slave (clocks input) modes.
All timings are given for non-inverted serial clock polarity (SAI_TCR[TSCKP] = 0, SAI_RCR[RSCKP]
= 0) and non-inverted frame sync (SAI_TCR[TFSI] = 0, SAI_RCR[RFSI] = 0). If the polarity of the clock
and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal
(SAI_BCLK) and/or the frame sync (SAI_FS) shown in the figures below.
Table 70. QuadSPI Output/Write Timing (DDR mode)
Symbol Parameter
Value
Unit
Min Max
TDVO Output data valid time 0.25 x TSCLK + 2 ns ns
TDHO Output data hold time 0.25 x TSCLK —ns
TCK SCK clock period 20 ns
TCSS Chip select output setup time 3 SCK cycle(s)
TCSH Chip select output hold time 3 SCK cycle(s)
Table 71. Master Mode SAI Timing
Num Characteristic Min Max Unit
S1 SAI_MCLK cycle time 2 x tsys —ns
S2 SAI_MCLK pulse width high/low 40% 60% MCLK period
S3 SAI_BCLK cycle time 4 x tsys —ns
S4 SAI_BCLK pulse width high/low 40% 60% BCLK period

7&66 7&.
7
'92
7
'+2
7
'92
7
'+2
7
&6+
463,[B6&/.
463,[B&6
463,[B6,2
Electrical Characteristics
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 85
Figure 61. SAI Timing — Master Modes
S5 SAI_BCLK to SAI_FS output valid 15 ns
S6 SAI_BCLK to SAI_FS output invalid 0 ns
S7 SAI_BCLK to SAI_TXD valid 15 ns
S8 SAI_BCLK to SAI_TXD invalid 0 ns
S9 SAI_RXD/SAI_FS input setup before SAI_BCLK 15 ns
S10 SAI_RXD/SAI_FS input hold after SAI_BCLK 0 ns
Table 72. Master Mode SAI Timing
Num Characteristic Min Max Unit
S11 SAI_BCLK cycle time (input) 4 x tsys —ns
S12 SAI_BCLK pulse width high/low (input) 40% 60% BCLK period
S13 SAI_FS input setup before SAI_BCLK 10 ns
S14 SAI_FA input hold after SAI_BCLK 2 ns
S15 SAI_BCLK to SAI_TXD/SAI_FS output valid 20 ns
S16 SAI_BCLK to SAI_TXD/SAI_FS output invalid 0 ns
S17 SAI_RXD setup before SAI_BCLK 10 ns
S18 SAI_RXD hold after SAI_BCLK 2 ns
Table 71. Master Mode SAI Timing (continued)
Num Characteristic Min Max Unit
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
86 Freescale Semiconductor, Inc.
Electrical Characteristics
Figure 62. SAI Timing — Slave Modes
4.11.11 SCAN JTAG Controller (SJC) Timing Parameters
Figure 63 depicts the SJC test clock input timing. Figure 64 depicts the SJC boundary scan timing.
Figure 65 depicts the SJC test access port. Signal parameters are listed in Table 73.
Figure 63. Test Clock Input Timing Diagram
JTAG_TCK
(Input) VM VM
VIH
VIL
SJ1
SJ2 SJ2
SJ3
SJ3
Electrical Characteristics
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 87
Figure 64. Boundary Scan (JTAG) Timing Diagram
JTAG_TCK
(Input)
Data
Inputs
Data
Outputs
Data
Outputs
Data
Outputs
VIH
VIL
Input Data Valid
Output Data Valid
Output Data Valid
SJ4 SJ5
SJ6
SJ7
SJ6
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
88 Freescale Semiconductor, Inc.
Electrical Characteristics
Figure 65. Test Access Port Timing Diagram
Figure 66. JTAG_TRST_B Timing Diagram
Table 73. JTAG Timing
ID Parameter1,2
All Frequencies
Unit
Min Max
SJ0 JTAG_TCK frequency of operation 1/(3•TDC)10.001 22 MHz
SJ1 JTAG_TCK cycle time in crystal mode 45 ns
SJ2 JTAG_TCK clock pulse width measured at VM222.5 ns
SJ3 JTAG_TCK rise and fall times 3 ns
SJ4 Boundary scan input data set-up time 5 ns
SJ5 Boundary scan input data hold time 24 ns
SJ6 JTAG_TCK low to output data valid 40 ns
SJ7 JTAG_TCK low to output high impedance 40 ns
SJ8 JTAG_TMS, JTAG_TDI data set-up time 5 ns
JTAG_TCK
(Input)
JTAG_TDI
(Input)
JTAG_TDO
(Output)
JTAG_TDO
(Output)
JTAG_TDO
(Output)
VIH
VIL
Input Data Valid
Output Data Valid
Output Data Valid
JTAG_TMS
SJ8 SJ9
SJ10
SJ11
SJ10
JTAG_TCK
(Input)
JTAG_TRST_B
(Input)
SJ13
SJ12
Electrical Characteristics
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 89
4.11.12 SPDIF Timing Parameters
The Sony/Philips Digital Interconnect Format (SPDIF) data is sent using the bi-phase marking code. When
encoding, the SPDIF data signal is modulated by a clock that is twice the bit rate of the data signal.
Table 74 and Figure 67 and Figure 68 show SPDIF timing parameters for the Sony/Philips Digital
Interconnect Format (SPDIF), including the timing of the modulating Rx clock (SPDIF_SR_CLK) for
SPDIF in Rx mode and the timing of the modulating Tx clock (SPDIF_ST_CLK) for SPDIF in Tx mode.
SJ9 JTAG_TMS, JTAG_TDI data hold time 25 ns
SJ10 JTAG_TCK low to JTAG_TDO data valid 44 ns
SJ11 JTAG_TCK low to JTAG_TDO high impedance 44 ns
SJ12 JTAG_TRST_B assert time 100 ns
SJ13 JTAG_TRST_B set-up time to JTAG_TCK low 40 ns
1TDC = target frequency of SJC
2VM = mid-point voltage
Table 74. SPDIF Timing Parameters
Characteristics Symbol
Timing Parameter Range
Unit
Min Max
SPDIF_IN Skew: asynchronous inputs, no specs apply —— 0.7ns
SPDIF_OUT output (Load = 50pf)
Skew
Transition rising
Transition falling
1.5
24.2
31.3
ns
SPDIF_OUT1 output (Load = 30pf)
Skew
Transition rising
Transition falling
1.5
13.6
18.0
ns
Modulating Rx clock (SPDIF_SR_CLK) period srckp 40.0 ns
SPDIF_SR_CLK high period srckph 16.0 ns
SPDIF_SR_CLK low period srckpl 16.0 ns
Modulating Tx clock (SPDIF_ST_CLK) period stclkp 40.0 ns
SPDIF_ST_CLK high period stclkph 16.0 ns
SPDIF_ST_CLK low period stclkpl 16.0 ns
Table 73. JTAG Timing (continued)
ID Parameter1,2
All Frequencies
Unit
Min Max
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
90 Freescale Semiconductor, Inc.
Electrical Characteristics
Figure 67. SPDIF_SR_CLK Timing Diagram
Figure 68. SPDIF_ST_CLK Timing Diagram
4.11.13 UART I/O Configuration and Timing Parameters
4.11.13.1 UART RS-232 Serial Mode Timing
The following sections describe the electrical information of the UART module in the RS-232 mode.
4.11.13.1.1 UART Transmitter
Figure 69 depicts the transmit timing of UART in the RS-232 serial mode, with 8 data bit/1 stop bit
format. Table 75 lists the UART RS-232 serial mode transmits timing characteristics.
Figure 69. UART RS-232 Serial Mode Transmit Timing Diagram
Table 75. RS-232 Serial Mode Transmit Timing Parameters
ID Parameter Symbol Min Max Unit
UA1 Transmit Bit Time tTbit 1/Fbaud_rate1 - Tref_clk2
1Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16.
2Tref_clk: The period of UART reference clock ref_clk (ipg_perclk after RFDIV divider).
1/Fbaud_rate + Tref_clk
SPDIF_SR_CLK
(Output)
VMVM
srckp
srckph
srckpl
SPDIF_ST_CLK
(Input)
VMVM
stclkp
stclkph
stclkpl
Start
Bit Bit 1 Bit 2Bit 0 Bit 4 Bit 5 Bit 6 Bit 7
UARTx_TX_DATA
(output) Bit 3 STOP
BIT
Next
Start
Bit
Possible
Parity
Bit
Par Bit
UA1
UA1 UA1
UA1
Electrical Characteristics
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 91
4.11.13.1.2 UART Receiver
Figure 70 depicts the RS-232 serial mode receives timing with 8 data bit/1 stop bit format. Table 76 lists
serial mode receive timing characteristics.
Figure 70. UART RS-232 Serial Mode Receive Timing Diagram
4.11.13.1.3 UART IrDA Mode Timing
The following subsections give the UART transmit and receive timings in IrDA mode.
UART IrDA Mode Transmitter
Figure 71 depicts the UART IrDA mode transmit timing, with 8 data bit/1 stop bit format. Table 77 lists
the transmit timing characteristics.
Figure 71. UART IrDA Mode Transmit Timing Diagram
Table 76. RS-232 Serial Mode Receive Timing Parameters
ID Parameter Symbol Min Max Unit
UA2 Receive Bit Time1
1The UART receiver can tolerate 1/(16 x Fbaud_rate) tolerance in each bit. But accumulation tolerance in one frame must not
exceed 3/(16 x Fbaud_rate).
tRbit 1/Fbaud_rate2 - 1/(16
x Fbaud_rate)
2Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16.
1/Fbaud_rate +
1/(16 x Fbaud_rate)
Table 77. IrDA Mode Transmit Timing Parameters
ID Parameter Symbol Min Max Unit
UA3 Transmit Bit Time in IrDA mode tTIRbit 1/Fbaud_rate1 -
Tref_clk2
1Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16.
1/Fbaud_rate + Tref_clk
UA4 Transmit IR Pulse Duration tTIRpulse (3/16) x (1/Fbaud_rate)
- Tref_clk
(3/16) x (1/Fbaud_rate)
+ Tref_clk
Bit 1 Bit 2Bit 0 Bit 4 Bit 5 Bit 6 Bit 7
UARTx_RX_DATA
(output)
Bit 3
Start
Bit STOP
BIT
Next
Start
Bit
Possible
Parity
Bit
Par Bit
UA2 UA2
UA2 UA2
Bit 1 Bit 2
Bit 0 Bit 4 Bit 5 Bit 6 Bit 7
UARTX_TX_
DATA
Bit 3
Start
Bit
STOP
BIT
Possible
Parity
Bit
UA3 UA3 UA3 UA3
UA4
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
92 Freescale Semiconductor, Inc.
Electrical Characteristics
UART IrDA Mode Receiver
Figure 72 depicts the UART IrDA mode receive timing, with 8 data bit/1 stop bit format. Table 78 lists
the receive timing characteristics.
Figure 72. UART IrDA Mode Receive Timing Diagram
4.11.14 USB PHY Parameters
This section describes the USB-OTG PHY parameters.
The USB PHY meets the electrical compliance requirements defined in the Universal Serial Bus Revision
2.0 OTG with the following amendments.
USB ENGINEERING CHANGE NOTICE
Title: 5V Short Circuit Withstand Requirement Change
Applies to: Universal Serial Bus Specification, Revision 2.0
Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000
USB ENGINEERING CHANGE NOTICE
Title: Pull-up/Pull-down resistors
Applies to: Universal Serial Bus Specification, Revision 2.0
USB ENGINEERING CHANGE NOTICE
Title: Suspend Current Limit Changes
Applies to: Universal Serial Bus Specification, Revision 2.0
USB ENGINEERING CHANGE NOTICE
Title: USB 2.0 Phase Locked SOFs
2Tref_clk: The period of UART reference clock ref_clk (ipg_perclk after RFDIV divider).
Table 78. IrDA Mode Receive Timing Parameters
ID Parameter Symbol Min Max Unit
UA5 Receive Bit Time1 in IrDA mode
1 The UART receiver can tolerate 1/(16 x Fbaud_rate) tolerance in each bit. But accumulation tolerance in one frame must not
exceed 3/(16 x Fbaud_rate).
tRIRbit 1/Fbaud_rate2 - 1/(16
x Fbaud_rate)
2Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16.
1/Fbaud_rate + 1/(16 x
Fbaud_rate)
UA6 Receive IR Pulse Duration tRIRpulse 1.41 s (5/16) x (1/Fbaud_rate)—
Bit 1 Bit 2
Bit 0 Bit 4 Bit 5 Bit 6 Bit 7
UARTx_RX_
DATA
Bit 3
Start
Bit
STOP
BIT
Possible
Parity
Bit
UA5 UA5 UA5 UA5
UA6
Electrical Characteristics
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 93
Applies to: Universal Serial Bus Specification, Revision 2.0
On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification
Revision 2.0 plus errata and ecn June 4, 2010
Battery Charging Specification (available from USB-IF)
Revision 1.2, December 7, 2010
Portable device only
4.12 A/D converter
4.12.1 12-bit ADC electrical characteristics
4.12.1.1 12-bit ADC operating conditions
Table 79. 12-bit ADC Operating Conditions
Characteristic Conditions Symb Min Typ1
1Typical values assume VDDAD = 3.0 V, Temp = 25°C, fADCK=20 MHz unless otherwise stated. Typical values are for reference
only and are not tested in production.
Max Unit Comment
Supply voltage Absolute VDDAD 3.0 - 3.6 V —
Delta to VDD
(VDD-VDDAD)2
VDDAD -100 0 100 mV
Ground voltage Delta to VSS
(VSS-VSSAD)
VSSAD -100 0 100 mV
Ref Voltage High VREFH 1.13 VDDAD VDDAD V —
Ref Voltage Low VREFL VSSAD VSSAD VSSAD V —
Input Voltage VADIN VREFL —V
REFH V —
Input Capacitance 8/10/12 bit modes CADIN —1.52 pF
Input Resistance ADLPC=0, ADHSC=1 RADIN —5 7 kohms
ADLPC=0, ADHSC=0 12.5 15 kohms
ADLPC=1, ADHSC=0 25 30 kohms
Analog Source
Resistance
12 bit mode fADCK =
40MHz ADLSMP=0,
ADSTS=10, ADHSC=1
RAS 1 kohms Tsamp=150
ns
RAS depends on Sample Time Setting (ADLSMP, ADSTS) and ADC Power Mode (ADHSC, ADLPC). See charts for Minimum
Sample Time vs RAS
ADC Conversion Clock
Frequency
ADLPC=0, ADHSC=1
12 bit mode
fADCK 4 40 MHz —
ADLPC=0, ADHSC=0
12 bit mode
4 30 MHz —
ADLPC=1, ADHSC=0
12 bit mode
4 20 MHz —
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
94 Freescale Semiconductor, Inc.
Electrical Characteristics
Figure 73. 12-bit ADC Input Impedance Equivalency Diagram
4.12.1.1.1 12-bit ADC characteristics
2DC potential differences
Table 80. 12-bit ADC Characteristics (VREFH = VDDAD, VREFL = VSSAD)
Characteristic Conditions1Symb Min Typ2Max Unit Comment
[L:] Supply Current ADLPC=1,
ADHSC=0
IDDAD 250 µA ADLSMP=0
ADSTS=10 ADCO=1
ADLPC=0,
ADHSC=0
350
ADLPC=0,
ADHSC=1
400
[L:] Supply Current Stop, Reset, Module
Off
IDDAD —0.010.8µA
ADC Asynchronous
Clock Source
ADHSC=0 fADACK 10 MHz tADACK = 1/fADACK
ADHSC=1 — 20
Electrical Characteristics
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 95
Sample Cycles ADLSMP=0,
ADSTS=00
Csamp — 2 cycles
ADLSMP=0,
ADSTS=01
4
ADLSMP=0,
ADSTS=10
6
ADLSMP=0,
ADSTS=11
8
ADLSMP=1,
ADSTS=00
12
ADLSMP=1,
ADSTS=01
16
ADLSMP=1,
ADSTS=10
20
ADLSMP=1,
ADSTS=11
24
Conversion Cycles ADLSMP=0
ADSTS=00
Cconv — 28 cycles
ADLSMP=0
ADSTS=01
30
ADLSMP=0
ADSTS=10
32
ADLSMP=0
ADSTS=11
34
ADLSMP=1
ADSTS=00
38
ADLSMP=1
ADSTS=01
42
ADLSMP=1
ADSTS=10
46
ADLSMP=1,
ADSTS=11
50
Table 80. 12-bit ADC Characteristics (VREFH = VDDAD, VREFL = VSSAD) (continued)
Characteristic Conditions1Symb Min Typ2Max Unit Comment
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
96 Freescale Semiconductor, Inc.
Electrical Characteristics
Conversion Time ADLSMP=0
ADSTS=00
Tconv — 0.7 µs Fadc=40 MHz
ADLSMP=0
ADSTS=01
0.75
ADLSMP=0
ADSTS=10
0.8
ADLSMP=0
ADSTS=11
0.85
ADLSMP=1
ADSTS=00
0.95
ADLSMP=1
ADSTS=01
1.05
ADLSMP=1
ADSTS=10
1.15
ADLSMP=1,
ADSTS=11
1.25
[P:][C:] Total
Unadjusted Error
12 bit mode TUE 4.5 LSB
1 LSB =
(VREFH -
VREFL)/2
N
10 bit mode 2
8 bit mode 1.5
[P:][C:] Differential
Non-Linearity
12 bit mode DNL 1 LSB
10bit mode 0.5
8 bit mode 0.2
[P:][C:] Integral
Non-Linearity
12 bit mode INL 2.6 LSB
10bit mode 0.8
8 bit mode 0.3
Zero-Scale Error 12 bit mode EZS -0.3 LSB
10bit mode -0.15
8 bit mode -0.15
Full-Scale Error 12 bit mode EFS -2.5 LSB
10bit mode -0.6
8 bit mode -0.3
[L:] Effective Number
of Bits
12 bit mode ENOB 10.1 10.7 Bits
[L:] Signal to Noise
plus Distortion
See ENOB SINAD SINAD = 6.02 x ENOB + 1.76 dB
1All accuracy numbers assume the ADC is calibrated with VREFH=VDDAD
Table 80. 12-bit ADC Characteristics (VREFH = VDDAD, VREFL = VSSAD) (continued)
Characteristic Conditions1Symb Min Typ2Max Unit Comment
Electrical Characteristics
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 97
NOTE
The ADC electrical spec would be met with the calibration enabled
configuration.
2Typical values assume VDDAD = 3.0 V, Temp = 25°C, Fadck=20 MHz unless otherwise stated. Typical values are for reference
only and are not tested in production.
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
98 Freescale Semiconductor, Inc.
Boot Mode Configuration
5 Boot Mode Configuration
This section provides information on boot mode configuration pins allocation and boot devices interfaces
allocation.
5.1 Boot Mode Configuration Pins
Table 81 provides boot options, functionality, fuse values, and associated pins. Several input pins are also
sampled at reset and can be used to override fuse values, depending on the value of BT_FUSE_SEL fuse.
The boot option pins are in effect when BT_FUSE_SEL fuse is ‘0’ (cleared, which is the case for an
unblown fuse). For detailed boot mode options configured by the boot mode pins, see the i.MX
6UltraLite Fuse Map document and the System Boot chapter in i.MX 6UltraLite Reference Manual
(IMX6ULRM).
Table 81. Fuses and Associated Pins Used for Boot
Pin Direction at reset eFuse name Details
BOOT_MODE0 Input with 100 K pull-down N/A Boot mode selection
BOOT_MODE1 Input with 100 K pull-down N/A Boot mode selection
Boot Mode Configuration
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 99
5.2 Boot Device Interface Allocation
The following tables list the interfaces that can be used by the boot process in accordance with the
specific boot mode configuration. The tables also describe the interface’s specific modes and IOMUXC
allocation, which are configured during boot when appropriate.
LCD_DATA00 Input with 100 K pull-down BT_CFG1[0] Boot Options, Pin value overrides
fuse settings for BT_FUSE_SEL =
‘0’. Signal Configuration as Fuse
Override Input at Power Up.
These are special I/O lines that
control the boot up configuration
during product development. In
production, the boot configuration
can be controlled by fuses.
LCD_DATA01 Input with 100 K pull-down BT_CFG1[1]
LCD_DATA02 Input with 100 K pull-down BT_CFG1[2]
LCD_DATA03 Input with 100 K pull-down BT_CFG1[3]
LCD_DATA04 Input with 100 K pull-down BT_CFG1[4]
LCD_DATA05 Input with 100 K pull-down BT_CFG1[5]
LCD_DATA06 Input with 100 K pull-down BT_CFG1[6]
LCD_DATA07 Input with 100 K pull-down BT_CFG1[7]
LCD_DATA08 Input with 100 K pull-down BT_CFG2[0]
LCD_DATA09 Input with 100 K pull-down BT_CFG2[1]
LCD_DATA10 Input with 100 K pull-down BT_CFG2[2]
LCD_DATA11 Input with 100 K pull-down BT_CFG2[3]
LCD_DATA12 Input with 100 K pull-down BT_CFG2[4]
LCD_DATA13 Input with 100 K pull-down BT_CFG2[5]
LCD_DATA14 Input with 100 K pull-down BT_CFG2[6]
LCD_DATA15 Input with 100 K pull-down BT_CFG2[7]
LCD_DATA16 Input with 100 K pull-down BT_CFG4[0]
LCD_DATA17 Input with 100 K pull-down BT_CFG4[1]
LCD_DATA18 Input with 100 K pull-down BT_CFG4[2]
LCD_DATA19 Input with 100 K pull-down BT_CFG4[3]
LCD_DATA20 Input with 100 K pull-down BT_CFG4[4]
LCD_DATA21 Input with 100 K pull-down BT_CFG4[5]
LCD_DATA22 Input with 100 K pull-down BT_CFG4[6]
LCD_DATA23 Input with 100 K pull-down BT_CFG4[7]
Table 82. QSPI Boot trough QSPI
Ball Name Signal Name Mux
Mode Common Quad
Mode
+ Port A
DQS
+ Port A
CS1
+ Port
B
+ Port B
DQS
+ Port B
CS1
NAND_WP_B qspi.A_SCLK Alt2 Yes Yes
NAND_DQS qspi.A_SS0_B Alt2 Yes Yes
Table 81. Fuses and Associated Pins Used for Boot (continued)
Pin Direction at reset eFuse name Details
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
100 Freescale Semiconductor, Inc.
Boot Mode Configuration
NAND_READY_B qspi.A_DATA[0] Alt2 Yes Yes
NAND_CE0_B qspi.A_DATA[1] Alt2 Yes Yes
NAND_CE1_B qspi.A_DATA[2] Alt2 Yes Yes
NAND_CLE qspi.A_DATA[3] Alt2 Yes Yes
NAND_DATA05 qspi.B_DATA[3] Alt2 Yes
NAND_DATA04 qspi.B_DATA[2] Alt2 Yes
NAND_DATA03 qspi.B_DATA[1] Alt2 Yes
NAND_DATA02 qspi.B_DATA[0] Alt2 Yes
NAND_WE_B qspi.B_SS0_B Alt2 Yes
NAND_RE_B qspi.B_SCLK Alt2 Yes
NAND_DATA07 qspi.A_SS1_B Alt2 Yes
NAND_ALE qspi.A_DQS Alt2 Yes
NAND_DATA00 qspi.B_SS1_B Alt2 Yes
NAND_DATA01 qspi.B_DQS Alt2 Yes
Table 83. SPI Boot through ECSPI1
Ball Name Signal Name Mux
Mode Common BOOT_CFG4
[5:4]=00b
BOOT_CFG4
[5:4]=01b
BOOT_CFG4
[5:4]=10b
BOOT_CFG4
[5:4]=11b
CSI_DATA07 ecspi1.MISO Alt 3 Yes
CSI_DATA06 ecspi1.MOSI Alt 3 Yes
CSI_DATA04 ecspi1.SCLK Alt 3 Yes
CSI_DATA05 ecspi1.SS0 Alt 3 Yes
LCD_DATA05 ecspi1.SS1 Alt 8 Yes
LCD_DATA06 ecspi1.SS2 Alt 8 Yes
LCD_DATA07 ecspi1.SS3 Alt 8 Yes
Table 84. SPI Boot through ECSPI2
Ball Name Signal Name Mux Mode Common BOOT_CFG
4[5:4]=00b
BOOT_CFG4
[5:4]=01b
BOOT_CFG4
[5:4]=10b
BOOT_CFG4
[5:4]=11b
CSI_DATA03 ecspi2.MISO Alt 3 Yes
CSI_DATA02 ecspi2.MOSI Alt 3 Yes
CSI_DATA00 ecspi2.SCLK Alt 3 Yes
CSI_DATA01 ecspi2.SS0 Alt 3 Yes
LCD_HSYNC ecspi2.SS1 Alt 8 Yes
Table 82. QSPI Boot trough QSPI (continued)
Boot Mode Configuration
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 101
LCD_VSYNC ecspi2.SS2 Alt 8 Yes
LCD_RESET ecspi2.SS3 Alt 8 Yes
Table 85. SPI Boot through ECSPI3
Ball Name Signal Name Mux
Mode Common BOOT_CFG4
[5:4]=00b
BOOT_CFG4[
5:4]=01b
BOOT_CFG4[
5:4]=10b
BOOT_CFG4
[5:4]=11b
UART2_RTS_B ecspi3.MISO Alt 8 Yes
UART2_CTS_B ecspi3.MOSI Alt 8 Yes
UART2_RX_DATA ecspi3.SCLK Alt 8 Yes
UART2_TX_DATA ecspi3.SS0 Alt 8 Yes
NAND_ALE ecspi3.SS1 Alt 8 Yes
NAND_RE_B ecspi3.SS2 Alt 8 Yes
NAND_WE_B ecspi3.SS3 Alt 8 Yes
Table 86. SPI Boot through ECSPI4
Ball Name Signal Name Mux
Mode Common BOOT_CFG4
[5:4]=00b
BOOT_CFG4
[5:4]=01b
BOOT_CFG4[
5:4]=10b
BOOT_CFG
4[5:4]=11b
ENET2_TX_CLK ecspi4.MISO Alt 3 Yes
ENET2_TX_EN ecspi4.MOSI Alt 3 Yes
ENET2_TX_DATA1 ecspi4.SCLK Alt 3 Yes
ENET2_RX_ER ecspi4.SS0 Alt 3 Yes
NAND_DATA01 ecspi4.SS1 Alt 8 Yes
NAND_DATA02 ecspi4.SS2 Alt 8 Yes
NAND_DATA03 ecspi4.SS3 Alt 8 Yes
Table 87. NAND Boot through GPMI
Ball Name Signal Name Mux Mode Common BOOT_CFG1[3:2]=
01b
BOOT_CFG1[3:2]=
10b
NAND_CLE rawnand.CLE Alt 0 Yes
NAND_ALE rawnand.ALE Alt 0 Yes
NAND_WP_B rawnand.WP_B Alt 0 Yes
NAND_READY_B rawnand.READY_B Alt 0 Yes
NAND_CE0_B rawnand.CE0_B Alt 0 Yes
NAND_CE1_B rawnand.CE1_B Alt 0 Yes Yes
NAND_RE_B rawnand.RE_B Alt 0 Yes
NAND_WE_B rawnand.WE_B Alt 0 Yes
Table 84. SPI Boot through ECSPI2 (continued)
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
102 Freescale Semiconductor, Inc.
Boot Mode Configuration
NAND_DATA00 rawnand.DATA00 Alt 0 Yes
NAND_DATA01 rawnand.DATA01 Alt 0 Yes
NAND_DATA02 rawnand.DATA02 Alt 0 Yes
NAND_DATA03 rawnand.DATA03 Alt 0 Yes
NAND_DATA04 rawnand.DATA04 Alt 0 Yes
NAND_DATA05 rawnand.DATA05 Alt 0 Yes
NAND_DATA06 rawnand.DATA06 Alt 0 Yes
NAND_DATA07 rawnand.DATA07 Alt 0 Yes
NAND_DQS rawnand.DQS Alt 0 Yes
CSI_MCLK rawnand.CE2_B Alt 2 Yes
CSI_PIXCLK rawnand.CE3_B Alt 2 Yes
Table 88. SD/MMC Boot through USDHC1
Ball Name Signal Name Mux
Mode Common 4-bit 8-bit BOOT_CFG1[1]=1
(SD Power Cycle)
SDMMC
MFG
mode
UART1_RTS_B usdhc1.CD_B Alt 2 Yes
SD1_CLK usdhc1.CLK Alt 0 Yes
SD1_CMD usdhc1.CMD Alt 0 Yes
SD1_DATA0 usdhc1.DATA0 Alt 0 Yes
SD1_DATA1 usdhc1.DATA1 Alt 0 Yes Yes
SD1_DATA2 usdhc1.DATA2 Alt 0 Yes Yes
SD1_DATA3 usdhc1.DATA3 Alt 0 Yes
NAND_READY_B usdhc1.DATA4 Alt 1 Yes
NAND_CE0_B usdhc1.DATA5 Alt 1 Yes
NAND_CE1_B usdhc1.DATA6 Alt 1 Yes
NAND_CLE usdhc1.DATA7 Alt 1 Yes
GPIO1_IO09 usdhc1.RESET_B Alt 5 Yes
GPIO1_IO05 usdhc1.VSELECT Alt 4 Yes
Table 87. NAND Boot through GPMI (continued)
Ball Name Signal Name Mux Mode Common BOOT_CFG1[3:2]=
01b
BOOT_CFG1[3:2]=
10b
Boot Mode Configuration
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 103
Table 89. SD/MMC Boot through USDHC2
Ball Name Signal Name Mux Mode Commo
n4-bit 8-bit BOOT_CFG1[1]=1
(SD Power Cycle)
NAND_RE_B usdhc2.CLK Alt 1 Yes
NAND_WE_B usdhc2.CMD Alt 1 Yes
NAND_DATA00 usdhc2.DATA0 Alt 1 Yes
NAND_DATA01 usdhc2.DATA1 Alt 1 Yes Yes
NAND_DATA02 usdhc2.DATA2 Alt 1 Yes Yes
NAND_DATA03 usdhc2.DATA3 Alt 1 Yes
NAND_DATA04 usdhc2.DATA4 Alt 1 Yes
NAND_DATA05 usdhc2.DATA5 Alt 1 Yes
NAND_DATA06 usdhc2.DATA6 Alt 1 Yes
NAND_DATA07 usdhc2.DATA7 Alt 1 Yes
NAND_ALE usdhc2.RESET_B Alt 5 Yes
GPIO1_IO08 usdhc2.VSELECT Alt 4 Yes
Table 90. NOR/OneNAND Boot through EIM
Ball Name Signal Name Mux Mode Common ADL16
Non-Mux AD16 Mux
CSI_DATA00 weim.AD[0] Alt 4 Yes
CSI_DATA01 weim.AD[1] Alt 4 Yes
CSI_DATA02 weim.AD[2] Alt 4 Yes
CSI_DATA03 weim.AD[3] Alt 4 Yes
CSI_DATA04 weim.AD[4] Alt 4 Yes
CSI_DATA05 weim.AD[5] Alt 4 Yes
CSI_DATA06 weim.AD[6] Alt 4 Yes
CSI_DATA07 weim.AD[7] Alt 4 Yes
NAND_DATA00 weim.AD[8] Alt 4 Yes
NAND_DATA01 weim.AD[9] Alt 4 Yes
NAND_DATA02 weim.AD[10] Alt 4 Yes
NAND_DATA03 weim.AD[11] Alt 4 Yes
NAND_DATA04 weim.AD[12] Alt 4 Yes
NAND_DATA05 weim.AD[13] Alt 4 Yes
NAND_DATA06 weim.AD[14] Alt 4 Yes
NAND_DATA07 weim.AD[15] Alt 4 Yes
NAND_CLE weim.ADDR[16] Alt 4 Yes Yes
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
104 Freescale Semiconductor, Inc.
Boot Mode Configuration
NAND_ALE weim.ADDR[17] Alt 4 Yes Yes
NAND_CE1_B weim.ADDR[18] Alt 4 Yes Yes
SD1_CMD weim.ADDR[19] Alt 4 Yes Yes
SD1_CLK weim.ADDR[20] Alt 4 Yes Yes
SD1_DATA0 weim.ADDR[21] Alt 4 Yes Yes
SD1_DATA1 weim.ADDR[22] Alt 4 Yes Yes
SD1_DATA2 weim.ADDR[23] Alt 4 Yes Yes
SD1_DATA3 weim.ADDR[24] Alt 4 Yes Yes
ENET2_RXER weim.ADDR[25] Alt 4 Yes Yes
ENET2_CRS_DV weim.ADDR[26] Alt 4 Yes Yes
CSI_MCLK weim.CS0_B Alt 4 Yes
LCD_DATA08 weim.DATA[0] Alt 4 Yes
LCD_DATA09 weim.DATA[1] Alt 4 Yes
LCD_DATA10 weim.DATA[2] Alt 4 Yes
LCD_DATA11 weim.DATA[3] Alt 4 Yes
LCD_DATA12 weim.DATA[4] Alt 4 Yes
LCD_DATA13 weim.DATA[5] Alt 4 Yes
LCD_DATA14 weim.DATA[6] Alt 4 Yes
LCD_DATA15 weim.DATA[7] Alt 4 Yes
LCD_DATA16 weim.DATA[8] Alt 4 Yes
LCD_DATA17 weim.DATA[9] Alt 4 Yes
LCD_DATA18 weim.DATA[10] Alt 4 Yes
LCD_DATA19 weim.DATA[11] Alt 4 Yes
LCD_DATA20 weim.DATA[12] Alt 4 Yes
LCD_DATA21 weim.DATA[13] Alt 4 Yes
LCD_DATA22 weim.DATA[14] Alt 4 Yes
LCD_DATA23 weim.DATA[15] Alt 4 Yes
NAND_RE_B weim.EB_B[0] Alt 4 Yes Yes
NAND_WE_B weim.EB_B[1] Alt 4 Yes Yes
CSI_HSYNC weim.LBA_B Alt 4 Yes
CSI_PIXCLK weim.OE Alt 4 Yes
CSI_VSYNC weim.RW Alt 4 Yes
Table 90. NOR/OneNAND Boot through EIM (continued)
Ball Name Signal Name Mux Mode Common ADL16
Non-Mux AD16 Mux
Boot Mode Configuration
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 105
Table 91. Serial Download through UART1
Ball Name Signal Name Mux Mode Common
UART1_TX_DATA uart1.TX_DATA Alt 0 Yes
UART1_RX_DATA uart1.RX_DATA Alt 0 Yes
Table 92. Serial Download through UART2
Ball Name Signal Name Mux Mode Common
UART2_TX_DATA uart2.TX_DATA Alt 0 Yes
UART2_RX_DATA uart2.RX_DATA Alt 0 Yes
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
106 Freescale Semiconductor, Inc.
Package Information and Contact Assignments
6 Package Information and Contact Assignments
This section includes the contact assignment information and mechanical package drawing.
6.1 14x14 mm Package Information
6.1.1 14x14 mm, 0.8 mm Pitch, Ball Matrix
Figure 74 shows the top, bottom, and side views of the 14x14 mm BGA package.
Package Information and Contact Assignments
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 107
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
108 Freescale Semiconductor, Inc.
Package Information and Contact Assignments
Package Information and Contact Assignments
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 109
Figure 74. 14x14 mm BGA, Case x Package Top, Bottom, and Side Views
6.1.2 14x14 mm Supplies Contact Assignments and Functional Contact
Assignments
Table 93 shows the device connection list for ground, sense, and reference contact signals.
Table 93. 14x14 mm Supplies Contact Assignment
Supply Rail Name Ball(s) Position(s) Remark
ADC_VREFH M13
DRAM_VREF p4
GPANAIO R13
NGND_KEL0 M12
NVCC_CSI F4
NVCC_DRAM G6, H6, J6, K6, L6, M6
NVCC_DRAM_2P5 N6
NVCC_ENET F13
NVCC_GPIO J13
NVCC_LCD E13
NVCC_NAND E7
NVCC_PLL P13
NVCC_SD1 C4
NVCC_UART H13
VDD_ARM_CAP G9, G10, G11, H11
VDD_HIGH_CAP R14, R15
VDD_HIGH_IN N13
VDD_SNVS_CAP N12
VDD_SNVS_IN P12
VDD_SOC_CAP G8, H8, J8, J11, K8, K11, L8, L9, L10, L11
VDD_SOC_IN H9, H10, J9, J10, K9, K10
VDD_USB_CAP R12
VDDA_ADC_3P3 L13
VSS A1, A17, C3, C7, C11, C15, E8, E11, F6, F7, F8, F9, F10,F11, F12, G3, G5, G7,
G12, G15, H7, H12, J5, J7, J12, K7, K12, L3, L7, L12, M7, M8, M9, M10, M11,
N3, N5, R3, R5, R7, R11, R16, R17, T14, U1, U14, U17
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
110 Freescale Semiconductor, Inc.
Package Information and Contact Assignments
Table 94 shows an alpha-sorted list of functional contact assignments for the 14x14 mm package.
Table 94. 14x14 mm Functional Contact Assignments
Ball Name 14x14
Ball
Power
Group
Ball
Type
Out of Reset Condition
Default
Mode
Default
Function
Input/
Output Value
BOOT_MODE0 T10 VDD_SNVS_IN GPIO ALT5 BOOT_MODE0 Input 100 k
pull-down
BOOT_MODE1 U10 VDD_SNVS_IN GPIO ALT5 BOOT_MODE1 Input 100 k
pull-down
CCM_CLK1_N P16 VDD_HIGH_CAP LVDS CCM_CLK1_N
CCM_CLK1_P P17 VDD_HIGH_CAP LVDS CCM_CLK1_P
CCM_PMIC_STBY_REQ U9 VDD_SNVS_IN GPIO ALT0 CCM_PMIC_STBY_REQ Output
CSI_DATA00 E4 NVCC_CSI GPIO ALT5 CSI_DATA00 Input Keeper
CSI_DATA01 E3 NVCC_CSI GPIO ALT5 CSI_DATA01 Input Keeper
CSI_DATA02 E2 NVCC_CSI GPIO ALT5 CSI_DATA02 Input Keeper
CSI_DATA03 E1 NVCC_CSI GPIO ALT5 CSI_DATA03 Input Keeper
CSI_DATA04 D4 NVCC_CSI GPIO ALT5 CSI_DATA04 Input Keeper
CSI_DATA05 D3 NVCC_CSI GPIO ALT0 CSI_DATA05 Input Keeper
CSI_DATA06 D2 NVCC_CSI GPIO ALT5 CSI_DATA06 Input Keeper
CSI_DATA07 D1 NVCC_CSI GPIO ALT5 CSI_DATA07 Input Keeper
CSI_HSYNC F3 NVCC_CSI GPIO ALT5 CSI_HSYNC Input Keeper
CSI_MCLK F5 NVCC_CSI GPIO ALT5 CSI_MCLK Input Keeper
CSI_PIXCLK E5 NVCC_CSI GPIO ALT5 CSI_PIXCLK Input Keeper
CSI_VSYNC F2 NVCC_CSI GPIO ALT5 CSI_VSYNC Input Keeper
DRAM_ADDR00 L5 NVCC_DRAM DDR ALT0 DRAM_ADDR00 Output 100 k
pull-up
DRAM_ADDR01 H2 NVCC_DRAM DDR ALT0 DRAM_ADDR01 Output 100 k
pull-up
DRAM_ADDR02 K1 NVCC_DRAM DDR ALT0 DRAM_ADDR02 Output 100 k
pull-up
DRAM_ADDR03 M2 NVCC_DRAM DDR ALT0 DRAM_ADDR03 Output 100 k
pull-up
DRAM_ADDR04 K4 NVCC_DRAM DDR ALT0 DRAM_ADDR04 Output 100 k
pull-up
DRAM_ADDR05 L1 NVCC_DRAM DDR ALT0 DRAM_ADDR05 Output 100 k
pull-up
DRAM_ADDR06 G2 NVCC_DRAM DDR ALT0 DRAM_ADDR06 Output 100 k
pull-up
Package Information and Contact Assignments
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 111
DRAM_ADDR07 H4 NVCC_DRAM DDR ALT0 DRAM_ADDR07 Output 100 k
pull-up
DRAM_ADDR08 J4 NVCC_DRAM DDR ALT0 DRAM_ADDR08 Output 100 k
pull-up
DRAM_ADDR09 L2 NVCC_DRAM DDR ALT0 DRAM_ADDR09 Output 100 k
pull-up
DRAM_ADDR10 M4 NVCC_DRAM DDR ALT0 DRAM_ADDR10 Output 100 k
pull-up
DRAM_ADDR11 K3 NVCC_DRAM DDR ALT0 DRAM_ADDR11 Output 100 k
pull-up
DRAM_ADDR12 L4 NVCC_DRAM DDR ALT0 DRAM_ADDR12 Output 100 k
pull-up
DRAM_ADDR13 H3 NVCC_DRAM DDR ALT0 DRAM_ADDR13 Output 100 k
pull-up
DRAM_ADDR14 G1 NVCC_DRAM DDR ALT0 DRAM_ADDR14 Output 100 k
pull-up
DRAM_ADDR15 K5 NVCC_DRAM DDR ALT0 DRAM_ADDR15 Output 100 k
pull-up
DRAM_CAS_B J2 NVCC_DRAM DDR ALT0 DRAM_CAS_B Output 100 k
pull-up
DRAM_CS0_B N2 NVCC_DRAM DDR ALT0 DRAM_CS0_B Output 100 k
pull-up
DRAM_CS1_B H5 NVCC_DRAM DDR ALT0 DRAM_CS1_B Output 100 k
pull-up
DRAM_DATA00 T4 NVCC_DRAM DDR ALT0 DRAM_DATA00 Input 100 k
pull-up
DRAM_DATA01 U6 NVCC_DRAM DDR ALT0 DRAM_DATA01 Input 100 k
pull-up
DRAM_DATA02 T6 NVCC_DRAM DDR ALT0 DRAM_DATA02 Input 100 k
pull-up
DRAM_DATA03 U7 NVCC_DRAM DDR ALT0 DRAM_DATA03 Input 100 k
pull-up
DRAM_DATA04 U8 NVCC_DRAM DDR ALT0 DRAM_DATA04 Input 100 k
pull-up
DRAM_DATA05 T8 NVCC_DRAM DDR ALT0 DRAM_DATA05 Input 100 k
pull-up
DRAM_DATA06 T5 NVCC_DRAM DDR ALT0 DRAM_DATA06 Input 100 k
pull-up
DRAM_DATA07 U4 NVCC_DRAM DDR ALT0 DRAM_DATA07 Input 100 k
pull-up
DRAM_DATA08 U2 NVCC_DRAM DDR ALT0 DRAM_DATA08 Input 100 k
pull-up
Table 94. 14x14 mm Functional Contact Assignments (continued)
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
112 Freescale Semiconductor, Inc.
Package Information and Contact Assignments
DRAM_DATA09 U3 NVCC_DRAM DDR ALT0 DRAM_DATA09 Input 100 k
pull-up
DRAM_DATA10 U5 NVCC_DRAM DDR ALT0 DRAM_DATA10 Input 100 k
pull-up
DRAM_DATA11 R4 NVCC_DRAM DDR ALT0 DRAM_DATA11 Input 100 k
pull-up
DRAM_DATA12 P5 NVCC_DRAM DDR ALT0 DRAM_DATA12 Input 100 k
pull-up
DRAM_DATA13 P3 NVCC_DRAM DDR ALT0 DRAM_DATA13 Input 100 k
pull-up
DRAM_DATA14 R2 NVCC_DRAM DDR ALT0 DRAM_DATA14 Input 100 k
pull-up
DRAM_DATA15 R1 NVCC_DRAM DDR ALT0 DRAM_DATA15 Input 100 k
pull-up
DRAM_DQM0 T7 NVCC_DRAM DDR ALT0 DRAM_DQM0 Output 100 k
pull-up
DRAM_DQM1 T3 NVCC_DRAM DDR ALT0 DRAM_DQM1 Output 100 k
pull-up
DRAM_ODT0 N1 NVCC_DRAM DDR ALT0 DRAM_ODT0 Output 100 k
pull-down
DRAM_ODT1 F1 NVCC_DRAM DDR ALT0 DRAM_ODT1 Output 100 k
pull-down
DRAM_RAS_B M5 NVCC_DRAM DDR ALT0 DRAM_RAS_B Output 100 k
pull-up
DRAM_RESET G4 NVCC_DRAM DDR ALT0 DRAM_RESET Output 100 k
pull-down
DRAM_SDBA0 M1 NVCC_DRAM DDR ALT0 DRAM_SDBA0 Output 100 k
pull-up
DRAM_SDBA1 H1 NVCC_DRAM DDR ALT0 DRAM_SDBA1 Output 100 k
pull-up
DRAM_SDBA2 K2 NVCC_DRAM DDR ALT0 DRAM_SDBA2 Output 100 k
pull-up
DRAM_SDCKE0 M3 NVCC_DRAM DDR ALT0 DRAM_SDCKE0 Output 100 k
pull-down
DRAM_SDCKE1 J3 NVCC_DRAM DDR ALT0 DRAM_SDCKE1 Output 100 k
pull-down
DRAM_SDCLK0_N P2 NVCC_DRAM DDRCLK ALT0 DRAM_SDCLK0_N Input 100 k
pull-up
DRAM_SDCLK0_P P1 NVCC_DRAM DDRCLK ALT0 DRAM_SDCLK0_P Input 100 k
pull-up
DRAM_SDQS0_N P7 NVCC_DRAM DDRCLK ALT0 DRAM_SDQS0_N Input 100 k
pull-down
Table 94. 14x14 mm Functional Contact Assignments (continued)
Package Information and Contact Assignments
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 113
DRAM_SDQS0_P P6 NVCC_DRAM DDRCLK ALT0 DRAM_SDQS0_P Input 100 k
pull-down
DRAM_SDQS1_N T2 NVCC_DRAM DDRCLK ALT0 DRAM_SDQS1_N Input 100 k
pull-down
DRAM_SDQS1_P T1 NVCC_DRAM DDRCLK ALT0 DRAM_SDQS1_P Input 100 k
pull-down
DRAM_SDWE_B J1 NVCC_DRAM DDR ALT0 DRAM_SDWE_B Output 100 k
pull-up
DRAM_ZQPAD N4 NVCC_DRAM GPIO DRAM_ZQPAD Input Keeper
ENET1_RX_DATA0 F16 NVCC_ENET GPIO ALT5 ENET1_RX_DATA0 Input Keeper
ENET1_RX_DATA1 E17 NVCC_ENET GPIO ALT5 ENET1_RX_DATA1 Input Keeper
ENET1_RX_EN E16 NVCC_ENET GPIO ALT5 ENET1_RX_EN Input Keeper
ENET1_RX_ER D15 NVCC_ENET GPIO ALT5 ENET1_RX_ER Input Keeper
ENET1_TX_CLK F14 NVCC_ENET GPIO ALT5 ENET1_TX_CLK Input Keeper
ENET1_TX_DATA0 E15 NVCC_ENET GPIO ALT5 ENET1_TX_DATA0 Input Keeper
ENET1_TX_DATA1 E14 NVCC_ENET GPIO ALT5 ENET1_TX_DATA1 Input Keeper
ENET1_TX_EN F15 NVCC_ENET GPIO ALT5 ENET1_TX_EN Input Keeper
ENET2_RX_DATA0 C17 NVCC_ENET GPIO ALT5 ENET2_RX_DATA0 Input Keeper
ENET2_RX_DATA1 C16 NVCC_ENET GPIO ALT5 ENET2_RX_DATA1 Input Keeper
ENET2_RX_EN B17 NVCC_ENET GPIO ALT5 ENET2_RX_EN Input Keeper
ENET2_RX_ER D16 NVCC_ENET GPIO ALT5 ENET2_RX_ER Input Keeper
ENET2_TX_CLK D17 NVCC_ENET GPIO ALT5 ENET2_TX_CLK Input Keeper
ENET2_TX_DATA0 A15 NVCC_ENET GPIO ALT5 ENET2_TX_DATA0 Input Keeper
ENET2_TX_DATA1 A16 NVCC_ENET GPIO ALT5 ENET2_TX_DATA1 Input Keeper
ENET2_TX_EN B15 NVCC_ENET GPIO ALT5 ENET2_TX_EN Input Keeper
GPIO1_IO00 K13 NVCC_GPIO GPIO ALT5 GPIO1_IO00 Input Keeper
GPIO1_IO01 L15 NVCC_GPIO GPIO ALT5 GPIO1_IO01 Input Keeper
GPIO1_IO02 L14 NVCC_GPIO GPIO ALT5 GPIO1_IO02 Input Keeper
GPIO1_IO03 L17 NVCC_GPIO GPIO ALT5 GPIO1_IO03 Input Keeper
GPIO1_IO04 M16 NVCC_GPIO GPIO ALT5 GPIO1_IO04 Input Keeper
GPIO1_IO05 M17 NVCC_GPIO GPIO ALT5 GPIO1_IO05 Input Keeper
GPIO1_IO06 K17 NVCC_GPIO GPIO ALT5 GPIO1_IO06 Input Keeper
GPIO1_IO07 L16 NVCC_GPIO GPIO ALT5 GPIO1_IO07 Input Keeper
GPIO1_IO08 N17 NVCC_GPIO GPIO ALT5 GPIO1_IO08 Input Keeper
GPIO1_IO09 M15 NVCC_GPIO GPIO ALT5 GPIO1_IO09 Input Keeper
Table 94. 14x14 mm Functional Contact Assignments (continued)
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
114 Freescale Semiconductor, Inc.
Package Information and Contact Assignments
JTAG_MOD P15 NVCC_GPIO GPIO ALT5 JTAG_MOD Input 100 k
pull-up
JTAG_TCK M14 NVCC_GPIO GPIO ALT5 JTAG_TCK Input 47 k
pull-up
JTAG_TDI N16 NVCC_GPIO GPIO ALT5 JTAG_TDI Input 47 k
pull-up
JTAG_TDO N15 NVCC_GPIO GPIO ALT5 JTAG_TDO Output Keeper
JTAG_TMS P14 NVCC_GPIO GPIO ALT5 JTAG_TMS Input 47 k
pull-up
JTAG_TRST_B N14 NVCC_GPIO GPIO ALT5 JTAG_TRST_B Input 47 k
pull-up
LCD_CLK A8 NVCC_LCD GPIO ALT5 LCD_CLK Input Keeper
LCD_DATA00 B9 NVCC_LCD GPIO ALT5 LCD_DATA00 Input Keeper
LCD_DATA01 A9 NVCC_LCD GPIO ALT5 LCD_DATA01 Input Keeper
LCD_DATA02 E10 NVCC_LCD GPIO ALT5 LCD_DATA02 Input Keeper
LCD_DATA03 D10 NVCC_LCD GPIO ALT5 LCD_DATA03 Input Keeper
LCD_DATA04 C10 NVCC_LCD GPIO ALT5 LCD_DATA04 Input Keeper
LCD_DATA05 B10 NVCC_LCD GPIO ALT5 LCD_DATA05 Input Keeper
LCD_DATA06 A10 NVCC_LCD GPIO ALT5 LCD_DATA06 Input Keeper
LCD_DATA07 D11 NVCC_LCD GPIO ALT5 LCD_DATA07 Input Keeper
LCD_DATA08 B11 NVCC_LCD GPIO ALT5 LCD_DATA08 Input Keeper
LCD_DATA09 A11 NVCC_LCD GPIO ALT5 LCD_DATA09 Input Keeper
LCD_DATA10 E12 NVCC_LCD GPIO ALT5 LCD_DATA10 Input Keeper
LCD_DATA11 D12 NVCC_LCD GPIO ALT5 LCD_DATA11 Input Keeper
LCD_DATA12 C12 NVCC_LCD GPIO ALT5 LCD_DATA12 Input Keeper
LCD_DATA13 B12 NVCC_LCD GPIO ALT5 LCD_DATA13 Input Keeper
LCD_DATA14 A12 NVCC_LCD GPIO ALT5 LCD_DATA14 Input Keeper
LCD_DATA15 D13 NVCC_LCD GPIO ALT5 LCD_DATA15 Input Keeper
LCD_DATA16 C13 NVCC_LCD GPIO ALT5 LCD_DATA16 Input Keeper
LCD_DATA17 B13 NVCC_LCD GPIO ALT5 LCD_DATA17 Input Keeper
LCD_DATA18 A13 NVCC_LCD GPIO ALT5 LCD_DATA18 Input Keeper
LCD_DATA19 D14 NVCC_LCD GPIO ALT5 LCD_DATA19 Input Keeper
LCD_DATA20 C14 NVCC_LCD GPIO ALT5 LCD_DATA20 Input Keeper
LCD_DATA21 B14 NVCC_LCD GPIO ALT5 LCD_DATA21 Input Keeper
LCD_DATA22 A14 NVCC_LCD GPIO ALT5 LCD_DATA22 Input Keeper
LCD_DATA23 B16 NVCC_LCD GPIO ALT5 LCD_DATA23 Input Keeper
Table 94. 14x14 mm Functional Contact Assignments (continued)
Package Information and Contact Assignments
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 115
LCD_ENABLE B8 NVCC_LCD GPIO ALT5 LCD_ENABLE Input Keeper
LCD_HSYNC D9 NVCC_LCD GPIO ALT5 LCD_HSYNC Input Keeper
LCD_RESET E9 NVCC_LCD GPIO ALT5 LCD_RESET Input Keeper
LCD_VSYNC C9 NVCC_LCD GPIO ALT5 LCD_VSYNC Input Keeper
NAND_ALE B4 NVCC_NAND GPIO ALT5 VDDSOC Input Keeper
NAND_CE0_B C5 NVCC_NAND GPIO ALT5 NAND_CE0_B Input Keeper
NAND_CE1_B B5 NVCC_NAND GPIO ALT5 NAND_CE1_B Input Keeper
NAND_CLE A4 NVCC_NAND GPIO ALT5 NAND_CLE Input Keeper
NAND_DATA00 D7 NVCC_NAND GPIO ALT5 NAND_DATA00 Input Keeper
NAND_DATA01 B7 NVCC_NAND GPIO ALT5 NAND_DATA01 Input Keeper
NAND_DATA02 A7 NVCC_NAND GPIO ALT5 NAND_DATA02 Input Keeper
NAND_DATA03 D6 NVCC_NAND GPIO ALT5 NAND_DATA03 Input Keeper
NAND_DATA04 C6 NVCC_NAND GPIO ALT5 NAND_DATA04 Input Keeper
NAND_DATA05 B6 NVCC_NAND GPIO ALT5 NAND_DATA05 Input Keeper
NAND_DATA06 A6 NVCC_NAND GPIO ALT5 NAND_DATA06 Input Keeper
NAND_DATA07 A5 NVCC_NAND GPIO ALT5 NAND_DATA07 Input Keeper
NAND_DQS E6 NVCC_NAND GPIO ALT5 NAND_DQS Input Keeper
NAND_RE_B D8 NVCC_NAND GPIO ALT5 NAND_RE_B Input Keeper
NAND_READY_B A3 NVCC_NAND GPIO ALT5 NAND_READY_B Input Keeper
NAND_WE_B C8 NVCC_NAND GPIO ALT5 NAND_WE_B Input Keeper
NAND_WP_B D5 NVCC_NAND GPIO ALT5 NAND_WP_B Input Keeper
ONOFF R8 VDD_SNVS_IN GPIO ALT0 ONOFF Input 100 k
pull-up
POR_B P8 VDD_SNVS_IN GPIO ALT0 POR_B Input 100 k
pull-up
RTC_XTALI T11 VDD_SNVS_CAP ANALOG RTC_XTALI
RTC_XTALO U11 VDD_SNVS_CAP ANALOG RTC_XTALO
SD1_CLK C1 NVCC_SD1 GPIO ALT5 SD1_CLK Input Keeper
SD1_CMD C2 NVCC_SD1 GPIO ALT5 SD1_CMD Input Keeper
SD1_DATA0 B3 NVCC_SD1 GPIO ALT5 SD1_DATA0 Input Keeper
SD1_DATA1 B2 NVCC_SD1 GPIO ALT5 SD1_DATA1 Input Keeper
SD1_DATA2 B1 NVCC_SD1 GPIO ALT5 SD1_DATA2 Input Keeper
SD1_DATA3 A2 NVCC_SD1 GPIO ALT5 SD1_DATA3 Input Keeper
SNVS_PMIC_ON_REQ T9 VDD_SNVS_IN GPIO ALT0 SNVS_PMIC_ON_REQ Output 100 k
pull-up
Table 94. 14x14 mm Functional Contact Assignments (continued)
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
116 Freescale Semiconductor, Inc.
Package Information and Contact Assignments
SNVS_TAMPER0 R10 VDD_SNVS_IN GPIO GPIO5_IO00/SNVS_TAM
PER0
Input Keeper1
SNVS_TAMPER1 R9 VDD_SNVS_IN GPIO GPIO5_IO01/SNVS_TAM
PER1
Input Keeper1
SNVS_TAMPER2 P11 VDD_SNVS_IN GPIO GPIO5_IO02/SNVS_TAM
PER2
Input Keeper1
SNVS_TAMPER3 P10 VDD_SNVS_IN GPIO GPIO5_IO03/SNVS_TAM
PER3
Input Keeper1
SNVS_TAMPER4 P9 VDD_SNVS_IN GPIO GPIO5_IO04/SNVS_TAM
PER4
Input Keeper1
SNVS_TAMPER5 N8 VDD_SNVS_IN GPIO GPIO5_IO05/SNVS_TAM
PER5
Input Keeper1
SNVS_TAMPER6 N11 VDD_SNVS_IN GPIO GPIO5_IO06/SNVS_TAM
PER6
Input Keeper1
SNVS_TAMPER7 N10 VDD_SNVS_IN GPIO GPIO5_IO07/SNVS_TAM
PER7
Input Keeper1
SNVS_TAMPER8 N9 VDD_SNVS_IN GPIO GPIO5_IO08/SNVS_TAM
PER8
Input Keeper1
SNVS_TAMPER9 R6 VDD_SNVS_IN GPIO GPIO5_IO09/SNVS_TAM
PER9
Input Keeper1
TEST_MODE N7 VDD_SNVS_IN GPIO ALT0 TEST_MODE Input Keeper
UART1_CTS_B K15 NVCC_UART GPIO ALT5 UART1_CTS_B Input Keeper
UART1_RTS_B J14 NVCC_UART GPIO ALT5 UART1_RTS_B Input Keeper
UART1_RX_DATA K16 NVCC_UART GPIO ALT5 UART1_RX_DATA Input Keeper
UART1_TX_DATA K14 NVCC_UART GPIO ALT5 UART1_TX_DATA Input Keeper
UART2_CTS_B J15 NVCC_UART GPIO ALT5 UART2_CTS_B Input Keeper
UART2_RTS_B H14 NVCC_UART GPIO ALT5 UART2_RTS_B Input Keeper
UART2_RX_DATA J16 NVCC_UART GPIO ALT5 UART2_RX_DATA Input Keeper
UART2_TX_DATA J17 NVCC_UART GPIO ALT5 UART2_TX_DATA Input Keeper
UART3_CTS_B H15 NVCC_UART GPIO ALT5 UART3_CTS_B Input Keeper
UART3_RTS_B G14 NVCC_UART GPIO ALT5 UART3_RTS_B Input Keeper
UART3_RX_DATA H16 NVCC_UART GPIO ALT5 UART3_RX_DATA Input Keeper
UART3_TX_DATA H17 NVCC_UART GPIO ALT5 UART3_TX_DATA Input Keeper
UART4_RX_DATA G16 NVCC_UART GPIO ALT5 UART4_RX_DATA Input Keeper
UART4_TX_DATA G17 NVCC_UART GPIO ALT5 UART4_TX_DATA Input Keeper
UART5_RX_DATA G13 NVCC_UART GPIO ALT5 UART5_RX_DATA Input Keeper
UART5_TX_DATA F17 NVCC_UART GPIO ALT5 UART5_TX_DATA Input Keeper
USB_OTG1_CHD_B U16 OPEN DRAIN GPIO USB_OTG1_CHD_B
Table 94. 14x14 mm Functional Contact Assignments (continued)
Package Information and Contact Assignments
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 117
USB_OTG1_DN T15 VDD_USB_CAP ANALOG USB_OTG1_DN
USB_OTG1_DP U15 VDD_USB_CAP ANALOG USB_OTG1_DP
USB_OTG1_VBUS T12 USB_VBUS VBUS
POWER
USB_OTG1_VBUS
USB_OTG2_DN T13 VDD_USB_CAP ANALOG USB_OTG2_DN
USB_OTG2_DP U13 VDD_USB_CAP ANALOG USB_OTG2_DP
USB_OTG2_VBUS U12 USB_VBUS VBUS
POWER
USB_OTG2_VBUS
XTALI T16 NVCC_PLL ANALOG XTALI
XTALO T17 NVCC_PLL ANALOG XTALO
1SNVS_TAMPER0 to SNVS_TAMPER9 can be configured as GPIO or tamper detection pin, it is depending on the fuse setting
TAMPER_PIN_DISABLE[1:0].
Table 94. 14x14 mm Functional Contact Assignments (continued)
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
118 Freescale Semiconductor, Inc.
Package Information and Contact Assignments
6.1.3 14x14 mm, 0.8 mm Pitch, Ball Map
Table 95 shows the 14x14 mm, 0.8 mm pitch ball map for the i.MX 6UltraLite.
Table 95. 14x14 mm, 0.8 mm Pitch, Ball Map
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
A
VSS
SD1_DATA3
NAND_READY_B
NAND_CLE
NAND_DATA07
NAND_DATA06
NAND_DATA02
LCD_CLK
LCD_DATA01
LCD_DATA06
LCD_DATA09
LCD_DATA14
LCD_DATA18
LCD_DATA22
ENET2_TX_DATA0
ENET2_TX_DATA1
VSS
A
B
SD1_DATA2
SD1_DATA1
SD1_DATA0
NAND_ALE
NAND_CE1_B
NAND_DATA05
NAND_DATA01
LCD_ENABLE
LCD_DATA00
LCD_DATA05
LCD_DATA08
LCD_DATA13
LCD_DATA17
LCD_DATA21
ENET2_TX_EN
LCD_DATA23
ENET2_RX_EN
B
C
SD1_CLK
SD1_CMD
VSS
NVCC_SD1
NAND_CE0_B
NAND_DATA04
VSS
NAND_WE_B
LCD_VSYNC
LCD_DATA04
VSS
LCD_DATA12
LCD_DATA16
LCD_DATA20
VSS
ENET2_RX_DATA1
ENET2_RX_DATA0
C
D
CSI_DATA07
CSI_DATA06
CSI_DATA05
CSI_DATA04
NAND_WP_B
NAND_DATA03
NAND_DATA00
NAND_RE_B
LCD_HSYNC
LCD_DATA03
LCD_DATA07
LCD_DATA11
LCD_DATA15
LCD_DATA19
ENET1_RX_ER
ENET2_RX_ER
ENET2_TX_CLK
D
E
CSI_DATA03
CSI_DATA02
CSI_DATA01
CSI_DATA00
CSI_PIXCLK
NAND_DQS
NVCC_NAND
VSS
LCD_RESET
LCD_DATA02
VSS
LCD_DATA10
NVCC_LCD
ENET1_TX_DATA1
ENET1_TX_DATA0
ENET1_RX_EN
ENET1_RX_DATA1
E
F
DRAM_ODT1
CSI_VSYNC
CSI_HSYNC
NVCC_CSI
CSI_MCLK
VSS
VSS
VSS
VSS
VSS
VSS
VSS
NVCC_ENET
ENET1_TX_CLK
ENET1_TX_EN
ENET1_RX_DATA0
UART5_TX_DATA
F
Package Information and Contact Assignments
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 119
G
DRAM_ADDR14
DRAM_ADDR06
VSS
DRAM_RESET
VSS
NVCC_DRAM
VSS
VDD_SOC_CAP
VDD_ARM_CAP
VDD_ARM_CAP
VDD_ARM_CAP
VSS
UART5_RX_DATA
UART3_RTS_B
VSS
UART4_RX_DATA
UART4_TX_DATA
G
H
DRAM_SDBA1
DRAM_ADDR01
DRAM_ADDR13
DRAM_ADDR07
DRAM_CS1_B
NVCC_DRAM
VSS
VDD_SOC_CAP
VDD_SOC_IN
VDD_SOC_IN
VDD_ARM_CAP
VSS
NVCC_UART
UART2_RTS_B
UART3_CTS_B
UART3_RX_DATA
UART3_TX_DATA
H
J
DRAM_SDWE_B
DRAM_CAS_B
DRAM_SDCKE1
DRAM_ADDR08
VSS
NVCC_DRAM
VSS
VDD_SOC_CAP
VDD_SOC_IN
VDD_SOC_IN
VDD_SOC_CAP
VSS
NVCC_GPIO
UART1_RTS_B
UART2_CTS_B
UART2_RX_DATA
UART2_TX_DATA
J
K
DRAM_ADDR02
DRAM_SDBA2
DRAM_ADDR11
DRAM_ADDR04
DRAM_ADDR15
NVCC_DRAM
VSS
VDD_SOC_CAP
VDD_SOC_IN
VDD_SOC_IN
VDD_SOC_CAP
VSS
GPIO1_IO00
UART1_TX_DATA
UART1_CTS_B
UART1_RX_DATA
GPIO1_IO06
K
L
DRAM_ADDR05
DRAM_ADDR09
VSS
DRAM_ADDR12
DRAM_ADDR00
NVCC_DRAM
VSS
VDD_SOC_CAP
VDD_SOC_CAP
VDD_SOC_CAP
VDD_SOC_CAP
VSS
VDDA_ADC_3P3
GPIO1_IO02
GPIO1_IO01
GPIO1_IO07
GPIO1_IO03
L
M
DRAM_SDBA0
DRAM_ADDR03
DRAM_SDCKE0
DRAM_ADDR10
DRAM_RAS_B
NVCC_DRAM
VSS
VSS
VSS
VSS
VSS
NGND_KEL0
ADC_VREFH
JTAG_TCK
GPIO1_IO09
GPIO1_IO04
GPIO1_IO05
M
N
DRAM_ODT0
DRAM_CS0_B
VSS
DRAM_ZQPAD
VSS
NVCC_DRAM_2P5
TEST_MODE
SNVS_TAMPER5
SNVS_TAMPER8
SNVS_TAMPER7
SNVS_TAMPER6
VDD_SNVS_CAP
VDD_HIGH_IN
JTAG_TRST_B
JTAG_TDO
JTAG_TDI
GPIO1_IO08
N
Table 95. 14x14 mm, 0.8 mm Pitch, Ball Map (continued)
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
120 Freescale Semiconductor, Inc.
Package Information and Contact Assignments
6.2 GPIO Reset Behaviors during Reset
Table 96 shows the GPIO behaviors during reset.
P
DRAM_SDCLK0_P
DRAM_SDCLK0_N
DRAM_DATA13
DRAM_VREF
DRAM_DATA12
DRAM_SDQS0_P
DRAM_SDQS0_N
POR_B
SNVS_TAMPER4
SNVS_TAMPER3
SNVS_TAMPER2
VDD_SNVS_IN
NVCC_PLL
JTAG_TMS
JTAG_MOD
CCM_CLK1_N
CCM_CLK1_P
P
R
DRAM_DATA15
DRAM_DATA14
VSS
DRAM_DATA11
VSS
SNVS_TAMPER9
VSS
ONOFF
SNVS_TAMPER1
SNVS_TAMPER0
VSS
VDD_USB_CAP
GPANAIO
VDD_HIGH_CAP
VDD_HIGH_CAP
VSS
VSS
R
T
DRAM_SDQS1_P
DRAM_SDQS1_N
DRAM_DQM1
DRAM_DATA00
DRAM_DATA06
DRAM_DATA02
DRAM_DQM0
DRAM_DATA05
SNVS_PMIC_ON_REQ
BOOT_MODE0
RTC_XTALI
USB_OTG1_VBUS
USB_OTG2_DN
VSS
USB_OTG1_DN
XTALI
XTALO
T
U
VSS
DRAM_DATA08
DRAM_DATA09
DRAM_DATA07
DRAM_DATA10
DRAM_DATA01
DRAM_DATA03
DRAM_DATA04
CCM_PMIC_STBY_REQ
BOOT_MODE1
RTC_XTALO
USB_OTG2_VBUS
USB_OTG2_DP
VSS
USB_OTG1_DP
USB_OTG1_CHD_B
VSS
U
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
Table 96. GPIO Behaviors during Reset 1
Ball Name Mux Mode Function Input/Output Value
GPIO01_IO03 ALT7 Reserved Input 100 k pull-down
UART3_TX_DATA ALT7 SJC_JTAG_ACT Output 0
LCD_DATA00 ALT6 SRC_BT_CFG[0] Input 100 k pull-down
LCD_DATA01 ALT6 SRC_BT_CFG[1] Input 100 k pull-down
LCD_DATA02 ALT6 SRC_BT_CFG[2] Input 100 k pull-down
LCD_DATA03 ALT6 SRC_BT_CFG[3] Input 100 k pull-down
LCD_DATA04 ALT6 SRC_BT_CFG[4] Input 100 k pull-down
Table 95. 14x14 mm, 0.8 mm Pitch, Ball Map (continued)
Package Information and Contact Assignments
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
Freescale Semiconductor, Inc. 121
LCD_DATA05 ALT6 SRC_BT_CFG[5] Input 100 k pull-down
LCD_DATA06 ALT6 SRC_BT_CFG[6] Input 100 k pull-down
LCD_DATA07 ALT6 SRC_BT_CFG[7] Input 100 k pull-down
LCD_DATA08 ALT6 SRC_BT_CFG[8] Input 100 k pull-down
LCD_DATA09 ALT6 SRC_BT_CFG[9] Input 100 k pull-down
LCD_DATA10 ALT6 SRC_BT_CFG[10] Input 100 k pull-down
LCD_DATA11 ALT6 SRC_BT_CFG[11] Input 100 k pull-down
LCD_DATA12 ALT6 SRC_BT_CFG[12] Input 100 k pull-down
LCD_DATA13 ALT6 SRC_BT_CFG[13] Input 100 k pull-down
LCD_DATA14 ALT6 SRC_BT_CFG[14] Input 100 k pull-down
LCD_DATA15 ALT6 SRC_BT_CFG[15] Input 100 k pull-down
LCD_DATA16 ALT6 SRC_BT_CFG[16] Input 100 k pull-down
LCD_DATA17 ALT6 SRC_BT_CFG[17] Input 100 k pull-down
LCD_DATA18 ALT6 SRC_BT_CFG[18] Input 100 k pull-down
LCD_DATA19 ALT6 SRC_BT_CFG[19] Input 100 k pull-down
LCD_DATA20 ALT6 SRC_BT_CFG[20] Input 100 k pull-down
LCD_DATA21 ALT6 SRC_BT_CFG[21] Input 100 k pull-down
LCD_DATA22 ALT6 SRC_BT_CFG[22] Input 100 k pull-down
LCD_DATA23 ALT6 SRC_BT_CFG[23] Input 100 k pull-down
1Others are same as value in the column “Out of Reset Condition” of Table 94.
Table 96. GPIO Behaviors during Reset (continued)1
Ball Name Mux Mode Function Input/Output Value
i.MX 6UltraLite Automotive Applications Processors, Rev. 1, 04/2016
122 Freescale Semiconductor, Inc.
Revision History
7 Revision History
Table 97 provides a revision history for this data sheet.
Table 97. i.MX 6UltraLite Data Sheet Document Revision History
Rev.
Number Date Substantive Change(s)
0 01/2016 Initial release
0.1 02/2016 Updated Figure 1 Part Number Nomenclature—i.MX 6UltraLite
Updated Table 1 Ordering Information
Updated Table 3 i.MX 6UltraLite Modules List
1 04/2016 Updated Table 3 i.MX 6UltraLite Module list for BCH descriptions
Updated Table 4 Special Signal Considerations
Added a note for Table 9 14x14 MM Package Thermal Resistance
Updated Table 14 Low Power Mode Current and Power Consumption
Added a note for Table 22 XTALI and RTC_XTALI DC Parameters
Updated Table 37 EIM Internal Module Multiplexing
Updated Table 55 SDR50/SDR104 Interface Timing Specification
Updated Table 94 14x14 mm Functional Contact Assignments and footnote
Updated Section 4.1.1, “Absolute Maximum Ratings
Updated Section 4.6.3, “DDR I/O DC Parameters
Added Section 4.11.8, “LCD Controller (LCDIF) Timing Parameters
Updated Section 4.11.9, “QUAD SPI (QSPI) Timing Parameters
Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document.
Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for
each customer application by customer’s technical experts. Freescale does not convey
any license under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found at the following
address: freescale.com/SalesTermsandConditions.
How to Reach Us:
Home Page:
freescale.com
Web Support:
freescale.com/support
Freescale, the Freescale logo, and the Energy Efficient Solutions logo are trademarks
of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. ARM, the ARM powered
logo, and Cortex are registered trademarks of ARM Limited ( or its subsidiaries) in the
EU and/or elsewhere. All other product or service names are the property of their
respective owners.
The USB-IF logo is a registered trademark of USB Implementers Forum, Inc.
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics of their non-RoHS-compliant and/or non-Pb-free
counterparts.
© 2015-2016 Freescale Semiconductor, Inc. All rights reserved.
Document Number: IMX6ULAEC
Rev. 1
04/2016