EFM32 Giant Gecko Series 1 Family
EFM32GG11 Family Data Sheet
The EFM32 Giant Gecko Series 1 MCUs are the world’s most
energy-friendly microcontrollers, featuring new connectivity interfa-
ces and user interface features.
EFM32GG11 includes a powerful 32-bit ARM® Cortex®-M4 and provides robust security
via a unique cryptographic hardware engine supporting AES, ECC, SHA, and True Ran-
dom Number Generator (TRNG). New features include an SD/MMC/SDIO controller, Oc-
tal/Quad-SPI memory controller, 10/100 Ethernet MAC, CAN bus controller, highly robust
capacitive sensing, enhanced alpha blending graphics engine, and LESENSE/PCNT en-
hancements for smart energy meters. These features, combined with ultra-low current
active mode and short wake-up time from energy-saving modes, make EFM32GG11 mi-
crocontrollers well suited for any battery-powered application, as well as other systems
requiring high performance and low-energy consumption.
Example applications:
ARM Cortex-M4 at 72 MHz
Ultra low energy operation
80 µA/MHz in Energy Mode 0 (EM0)
2.1 μA EM2 Deep Sleep current (RTCC
running with state and RAM retention)
Octal/Quad-SPI memory interface w/ XIP
SD/MMC/SDIO Host Controller
10/100 Ethernet MAC with 802.3az EEE,
IEEE1588
Dual CAN 2.0 Bus Controller
Crystal-free low-energy USB
Hardware cryptographic engine supports
AES, ECC, SHA, and TRNG
Robust capacitive touch sense
Footprint compatible with select EFM32
packages
5 V tolerant I/O
Smart energy meters
Industrial and factory automation
Home automation and security
Mid- and high-tier wearables
IoT devices
32-bit bus
Lowest power mode with peripheral operational:
EM2 – Deep Sleep
EM1 - Sleep EM4H - Hibernate EM4S - Shutoff
EM0 - Active EM3 - Stop
Core / Memory
Flash Program
Memory
RAM Memory
ARM CortexTM
M4 processor
with FPU and
MPU
Debug Interface
LDMA
Controller
ETM
Other
CRYPTO
CRC
Energy Management
Brown-Out
Detector
DC-DC
Converter
Voltage
Regulator
Voltage/Temp
Monitor
Power-On Reset
Clock Management
High Frequency
RC Oscillator
Ultra Low Freq.
RC Oscillator
USB Oscillator
Low Frequency
Crystal Oscillator
Low Frequency
RC Oscillator
Auxiliary High
Freq. RC Osc.
High Frequency
Crystal Oscillator
PLL
Analog Interfaces
Low Energy LCD
Controller
IDAC
Operational
Amplifier
ADC
VDAC
Analog
Comparator
Capacitive
Sensing
Backup Domain
Peripheral Reflex System
Serial Interfaces
UART
I2C
LEUSB
(crystal free)
SD / MMC / SDIO
I/O Ports Timers and Triggers
Low Energy
Sensor IF
Timer/Counter
Low Energy Timer
Watchdog Timer
CRYOTIMER
External
Interrupts
Pin Reset
EBI + pixel-alpha
General
Purpose I/O
Pin Wakeup
TFT Driver
Real Time Counter
and Calendar
Pulse Counter
Real Time Counter
Quad-SPI
USART
Low Energy
UARTTM
CAN
10/100 Ethernet
True Random
Number Generator
SMU
silabs.com | Building a more connected world. Preliminary Rev. 0.6
This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
1. Feature List
The EFM32GG11 highlighted features are listed below.
ARM Cortex-M4 CPU platform
High performance 32-bit processor @ up to 72 MHz
DSP instruction support and Floating Point Unit
Memory Protection Unit
Wake-up Interrupt Controller
Flexible Energy Management System
80 μA/MHz in Active Mode (EM0)
2.1 μA EM2 Deep Sleep current (16 kB RAM retention and
RTCC running from LFRCO)
Integrated DC-DC buck converter
Up to 2048 kB flash program memory
Dual-bank with read-while-write support
Up to 512 kB RAM data memory
256 kB with ECC (SEC-DED)
Octal/Quad-SPI Flash Memory Interface
Supports 3 V and 1.8 V memories
1/2/4/8-bit data bus
Quad-SPI Execute In Place (XIP)
Communication Interfaces
Low-energy Universal Serial Bus (USB) with Device and
Host support
Fully USB 2.0 compliant
On-chip PHY and embedded 5V to 3.3V regulator
Crystal-free Device mode operation
Patent-pending Low-Energy Mode (LEM)
SD/MMC/SDIO Host Controller
SD v3.01, SDIO v3.0 and MMC v4.51
1/4/8-bit bus width
10/100 Ethernet MAC with MII/RMII interface
IEEE1588-2008 precision time stamping
Energy Efficient Ethernet (802.3az)
Up to 2× CAN Bus Controller
Version 2.0A and 2.0B up to 1 Mbps
6× Universal Synchronous/Asynchronous Receiver/ Trans-
mitter
UART/SPI/SmartCard (ISO 7816)/IrDA/I2S/LIN
Triple buffered full/half-duplex operation with flow control
Ultra high speed (36 MHz) operation on one instance
2× Universal Asynchronous Receiver/ Transmitter
2× Low Energy UART
Autonomous operation with DMA in Deep Sleep Mode
3× I2C Interface with SMBus support
Address recognition in EM3 Stop Mode
Up to 144 General Purpose I/O Pins
Configurable push-pull, open-drain, pull-up/down, input fil-
ter, drive strength
Configurable peripheral I/O locations
5 V tolerance on select pins
Asynchronous external interrupts
Output state retention and wake-up from Shutoff Mode
Up to 24 Channel DMA Controller
Up to 24 Channel Peripheral Reflex System (PRS) for au-
tonomous inter-peripheral signaling
External Bus Interface for up to 4x256 MB of external
memory mapped space
TFT Controller with Direct Drive
Per-pixel alpha-blending engine
Hardware Cryptography
AES 128/256-bit keys
ECC B/K163, B/K233, P192, P224, P256
SHA-1 and SHA-2 (SHA-224 and SHA-256)
True Random Number Generator (TRNG)
Hardware CRC engine
Single-cycle computation with 8/16/32-bit data and 16-bit
(programmable)/32-bit (fixed) polynomial
Security Management Unit (SMU)
Fine-grained access control for on-chip peripherals
Integrated Low-energy LCD Controller with up to 8×36 seg-
ments
Voltage boost, contrast and autonomous animation
Patented low-energy LCD driver
Backup Power Domain
RTCC and retention registers in a separate power domain,
available down to energy mode EM4H
Operation from backup battery when main power absent/
insufficient
Ultra Low-Power Precision Analog Peripherals
2× 12-bit 1 Msamples/s Analog to Digital Converter (ADC)
On-chip temperature sensor
2× 12-bit 500 ksamples/s Digital to Analog Converter
(VDAC)
Digital to Analog Current Converter (IDAC)
Up to 4× Analog Comparator (ACMP)
Up to 4× Operational Amplifier (OPAMP)
Robust current-based capacitive sensing with up to 64 in-
puts and wake-on-touch (CSEN)
Up to 108 GPIO pins are analog-capable. Flexible analog
peripheral-to-pin routing via Analog Port (APORT)
Supply Voltage Monitor
EFM32GG11 Family Data Sheet
Feature List
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 2
Timers/Counters
7× 16-bit Timer/Counter
3 + 4 Compare/Capture/PWM channels (4 + 4 on one
timer instance)
Dead-Time Insertion on several timer instances
4× 32-bit Timer/Counter
32-bit Real Time Counter and Calendar (RTCC)
24-bit Real Time Counter (RTC)
32-bit Ultra Low Energy CRYOTIMER for periodic wakeup
from any Energy Mode
2× 16-bit Low Energy Timer for waveform generation
3× 16-bit Pulse Counter with asynchronous operation
2× Watchdog Timer with dedicated RC oscillator
Low Energy Sensor Interface (LESENSE)
Autonomous sensor monitoring in Deep Sleep Mode
Wide range of sensors supported, including LC sensors and
capacitive buttons
Up to 16 inputs
Ultra efficient Power-on Reset and Brown-Out Detector
Debug Interface
2-pin Serial Wire Debug interface
1-pin Serial Wire Viewer
4-pin JTAG interface
Embedded Trace Macrocell (ETM)
Pre-Programmed USB/UART Bootloader
Wide Operating Range
1.8 V to 3.8 V single power supply
Integrated DC-DC, down to 1.8 V output with up to 200 mA
load current for system
Standard (-40 °C to 85 °C TAMB) and Extended (-40 °C to
125 °C TJ) temperature grades available
Packages
QFN64 (9x9 mm)
TQFP64 (10x10 mm)
TQFP100 (14x14 mm)
BGA112 (10x10 mm)
BGA120 (7x7 mm)
BGA152 (8x8 mm)
BGA192 (7x7mm)
EFM32GG11 Family Data Sheet
Feature List
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 3
2. Ordering Information
Table 2.1. Ordering Information
Ordering Code
Flash
(kB)
RAM
(kB)
DC-DC Converter
USB
Ethernet
QSPI
SDIO
LCD
GPIO Package Temp Range
EFM32GG11B820F2048GL192-A 2048 512 Yes Yes Yes Yes Yes Yes 144 BGA192 -40 to +85°C
EFM32GG11B840F1024GL192-A 1024 512 Yes Yes Yes Yes Yes Yes 144 BGA192 -40 to +85°C
EFM32GG11B820F2048GL152-A 2048 512 Yes Yes Yes Yes Yes Yes 121 BGA152 -40 to +85°C
EFM32GG11B820F2048IL152-A 2048 512 Yes Yes Yes Yes Yes Yes 121 BGA152 -40 to +125°C
EFM32GG11B840F1024GL152-A 1024 512 Yes Yes Yes Yes Yes Yes 121 BGA152 -40 to +85°C
EFM32GG11B840F1024IL152-A 1024 512 Yes Yes Yes Yes Yes Yes 121 BGA152 -40 to +125°C
EFM32GG11B820F2048GL120-A 2048 512 Yes Yes Yes Yes Yes Yes 95 BGA120 -40 to +85°C
EFM32GG11B820F2048IL120-A 2048 512 Yes Yes Yes Yes Yes Yes 95 BGA120 -40 to +125°C
EFM32GG11B840F1024GL120-A 1024 512 Yes Yes Yes Yes Yes Yes 95 BGA120 -40 to +85°C
EFM32GG11B840F1024IL120-A 1024 512 Yes Yes Yes Yes Yes Yes 95 BGA120 -40 to +125°C
EFM32GG11B820F2048GQ100-A 2048 512 Yes Yes Yes Yes Yes Yes 80 QFP100 -40 to +85°C
EFM32GG11B820F2048IQ100-A 2048 512 Yes Yes Yes Yes Yes Yes 80 QFP100 -40 to +125°C
EFM32GG11B840F1024GQ100-A 1024 512 Yes Yes Yes Yes Yes Yes 80 QFP100 -40 to +85°C
EFM32GG11B840F1024IQ100-A 1024 512 Yes Yes Yes Yes Yes Yes 80 QFP100 -40 to +125°C
EFM32GG11B820F2048GQ64-A 2048 512 Yes Yes Yes Yes Yes Yes 47 QFP64 -40 to +85°C
EFM32GG11B820F2048GM64-A 2048 512 Yes Yes Yes Yes Yes Yes 50 QFN64 -40 to +85°C
EFM32GG11B820F2048IQ64-A 2048 512 Yes Yes Yes Yes Yes Yes 47 QFP64 -40 to +125°C
EFM32GG11B820F2048IM64-A 2048 512 Yes Yes Yes Yes Yes Yes 50 QFN64 -40 to +125°C
EFM32GG11B840F1024GQ64-A 1024 512 Yes Yes Yes Yes Yes Yes 47 QFP64 -40 to +85°C
EFM32GG11B840F1024GM64-A 1024 512 Yes Yes Yes Yes Yes Yes 50 QFN64 -40 to +85°C
EFM32GG11B840F1024IQ64-A 1024 512 Yes Yes Yes Yes Yes Yes 47 QFP64 -40 to +125°C
EFM32GG11B840F1024IM64-A 1024 512 Yes Yes Yes Yes Yes Yes 50 QFN64 -40 to +125°C
EFM32GG11B520F2048GL120-A 2048 512 Yes No No No No Yes 95 BGA120 -40 to +85°C
EFM32GG11B510F2048GL120-A 2048 384 Yes No No No No Yes 95 BGA120 -40 to +85°C
EFM32GG11B520F2048IL120-A 2048 512 Yes No No No No Yes 95 BGA120 -40 to +125°C
EFM32GG11B510F2048IL120-A 2048 384 Yes No No No No Yes 95 BGA120 -40 to +125°C
EFM32GG11B520F2048GQ100-A 2048 512 Yes No No No No Yes 83 QFP100 -40 to +85°C
EFM32GG11B510F2048GQ100-A 2048 384 Yes No No No No Yes 83 QFP100 -40 to +85°C
EFM32GG11B520F2048IQ100-A 2048 512 Yes No No No No Yes 83 QFP100 -40 to +125°C
EFM32GG11B510F2048IQ100-A 2048 384 Yes No No No No Yes 83 QFP100 -40 to +125°C
EFM32GG11 Family Data Sheet
Ordering Information
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 4
Ordering Code
Flash
(kB)
RAM
(kB)
DC-DC Converter
USB
Ethernet
QSPI
SDIO
LCD
GPIO Package Temp Range
EFM32GG11B520F2048GQ64-A 2048 512 Yes No No No No Yes 50 QFP64 -40 to +85°C
EFM32GG11B510F2048GQ64-A 2048 384 Yes No No No No Yes 50 QFP64 -40 to +85°C
EFM32GG11B520F2048GM64-A 2048 512 Yes No No No No Yes 53 QFN64 -40 to +85°C
EFM32GG11B510F2048GM64-A 2048 384 Yes No No No No Yes 53 QFN64 -40 to +85°C
EFM32GG11B520F2048IQ64-A 2048 512 Yes No No No No Yes 50 QFP64 -40 to +125°C
EFM32GG11B510F2048IQ64-A 2048 384 Yes No No No No Yes 50 QFP64 -40 to +125°C
EFM32GG11B520F2048IM64-A 2048 512 Yes No No No No Yes 53 QFN64 -40 to +125°C
EFM32GG11B510F2048IM64-A 2048 384 Yes No No No No Yes 53 QFN64 -40 to +125°C
EFM32GG11B420F2048GL120-A 2048 512 No Yes Yes Yes Yes Yes 93 BGA120 -40 to +85°C
EFM32GG11B420F2048IL120-A 2048 512 No Yes Yes Yes Yes Yes 93 BGA120 -40 to +125°C
EFM32GG11B420F2048GL112-A 2048 512 No Yes Yes Yes Yes Yes 87 BGA112 -40 to +85°C
EFM32GG11B420F2048IL112-A 2048 512 No Yes Yes Yes Yes Yes 87 BGA112 -40 to +125°C
EFM32GG11B420F2048GQ100-A 2048 512 No Yes Yes Yes Yes Yes 83 QFP100 -40 to +85°C
EFM32GG11B420F2048IQ100-A 2048 512 No Yes Yes Yes Yes Yes 83 QFP100 -40 to +125°C
EFM32GG11B420F2048GQ64-A 2048 512 No Yes Yes Yes Yes Yes 50 QFP64 -40 to +85°C
EFM32GG11B420F2048GM64-A 2048 512 No Yes Yes Yes Yes Yes 53 QFN64 -40 to +85°C
EFM32GG11B420F2048IQ64-A 2048 512 No Yes Yes Yes Yes Yes 50 QFP64 -40 to +125°C
EFM32GG11B420F2048IM64-A 2048 512 No Yes Yes Yes Yes Yes 53 QFN64 -40 to +125°C
EFM32GG11B320F2048GL112-A 2048 512 No No No No No Yes 90 BGA112 -40 to +85°C
EFM32GG11B310F2048GL112-A 2048 384 No No No No No Yes 90 BGA112 -40 to +85°C
EFM32GG11B320F2048GQ100-A 2048 512 No No No No No Yes 86 QFP100 -40 to +85°C
EFM32GG11B310F2048GQ100-A 2048 384 No No No No No Yes 86 QFP100 -40 to +85°C
EFM32GG11B120F2048GQ64-A 2048 512 No No No No No No 53 QFP64 -40 to +85°C
EFM32GG11B110F2048GQ64-A 2048 384 No No No No No No 53 QFP64 -40 to +85°C
EFM32GG11B120F2048GM64-A 2048 512 No No No No No No 56 QFN64 -40 to +85°C
EFM32GG11B110F2048GM64-A 2048 384 No No No No No No 56 QFN64 -40 to +85°C
EFM32GG11B120F2048IQ64-A 2048 512 No No No No No No 53 QFP64 -40 to +125°C
EFM32GG11B110F2048IQ64-A 2048 384 No No No No No No 53 QFP64 -40 to +125°C
EFM32GG11B120F2048IM64-A 2048 512 No No No No No No 56 QFN64 -40 to +125°C
EFM32GG11B110F2048IM64-A 2048 384 No No No No No No 56 QFN64 -40 to +125°C
EFM32GG11 Family Data Sheet
Ordering Information
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 5
EFM32
1 B F G R
Tape and Reel (Optional)
Revision
Pin Count
Package M (QFN), L (BGA), Q (QFP)
Flash Memory Size in kB
Memory Type (Flash)
Feature Set Code
G
G820 2048 L 192
Temperature Grade G (-40 to +85 °C), I (-40 to +125 °C)
Performance Grade B (Basic)
Family G (Giant)
Series
Energy Friendly Microcontroller 32-bit
Gecko
A
1
Device Configuration
Figure 2.1. Ordering Code Key
EFM32GG11 Family Data Sheet
Ordering Information
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 6
Table of Contents
1. Feature List ................................2
2. Ordering Information ............................4
3. System Overview .............................11
3.1 Introduction...............................11
3.2 Power ................................12
3.2.1 Energy Management Unit (EMU) .....................12
3.2.2 DC-DC Converter ..........................12
3.2.3 5 V Regulator ............................12
3.2.4 EM2 and EM3 Power Domains ......................13
3.3 General Purpose Input/Output (GPIO)......................13
3.4 Clocking ................................13
3.4.1 Clock Management Unit (CMU) ......................13
3.4.2 Internal and External Oscillators......................14
3.5 Counters/Timers and PWM .........................14
3.5.1 Timer/Counter (TIMER) ........................14
3.5.2 Wide Timer/Counter (WTIMER) ......................14
3.5.3 Real Time Counter and Calendar (RTCC) ..................14
3.5.4 Low Energy Timer (LETIMER) ......................14
3.5.5 Ultra Low Power Wake-up Timer (CRYOTIMER) ................14
3.5.6 Pulse Counter (PCNT) .........................15
3.5.7 Watchdog Timer (WDOG) ........................15
3.6 Communications and Other Digital Peripherals ...................15
3.6.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) .........15
3.6.2 Universal Asynchronous Receiver/Transmitter (UART) ..............15
3.6.3 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART) .........15
3.6.4 Inter-Integrated Circuit Interface (I2C) ....................15
3.6.5 External Bus Interface (EBI) .......................15
3.6.6 Quad-SPI Flash Controller (QSPI) .....................16
3.6.7 SDIO Host Controller (SDIO) .......................16
3.6.8 Universal Serial Bus (USB) .......................16
3.6.9 Ethernet (ETH) ...........................16
3.6.10 Controller Area Network (CAN) .....................16
3.6.11 Peripheral Reflex System (PRS) .....................16
3.6.12 Low Energy Sensor Interface (LESENSE) ..................16
3.7 Security Features.............................17
3.7.1 GPCRC (General Purpose Cyclic Redundancy Check) ..............17
3.7.2 Crypto Accelerator (CRYPTO) ......................17
3.7.3 True Random Number Generator (TRNG) ..................17
3.7.4 Security Management Unit (SMU) .....................17
3.8 Analog ................................17
3.8.1 Analog Port (APORT) .........................17
3.8.2 Analog Comparator (ACMP) .......................17
3.8.3 Analog to Digital Converter (ADC) .....................17
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 7
3.8.4 Capacitive Sense (CSEN) ........................18
3.8.5 Digital to Analog Current Converter (IDAC) ..................18
3.8.6 Digital to Analog Converter (VDAC) ....................18
3.8.7 Operational Amplifiers .........................18
3.8.8 Liquid Crystal Display Driver (LCD).....................18
3.9 Reset Management Unit (RMU) ........................18
3.10 Core and Memory ............................18
3.10.1 Processor Core ...........................18
3.10.2 Memory System Controller (MSC) ....................19
3.10.3 Linked Direct Memory Access Controller (LDMA) ...............19
3.10.4 Bootloader ............................19
3.11 Memory Map ..............................20
3.12 Configuration Summary ..........................22
4. Electrical Specifications ..........................23
4.1 Electrical Characteristics ..........................23
4.1.1 Absolute Maximum Ratings .......................24
4.1.2 Operating Conditions .........................25
4.1.3 Thermal Characteristics ........................27
4.1.4 DC-DC Converter ..........................28
4.1.5 5V Regulator ............................30
4.1.6 Backup Supply Domain ........................31
4.1.7 Current Consumption .........................32
4.1.8 Wake Up Times ...........................39
4.1.9 Brown Out Detector (BOD) .......................40
4.1.10 Oscillators ............................41
4.1.11 Flash Memory Characteristics ......................48
4.1.12 General-Purpose I/O (GPIO) ......................49
4.1.13 Voltage Monitor (VMON) ........................51
4.1.14 Analog to Digital Converter (ADC) ....................52
4.1.15 Analog Comparator (ACMP) ......................54
4.1.16 Digital to Analog Converter (VDAC) ....................57
4.1.17 Current Digital to Analog Converter (IDAC) .................60
4.1.18 Capacitive Sense (CSEN) .......................62
4.1.19 Operational Amplifier (OPAMP) .....................64
4.1.20 LCD Driver ............................67
4.1.21 Pulse Counter (PCNT) ........................68
4.1.22 Analog Port (APORT) .........................68
4.1.23 I2C ...............................69
4.1.24 USART SPI ............................72
4.1.25 External Bus Interface (EBI) ......................75
4.1.26 Ethernet (ETH) ...........................84
4.1.27 Serial Data I/O Host Controller (SDIO) ...................87
4.1.28 Quad SPI (QSPI) .........................102
4.2 Typical Performance Curves ........................106
4.2.1 Supply Current ..........................107
4.2.2 DC-DC Converter .........................113
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 8
5. Pin Definitions ..............................115
5.1 EFM32GG11B8xx in BGA192 Device Pinout ..................115
5.2 EFM32GG11B8xx in BGA152 Device Pinout ..................119
5.3 EFM32GG11B8xx in BGA120 Device Pinout ..................123
5.4 EFM32GG11B5xx in BGA120 Device Pinout ..................126
5.5 EFM32GG11B4xx in BGA120 Device Pinout ..................129
5.6 EFM32GG11B4xx in BGA112 Device Pinout ..................132
5.7 EFM32GG11B3xx in BGA112 Device Pinout ..................135
5.8 EFM32GG11B8xx in QFP100 Device Pinout ..................138
5.9 EFM32GG11B5xx in QFP100 Device Pinout ..................141
5.10 EFM32GG11B4xx in QFP100 Device Pinout ..................144
5.11 EFM32GG11B3xx in QFP100 Device Pinout ..................147
5.12 EFM32GG11B8xx in QFP64 Device Pinout ..................150
5.13 EFM32GG11B5xx in QFP64 Device Pinout ..................152
5.14 EFM32GG11B4xx in QFP64 Device Pinout ..................154
5.15 EFM32GG11B1xx in QFP64 Device Pinout ..................156
5.16 EFM32GG11B8xx in QFN64 Device Pinout ..................158
5.17 EFM32GG11B5xx in QFN64 Device Pinout ..................160
5.18 EFM32GG11B4xx in QFN64 Device Pinout ..................162
5.19 EFM32GG11B1xx in QFN64 Device Pinout ..................164
5.20 GPIO Functionality Table ........................166
5.21 Alternate Functionality Overview ......................178
5.22 Analog Port (APORT) Client Maps .....................211
6. BGA192 Package Specifications .......................224
6.1 BGA192 Package Dimensions .......................224
6.2 BGA192 PCB Land Pattern ........................226
6.3 BGA192 Package Marking ........................228
7. BGA152 Package Specifications .......................229
7.1 BGA152 Package Dimensions .......................229
7.2 BGA152 PCB Land Pattern ........................231
7.3 BGA152 Package Marking ........................233
8. BGA120 Package Specifications .......................234
8.1 BGA120 Package Dimensions .......................234
8.2 BGA120 PCB Land Pattern ........................236
8.3 BGA120 Package Marking ........................238
9. BGA112 Package Specifications .......................239
9.1 BGA112 Package Dimensions .......................239
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 9
9.2 BGA112 PCB Land Pattern ........................241
9.3 BGA112 Package Marking ........................243
10. TQFP100 Package Specifications ......................244
10.1 TQFP100 Package Dimensions ......................244
10.2 TQFP100 PCB Land Pattern .......................246
10.3 TQFP100 Package Marking ........................247
11. TQFP64 Package Specifications .......................248
11.1 TQFP64 Package Dimensions .......................248
11.2 TQFP64 PCB Land Pattern ........................250
11.3 TQFP64 Package Marking ........................251
12. QFN64 Package Specifications .......................252
12.1 QFN64 Package Dimensions .......................252
12.2 QFN64 PCB Land Pattern ........................254
12.3 QFN64 Package Marking ........................256
13. Revision History.............................257
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 10
3. System Overview
3.1 Introduction
The Giant Gecko Series 1 product family is well suited for any battery operated application as well as other systems requiring high
performance and low energy consumption. This section gives a short introduction to the MCU system. The detailed functional descrip-
tion can be found in the Giant Gecko Series 1 Reference Manual.
A block diagram of the Giant Gecko Series 1 family is shown in Figure 3.1 Detailed EFM32GG11 Block Diagram on page 11. The
diagram shows a superset of features available on the family, which vary by OPN. For more information about specific device features,
consult Ordering Information.
Analog Peripherals
Clock Management
HFRCO + DPLL
IDAC
ARM Cortex-M4 Core
A
H
B
Watchdog
Timers
RESETn
Digital Peripherals
Input Mux
Digital Port Mapper
Port I/O Configuration
Analog Comparator
12-bit ADC
Temp
Sense
VDD
Internal
Reference
AUXHFRCO
LFXO
ULFRCO
HFXO
LFRCO
A
P
B
+
-
Analog Port (APORT)
Energy Management
DVDD
VREGVDD
VREGSW
bypass
AVDD
DECOUPLE
IOVDDn
Voltage
Monitor
VDAC
+
-
Op-Amp
Capacitive
Touch PH0-15
PG0-15
PF0-15
PE0-15
PD0-15
PC0-15
PB0-15
PA0-15
Mux & FB
HFXTAL_P
HFXTAL_N
LFXTAL_P
LFXTAL_N
Voltage
Regulator
DC-DC
Converter
Brown Out /
Power-On
Reset
Reset
Management
Unit
Debug Signals
(shared w/GPIO)
Serial Wire
and ETM
Debug /
Programming
PI0-15
IOVDDn
n=2: PA0-6,
PE14-15
n=1: PD9-12,
PE8-13,
PF6-9
n=0: All other GPIO
Port H
Drivers
Port G
Drivers
Port F
Drivers
Port E
Drivers
Port D
Drivers
Port C
Drivers
Port B
Drivers
Port A
Drivers
Port I
Drivers
QSPI
SDIO
TFT
EBI
Ethernet
CAN
USB
LESENSE
CRC
CRYPTO
I2C
LEUART
PCNT
CRYOTIMER
LETIMER
Low-Energy LCD, up to 8x36
configuration
USHFRCO
VREGO
VBUS
VREGI
5V
Regulator
BU_VIN
BU_VOUT
BU_STAT
Backup
Domain
To
GPIO
USART / UART
RTC / RTCC
TIMER / WTIMER
Up to 2048 KB ISP Flash
Program Memory
Up to 512 KB RAM
Memory Protection Unit
LDMA Controller
Floating Point Unit
Security Management
TRNG
Figure 3.1. Detailed EFM32GG11 Block Diagram
EFM32GG11 Family Data Sheet
System Overview
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 11
3.2 Power
The EFM32GG11 has an Energy Management Unit (EMU) and efficient integrated regulators to generate internal supply voltages. Only
a single external supply voltage is required, from which all internal voltages are created. A 5 V regulator is available on some OPNs,
allowing the device to be powered directly from 5 V power sources, such as USB. An optional integrated DC-DC buck regulator can be
utilized to further reduce the current consumption. The DC-DC regulator requires one external inductor and one external capacitor.
The EFM32GG11 device family includes support for internal supply voltage scaling, as well as two different power domain groups for
peripherals. These enhancements allow for further supply current reductions and lower overall power consumption.
AVDD and VREGVDD need to be 1.8 V or higher for the MCU to operate across all conditions; however the rest of the system will
operate down to 1.62 V, including the digital supply and I/O. This means that the device is fully compatible with 1.8 V components.
Running from a sufficiently high supply, the device can use the DC-DC to regulate voltage not only for itself, but also for other PCB
components, supplying up to a total of 200 mA.
3.2.1 Energy Management Unit (EMU)
The Energy Management Unit manages transitions of energy modes in the device. Each energy mode defines which peripherals and
features are available and the amount of current the device consumes. The EMU can also be used to turn off the power to unused RAM
blocks, and it contains control registers for the DC-DC regulator and the Voltage Monitor (VMON). The VMON is used to monitor multi-
ple supply voltages. It has multiple channels which can be programmed individually by the user to determine if a sensed supply has
fallen below a chosen threshold.
3.2.2 DC-DC Converter
The DC-DC buck converter covers a wide range of load currents and provides up to 90% efficiency in energy modes EM0, EM1, EM2
and EM3, and can supply up to 200 mA to the device and surrounding PCB components. Protection features include programmable
current limiting, short-circuit protection, and dead-time protection. The DC-DC converter may also enter bypass mode when the input
voltage is too low for efficient operation. In bypass mode, the DC-DC input supply is internally connected directly to its output through a
low resistance switch. Bypass mode also supports in-rush current limiting to prevent input supply voltage droops due to excessive out-
put current transients.
3.2.3 5 V Regulator
A 5 V input regulator is available, allowing the device to be powered directly from 5 V power sources such as the USB VBUS line. The
regulator is available in all energy modes, and outputs 3.3 V to be used to power the USB PHY and other 3.3 V systems. Two inputs to
the regulator allow for seamless switching between local and external power sources.
EFM32GG11 Family Data Sheet
System Overview
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 12
3.2.4 EM2 and EM3 Power Domains
The EFM32GG11 has three independent peripheral power domains for use in EM2 and EM3. Two of these domains are dynamic and
can be shut down to save energy. Peripherals associated with the two dynamic power domains are listed in Table 3.1 EM2 and EM3
Peripheral Power Subdomains on page 13. If all of the peripherals in a peripheral power domain are unused, the power domain for
that group will be powered off in EM2 and EM3, reducing the overall current consumption of the device. Other EM2, EM3, and EM4-
capable peripherals and functions not listed in the table below reside on the primary power domain, which is always on in EM2 and
EM3.
Table 3.1. EM2 and EM3 Peripheral Power Subdomains
Peripheral Power Domain 1 Peripheral Power Domain 2
ACMP0 ACMP1
PCNT0 PCNT1
ADC0 PCNT2
LETIMER0 CSEN
LESENSE VDAC0
APORT LEUART0
- LEUART1
- LETIMER1
- I2C0
- I2C1
- I2C2
- IDAC
- ADC1
- ACMP2
- ACMP3
- LCD
- RTC
3.3 General Purpose Input/Output (GPIO)
EFM32GG11 has up to 144 General Purpose Input/Output pins. GPIO are organized on three independent supply rails, allowing for
interface to multiple logic levels in the system simultaneously. Each GPIO pin can be individually configured as either an output or input.
More advanced configurations including open-drain, open-source, and glitch-filtering can be configured for each individual GPIO pin.
The GPIO pins can be overridden by peripheral connections, like SPI communication. Each peripheral connection can be routed to sev-
eral GPIO pins on the device. The input value of a GPIO pin can be routed through the Peripheral Reflex System to other peripherals.
The GPIO subsystem supports asynchronous external pin interrupts.
3.4 Clocking
3.4.1 Clock Management Unit (CMU)
The Clock Management Unit controls oscillators and clocks in the EFM32GG11. Individual enabling and disabling of clocks to all pe-
ripheral modules is performed by the CMU. The CMU also controls enabling and configuration of the oscillators. A high degree of flexi-
bility allows software to optimize energy consumption in any specific application by minimizing power dissipation in unused peripherals
and oscillators.
EFM32GG11 Family Data Sheet
System Overview
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 13
3.4.2 Internal and External Oscillators
The EFM32GG11 supports two crystal oscillators and fully integrates five RC oscillators, listed below.
A high frequency crystal oscillator (HFXO) with integrated load capacitors, tunable in small steps, provides a precise timing refer-
ence for the MCU. Crystal frequencies in the range from 4 to 50 MHz are supported. An external clock source such as a TCXO can
also be applied to the HFXO input for improved accuracy over temperature.
A 32.768 kHz crystal oscillator (LFXO) provides an accurate timing reference for low energy modes.
An integrated high frequency RC oscillator (HFRCO) is available for the MCU system. The HFRCO employs fast startup at minimal
energy consumption combined with a wide frequency range. When crystal accuracy is not required, it can be operated in free-run-
ning mode at a number of factory-calibrated frequencies. A digital phase-locked loop (DPLL) feature allows the HFRCO to achieve
higher accuracy and stability by referencing other available clock sources such as LFXO and HFXO.
An integrated auxilliary high frequency RC oscillator (AUXHFRCO) is available for timing the general-purpose ADC and the Serial
Wire Viewer port with a wide frequency range.
An integrated auxilliary high frequency RC oscillator (USHFRCO) is available for timing the USB, SDIO and QSPI peripherals. The
USHFRCO can be syncronized to the host's USB clock to allow the USB to operate in device mode without the additional cost of an
external crystal.
An integrated low frequency 32.768 kHz RC oscillator (LFRCO) can be used as a timing reference in low energy modes, when crys-
tal accuracy is not required.
An integrated ultra-low frequency 1 kHz RC oscillator (ULFRCO) is available to provide a timing reference at the lowest energy con-
sumption in low energy modes.
3.5 Counters/Timers and PWM
3.5.1 Timer/Counter (TIMER)
TIMER peripherals keep track of timing, count events, generate PWM outputs and trigger timed actions in other peripherals through the
PRS system. The core of each TIMER is a 16-bit counter with up to 4 compare/capture channels. Each channel is configurable in one
of three modes. In capture mode, the counter state is stored in a buffer at a selected input event. In compare mode, the channel output
reflects the comparison of the counter to a programmed threshold value. In PWM mode, the TIMER supports generation of pulse-width
modulation (PWM) outputs of arbitrary waveforms defined by the sequence of values written to the compare registers, with optional
dead-time insertion available in timer unit TIMER_0 only.
3.5.2 Wide Timer/Counter (WTIMER)
WTIMER peripherals function just as TIMER peripherals, but are 32 bits wide. They keep track of timing, count events, generate PWM
outputs and trigger timed actions in other peripherals through the PRS system. The core of each WTIMER is a 32-bit counter with up to
4 compare/capture channels. Each channel is configurable in one of three modes. In capture mode, the counter state is stored in a
buffer at a selected input event. In compare mode, the channel output reflects the comparison of the counter to a programmed thresh-
old value. In PWM mode, the WTIMER supports generation of pulse-width modulation (PWM) outputs of arbitrary waveforms defined by
the sequence of values written to the compare registers, with optional dead-time insertion available in timer unit WTIMER_0 only.
3.5.3 Real Time Counter and Calendar (RTCC)
The Real Time Counter and Calendar (RTCC) is a 32-bit counter providing timekeeping in all energy modes. The RTCC includes a
Binary Coded Decimal (BCD) calendar mode for easy time and date keeping. The RTCC can be clocked by any of the on-board oscilla-
tors with the exception of the AUXHFRCO, and it is capable of providing system wake-up at user defined instances. The RTCC in-
cludes 128 bytes of general purpose data retention, allowing easy and convenient data storage in all energy modes down to EM4H.
3.5.4 Low Energy Timer (LETIMER)
The unique LETIMER is a 16-bit timer that is available in energy mode EM2 Deep Sleep in addition to EM1 Sleep and EM0 Active. This
allows it to be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed
while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of wave-
forms with minimal software intervention. The LETIMER is connected to the Real Time Counter and Calendar (RTCC), and can be con-
figured to start counting on compare matches from the RTCC.
3.5.5 Ultra Low Power Wake-up Timer (CRYOTIMER)
The CRYOTIMER is a 32-bit counter that is capable of running in all energy modes. It can be clocked by either the 32.768 kHz crystal
oscillator (LFXO), the 32.768 kHz RC oscillator (LFRCO), or the 1 kHz RC oscillator (ULFRCO). It can provide periodic Wakeup events
and PRS signals which can be used to wake up peripherals from any energy mode. The CRYOTIMER provides a wide range of inter-
rupt periods, facilitating flexible ultra-low energy operation.
EFM32GG11 Family Data Sheet
System Overview
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 14
3.5.6 Pulse Counter (PCNT)
The Pulse Counter (PCNT) peripheral can be used for counting pulses on a single input or to decode quadrature encoded inputs. The
clock for PCNT is selectable from either an external source on pin PCTNn_S0IN or from an internal timing reference, selectable from
among any of the internal oscillators, except the AUXHFRCO. The module may operate in energy mode EM0 Active, EM1 Sleep, EM2
Deep Sleep, and EM3 Stop.
3.5.7 Watchdog Timer (WDOG)
The watchdog timer can act both as an independent watchdog or as a watchdog synchronous with the CPU clock. It has windowed
monitoring capabilities, and can generate a reset or different interrupts depending on the failure mode of the system. The watchdog can
also monitor autonomous systems driven by PRS.
3.6 Communications and Other Digital Peripherals
3.6.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART)
The Universal Synchronous/Asynchronous Receiver/Transmitter is a flexible serial I/O module. It supports full duplex asynchronous
UART communication with hardware flow control as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with devices sup-
porting:
ISO7816 SmartCards
IrDA
I2S
3.6.2 Universal Asynchronous Receiver/Transmitter (UART)
The Universal Asynchronous Receiver/Transmitter is a subset of the USART module, supporting full duplex asynchronous UART com-
munication with hardware flow control and RS-485.
3.6.3 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART)
The unique LEUARTTM provides two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow
UART communication up to 9600 baud. The LEUART includes all necessary hardware to make asynchronous serial communication
possible with a minimum of software intervention and energy consumption.
3.6.4 Inter-Integrated Circuit Interface (I2C)
The I2C module provides an interface between the MCU and a serial I2C bus. It is capable of acting as both a master and a slave and
supports multi-master buses. Standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates from 10
kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also available, allowing implementation of an SMBus-compliant system. The
interface provided to software by the I2C module allows precise timing control of the transmission process and highly automated trans-
fers. Automatic recognition of slave addresses is provided in active and low energy modes.
3.6.5 External Bus Interface (EBI)
The External Bus Interface provides access to external parallel interface devices. The interface is memory mapped into the address bus
of the Cortex-M4. This enables seamless access from software without manually manipulating the I/O settings each time a read or write
is performed. The data and address lines are multiplexed in order to reduce the number of pins required to interface to external devices.
Timing is adjustable to meet specifications of the external devices. The interface is limited to asynchronous devices.
The EBI contains a TFT controller which can drive a TFT via an RGB interface. The TFT controller supports programmable display and
port sizes and offers accurate control of frequency and setup and hold timing. Direct Drive is supported for TFT displays which do not
have their own frame buffer. In that case TFT Direct Drive can transfer data from either on-chip memory or from an external memory
device to the TFT at low CPU load. Automatic alpha-blending and masking is also supported for transfers through the EBI interface.
EFM32GG11 Family Data Sheet
System Overview
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 15
3.6.6 Quad-SPI Flash Controller (QSPI)
The QSPI provides access to to a wide range of flash devices with wide I/O busses. The I/O and clocking configuration is flexible and
supports many types of devices. Up to 8-bit wide interfaces are supported. The QSPI handles opcodes, status flag polling, and timing
configuration automatically.
The external flash memory is mapped directly to internal memory to allow random access to any word in the flash and direct code exe-
cution. An integrated instruction cache minimizes latency and allows efficient code execution. Execute in Place (XIP) is supported for
devices with this feature.
Large data chunks can be transferred with DMA as efficiently as possible with high throughput and minimimal bus load, utilizing an
integrated 1 kB SRAM FIFO.
3.6.7 SDIO Host Controller (SDIO)
The SDIO is an SD3.01 / SDIO3.0 / eMMC4.51-compliant Host Controller interface for transferring data to and from SD/MMC/SDIO
devices. The module conforms to the SD Host Controller Standard Specification Version 3.00. The Host Controller handles
SDIO/SD/MMC Protocol at the transmission level, packing data, adding cyclic redundancy check (CRC), Start/End bits, and checking
for transaction format correctness.
3.6.8 Universal Serial Bus (USB)
The USB is a full-speed/low-speed USB 2.0 compliant host/device controller. The USB can be used in device and host-only configura-
tions, while a clock recovery mechanism allows crystal-less operation in device mode. The USB block supports both full speed (12
MBit/s) and low speed (1.5 MBit/s) operation. When operating as a device, a special Low Energy Mode ensures the current consump-
tion is optimized, enabling USB communications on a strict power budget. The USB device includes an internal dedicated Descriptor-
Based Scatter/Gather DMA and supports up to 6 OUT endpoints and 6 IN endpoints, in addition to endpoint 0. The on-chip PHY in-
cludes internal pull-up and pull-down resistors, as well as voltage comparators for monitoring the VBUS voltage and A/B device identifi-
cation using the ID line.
3.6.9 Ethernet (ETH)
The Ethernet peripheral is compliant with IEEE 802.3-2002 for Ethernet MAC. It supports 802.1AS and IEEE 1588 precision clock syn-
chronization protocol, as well as 802.3az Energy Efficient Ethernet. The ETH supports a wide variety of frame formats and standard
operating modes such as MII/RMII. Direct Memory Access (DMA) support makes it possible to transmit and receive large frames at
high data rates with minimal CPU overhead. The Ethernet peripheral supports 10 Mbps and 100 Mbps operation, and includes a total of
8 kB of dedicated dual-port RAM FIFO (4 kB for TX and 4 kB for RX).
3.6.10 Controller Area Network (CAN)
The CAN peripheral provides support for communication at up to 1 Mbps over CAN protocol version 2.0 part A and B. It includes 32
message objects with independent identifier masks and retains message RAM in EM2. Automatic retransmittion may be disabled in
order to support Time Triggered CAN applications.
3.6.11 Peripheral Reflex System (PRS)
The Peripheral Reflex System provides a communication network between different peripheral modules without software involvement.
Peripheral modules producing Reflex signals are called producers. The PRS routes Reflex signals from producers to consumer periph-
erals which in turn perform actions in response. Edge triggers and other functionality such as simple logic operations (AND, OR, NOT)
can be applied by the PRS to the signals. The PRS allows peripheral to act autonomously without waking the MCU core, saving power.
3.6.12 Low Energy Sensor Interface (LESENSE)
The Low Energy Sensor Interface LESENSETM is a highly configurable sensor interface with support for up to 16 individually configura-
ble sensors. By controlling the analog comparators, ADC, and DAC, LESENSE is capable of supporting a wide range of sensors and
measurement schemes, and can for instance measure LC sensors, resistive sensors and capacitive sensors. LESENSE also includes a
programmable finite state machine which enables simple processing of measurement results without CPU intervention. LESENSE is
available in energy mode EM2, in addition to EM0 and EM1, making it ideal for sensor monitoring in applications with a strict energy
budget.
EFM32GG11 Family Data Sheet
System Overview
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 16
3.7 Security Features
3.7.1 GPCRC (General Purpose Cyclic Redundancy Check)
The GPCRC module implements a Cyclic Redundancy Check (CRC) function. It supports both 32-bit and 16-bit polynomials. The sup-
ported 32-bit polynomial is 0x04C11DB7 (IEEE 802.3), while the 16-bit polynomial can be programmed to any value, depending on the
needs of the application.
3.7.2 Crypto Accelerator (CRYPTO)
The Crypto Accelerator is a fast and energy-efficient autonomous hardware encryption and decryption accelerator. Giant Gecko Series
1 devices support AES encryption and decryption with 128- or 256-bit keys, ECC over both GF(P) and GF(2m), and SHA-1 and SHA-2
(SHA-224 and SHA-256).
Supported block cipher modes of operation for AES include: ECB, CTR, CBC, PCBC, CFB, OFB, GCM, CBC-MAC, GMAC and CCM.
Supported ECC NIST recommended curves include P-192, P-224, P-256, K-163, K-233, B-163 and B-233.
The CRYPTO module allows fast processing of GCM (AES), ECC and SHA with little CPU intervention. CRYPTO also provides trigger
signals for DMA read and write operations.
3.7.3 True Random Number Generator (TRNG)
The TRNG module is a non-deterministic random number generator based on a full hardware solution. The TRNG is validated with
NIST800-22 and AIS-31 test suites as well as being suitable for FIPS 140-2 certification (for the purposes of cryptographic key genera-
tion).
3.7.4 Security Management Unit (SMU)
The Security Management Unit (SMU) allows software to set up fine-grained security for peripheral access, which is not possible in the
Memory Protection Unit (MPU). Peripherals may be secured by hardware on an individual basis, such that only priveleged accesses to
the peripheral's register interface will be allowed. When an access fault occurs, the SMU reports the specific peripheral involved and
can optionally generate an interrupt.
3.8 Analog
3.8.1 Analog Port (APORT)
The Analog Port (APORT) is an analog interconnect matrix allowing access to many analog modules on a flexible selection of pins.
Each APORT bus consists of analog switches connected to a common wire. Since many clients can operate differentially, buses are
grouped by X/Y pairs.
3.8.2 Analog Comparator (ACMP)
The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is high-
er. Inputs are selected from among internal references and external pins. The tradeoff between response time and current consumption
is configurable by software. Two 6-bit reference dividers allow for a wide range of internally-programmable reference sources. The
ACMP can also be used to monitor the supply voltage. An interrupt can be generated when the supply falls below or rises above the
programmable threshold.
3.8.3 Analog to Digital Converter (ADC)
The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to 1 Msps. The output
sample resolution is configurable and additional resolution is possible using integrated hardware for averaging over multiple samples.
The ADC includes integrated voltage references and an integrated temperature sensor. Inputs are selectable from a wide range of
sources, including pins configurable as either single-ended or differential.
EFM32GG11 Family Data Sheet
System Overview
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 17
3.8.4 Capacitive Sense (CSEN)
The CSEN module is a dedicated Capacitive Sensing block for implementing touch-sensitive user interface elements such a switches
and sliders. The CSEN module uses a charge ramping measurement technique, which provides robust sensing even in adverse condi-
tions including radiated noise and moisture. The module can be configured to take measurements on a single port pin or scan through
multiple pins and store results to memory through DMA. Several channels can also be shorted together to measure the combined ca-
pacitance or implement wake-on-touch from very low energy modes. Hardware includes a digital accumulator and an averaging filter,
as well as digital threshold comparators to reduce software overhead.
3.8.5 Digital to Analog Current Converter (IDAC)
The Digital to Analog Current Converter can source or sink a configurable constant current. This current can be driven on an output pin
or routed to the selected ADC input pin for capacitive sensing. The full-scale current is programmable between 0.05 µA and 64 µA with
several ranges consisting of various step sizes.
3.8.6 Digital to Analog Converter (VDAC)
The Digital to Analog Converter (VDAC) can convert a digital value to an analog output voltage. The VDAC is a fully differential, 500
ksps, 12-bit converter. The opamps are used in conjunction with the VDAC, to provide output buffering. One opamp is used per single-
ended channel, or two opamps are used to provide differential outputs. The VDAC may be used for a number of different applications
such as sensor interfaces or sound output. The VDAC can generate high-resolution analog signals while the MCU is operating at low
frequencies and with low total power consumption. Using DMA and a timer, the VDAC can be used to generate waveforms without any
CPU intervention. The VDAC is available in all energy modes down to and including EM3.
3.8.7 Operational Amplifiers
The opamps are low power amplifiers with a high degree of flexibility targeting a wide variety of standard opamp application areas, and
are available down to EM3. With flexible built-in programming for gain and interconnection they can be configured to support multiple
common opamp functions. All pins are also available externally for filter configurations. Each opamp has a rail to rail input and a rail to
rail output. They can be used in conjunction with the VDAC module or in stand-alone configurations. The opamps save energy, PCB
space, and cost as compared with standalone opamps because they are integrated on-chip.
3.8.8 Liquid Crystal Display Driver (LCD)
The LCD driver is capable of driving a segmented LCD display with up to 8x36 segments. A voltage boost function enables it to provide
the LCD display with higher voltage than the supply voltage for the device. A patented charge redistribution driver can reduce the LCD
module supply current by up to 40%. In addition, an animation feature can run custom animations on the LCD display without any CPU
intervention. The LCD driver can also remain active even in Energy Mode 2 and provides a Frame Counter interrupt that can wake-up
the device on a regular basis for updating data.
3.9 Reset Management Unit (RMU)
The RMU is responsible for handling reset of the EFM32GG11. A wide range of reset sources are available, including several power
supply monitors, pin reset, software controlled reset, core lockup reset, and watchdog reset.
3.10 Core and Memory
3.10.1 Processor Core
The ARM Cortex-M processor includes a 32-bit RISC processor integrating the following features and tasks in the system:
ARM Cortex-M4 RISC processor with FPU achieving 1.25 Dhrystone MIPS/MHz
Memory Protection Unit (MPU) supporting up to 8 memory segments
Embedded Trace Macrocell (ETM) for real-time trace and debug
Up to 2048 kB flash program memory
Dual-bank memory with read-while-write support
Up to 512 kB RAM data memory
Configuration and event handling of all modules
2-pin Serial-Wire or 4-pin JTAG debug interface
EFM32GG11 Family Data Sheet
System Overview
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 18
3.10.2 Memory System Controller (MSC)
The Memory System Controller (MSC) is the program memory unit of the microcontroller. The flash memory is readable and writable
from both the Cortex-M and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code
is normally written to the main block, whereas the information block is available for special user data and flash lock bits. There is also a
read-only page in the information block containing system and device calibration data. Read and write operations are supported in en-
ergy modes EM0 Active and EM1 Sleep.
3.10.3 Linked Direct Memory Access Controller (LDMA)
The Linked Direct Memory Access (LDMA) controller allows the system to perform memory operations independently of software. This
reduces both energy consumption and software workload. The LDMA allows operations to be linked together and staged, enabling so-
phisticated operations to be implemented.
3.10.4 Bootloader
All devices come pre-programmed with a UART bootloader. This bootloader resides in flash and can be erased if it is not needed. More
information about the bootloader protocol and usage can be found in AN0003: UART Bootloader. Application notes can be found on the
Silicon Labs website (www.silabs.com/32bit-appnotes) or within Simplicity Studio in the [Documentation] area.
EFM32GG11 Family Data Sheet
System Overview
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 19
3.11 Memory Map
The EFM32GG11 memory map is shown in the figures below. RAM and flash sizes are for the largest memory configuration.
Figure 3.2. EFM32GG11 Memory Map — Core Peripherals and Code Space
EFM32GG11 Family Data Sheet
System Overview
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 20
Figure 3.3. EFM32GG11 Memory Map — Peripherals
EFM32GG11 Family Data Sheet
System Overview
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 21
3.12 Configuration Summary
The features of the EFM32GG11 are a subset of the feature set described in the device reference manual. The table below describes
device specific implementation of the features. Remaining modules support full configuration.
Table 3.2. Configuration Summary
Module Configuration Pin Connections
USART0 IrDA, SmartCard US0_TX, US0_RX, US0_CLK, US0_CS
USART1 I2S, SmartCard US1_TX, US1_RX, US1_CLK, US1_CS
USART2 IrDA, SmartCard, High-Speed US2_TX, US2_RX, US2_CLK, US2_CS
USART3 I2S, SmartCard US3_TX, US3_RX, US3_CLK, US3_CS
USART4 I2S, SmartCard US4_TX, US4_RX, US4_CLK, US4_CS
USART5 SmartCard US5_TX, US5_RX, US5_CLK, US5_CS
TIMER0 with DTI TIM0_CC[2:0], TIM0_CDTI[2:0]
TIMER1 - TIM1_CC[3:0]
TIMER2 with DTI TIM2_CC[2:0], TIM2_CDTI[2:0]
TIMER3 - TIM3_CC[2:0]
TIMER4 with DTI TIM4_CC[2:0], TIM4_CDTI[2:0]
TIMER5 - TIM5_CC[2:0]
TIMER6 with DTI TIM6_CC[2:0], TIM6_CDTI[2:0]
WTIMER0 with DTI WTIM0_CC[2:0], WTIM0_CDTI[2:0]
WTIMER1 - WTIM1_CC[3:0]
WTIMER2 - WTIM2_CC[2:0]
WTIMER3 - WTIM3_CC[2:0]
EFM32GG11 Family Data Sheet
System Overview
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 22
4. Electrical Specifications
4.1 Electrical Characteristics
All electrical parameters in all tables are specified under the following conditions, unless stated otherwise:
Typical values are based on TAMB=25 °C and VDD= 3.3 V, by production test and/or technology characterization.
Minimum and maximum values represent the worst conditions across supply voltage, process variation, and operating temperature,
unless stated otherwise.
Refer to 4.1.2.1 General Operating Conditions for more details about operational supply and temperature limits.
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 23
4.1.1 Absolute Maximum Ratings
Stresses above those listed below may cause permanent damage to the device. This is a stress rating only and functional operation of
the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure
to maximum rating conditions for extended periods may affect device reliability. For more information on the available quality and relia-
bility data, see the Quality and Reliability Monitor Report at http://www.silabs.com/support/quality/pages/default.aspx.
Table 4.1. Absolute Maximum Ratings
Parameter Symbol Test Condition Min Typ Max Unit
Storage temperature range TSTG -50 150 °C
Voltage on supply pins other
than VREGI and VBUS
VDDMAX -0.3 3.8 V
Voltage ramp rate on any
supply pin
VDDRAMPMAX 1 V / µs
DC voltage on any GPIO pin VDIGPIN 5V tolerant GPIO pins1 2 3-0.3 Min of 5.25
and IOVDD
+2
V
LCD pins3-0.3 Min of 3.8
and IOVDD
+2
V
Standard GPIO pins -0.3 IOVDD+0.3 V
Total current into VDD power
lines
IVDDMAX Source 200 mA
Total current into VSS
ground lines
IVSSMAX Sink 200 mA
Current per I/O pin IIOMAX Sink 50 mA
Source 50 mA
Current for all I/O pins IIOALLMAX Sink 200 mA
Source 200 mA
Junction temperature TJ-G grade devices -40 105 °C
-I grade devices -40 125 °C
Voltage on regulator supply
pins VREGI and VBUS
VVREGI -0.3 5.5 V
Note:
1. When a GPIO pin is routed to the analog module through the APORT, the maximum voltage = IOVDD.
2. Valid for IOVDD in valid operating range or when IOVDD is undriven (high-Z). If IOVDD is connected to a low-impedance source
below the valid operating range (e.g. IOVDD shorted to VSS), the pin voltage maximum is IOVDD + 0.3 V, to avoid exceeding the
maximum IO current specifications.
3. To operate above the IOVDD supply rail, over-voltage tolerance must be enabled according to the GPIO_Px_OVTDIS register.
Pins with over-voltage tolerance disabled have the same limits as Standard GPIO.
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 24
4.1.2 Operating Conditions
When assigning supply sources, the following requirements must be observed:
VREGVDD must be greater than or equal to AVDD, DVDD and all IOVDD supplies.
VREGVDD = AVDD
DVDD ≤ AVDD
IOVDD ≤ AVDD
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 25
4.1.2.1 General Operating Conditions
Table 4.2. General Operating Conditions
Parameter Symbol Test Condition Min Typ Max Unit
Operating ambient tempera-
ture range6
TA-G temperature grade -40 25 85 °C
-I temperature grade -40 25 125 °C
AVDD supply voltage2VAVDD 1.8 3.3 3.8 V
VREGVDD operating supply
voltage2 1
VVREGVDD DCDC in regulation 2.4 3.3 3.8 V
DCDC in bypass, 50mA load 1.8 3.3 3.8 V
DCDC not in use. DVDD external-
ly shorted to VREGVDD
1.8 3.3 3.8 V
VREGVDD current IVREGVDD DCDC in bypass, T ≤ 85 °C 200 mA
DCDC in bypass, T > 85 °C 100 mA
DVDD operating supply volt-
age
VDVDD 1.62 VVREGVDD V
IOVDD operating supply volt-
age
VIOVDD All IOVDD pins51.62 VVREGVDD V
DECOUPLE output capaci-
tor3 4
CDECOUPLE 0.75 1.0 2.75 µF
HFCORECLK frequency fCORE VSCALE2, MODE = WS3 72 MHz
VSCALE2, MODE = WS2 54 MHz
VSCALE2, MODE = WS1 36 MHz
VSCALE2, MODE = WS0 18 MHz
VSCALE0, MODE = WS2 20 MHz
VSCALE0, MODE = WS1 14 MHz
VSCALE0, MODE = WS0 7 MHz
HFCLK frequency fHFCLK VSCALE2 72 MHz
VSCALE0 20 MHz
HFSRCCLK frequency fHFSRCCLK VSCALE2 72 MHz
VSCALE0 20 MHz
HFBUSCLK frequency fHFBUSCLK VSCALE2 50 MHz
VSCALE0 20 MHz
HFPERCLK frequency fHFPERCLK VSCALE2 50 MHz
VSCALE0 20 MHz
HFPERBCLK frequency fHFPERBCLK VSCALE2 72 MHz
VSCALE0 20 MHz
HFPERCCLK frequency fHFPERCCLK VSCALE2 50 MHz
VSCALE0 20 MHz
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 26
Parameter Symbol Test Condition Min Typ Max Unit
Note:
1. The minimum voltage required in bypass mode is calculated using RBYP from the DCDC specification table. Requirements for
other loads can be calculated as VDVDD_min+ILOAD * RBYP_max.
2. VREGVDD must be tied to AVDD. Both VREGVDD and AVDD minimum voltages must be satisfied for the part to operate.
3. The system designer should consult the characteristic specs of the capacitor used on DECOUPLE to ensure its capacitance val-
ue stays within the specified bounds across temperature and DC bias.
4. VSCALE0 to VSCALE2 voltage change transitions occur at a rate of 10 mV / usec for approximately 20 usec. During this transi-
tion, peak currents will be dependent on the value of the DECOUPLE output capacitor, from 35 mA (with a 1 µF capacitor) to 70
mA (with a 2.7 µF capacitor).
5. When the CSEN peripheral is used with chopping enabled (CSEN_CTRL_CHOPEN = ENABLE), IOVDD must be equal to AVDD.
6. The maximum limit on TA may be lower due to device self-heating, which depends on the power dissipation of the specific appli-
cation. TA (max) = TJ (max) - (THETAJA x PowerDissipation). Refer to the Absolute Maximum Ratings table and the Thermal
Characteristics table for TJ and THETAJA.
4.1.3 Thermal Characteristics
Table 4.3. Thermal Characteristics
Parameter Symbol Test Condition Min Typ Max Unit
Thermal resistance, QFN64
Package
THETAJA_QFN64 4-Layer PCB, Air velocity = 0 m/s 17.8 °C/W
4-Layer PCB, Air velocity = 1 m/s 15.4 °C/W
4-Layer PCB, Air velocity = 2 m/s 13.8 °C/W
Thermal resistance, TQFP64
Package
THE-
TAJA_TQFP64
4-Layer PCB, Air velocity = 0 m/s 33.9 °C/W
4-Layer PCB, Air velocity = 1 m/s 32.1 °C/W
4-Layer PCB, Air velocity = 2 m/s 30.1 °C/W
Thermal resistance,
TQFP100 Package
THE-
TAJA_TQFP100
4-Layer PCB, Air velocity = 0 m/s 44.1 °C/W
4-Layer PCB, Air velocity = 1 m/s 37.7 °C/W
4-Layer PCB, Air velocity = 2 m/s 35.5 °C/W
Thermal resistance, BGA112
Package
THE-
TAJA_BGA112
4-Layer PCB, Air velocity = 0 m/s 42.0 °C/W
4-Layer PCB, Air velocity = 1 m/s 37.0 °C/W
4-Layer PCB, Air velocity = 2 m/s 35.3 °C/W
Thermal resistance, BGA120
Package
THE-
TAJA_BGA120
4-Layer PCB, Air velocity = 0 m/s 47.9 °C/W
4-Layer PCB, Air velocity = 1 m/s 41.8 °C/W
4-Layer PCB, Air velocity = 2 m/s 39.6 °C/W
Thermal resistance, BGA152
Package
THE-
TAJA_BGA152
4-Layer PCB, Air velocity = 0 m/s 35.7 °C/W
4-Layer PCB, Air velocity = 1 m/s 31.0 °C/W
4-Layer PCB, Air velocity = 2 m/s 29.5 °C/W
Thermal resistance, BGA192
Package
THE-
TAJA_BGA192
4-Layer PCB, Air velocity = 0 m/s 47.9 °C/W
4-Layer PCB, Air velocity = 1 m/s 41.8 °C/W
4-Layer PCB, Air velocity = 2 m/s 39.6 °C/W
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 27
4.1.4 DC-DC Converter
Test conditions: L_DCDC=4.7 µH (Murata LQH3NPN4R7MM0L), C_DCDC=4.7 µF (Samsung CL10B475KQ8NQNC), V_DCDC_I=3.3
V, V_DCDC_O=1.8 V, I_DCDC_LOAD=50 mA, Heavy Drive configuration, F_DCDC_LN=7 MHz, unless otherwise indicated.
Table 4.4. DC-DC Converter
Parameter Symbol Test Condition Min Typ Max Unit
Input voltage range VDCDC_I Bypass mode, IDCDC_LOAD = 50
mA
1.8 VVREGVDD_
MAX
V
Low noise (LN) mode, 1.8 V out-
put, IDCDC_LOAD = 100 mA, or
Low power (LP) mode, 1.8 V out-
put, IDCDC_LOAD = 10 mA
2.4 VVREGVDD_
MAX
V
Low noise (LN) mode, 1.8 V out-
put, IDCDC_LOAD = 200 mA
2.6 VVREGVDD_
MAX
V
Output voltage programma-
ble range1
VDCDC_O 1.8 VVREGVDD V
Regulation DC accuracy ACCDC Low Noise (LN) mode, 1.8 V tar-
get output
TBD TBD V
Regulation window4WINREG Low Power (LP) mode,
LPCMPBIASEMxx3 = 0, 1.8 V tar-
get output, IDCDC_LOAD ≤ 75 µA
TBD TBD V
Low Power (LP) mode,
LPCMPBIASEMxx3 = 3, 1.8 V tar-
get output, IDCDC_LOAD ≤ 10 mA
TBD TBD V
Steady-state output ripple VR 3 mVpp
Output voltage under/over-
shoot
VOV CCM Mode (LNFORCECCM3 =
1), Load changes between 0 mA
and 100 mA
25 TBD mV
DCM Mode (LNFORCECCM3 =
0), Load changes between 0 mA
and 10 mA
45 TBD mV
Overshoot during LP to LN
CCM/DCM mode transitions com-
pared to DC level in LN mode
200 mV
Undershoot during BYP/LP to LN
CCM (LNFORCECCM3 = 1) mode
transitions compared to DC level
in LN mode
40 mV
Undershoot during BYP/LP to LN
DCM (LNFORCECCM3 = 0) mode
transitions compared to DC level
in LN mode
100 mV
DC line regulation VREG Input changes between
VVREGVDD_MAX and 2.4 V
0.1 %
DC load regulation IREG Load changes between 0 mA and
100 mA in CCM mode
0.1 %
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 28
Parameter Symbol Test Condition Min Typ Max Unit
Max load current ILOAD_MAX Low noise (LN) mode, Heavy
Drive2, T ≤ 85 °C
200 mA
Low noise (LN) mode, Heavy
Drive2, T > 85 °C
100 mA
Low noise (LN) mode, Medium
Drive2
100 mA
Low noise (LN) mode, Light
Drive2
50 mA
Low power (LP) mode,
LPCMPBIASEMxx3 = 0
75 µA
Low power (LP) mode,
LPCMPBIASEMxx3 = 3
10 mA
DCDC nominal output ca-
pacitor5
CDCDC 25% tolerance 1 4.7 4.7 µF
DCDC nominal output induc-
tor
LDCDC 20% tolerance 4.7 4.7 4.7 µH
Resistance in Bypass mode RBYP 1.2 2.5
Note:
1. Due to internal dropout, the DC-DC output will never be able to reach its input voltage, VVREGVDD.
2. Drive levels are defined by configuration of the PFETCNT and NFETCNT registers. Light Drive: PFETCNT=NFETCNT=3; Medi-
um Drive: PFETCNT=NFETCNT=7; Heavy Drive: PFETCNT=NFETCNT=15.
3. LPCMPBIASEMxx refers to either LPCMPBIASEM234H in the EMU_DCDCMISCCTRL register or LPCMPBIASEM01 in the
EMU_DCDCLOEM01CFG register, depending on the energy mode.
4. LP mode controller is a hysteretic controller that maintains the output voltage within the specified limits.
5. Output voltage under/over-shoot and regulation are specified with CDCDC 4.7 µF. Different settings for DCDCLNCOMPCTRL
must be used if CDCDC is lower than 4.7 µF. See Application Note AN0948 for details.
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 29
4.1.5 5V Regulator
VVREGI = 5 V, VVREGO = 3.3 V, CVREGI = 10 µF, CVREGO = 4.7 µF, unless otherwise specified.
Table 4.5. 5V Regulator
Parameter Symbol Test Condition Min Typ Max Unit
VREGI or VBUS input volt-
age range
VVREGI Regulating output 2.7 5.5 V
Bypass mode enabled 2.7 3.8 V
VREGO output voltage VVREGO Regulating output, 3.3 V setting 3.1 3.3 3.5 V
EM4S open-loop output, IOUT <
100 µA
1.8 3.8 V
Voltage output step size VVREGO_SS 0.1 V
Resistance in Bypass Mode RBYP Bypass mode enabled 1.2 TBD
Output current IOUT EM0 or EM1, VVREGI > VVREGO +
0.6 V
200 mA
EM0 or EM1, VVREGI > VVREGO +
0.3 V
100 mA
EM2, EM3, or EM4H, VVREGI >
VVREGO + 0.6 V
2 mA
EM2, EM3, or EM4H, VVREGI >
VVREGO + 0.3 V
0.5 mA
EM4S 20 µA
Load regulation LRVREGO EM0 or EM1 0.10 mV/mA
EM2, EM3, or EM4H 2.5 mV/mA
DC power supply rejection PSRDC 40 dB
VREGI or VBUS bypass ca-
pacitance
CVREGI 10 µF
VREGO bypass capacitance CVREGO 1 4.7 10 µF
Supply current consumption IVREGI EM0 or EM1, No load 29 µA
EM2, EM3, or EM4H, No load 270 nA
EM4S, No load 70 nA
VREGI and VBUS detection
high threshold
VDET_H TBD 1.18 V
VREGI and VBUS detection
low threshold
VDET_L 1.12 TBD V
Current monitor transfer ratio IMONXF Translation of current through
VREGO path to voltage at ADC
input
0.35 mA/mV
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 30
4.1.6 Backup Supply Domain
Table 4.6. Backup Supply Domain
Parameter Symbol Test Condition Min Typ Max Unit
Backup supply voltage range VBU_VIN 1.8 3.8 V
PWRRES resistor RPWRRES EMU_BUCTRL_PWRRES =
RES0
3400 3900 4400
EMU_BUCTRL_PWRRES =
RES1
1450 1800 2150
EMU_BUCTRL_PWRRES =
RES2
1000 1350 1700
EMU_BUCTRL_PWRRES =
RES3
525 815 1100
Output impedance between
BU_VIN and BU_VOUT 2
RBU_VOUT EMU_BUCTRL_VOUTRES =
STRONG
35 110 185
EMU_BUCTRL_VOUTRES =
MED
475 775 1075
EMU_BUCTRL_VOUTRES =
WEAK
5600 6500 7400
Supply current IBU_VIN BU_VIN not powering backup do-
main
11 TBD nA
BU_VIN powering backup do-
main1
550 TBD nA
Note:
1. Additional current required by backup circuitry when backup is active. Includes supply current of backup switches and backup
regulator. Does not include supply current required for backed-up circuitry.
2. BU_VOUT and BU_STAT signals are not available in all package configurations. Check the device pinout for availability.
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 31
4.1.7 Current Consumption
4.1.7.1 Current Consumption 3.3 V without DC-DC Converter
Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = DVDD = 3.3 V. T = 25 °C. DCDC is off. Minimum and maxi-
mum values in this table represent the worst conditions across supply voltage and process variation at T = 25 °C.
Table 4.7. Current Consumption 3.3 V without DC-DC Converter
Parameter Symbol Test Condition Min Typ Max Unit
Current consumption in EM0
mode with all peripherals dis-
abled
IACTIVE 72 MHz HFRCO, CPU running
Prime from flash
120 µA/MHz
72 MHz HFRCO, CPU running
while loop from flash
120 TBD µA/MHz
72 MHz HFRCO, CPU running
CoreMark loop from flash
140 µA/MHz
50 MHz crystal, CPU running
while loop from flash
123 µA/MHz
48 MHz HFRCO, CPU running
while loop from flash
122 TBD µA/MHz
32 MHz HFRCO, CPU running
while loop from flash
124 µA/MHz
26 MHz HFRCO, CPU running
while loop from flash
126 TBD µA/MHz
16 MHz HFRCO, CPU running
while loop from flash
131 µA/MHz
1 MHz HFRCO, CPU running
while loop from flash
319 TBD µA/MHz
Current consumption in EM0
mode with all peripherals dis-
abled and voltage scaling
enabled
IACTIVE_VS 19 MHz HFRCO, CPU running
while loop from flash
107 µA/MHz
1 MHz HFRCO, CPU running
while loop from flash
262 µA/MHz
Current consumption in EM1
mode with all peripherals dis-
abled
IEM1 72 MHz HFRCO 57 TBD µA/MHz
50 MHz crystal 60 µA/MHz
48 MHz HFRCO 59 TBD µA/MHz
32 MHz HFRCO 61 µA/MHz
26 MHz HFRCO 63 TBD µA/MHz
16 MHz HFRCO 68 µA/MHz
1 MHz HFRCO 255 TBD µA/MHz
Current consumption in EM1
mode with all peripherals dis-
abled and voltage scaling
enabled
IEM1_VS 19 MHz HFRCO 55 µA/MHz
1 MHz HFRCO 210 µA/MHz
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 32
Parameter Symbol Test Condition Min Typ Max Unit
Current consumption in EM2
mode, with voltage scaling
enabled
IEM2_VS Full 512 kB RAM retention and
RTCC running from LFXO
3.9 µA
Full 512 kB RAM retention and
RTCC running from LFRCO
4.3 µA
16 kB (1 bank) RAM retention and
RTCC running from LFRCO2
2.8 TBD µA
Current consumption in EM3
mode, with voltage scaling
enabled
IEM3_VS Full 512 kB RAM retention and
CRYOTIMER running from ULFR-
CO
3.6 TBD µA
Current consumption in
EM4H mode, with voltage
scaling enabled
IEM4H_VS 128 byte RAM retention, RTCC
running from LFXO
1.08 µA
128 byte RAM retention, CRYO-
TIMER running from ULFRCO
0.69 µA
128 byte RAM retention, no RTCC 0.69 TBD µA
Current consumption in
EM4S mode
IEM4S No RAM retention, no RTCC 0.16 TBD µA
Current consumption of pe-
ripheral power domain 1,
with voltage scaling enabled
IPD1_VS Additional current consumption in
EM2/3 when any peripherals on
power domain 1 are enabled1
0.68 µA
Current consumption of pe-
ripheral power domain 2,
with voltage scaling enabled
IPD2_VS Additional current consumption in
EM2/3 when any peripherals on
power domain 2 are enabled1
0.28 µA
Note:
1. Extra current consumed by power domain. Does not include current associated with the enabled peripherals. See 3.2.4 EM2 and
EM3 Power Domains for a list of the peripherals in each power domain.
2. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 33
4.1.7.2 Current Consumption 3.3 V using DC-DC Converter
Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = 1.8 V DC-DC output. T = 25 °C.
Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at T = 25 °C.
Table 4.8. Current Consumption 3.3 V using DC-DC Converter
Parameter Symbol Test Condition Min Typ Max Unit
Current consumption in EM0
mode with all peripherals dis-
abled, DCDC in Low Noise
DCM mode2
IACTIVE_DCM 72 MHz HFRCO, CPU running
Prime from flash
80 µA/MHz
72 MHz HFRCO, CPU running
while loop from flash
80 µA/MHz
72 MHz HFRCO, CPU running
CoreMark loop from flash
92 µA/MHz
50 MHz crystal, CPU running
while loop from flash
84 µA/MHz
48 MHz HFRCO, CPU running
while loop from flash
84 µA/MHz
32 MHz HFRCO, CPU running
while loop from flash
90 µA/MHz
26 MHz HFRCO, CPU running
while loop from flash
94 µA/MHz
16 MHz HFRCO, CPU running
while loop from flash
109 µA/MHz
1 MHz HFRCO, CPU running
while loop from flash
698 µA/MHz
Current consumption in EM0
mode with all peripherals dis-
abled, DCDC in Low Noise
CCM mode1
IACTIVE_CCM 72 MHz HFRCO, CPU running
Prime from flash
84 µA/MHz
72 MHz HFRCO, CPU running
while loop from flash
84 µA/MHz
72 MHz HFRCO, CPU running
CoreMark loop from flash
95 µA/MHz
50 MHz crystal, CPU running
while loop from flash
91 µA/MHz
48 MHz HFRCO, CPU running
while loop from flash
92 µA/MHz
32 MHz HFRCO, CPU running
while loop from flash
104 µA/MHz
26 MHz HFRCO, CPU running
while loop from flash
113 µA/MHz
16 MHz HFRCO, CPU running
while loop from flash
142 µA/MHz
1 MHz HFRCO, CPU running
while loop from flash
1264 µA/MHz
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 34
Parameter Symbol Test Condition Min Typ Max Unit
Current consumption in EM0
mode with all peripherals dis-
abled, DCDC in LP mode3
IACTIVE_LPM 32 MHz HFRCO, CPU running
while loop from flash
82 µA/MHz
26 MHz HFRCO, CPU running
while loop from flash
83 µA/MHz
16 MHz HFRCO, CPU running
while loop from flash
88 µA/MHz
1 MHz HFRCO, CPU running
while loop from flash
257 µA/MHz
Current consumption in EM0
mode with all peripherals dis-
abled and voltage scaling
enabled, DCDC in Low
Noise CCM mode1
IACTIVE_CCM_VS 19 MHz HFRCO, CPU running
while loop from flash
117 µA/MHz
1 MHz HFRCO, CPU running
while loop from flash
1231 µA/MHz
Current consumption in EM0
mode with all peripherals dis-
abled and voltage scaling
enabled, DCDC in LP mode3
IACTIVE_LPM_VS 19 MHz HFRCO, CPU running
while loop from flash
72 µA/MHz
1 MHz HFRCO, CPU running
while loop from flash
219 µA/MHz
Current consumption in EM1
mode with all peripherals dis-
abled, DCDC in Low Noise
DCM mode2
IEM1_DCM 72 MHz HFRCO 42 µA/MHz
50 MHz crystal 46 µA/MHz
48 MHz HFRCO 46 µA/MHz
32 MHz HFRCO 53 µA/MHz
26 MHz HFRCO 57 µA/MHz
16 MHz HFRCO 72 µA/MHz
1 MHz HFRCO 663 µA/MHz
Current consumption in EM1
mode with all peripherals dis-
abled, DCDC in Low Power
mode3
IEM1_LPM 32 MHz HFRCO 42 µA/MHz
26 MHz HFRCO 43 µA/MHz
16 MHz HFRCO 48 µA/MHz
1 MHz HFRCO 219 µA/MHz
Current consumption in EM1
mode with all peripherals dis-
abled and voltage scaling
enabled, DCDC in Low
Noise DCM mode2
IEM1_DCM_VS 19 MHz HFRCO 60 µA/MHz
1 MHz HFRCO 637 µA/MHz
Current consumption in EM1
mode with all peripherals dis-
abled and voltage scaling
enabled. DCDC in LP mode3
IEM1_LPM_VS 19 MHz HFRCO 39 µA/MHz
1 MHz HFRCO 190 µA/MHz
Current consumption in EM2
mode, with voltage scaling
enabled, DCDC in LP mode3
IEM2_VS Full 512 kB RAM retention and
RTCC running from LFXO
2.8 µA
Full 512 kB RAM retention and
RTCC running from LFRCO
3.1 µA
16 kB (1 bank) RAM retention and
RTCC running from LFRCO5
2.1 µA
Current consumption in EM3
mode, with voltage scaling
enabled
IEM3_VS Full 512 kB RAM retention and
CRYOTIMER running from ULFR-
CO
2.4 µA
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 35
Parameter Symbol Test Condition Min Typ Max Unit
Current consumption in
EM4H mode, with voltage
scaling enabled
IEM4H_VS 128 byte RAM retention, RTCC
running from LFXO
0.94 µA
128 byte RAM retention, CRYO-
TIMER running from ULFRCO
0.62 µA
128 byte RAM retention, no RTCC 0.62 µA
Current consumption in
EM4S mode
IEM4S No RAM retention, no RTCC 0.13 µA
Current consumption of pe-
ripheral power domain 1,
with voltage scaling enabled,
DCDC in LP mode3
IPD1_VS Additional current consumption in
EM2/3 when any peripherals on
power domain 1 are enabled4
0.68 µA
Current consumption of pe-
ripheral power domain 2,
with voltage scaling enabled,
DCDC in LP mode3
IPD2_VS Additional current consumption in
EM2/3 when any peripherals on
power domain 2 are enabled4
0.28 µA
Note:
1. DCDC Low Noise CCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=6.4 MHz (RCOBAND=4), ANASW=DVDD.
2. DCDC Low Noise DCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=3.0 MHz (RCOBAND=0), ANASW=DVDD.
3. DCDC Low Power Mode = Medium Drive (PFETCNT=NFETCNT=7), LPOSCDIV=1, LPCMPBIASEM234H=0, LPCLIMILIM-
SEL=1, ANASW=DVDD.
4. Extra current consumed by power domain. Does not include current associated with the enabled peripherals. See 3.2.4 EM2 and
EM3 Power Domains for a list of the peripherals in each power domain.
5. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 36
4.1.7.3 Current Consumption 1.8 V without DC-DC Converter
Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = DVDD = 1.8 V. T = 25 °C. DCDC is off. Minimum and maxi-
mum values in this table represent the worst conditions across supply voltage and process variation at T = 25 °C.
Table 4.9. Current Consumption 1.8 V without DC-DC Converter
Parameter Symbol Test Condition Min Typ Max Unit
Current consumption in EM0
mode with all peripherals dis-
abled
IACTIVE 72 MHz HFRCO, CPU running
Prime from flash
120 µA/MHz
72 MHz HFRCO, CPU running
while loop from flash
120 µA/MHz
72 MHz HFRCO, CPU running
CoreMark loop from flash
140 µA/MHz
50 MHz crystal, CPU running
while loop from flash
122 µA/MHz
48 MHz HFRCO, CPU running
while loop from flash
122 µA/MHz
32 MHz HFRCO, CPU running
while loop from flash
124 µA/MHz
26 MHz HFRCO, CPU running
while loop from flash
126 µA/MHz
16 MHz HFRCO, CPU running
while loop from flash
131 µA/MHz
1 MHz HFRCO, CPU running
while loop from flash
315 µA/MHz
Current consumption in EM0
mode with all peripherals dis-
abled and voltage scaling
enabled
IACTIVE_VS 19 MHz HFRCO, CPU running
while loop from flash
107 µA/MHz
1 MHz HFRCO, CPU running
while loop from flash
259 µA/MHz
Current consumption in EM1
mode with all peripherals dis-
abled
IEM1 72 MHz HFRCO 57 µA/MHz
50 MHz crystal 59 µA/MHz
48 MHz HFRCO 59 µA/MHz
32 MHz HFRCO 61 µA/MHz
26 MHz HFRCO 63 µA/MHz
16 MHz HFRCO 68 µA/MHz
1 MHz HFRCO 252 µA/MHz
Current consumption in EM1
mode with all peripherals dis-
abled and voltage scaling
enabled
IEM1_VS 19 MHz HFRCO 55 µA/MHz
1 MHz HFRCO 207 µA/MHz
Current consumption in EM2
mode, with voltage scaling
enabled
IEM2_VS Full 512 kB RAM retention and
RTCC running from LFXO
3.7 µA
Full 512 kB RAM retention and
RTCC running from LFRCO
4.0 µA
16 kB (1 bank) RAM retention and
RTCC running from LFRCO2
2.5 µA
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 37
Parameter Symbol Test Condition Min Typ Max Unit
Current consumption in EM3
mode, with voltage scaling
enabled
IEM3_VS Full 512 kB RAM retention and
CRYOTIMER running from ULFR-
CO
3.4 µA
Current consumption in
EM4H mode, with voltage
scaling enabled
IEM4H_VS 128 byte RAM retention, RTCC
running from LFXO
0.94 µA
128 byte RAM retention, CRYO-
TIMER running from ULFRCO
0.56 µA
128 byte RAM retention, no RTCC 0.56 µA
Current consumption in
EM4S mode
IEM4S No RAM retention, no RTCC 0.1 µA
Current consumption of pe-
ripheral power domain 1,
with voltage scaling enabled
IPD1_VS Additional current consumption in
EM2/3 when any peripherals on
power domain 1 are enabled1
0.68 µA
Current consumption of pe-
ripheral power domain 2,
with voltage scaling enabled
IPD2_VS Additional current consumption in
EM2/3 when any peripherals on
power domain 2 are enabled1
0.28 µA
Note:
1. Extra current consumed by power domain. Does not include current associated with the enabled peripherals. See 3.2.4 EM2 and
EM3 Power Domains for a list of the peripherals in each power domain.
2. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 38
4.1.8 Wake Up Times
Table 4.10. Wake Up Times
Parameter Symbol Test Condition Min Typ Max Unit
Wake up time from EM1 tEM1_WU 3 AHB
Clocks
Wake up from EM2 tEM2_WU Code execution from flash 11.8 µs
Code execution from RAM 4.1 µs
Wake up from EM3 tEM3_WU Code execution from flash 11.8 µs
Code execution from RAM 4.1 µs
Wake up from EM4H1tEM4H_WU Executing from flash 94 µs
Wake up from EM4S1tEM4S_WU Executing from flash 294 µs
Time from release of reset
source to first instruction ex-
ecution
tRESET Soft Pin Reset released 55 µs
Any other reset released 359 µs
Power mode scaling time tSCALE VSCALE0 to VSCALE2, HFCLK =
19 MHz4 2
31.8 µs
VSCALE2 to VSCALE0, HFCLK =
19 MHz3
4.3 µs
Note:
1. Time from wake up request until first instruction is executed. Wakeup results in device reset.
2. VSCALE0 to VSCALE2 voltage change transitions occur at a rate of 10 mV/µs for approximately 20 µs. During this transition,
peak currents will be dependent on the value of the DECOUPLE output capacitor, from 35 mA (with a 1 µF capacitor) to 70 mA
(with a 2.7 µF capacitor).
3. Scaling down from VSCALE2 to VSCALE0 requires approximately 2.8 µs + 29 HFCLKs.
4. Scaling up from VSCALE0 to VSCALE2 requires approximately 30.3 µs + 28 HFCLKs.
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 39
4.1.9 Brown Out Detector (BOD)
Table 4.11. Brown Out Detector (BOD)
Parameter Symbol Test Condition Min Typ Max Unit
DVDD BOD threshold VDVDDBOD DVDD rising 1.62 V
DVDD falling (EM0/EM1) 1.35 V
DVDD falling (EM2/EM3) TBD V
DVDD BOD hysteresis VDVDDBOD_HYST 18 mV
DVDD BOD response time tDVDDBOD_DELAY Supply drops at 0.1V/µs rate 2.4 µs
AVDD BOD threshold VAVDDBOD AVDD rising 1.8 V
AVDD falling (EM0/EM1) 1.62 V
AVDD falling (EM2/EM3) TBD V
AVDD BOD hysteresis VAVDDBOD_HYST 20 mV
AVDD BOD response time tAVDDBOD_DELAY Supply drops at 0.1V/µs rate 2.4 µs
EM4 BOD threshold VEM4DBOD AVDD rising 1.7 V
AVDD falling 1.45 V
EM4 BOD hysteresis VEM4BOD_HYST 25 mV
EM4 BOD response time tEM4BOD_DELAY Supply drops at 0.1V/µs rate 300 µs
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 40
4.1.10 Oscillators
4.1.10.1 Low-Frequency Crystal Oscillator (LFXO)
Table 4.12. Low-Frequency Crystal Oscillator (LFXO)
Parameter Symbol Test Condition Min Typ Max Unit
Crystal frequency fLFXO 32.768 kHz
Supported crystal equivalent
series resistance (ESR)
ESRLFXO 70 kΩ
Supported range of crystal
load capacitance 1
CLFXO_CL 6 18 pF
On-chip tuning cap range 2CLFXO_T On each of LFXTAL_N and
LFXTAL_P pins
8 40 pF
On-chip tuning cap step size SSLFXO 0.25 pF
Current consumption after
startup 3
ILFXO ESR = 70 kOhm, CL = 7 pF,
GAIN4 = 2, AGC4 = 1
273 nA
Start- up time tLFXO ESR = 70 kOhm, CL = 7 pF,
GAIN4 = 2
308 ms
Note:
1. Total load capacitance as seen by the crystal.
2. The effective load capacitance seen by the crystal will be CLFXO_T /2. This is because each XTAL pin has a tuning cap and the
two caps will be seen in series by the crystal.
3. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register.
4. In CMU_LFXOCTRL register.
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 41
4.1.10.2 High-Frequency Crystal Oscillator (HFXO)
Table 4.13. High-Frequency Crystal Oscillator (HFXO)
Parameter Symbol Test Condition Min Typ Max Unit
Crystal frequency fHFXO No clock doubling 4 50 MHz
Clock doubler enabled TBD TBD MHz
Supported crystal equivalent
series resistance (ESR)
ESRHFXO 50 MHz crystal 50
24 MHz crystal 150
4 MHz crystal 180
Nominal on-chip tuning cap
range1
CHFXO_T On each of HFXTAL_N and
HFXTAL_P pins
8.7 51.7 pF
On-chip tuning capacitance
step
SSHFXO 0.084 pF
Startup time tHFXO 50 MHz crystal, ESR = 50 Ohm,
CL = 8 pF
350 µs
24 MHz crystal, ESR = 150 Ohm,
CL = 6 pF
700 µs
4 MHz crystal, ESR = 180 Ohm,
CL = 18 pF
3 ms
Current consumption after
startup
IHFXO 50 MHz crystal 880 µA
24 MHz crystal 420 µA
4 MHz crystal 80 µA
Note:
1. The effective load capacitance seen by the crystal will be CHFXO_T /2. This is because each XTAL pin has a tuning cap and the
two caps will be seen in series by the crystal.
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 42
4.1.10.3 Low-Frequency RC Oscillator (LFRCO)
Table 4.14. Low-Frequency RC Oscillator (LFRCO)
Parameter Symbol Test Condition Min Typ Max Unit
Oscillation frequency fLFRCO ENVREF2 = 1 TBD 32.768 TBD kHz
ENVREF2 = 1, T > 85 °C TBD 32.768 TBD kHz
ENVREF2 = 0 TBD 32.768 TBD kHz
Startup time tLFRCO 500 µs
Current consumption 1ILFRCO ENVREF = 1 in
CMU_LFRCOCTRL
370 nA
ENVREF = 0 in
CMU_LFRCOCTRL
520 nA
Note:
1. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register.
2. In CMU_LFRCOCTRL register.
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 43
4.1.10.4 High-Frequency RC Oscillator (HFRCO)
Table 4.15. High-Frequency RC Oscillator (HFRCO)
Parameter Symbol Test Condition Min Typ Max Unit
Frequency accuracy fHFRCO_ACC At production calibrated frequen-
cies, across supply voltage and
temperature
TBD TBD %
Start-up time tHFRCO fHFRCO ≥ 19 MHz 300 ns
4 < fHFRCO < 19 MHz 1 µs
fHFRCO ≤ 4 MHz 2.5 µs
Maximum DPLL lock time1tDPLL_LOCK fREF = 32.768 kHz, fHFRCO =
39.98 MHz, N = 1219, M = 0
183 µs
Current consumption on all
supplies
IHFRCO fHFRCO = 72 MHz 608 TBD µA
fHFRCO = 64 MHz 545 TBD µA
fHFRCO = 56 MHz 478 TBD µA
fHFRCO = 48 MHz 413 TBD µA
fHFRCO = 38 MHz 341 TBD µA
fHFRCO = 32 MHz 286 TBD µA
fHFRCO = 26 MHz 240 TBD µA
fHFRCO = 19 MHz 191 TBD µA
fHFRCO = 16 MHz 164 TBD µA
fHFRCO = 13 MHz 143 TBD µA
fHFRCO = 7 MHz 103 TBD µA
fHFRCO = 4 MHz 42 TBD µA
fHFRCO = 2 MHz 33 TBD µA
fHFRCO = 1 MHz 28 TBD µA
fHFRCO = 72 MHz, DPLL enabled 927 TBD µA
fHFRCO = 40 MHz, DPLL enabled 526 TBD µA
fHFRCO = 32 MHz, DPLL enabled 419 TBD µA
fHFRCO = 16 MHz, DPLL enabled 233 TBD µA
fHFRCO = 4 MHz, DPLL enabled 59 TBD µA
fHFRCO = 1 MHz, DPLL enabled 36 TBD µA
Coarse trim step size (% of
period)
SSHFRCO_COARS
E
0.8 %
Fine trim step size (% of pe-
riod)
SSHFRCO_FINE 0.1 %
Period jitter PJHFRCO 0.2 % RMS
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 44
Parameter Symbol Test Condition Min Typ Max Unit
Frequency limits fHFRCO_BAND FREQRANGE = 0, FINETUNIN-
GEN = 0
1 10 MHz
FREQRANGE = 3, FINETUNIN-
GEN = 0
2 17 MHz
FREQRANGE = 6, FINETUNIN-
GEN = 0
4 30 MHz
FREQRANGE = 7, FINETUNIN-
GEN = 0
5 34 MHz
FREQRANGE = 8, FINETUNIN-
GEN = 0
7 42 MHz
FREQRANGE = 10, FINETUNIN-
GEN = 0
12 58 MHz
FREQRANGE = 11, FINETUNIN-
GEN = 0
15 68 MHz
FREQRANGE = 12, FINETUNIN-
GEN = 0
18 83 MHz
FREQRANGE = 13, FINETUNIN-
GEN = 0
24 100 MHz
FREQRANGE = 14, FINETUNIN-
GEN = 0
28 119 MHz
FREQRANGE = 15, FINETUNIN-
GEN = 0
33 138 MHz
FREQRANGE = 16, FINETUNIN-
GEN = 0
43 163 MHz
Note:
1. Maximum DPLL lock time ~= 6 x (M+1) x tREF, where tREF is the reference clock period.
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 45
4.1.10.5 Auxiliary High-Frequency RC Oscillator (AUXHFRCO)
Table 4.16. Auxiliary High-Frequency RC Oscillator (AUXHFRCO)
Parameter Symbol Test Condition Min Typ Max Unit
Frequency accuracy fAUXHFRCO_ACC At production calibrated frequen-
cies, across supply voltage and
temperature
TBD TBD %
Start-up time tAUXHFRCO fAUXHFRCO ≥ 19 MHz 400 ns
4 < fAUXHFRCO < 19 MHz 1.4 µs
fAUXHFRCO ≤ 4 MHz 2.5 µs
Current consumption on all
supplies
IAUXHFRCO fAUXHFRCO = 50 MHz 289 TBD µA
fAUXHFRCO = 48 MHz 276 TBD µA
fAUXHFRCO = 38 MHz 227 TBD µA
fAUXHFRCO = 32 MHz 186 TBD µA
fAUXHFRCO = 26 MHz 158 TBD µA
fAUXHFRCO = 19 MHz 126 TBD µA
fAUXHFRCO = 16 MHz 114 TBD µA
fAUXHFRCO = 13 MHz 88 TBD µA
fAUXHFRCO = 7 MHz 59 TBD µA
fAUXHFRCO = 4 MHz 33 TBD µA
fAUXHFRCO = 2 MHz 28 TBD µA
fAUXHFRCO = 1 MHz 26 TBD µA
Coarse trim step size (% of
period)
SSAUXHFR-
CO_COARSE
0.8 %
Fine trim step size (% of pe-
riod)
SSAUXHFR-
CO_FINE
0.1 %
Period jitter PJAUXHFRCO 0.2 % RMS
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 46
4.1.10.6 USB High-Frequency RC Oscillator (USHFRCO)
Table 4.17. USB High-Frequency RC Oscillator (USHFRCO)
Parameter Symbol Test Condition Min Typ Max Unit
Frequency accuracy fUSHFRCO_ACC At production calibrated frequen-
cies, across supply voltage and
temperature
TBD TBD %
USB clock recovery enabled, Ac-
tive connection as device, FINE-
TUNINGEN1 = 1
-0.25 0.25 %
Start-up time tUSHFRCO 300 ns
Current consumption on all
supplies
IUSHFRCO fUSHFRCO = 48 MHz, FINETUNIN-
GEN1 = 1
340 TBD µA
fUSHFRCO = 50 MHz, FINETUNIN-
GEN1 = 0
342 TBD µA
fUSHFRCO = 48 MHz, FINETUNIN-
GEN1 = 0
292 TBD µA
fUSHFRCO = 32 MHz, FINETUNIN-
GEN1 = 0
223 TBD µA
fUSHFRCO = 16 MHz, FINETUNIN-
GEN1 = 0
132 TBD µA
Period jitter PJUSHFRCO 0.2 % RMS
Note:
1. In the CMU_USHFRCOCTRL register.
4.1.10.7 Ultra-low Frequency RC Oscillator (ULFRCO)
Table 4.18. Ultra-low Frequency RC Oscillator (ULFRCO)
Parameter Symbol Test Condition Min Typ Max Unit
Oscillation frequency fULFRCO TBD 1 TBD kHz
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 47
4.1.11 Flash Memory Characteristics5
Table 4.19. Flash Memory Characteristics5
Parameter Symbol Test Condition Min Typ Max Unit
Flash erase cycles before
failure
ECFLASH 10000 cycles
Flash data retention RETFLASH T ≤ 85 °C 10 years
T ≤ 125 °C 10 years
Word (32-bit) programming
time
tW_PROG Burst write, 128 words, average
time per word
20 26.2 32 µs
Single word 59 68.7 83 µs
Page erase time4tPERASE 20 26.8 35 ms
Mass erase time1tMERASE 20 26.9 35 ms
Device erase time2 3tDERASE T ≤ 85 °C 80.7 95 ms
T ≤ 125 °C 80.7 100 ms
Erase current6IERASE Page Erase 1.7 mA
Mass or Device Erase 2.1 mA
Write current6IWRITE 3.9 mA
Supply voltage during flash
erase and write
VFLASH 1.62 3.6 V
Note:
1. Mass erase is issued by the CPU and erases all flash.
2. Device erase is issued over the AAP interface and erases all flash, SRAM, the Lock Bit (LB) page, and the User data page Lock
Word (ULW).
3. From setting the DEVICEERASE bit in AAP_CMD to 1 until the ERASEBUSY bit in AAP_STATUS is cleared to 0. Internal setup
and hold times for flash control signals are included.
4. From setting the ERASEPAGE bit in MSC_WRITECMD to 1 until the BUSY bit in MSC_STATUS is cleared to 0. Internal setup
and hold times for flash control signals are included.
5. Flash data retention information is published in the Quarterly Quality and Reliability Report.
6. Measured at 25 °C.
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 48
4.1.12 General-Purpose I/O (GPIO)
Table 4.20. General-Purpose I/O (GPIO)
Parameter Symbol Test Condition Min Typ Max Unit
Input low voltage VIL GPIO pins IOVDD*0.3 V
Input high voltage VIH GPIO pins IOVDD*0.7 V
Output high voltage relative
to IOVDD
VOH Sourcing 3 mA, IOVDD ≥ 3 V,
DRIVESTRENGTH1 = WEAK
IOVDD*0.8 V
Sourcing 1.2 mA, IOVDD ≥ 1.62
V,
DRIVESTRENGTH1 = WEAK
IOVDD*0.6 V
Sourcing 20 mA, IOVDD ≥ 3 V,
DRIVESTRENGTH1 = STRONG
IOVDD*0.8 V
Sourcing 8 mA, IOVDD ≥ 1.62 V,
DRIVESTRENGTH1 = STRONG
IOVDD*0.6 V
Output low voltage relative to
IOVDD
VOL Sinking 3 mA, IOVDD ≥ 3 V,
DRIVESTRENGTH1 = WEAK
IOVDD*0.2 V
Sinking 1.2 mA, IOVDD ≥ 1.62 V,
DRIVESTRENGTH1 = WEAK
IOVDD*0.4 V
Sinking 20 mA, IOVDD ≥ 3 V,
DRIVESTRENGTH1 = STRONG
IOVDD*0.2 V
Sinking 8 mA, IOVDD ≥ 1.62 V,
DRIVESTRENGTH1 = STRONG
IOVDD*0.4 V
Input leakage current IIOLEAK All GPIO except LFXO pins, GPIO
≤ IOVDD, T ≤ 85 °C
0.1 TBD nA
LFXO Pins, GPIO ≤ IOVDD, T ≤
85 °C
0.1 TBD nA
All GPIO except LFXO pins, GPIO
≤ IOVDD, T > 85 °C
TBD nA
LFXO Pins, GPIO ≤ IOVDD, T >
85 °C
TBD nA
Input leakage current on
5VTOL pads above IOVDD
I5VTOLLEAK IOVDD < GPIO ≤ IOVDD + 2 V 3.3 TBD µA
I/O pin pull-up/pull-down re-
sistor
RPUD TBD 40 TBD kΩ
Pulse width of pulses re-
moved by the glitch suppres-
sion filter
tIOGLITCH 15 25 35 ns
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 49
Parameter Symbol Test Condition Min Typ Max Unit
Output fall time, From 70%
to 30% of VIO
tIOOF CL = 50 pF,
DRIVESTRENGTH1 = STRONG,
SLEWRATE1 = 0x6
1.8 ns
CL = 50 pF,
DRIVESTRENGTH1 = WEAK,
SLEWRATE1 = 0x6
4.5 ns
Output rise time, From 30%
to 70% of VIO
tIOOR CL = 50 pF,
DRIVESTRENGTH1 = STRONG,
SLEWRATE = 0x61
2.2 ns
CL = 50 pF,
DRIVESTRENGTH1 = WEAK,
SLEWRATE1 = 0x6
7.4 ns
Note:
1. In GPIO_Pn_CTRL register.
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 50
4.1.13 Voltage Monitor (VMON)
Table 4.21. Voltage Monitor (VMON)
Parameter Symbol Test Condition Min Typ Max Unit
Supply current (including
I_SENSE)
IVMON In EM0 or EM1, 1 supply moni-
tored, T ≤ 85 °C
6.0 TBD µA
In EM0 or EM1, 4 supplies moni-
tored, T ≤ 85 °C
14.9 TBD µA
In EM2, EM3 or EM4, 1 supply
monitored and above threshold
62 nA
In EM2, EM3 or EM4, 1 supply
monitored and below threshold
62 nA
In EM2, EM3 or EM4, 4 supplies
monitored and all above threshold
99 nA
In EM2, EM3 or EM4, 4 supplies
monitored and all below threshold
99 nA
Loading of monitored supply ISENSE In EM0 or EM1 2 µA
In EM2, EM3 or EM4 2 nA
Threshold range VVMON_RANGE 1.62 3.4 V
Threshold step size NVMON_STESP Coarse 200 mV
Fine 20 mV
Response time tVMON_RES Supply drops at 1V/µs rate 460 ns
Hysteresis VVMON_HYST 26 mV
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 51
4.1.14 Analog to Digital Converter (ADC)
Specified at 1 Msps, ADCCLK = 16 MHz, BIASPROG = 0, GPBIASACC = 0, unless otherwise indicated.
Table 4.22. Analog to Digital Converter (ADC)
Parameter Symbol Test Condition Min Typ Max Unit
Resolution VRESOLUTION 6 12 Bits
Input voltage range5VADCIN Single ended VFS V
Differential -VFS/2 VFS/2 V
Input range of external refer-
ence voltage, single ended
and differential
VADCREFIN_P 1 VAVDD V
Power supply rejection2PSRRADC At DC 80 dB
Analog input common mode
rejection ratio
CMRRADC At DC 80 dB
Current from all supplies, us-
ing internal reference buffer.
Continous operation. WAR-
MUPMODE4 = KEEPADC-
WARM
IADC_CONTI-
NOUS_LP
1 Msps / 16 MHz ADCCLK, BIA-
SPROG = 0, GPBIASACC = 1 3
270 TBD µA
250 ksps / 4 MHz ADCCLK, BIA-
SPROG = 6, GPBIASACC = 1 3
125 µA
62.5 ksps / 1 MHz ADCCLK, BIA-
SPROG = 15, GPBIASACC = 1 3
80 µA
Current from all supplies, us-
ing internal reference buffer.
Duty-cycled operation. WAR-
MUPMODE4 = NORMAL
IADC_NORMAL_LP 35 ksps / 16 MHz ADCCLK, BIA-
SPROG = 0, GPBIASACC = 1 3
45 µA
5 ksps / 16 MHz ADCCLK BIA-
SPROG = 0, GPBIASACC = 1 3
8 µA
Current from all supplies, us-
ing internal reference buffer.
Duty-cycled operation.
AWARMUPMODE4 = KEEP-
INSTANDBY or KEEPIN-
SLOWACC
IADC_STAND-
BY_LP
125 ksps / 16 MHz ADCCLK, BIA-
SPROG = 0, GPBIASACC = 1 3
105 µA
35 ksps / 16 MHz ADCCLK, BIA-
SPROG = 0, GPBIASACC = 1 3
70 µA
Current from all supplies, us-
ing internal reference buffer.
Continous operation. WAR-
MUPMODE4 = KEEPADC-
WARM
IADC_CONTI-
NOUS_HP
1 Msps / 16 MHz ADCCLK, BIA-
SPROG = 0, GPBIASACC = 0 3
325 µA
250 ksps / 4 MHz ADCCLK, BIA-
SPROG = 6, GPBIASACC = 0 3
175 µA
62.5 ksps / 1 MHz ADCCLK, BIA-
SPROG = 15, GPBIASACC = 0 3
125 µA
Current from all supplies, us-
ing internal reference buffer.
Duty-cycled operation. WAR-
MUPMODE4 = NORMAL
IADC_NORMAL_HP 35 ksps / 16 MHz ADCCLK, BIA-
SPROG = 0, GPBIASACC = 0 3
85 µA
5 ksps / 16 MHz ADCCLK BIA-
SPROG = 0, GPBIASACC = 0 3
16 µA
Current from all supplies, us-
ing internal reference buffer.
Duty-cycled operation.
AWARMUPMODE4 = KEEP-
INSTANDBY or KEEPIN-
SLOWACC
IADC_STAND-
BY_HP
125 ksps / 16 MHz ADCCLK, BIA-
SPROG = 0, GPBIASACC = 0 3
160 µA
35 ksps / 16 MHz ADCCLK, BIA-
SPROG = 0, GPBIASACC = 0 3
125 µA
Current from HFPERCLK IADC_CLK HFPERCLK = 16 MHz 180 µA
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 52
Parameter Symbol Test Condition Min Typ Max Unit
ADC clock frequency fADCCLK 16 MHz
Throughput rate fADCRATE 1 Msps
Conversion time1tADCCONV 6 bit 7 cycles
8 bit 9 cycles
12 bit 13 cycles
Startup time of reference
generator and ADC core
tADCSTART WARMUPMODE4 = NORMAL 5 µs
WARMUPMODE4 = KEEPIN-
STANDBY
2 µs
WARMUPMODE4 = KEEPINSLO-
WACC
1 µs
SNDR at 1Msps and fIN =
10kHz
SNDRADC Internal reference7, differential
measurement
TBD 67 dB
External reference6, differential
measurement
68 dB
Spurious-free dynamic range
(SFDR)
SFDRADC 1 MSamples/s, 10 kHz full-scale
sine wave
75 dB
Differential non-linearity
(DNL)
DNLADC 12 bit resolution, No missing co-
des
TBD TBD LSB
Integral non-linearity (INL),
End point method
INLADC 12 bit resolution TBD TBD LSB
Offset error VADCOFFSETERR TBD 0 TBD LSB
Gain error in ADC VADCGAIN Using internal reference -0.2 TBD %
Using external reference -1 %
Temperature sensor slope VTS_SLOPE -1.84 mV/°C
Note:
1. Derived from ADCCLK.
2. PSRR is referenced to AVDD when ANASW=0 and to DVDD when ANASW=1 in EMU_PWRCTRL.
3. In ADCn_BIASPROG register.
4. In ADCn_CNTL register.
5. The absolute voltage allowed at any ADC input is dictated by the power rail supplied to on-chip circuitry, and may be lower than
the effective full scale voltage. All ADC inputs are limited to the ADC supply (AVDD or DVDD depending on
EMU_PWRCTRL_ANASW). Any ADC input routed through the APORT will further be limited by the IOVDD supply to the pin.
6. External reference is 1.25 V applied externally to ADCnEXTREFP, with the selection CONF in the SINGLECTRL_REF or
SCANCTRL_REF register field and VREFP in the SINGLECTRLX_VREFSEL or SCANCTRLX_VREFSEL field. The differential
input range with this configuration is ± 1.25 V.
7. Internal reference option used corresponds to selection 2V5 in the SINGLECTRL_REF or SCANCTRL_REF register field. The
differential input range with this configuration is ± 1.25 V. Typical value is characterized using full-scale sine wave input. Minimum
value is production-tested using sine wave input at 1.5 dB lower than full scale.
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 53
4.1.15 Analog Comparator (ACMP)
Table 4.23. Analog Comparator (ACMP)
Parameter Symbol Test Condition Min Typ Max Unit
Input voltage range VACMPIN ACMPVDD =
ACMPn_CTRL_PWRSEL 1
VACMPVDD V
Supply voltage VACMPVDD BIASPROG4 ≤ 0x10 or FULL-
BIAS4 = 0
1.8 VVREGVDD_
MAX
V
0x10 < BIASPROG4 ≤ 0x20 and
FULLBIAS4 = 1
2.1 VVREGVDD_
MAX
V
Active current not including
voltage reference2
IACMP BIASPROG4 = 1, FULLBIAS4 = 0 50 nA
BIASPROG4 = 0x10, FULLBIAS4
= 0
306 nA
BIASPROG4 = 0x02, FULLBIAS4
= 1
6.5 µA
BIASPROG4 = 0x20, FULLBIAS4
= 1
74 TBD µA
Current consumption of inter-
nal voltage reference2
IACMPREF VLP selected as input using 2.5 V
Reference / 4 (0.625 V)
50 nA
VLP selected as input using VDD 20 nA
VBDIV selected as input using
1.25 V reference / 1
4.1 µA
VADIV selected as input using
VDD/1
2.4 µA
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 54
Parameter Symbol Test Condition Min Typ Max Unit
Hysteresis (VCM = 1.25 V,
BIASPROG4 = 0x10, FULL-
BIAS4 = 1)
VACMPHYST HYSTSEL5 = HYST0 TBD 0 TBD mV
HYSTSEL5 = HYST1 TBD 18 TBD mV
HYSTSEL5 = HYST2 TBD 33 TBD mV
HYSTSEL5 = HYST3 TBD 46 TBD mV
HYSTSEL5 = HYST4 TBD 57 TBD mV
HYSTSEL5 = HYST5 TBD 68 TBD mV
HYSTSEL5 = HYST6 TBD 79 TBD mV
HYSTSEL5 = HYST7 TBD 90 TBD mV
HYSTSEL5 = HYST8 TBD 0 TBD mV
HYSTSEL5 = HYST9 TBD -18 TBD mV
HYSTSEL5 = HYST10 TBD -33 TBD mV
HYSTSEL5 = HYST11 TBD -45 TBD mV
HYSTSEL5 = HYST12 TBD -57 TBD mV
HYSTSEL5 = HYST13 TBD -67 TBD mV
HYSTSEL5 = HYST14 TBD -78 TBD mV
HYSTSEL5 = HYST15 TBD -88 TBD mV
Comparator delay3tACMPDELAY BIASPROG4 = 1, FULLBIAS4 = 0 30 µs
BIASPROG4 = 0x10, FULLBIAS4
= 0
3.7 µs
BIASPROG4 = 0x02, FULLBIAS4
= 1
360 ns
BIASPROG4 = 0x20, FULLBIAS4
= 1
35 ns
Offset voltage VACMPOFFSET BIASPROG4 =0x10, FULLBIAS4
= 1
TBD TBD mV
Reference voltage VACMPREF Internal 1.25 V reference TBD 1.25 TBD V
Internal 2.5 V reference TBD 2.5 TBD V
Capacitive sense internal re-
sistance
RCSRES CSRESSEL6 = 0 infinite kΩ
CSRESSEL6 = 1 15 kΩ
CSRESSEL6 = 2 27 kΩ
CSRESSEL6 = 3 39 kΩ
CSRESSEL6 = 4 51 kΩ
CSRESSEL6 = 5 100 kΩ
CSRESSEL6 = 6 162 kΩ
CSRESSEL6 = 7 235 kΩ
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 55
Parameter Symbol Test Condition Min Typ Max Unit
Note:
1. ACMPVDD is a supply chosen by the setting in ACMPn_CTRL_PWRSEL and may be IOVDD, AVDD or DVDD.
2. The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference. IACMPTOTAL = IACMP +
IACMPREF.
3. ± 100 mV differential drive.
4. In ACMPn_CTRL register.
5. In ACMPn_HYSTERESIS registers.
6. In ACMPn_INPUTSEL register.
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 56
4.1.16 Digital to Analog Converter (VDAC)
DRIVESTRENGTH = 2 unless otherwise specified. Primary VDAC output.
Table 4.24. Digital to Analog Converter (VDAC)
Parameter Symbol Test Condition Min Typ Max Unit
Output voltage VDACOUT Single-Ended 0 VVREF V
Differential2-VVREF VVREF V
Current consumption includ-
ing references (2 channels)1
IDAC 500 ksps, 12-bit, DRIVES-
TRENGTH = 2, REFSEL = 4
402 µA
44.1 ksps, 12-bit, DRIVES-
TRENGTH = 1, REFSEL = 4
88 µA
200 Hz refresh rate, 12-bit Sam-
ple-Off mode in EM2, DRIVES-
TRENGTH = 2, BGRREQTIME =
1, EM2REFENTIME = 9, REFSEL
= 4, SETTLETIME = 0x0A, WAR-
MUPTIME = 0x02
2 µA
Current from HFPERCLK4IDAC_CLK 5.25 µA/MHz
Sample rate SRDAC 500 ksps
DAC clock frequency fDAC 1 MHz
Conversion time tDACCONV fDAC = 1MHz 2 µs
Settling time tDACSETTLE 50% fs step settling to 5 LSB 2.5 µs
Startup time tDACSTARTUP Enable to 90% fs output, settling
to 10 LSB
12 µs
Output impedance ROUT DRIVESTRENGTH = 2, 0.4 V ≤
VOUT ≤ VOPA - 0.4 V, -8 mA <
IOUT < 8 mA, Full supply range
2
DRIVESTRENGTH = 0 or 1, 0.4 V
≤ VOUT ≤ VOPA - 0.4 V, -400 µA <
IOUT < 400 µA, Full supply range
2
DRIVESTRENGTH = 2, 0.1 V ≤
VOUT ≤ VOPA - 0.1 V, -2 mA <
IOUT < 2 mA, Full supply range
2
DRIVESTRENGTH = 0 or 1, 0.1 V
≤ VOUT ≤ VOPA - 0.1 V, -100 µA <
IOUT < 100 µA, Full supply range
2
Power supply rejection ratio6PSRR Vout = 50% fs. DC 65.5 dB
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 57
Parameter Symbol Test Condition Min Typ Max Unit
Signal to noise and distortion
ratio (1 kHz sine wave),
Noise band limited to 250
kHz
SNDRDAC 500 ksps, single-ended, internal
1.25V reference
60.4 dB
500 ksps, single-ended, internal
2.5V reference
61.6 dB
500 ksps, single-ended, 3.3V
VDD reference
64.0 dB
500 ksps, differential, internal
1.25V reference
63.3 dB
500 ksps, differential, internal
2.5V reference
64.4 dB
500 ksps, differential, 3.3V VDD
reference
65.8 dB
Signal to noise and distortion
ratio (1 kHz sine wave),
Noise band limited to 22 kHz
SNDRDAC_BAND 500 ksps, single-ended, internal
1.25V reference
65.3 dB
500 ksps, single-ended, internal
2.5V reference
66.7 dB
500 ksps, differential, 3.3V VDD
reference
68.5 dB
500 ksps, differential, internal
1.25V reference
67.8 dB
500 ksps, differential, internal
2.5V reference
69.0 dB
500 ksps, single-ended, 3.3V
VDD reference
70.0 dB
Total harmonic distortion THD 70.2 dB
Differential non-linearity3DNLDAC TBD TBD LSB
Intergral non-linearity INLDAC TBD TBD LSB
Offset error5VOFFSET T = 25 °C TBD TBD mV
Across operating temperature
range
TBD TBD mV
Gain error5VGAIN T = 25 °C, Low-noise internal ref-
erence (REFSEL = 1V25LN or
2V5LN)
TBD TBD %
Across operating temperature
range, Low-noise internal refer-
ence (REFSEL = 1V25LN or
2V5LN)
TBD TBD %
External load capactiance,
OUTSCALE=0
CLOAD 75 pF
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 58
Parameter Symbol Test Condition Min Typ Max Unit
Note:
1. Supply current specifications are for VDAC circuitry operating with static output only and do not include current required to drive
the load.
2. In differential mode, the output is defined as the difference between two single-ended outputs. Absolute voltage on each output is
limited to the single-ended range.
3. Entire range is monotonic and has no missing codes.
4. Current from HFPERCLK is dependent on HFPERCLK frequency. This current contributes to the total supply current used when
the clock to the DAC module is enabled in the CMU.
5. Gain is calculated by measuring the slope from 10% to 90% of full scale. Offset is calculated by comparing actual VDAC output at
10% of full scale to ideal VDAC output at 10% of full scale with the measured gain.
6. PSRR calculated as 20 * log10(ΔVDD / ΔVOUT), VDAC output at 90% of full scale
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 59
4.1.17 Current Digital to Analog Converter (IDAC)
Table 4.25. Current Digital to Analog Converter (IDAC)
Parameter Symbol Test Condition Min Typ Max Unit
Number of ranges NIDAC_RANGES 4 ranges
Output current IIDAC_OUT RANGSEL1 = RANGE0 0.05 1.6 µA
RANGSEL1 = RANGE1 1.6 4.7 µA
RANGSEL1 = RANGE2 0.5 16 µA
RANGSEL1 = RANGE3 2 64 µA
Linear steps within each
range
NIDAC_STEPS 32 steps
Step size SSIDAC RANGSEL1 = RANGE0 50 nA
RANGSEL1 = RANGE1 100 nA
RANGSEL1 = RANGE2 500 nA
RANGSEL1 = RANGE3 2 µA
Total accuracy, STEPSEL1 =
0x10
ACCIDAC EM0 or EM1, AVDD=3.3 V, T = 25
°C
TBD TBD %
EM0 or EM1, Across operating
temperature range
TBD TBD %
EM2 or EM3, Source mode,
RANGSEL1 = RANGE0,
AVDD=3.3 V, T = 25 °C
-2.7 %
EM2 or EM3, Source mode,
RANGSEL1 = RANGE1,
AVDD=3.3 V, T = 25 °C
-2.5 %
EM2 or EM3, Source mode,
RANGSEL1 = RANGE2,
AVDD=3.3 V, T = 25 °C
-1.5 %
EM2 or EM3, Source mode,
RANGSEL1 = RANGE3,
AVDD=3.3 V, T = 25 °C
-1.0 %
EM2 or EM3, Sink mode, RANG-
SEL1 = RANGE0, AVDD=3.3 V, T
= 25 °C
-1.1 %
EM2 or EM3, Sink mode, RANG-
SEL1 = RANGE1, AVDD=3.3 V, T
= 25 °C
-1.1 %
EM2 or EM3, Sink mode, RANG-
SEL1 = RANGE2, AVDD=3.3 V, T
= 25 °C
-0.9 %
EM2 or EM3, Sink mode, RANG-
SEL1 = RANGE3, AVDD=3.3 V, T
= 25 °C
-0.9 %
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 60
Parameter Symbol Test Condition Min Typ Max Unit
Start up time tIDAC_SU Output within 1% of steady state
value
5 µs
Settling time, (output settled
within 1% of steady state val-
ue),
tIDAC_SETTLE Range setting is changed 5 µs
Step value is changed 1 µs
Current consumption2IIDAC EM0 or EM1 Source mode, ex-
cluding output current, Across op-
erating temperature range
11 TBD µA
EM0 or EM1 Sink mode, exclud-
ing output current, Across operat-
ing temperature range
13 TBD µA
EM2 or EM3 Source mode, ex-
cluding output current, T = 25 °C
0.05 µA
EM2 or EM3 Sink mode, exclud-
ing output current, T = 25 °C
0.07 µA
EM2 or EM3 Source mode, ex-
cluding output current, T ≥ 85 °C
11 µA
EM2 or EM3 Sink mode, exclud-
ing output current, T ≥ 85 °C
13 µA
Output voltage compliance in
source mode, source current
change relative to current
sourced at 0 V
ICOMP_SRC RANGESEL1=0, output voltage =
min(VIOVDD, VAVDD2-100 mv)
0.11 %
RANGESEL1=1, output voltage =
min(VIOVDD, VAVDD2-100 mV)
0.06 %
RANGESEL1=2, output voltage =
min(VIOVDD, VAVDD2-150 mV)
0.04 %
RANGESEL1=3, output voltage =
min(VIOVDD, VAVDD2-250 mV)
0.03 %
Output voltage compliance in
sink mode, sink current
change relative to current
sunk at IOVDD
ICOMP_SINK RANGESEL1=0, output voltage =
100 mV
0.29 %
RANGESEL1=1, output voltage =
100 mV
0.27 %
RANGESEL1=2, output voltage =
150 mV
0.12 %
RANGESEL1=3, output voltage =
250 mV
0.03 %
Note:
1. In IDAC_CURPROG register.
2. The IDAC is supplied by either AVDD, DVDD, or IOVDD based on the setting of ANASW in the EMU_PWRCTRL register and
PWRSEL in the IDAC_CTRL register. Setting PWRSEL to 1 selects IOVDD. With PWRSEL cleared to 0, ANASW selects be-
tween AVDD (0) and DVDD (1).
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 61
4.1.18 Capacitive Sense (CSEN)
Table 4.26. Capacitive Sense (CSEN)
Parameter Symbol Test Condition Min Typ Max Unit
Single conversion time (1x
accumulation)
tCNV 12-bit SAR Conversions 20.2 µs
16-bit SAR Conversions 26.4 µs
Delta Modulation Conversion (sin-
gle comparison)
1.55 µs
Maximum external capacitive
load
CEXTMAX CS0CG=7 (Gain = 1x), including
routing parasitics
68 pF
CS0CG=0 (Gain = 10x), including
routing parasitics
680 pF
Maximum external series im-
pedance
REXTMAX 1 kΩ
Supply current, EM2 bonded
conversions, WARMUP-
MODE=NORMAL, WAR-
MUPCNT=0
ICSEN_BOND 12-bit SAR conversions, 20 ms
conversion rate, CS0CG=7 (Gain
= 1x), 10 channels bonded (total
capacitance of 330 pF)1
326 nA
Delta Modulation conversions, 20
ms conversion rate, CS0CG=7
(Gain = 1x), 10 channels bonded
(total capacitance of 330 pF)1
226 nA
12-bit SAR conversions, 200 ms
conversion rate, CS0CG=7 (Gain
= 1x), 10 channels bonded (total
capacitance of 330 pF)1
33 nA
Delta Modulation conversions,
200 ms conversion rate,
CS0CG=7 (Gain = 1x), 10 chan-
nels bonded (total capacitance of
330 pF)1
25 nA
Supply current, EM2 scan
conversions, WARMUP-
MODE=NORMAL, WAR-
MUPCNT=0
ICSEN_EM2 12-bit SAR conversions, 20 ms
scan rate, CS0CG=0 (Gain =
10x), 8 samples per scan1
690 nA
Delta Modulation conversions, 20
ms scan rate, 8 comparisons per
sample (DMCR = 1, DMR = 2),
CS0CG=0 (Gain = 10x), 8 sam-
ples per scan1
515 nA
12-bit SAR conversions, 200 ms
scan rate, CS0CG=0 (Gain =
10x), 8 samples per scan1
79 nA
Delta Modulation conversions,
200 ms scan rate, 8 comparisons
per sample (DMCR = 1, DMR =
2), CS0CG=0 (Gain = 10x), 8
samples per scan1
57 nA
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 62
Parameter Symbol Test Condition Min Typ Max Unit
Supply current, continuous
conversions, WARMUP-
MODE=KEEPCSENWARM
ICSEN_ACTIVE SAR or Delta Modulation conver-
sions of 33 pF capacitor,
CS0CG=0 (Gain = 10x), always
on
90.5 µA
HFPERCLK supply current ICSEN_HFPERCLK Current contribution from
HFPERCLK when clock to CSEN
block is enabled.
2.25 µA/MHz
Note:
1. Current is specified with a total external capacitance of 33 pF per channel. Average current is dependent on how long the module
is actively sampling channels within the scan period, and scales with the number of samples acquired. Supply current for a specif-
ic application can be estimated by multiplying the current per sample by the total number of samples per period (total_current =
single_sample_current * (number_of_channels * accumulation)).
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 63
4.1.19 Operational Amplifier (OPAMP)
Unless otherwise indicated, specified conditions are: Non-inverting input configuration, VDD = 3.3 V, DRIVESTRENGTH = 2, MAIN-
OUTEN = 1, CLOAD = 75 pF with OUTSCALE = 0, or CLOAD = 37.5 pF with OUTSCALE = 1. Unit gain buffer and 3X-gain connection as
specified in table footnotes8 1.
Table 4.27. Operational Amplifier (OPAMP)
Parameter Symbol Test Condition Min Typ Max Unit
Supply voltage (from AVDD) VOPA HCMDIS = 0, Rail-to-rail input
range
2 3.8 V
HCMDIS = 1 1.62 3.8 V
Input voltage VIN HCMDIS = 0, Rail-to-rail input
range
VVSS VOPA V
HCMDIS = 1 VVSS VOPA-1.2 V
Input impedance RIN 100 MΩ
Output voltage VOUT VVSS VOPA V
Load capacitance2CLOAD OUTSCALE = 0 75 pF
OUTSCALE = 1 37.5 pF
Output impedance ROUT DRIVESTRENGTH = 2 or 3, 0.4 V
≤ VOUT ≤ VOPA - 0.4 V, -8 mA <
IOUT < 8 mA, Buffer connection,
Full supply range
0.25
DRIVESTRENGTH = 0 or 1, 0.4 V
≤ VOUT ≤ VOPA - 0.4 V, -400 µA <
IOUT < 400 µA, Buffer connection,
Full supply range
0.6
DRIVESTRENGTH = 2 or 3, 0.1 V
≤ VOUT ≤ VOPA - 0.1 V, -2 mA <
IOUT < 2 mA, Buffer connection,
Full supply range
0.4
DRIVESTRENGTH = 0 or 1, 0.1 V
≤ VOUT ≤ VOPA - 0.1 V, -100 µA <
IOUT < 100 µA, Buffer connection,
Full supply range
1
Internal closed-loop gain GCL Buffer connection TBD 1 TBD -
3x Gain connection TBD 2.99 TBD -
16x Gain connection TBD 15.7 TBD -
Active current4IOPA DRIVESTRENGTH = 3, OUT-
SCALE = 0
580 µA
DRIVESTRENGTH = 2, OUT-
SCALE = 0
176 µA
DRIVESTRENGTH = 1, OUT-
SCALE = 0
13 µA
DRIVESTRENGTH = 0, OUT-
SCALE = 0
4.7 µA
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 64
Parameter Symbol Test Condition Min Typ Max Unit
Open-loop gain GOL DRIVESTRENGTH = 3 135 dB
DRIVESTRENGTH = 2 137 dB
DRIVESTRENGTH = 1 121 dB
DRIVESTRENGTH = 0 109 dB
Loop unit-gain frequency7UGF DRIVESTRENGTH = 3, Buffer
connection
3.38 MHz
DRIVESTRENGTH = 2, Buffer
connection
0.9 MHz
DRIVESTRENGTH = 1, Buffer
connection
132 kHz
DRIVESTRENGTH = 0, Buffer
connection
34 kHz
DRIVESTRENGTH = 3, 3x Gain
connection
2.57 MHz
DRIVESTRENGTH = 2, 3x Gain
connection
0.71 MHz
DRIVESTRENGTH = 1, 3x Gain
connection
113 kHz
DRIVESTRENGTH = 0, 3x Gain
connection
28 kHz
Phase margin PM DRIVESTRENGTH = 3, Buffer
connection
67 °
DRIVESTRENGTH = 2, Buffer
connection
69 °
DRIVESTRENGTH = 1, Buffer
connection
63 °
DRIVESTRENGTH = 0, Buffer
connection
68 °
Output voltage noise NOUT DRIVESTRENGTH = 3, Buffer
connection, 10 Hz - 10 MHz
146 µVrms
DRIVESTRENGTH = 2, Buffer
connection, 10 Hz - 10 MHz
163 µVrms
DRIVESTRENGTH = 1, Buffer
connection, 10 Hz - 1 MHz
170 µVrms
DRIVESTRENGTH = 0, Buffer
connection, 10 Hz - 1 MHz
176 µVrms
DRIVESTRENGTH = 3, 3x Gain
connection, 10 Hz - 10 MHz
313 µVrms
DRIVESTRENGTH = 2, 3x Gain
connection, 10 Hz - 10 MHz
271 µVrms
DRIVESTRENGTH = 1, 3x Gain
connection, 10 Hz - 1 MHz
247 µVrms
DRIVESTRENGTH = 0, 3x Gain
connection, 10 Hz - 1 MHz
245 µVrms
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 65
Parameter Symbol Test Condition Min Typ Max Unit
Slew rate5SR DRIVESTRENGTH = 3,
INCBW=13
4.7 V/µs
DRIVESTRENGTH = 3,
INCBW=0
1.5 V/µs
DRIVESTRENGTH = 2,
INCBW=13
1.27 V/µs
DRIVESTRENGTH = 2,
INCBW=0
0.42 V/µs
DRIVESTRENGTH = 1,
INCBW=13
0.17 V/µs
DRIVESTRENGTH = 1,
INCBW=0
0.058 V/µs
DRIVESTRENGTH = 0,
INCBW=13
0.044 V/µs
DRIVESTRENGTH = 0,
INCBW=0
0.015 V/µs
Startup time6TSTART DRIVESTRENGTH = 2 12 µs
Input offset voltage VOSI DRIVESTRENGTH = 2 or 3, T =
25 °C
TBD TBD mV
DRIVESTRENGTH = 1 or 0, T =
25 °C
TBD TBD mV
DRIVESTRENGTH = 2 or 3,
across operating temperature
range
TBD TBD mV
DRIVESTRENGTH = 1 or 0,
across operating temperature
range
TBD TBD mV
DC power supply rejection
ratio9
PSRRDC Input referred 70 dB
DC common-mode rejection
ratio9
CMRRDC Input referred 70 dB
Total harmonic distortion THDOPA DRIVESTRENGTH = 2, 3x Gain
connection, 1 kHz, VOUT = 0.1 V
to VOPA - 0.1 V
90 dB
DRIVESTRENGTH = 0, 3x Gain
connection, 0.1 kHz, VOUT = 0.1 V
to VOPA - 0.1 V
90 dB
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 66
Parameter Symbol Test Condition Min Typ Max Unit
Note:
1. Specified configuration for 3X-Gain configuration is: INCBW = 1, HCMDIS = 1, RESINSEL = VSS, VINPUT = 0.5 V, VOUTPUT = 1.5
V. Nominal voltage gain is 3.
2. If the maximum CLOAD is exceeded, an isolation resistor is required for stability. See AN0038 for more information.
3. When INCBW is set to 1 the OPAMP bandwidth is increased. This is allowed only when the non-inverting close-loop gain is ≥ 3,
or the OPAMP may not be stable.
4. Current into the load resistor is excluded. When the OPAMP is connected with closed-loop gain > 1, there will be extra current to
drive the resistor feedback network. The internal resistor feedback network has total resistance of 143.5 kOhm, which will cause
another ~10 µA current when the OPAMP drives 1.5 V between output and ground.
5. Step between 0.2V and VOPA-0.2V, 10%-90% rising/falling range.
6. From enable to output settled. In sample-and-off mode, RC network after OPAMP will contribute extra delay. Settling error < 1mV.
7. In unit gain connection, UGF is the gain-bandwidth product of the OPAMP. In 3x Gain connection, UGF is the gain-bandwidth
product of the OPAMP and 1/3 attenuation of the feedback network.
8. Specified configuration for Unit gain buffer configuration is: INCBW = 0, HCMDIS = 0, RESINSEL = DISABLE. VINPUT = 0.5 V,
VOUTPUT = 0.5 V.
9. When HCMDIS=1 and input common mode transitions the region from VOPA-1.4V to VOPA-1V, input offset will change. PSRR
and CMRR specifications do not apply to this transition region.
4.1.20 LCD Driver
Table 4.28. LCD Driver
Parameter Symbol Test Condition Min Typ Max Unit
Frame rate fLCDFR TBD TBD Hz
LCD supply range2VLCDIN 1.8 3.8 V
LCD output voltage range VLCD Current source mode, No external
LCD capacitor
2.0 VLCDIN-0.4 V
Step-down mode with external
LCD capacitor
2.0 VLCDIN V
Charge pump mode with external
LCD capacitor
2.0 1.9 *
VLCDIN
V
Contrast control step size STEPCONTRAST Current source mode 64 mV
Charge pump or Step-down mode 43 mV
Contrast control step accura-
cy1
ACCCONTRAST +/-4 %
Note:
1. Step size accuracy is measured relative to the typical step size, and typ value represents one standard deviation.
2. VLCDIN is selectable between the AVDD or DVDD supply pins, depending on EMU_PWRCTRL_ANASW.
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 67
4.1.21 Pulse Counter (PCNT)
Table 4.29. Pulse Counter (PCNT)
Parameter Symbol Test Condition Min Typ Max Unit
Input frequency FIN Asynchronous Single and Quad-
rature Modes
20 MHz
Sampled Modes with Debounce
filter set to 0.
8 kHz
4.1.22 Analog Port (APORT)
Table 4.30. Analog Port (APORT)
Parameter Symbol Test Condition Min Typ Max Unit
Supply current2 1IAPORT Operation in EM0/EM1 7 µA
Operation in EM2/EM3 915 nA
Note:
1. Specified current is for continuous APORT operation. In applications where the APORT is not requested continuously (e.g. peri-
odic ACMP requests from LESENSE in EM2), the average current requirements can be estimated by mutiplying the duty cycle of
the requests by the specified continuous current number.
2. Supply current increase that occurs when an analog peripheral requests access to APORT. This current is not included in repor-
ted module currents. Additional peripherals requesting access to APORT do not incur further current.
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 68
4.1.23 I2C
4.1.23.1 I2C Standard-mode (Sm)1
Table 4.31. I2C Standard-mode (Sm)1
Parameter Symbol Test Condition Min Typ Max Unit
SCL clock frequency2fSCL 0 100 kHz
SCL clock low time tLOW 4.7 µs
SCL clock high time tHIGH 4 µs
SDA set-up time tSU_DAT 250 ns
SDA hold time3tHD_DAT 100 3450 ns
Repeated START condition
set-up time
tSU_STA 4.7 µs
(Repeated) START condition
hold time
tHD_STA 4 µs
STOP condition set-up time tSU_STO 4 µs
Bus free time between a
STOP and START condition
tBUF 4.7 µs
Note:
1. For CLHR set to 0 in the I2Cn_CTRL register.
2. For the minimum HFPERCLK frequency required in Standard-mode, refer to the I2C chapter in the reference manual.
3. The maximum SDA hold time (tHD_DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW).
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 69
4.1.23.2 I2C Fast-mode (Fm)1
Table 4.32. I2C Fast-mode (Fm)1
Parameter Symbol Test Condition Min Typ Max Unit
SCL clock frequency2fSCL 0 400 kHz
SCL clock low time tLOW 1.3 µs
SCL clock high time tHIGH 0.6 µs
SDA set-up time tSU_DAT 100 ns
SDA hold time3tHD_DAT 100 900 ns
Repeated START condition
set-up time
tSU_STA 0.6 µs
(Repeated) START condition
hold time
tHD_STA 0.6 µs
STOP condition set-up time tSU_STO 0.6 µs
Bus free time between a
STOP and START condition
tBUF 1.3 µs
Note:
1. For CLHR set to 1 in the I2Cn_CTRL register.
2. For the minimum HFPERCLK frequency required in Fast-mode, refer to the I2C chapter in the reference manual.
3. The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW).
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 70
4.1.23.3 I2C Fast-mode Plus (Fm+)1
Table 4.33. I2C Fast-mode Plus (Fm+)1
Parameter Symbol Test Condition Min Typ Max Unit
SCL clock frequency2fSCL 0 1000 kHz
SCL clock low time tLOW 0.5 µs
SCL clock high time tHIGH 0.26 µs
SDA set-up time tSU_DAT 50 ns
SDA hold time tHD_DAT 100 ns
Repeated START condition
set-up time
tSU_STA 0.26 µs
(Repeated) START condition
hold time
tHD_STA 0.26 µs
STOP condition set-up time tSU_STO 0.26 µs
Bus free time between a
STOP and START condition
tBUF 0.5 µs
Note:
1. For CLHR set to 0 or 1 in the I2Cn_CTRL register.
2. For the minimum HFPERCLK frequency required in Fast-mode Plus, refer to the I2C chapter in the reference manual.
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 71
4.1.24 USART SPI
SPI Master Timing
Table 4.34. SPI Master Timing
Parameter Symbol Test Condition Min Typ Max Unit
SCLK period 1 3 2tSCLK All USARTs except USART2 2 *
tHFPERCLK
ns
USART2 2 *
tHFPERBCLK
ns
CS to MOSI 1 3tCS_MO USART2, location 4, IOVDD = 1.8
V
-3.2 6.8 ns
USART2, location 4, IOVDD = 3.0
V
-2.3 6.0 ns
USART2, location 5, IOVDD = 1.8
V
-8.1 6.3 ns
USART2, location 5, IOVDD = 3.0
V
-7.3 4.4 ns
All other USARTs and locations,
IOVDD = 1.8 V
-15 13 ns
All other USARTs and locations,
IOVDD = 3.0 V
-13 11 ns
SCLK to MOSI 1 3tSCLK_MO USART2, location 4, IOVDD = 1.8
V
-0.3 9.2 ns
USART2, location 4, IOVDD = 3.0
V
-0.3 8.6 ns
USART2, location 5, IOVDD = 1.8
V
-3.6 5.0 ns
USART2, location 5, IOVDD = 3.0
V
-3.4 3.2 ns
All other USARTs and locations,
IOVDD = 1.8 V
-10 11 ns
All other USARTs and locations,
IOVDD = 3.0 V
-9 11 ns
MISO setup time 1 3tSU_MI USART2, location 4, IOVDD = 1.8
V
39.7 ns
USART2, location 4, IOVDD = 3.0
V
22.4 ns
USART2, location 5, IOVDD = 1.8
V
49.2 ns
USART2, location 5, IOVDD = 3.0
V
30.0 ns
All other USARTs and locations,
IOVDD = 1.8 V
55 ns
All other USARTs and locations,
IOVDD = 3.0 V
36 ns
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 72
Parameter Symbol Test Condition Min Typ Max Unit
MISO hold time 1 3tH_MI USART2, location 4, IOVDD = 1.8
V
-11.6 ns
USART2, location 4, IOVDD = 3.0
V
-11.6 ns
USART2, location 5, IOVDD = 1.8
V
-9.1 ns
USART2, location 5, IOVDD = 3.0
V
-9.1 ns
All other USARTs and locations,
IOVDD = 1.8 V
-8 ns
All other USARTs and locations,
IOVDD = 3.0 V
-8 ns
Note:
1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0).
2. tHFPERCLK is one period of the selected HFPERCLK.
3. Measurement done with 8 pF output loading at 10% and 90% of VDD (figure shows 50% of VDD).
CS
SCLK
CLKPOL = 0
MOSI
MISO
tCS_MO
tH_MI
tSU_MI
tSCKL_MO
tSCLK
SCLK
CLKPOL = 1
Figure 4.1. SPI Master Timing Diagram
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 73
SPI Slave Timing
Table 4.35. SPI Slave Timing
Parameter Symbol Test Condition Min Typ Max Unit
SCLK period 1 3 2tSCLK 6 *
tHFPERCLK
ns
SCLK high time1 3 2tSCLK_HI 2.5 *
tHFPERCLK
ns
SCLK low time1 3 2tSCLK_LO 2.5 *
tHFPERCLK
ns
CS active to MISO 1 3tCS_ACT_MI 24 69 ns
CS disable to MISO 1 3tCS_DIS_MI 19 175 ns
MOSI setup time 1 3tSU_MO 7 ns
MOSI hold time 1 3 2tH_MO 6 ns
SCLK to MISO 1 3 2tSCLK_MI 16 + 1.5 *
tHFPERCLK
43 + 2.5 *
tHFPERCLK
ns
Note:
1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0).
2. tHFPERCLK is one period of the selected HFPERCLK.
3. Measurement done with 8 pF output loading at 10% and 90% of VDD (figure shows 50% of VDD).
CS
SCLK
CLKPOL = 0
MOSI
MISO
tCS_ACT_MI
tSCLK_HI
tSCLK
tSU_MO
tH_MO
tSCLK_MI
tCS_DIS_MI
tSCLK_LO
SCLK
CLKPOL = 1
Figure 4.2. SPI Slave Timing Diagram
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 74
4.1.25 External Bus Interface (EBI)
EBI Write Enable Output Timing
Timing applies to both EBI_WEn and EBI_NANDWEn for all addressing modes and both polarities. All numbers are based on route
locations 0,1,2 only (with all EBI alternate functions using the same location at the same time). Timing is specified at 10% and 90% of
IOVDD, 25 pF external loading, and slew rate for all GPIO set to 6.
Table 4.36. EBI Write Enable Timing
Parameter Symbol Test Condition Min Typ Max Unit
Output hold time, from trail-
ing EBI_WEn / EBI_NAND-
WEn edge to EBI_AD,
EBI_A, EBI_CSn, EBI_BLn
invalid
tOH_WEn IOVDD ≥ 1.62 V -22 +
(WRHOLD
* t{}HFCOR-
ECLK{})
ns
IOVDD ≥ 3.0 V -13 +
(WRHOLD
* tHFCOR-
ECLK)
ns
Output setup time, from
EBI_AD, EBI_A, EBI_CSn,
EBI_BLn valid to leading
EBI_WEn / EBI_NANDWEn
edge1
tOSU_WEn IOVDD ≥ 1.62 V -12 +
(WRSET-
UP *
tHFCOR-
ECLK)
ns
IOVDD ≥ 3.0 V -10 +
(WRSET-
UP *
tHFCOR-
ECLK)
ns
EBI_WEn / EBI_NANDWEn
pulse width1
tWIDTH_WEn IOVDD ≥ 1.62 V -6 +
(MAX(1,
WRSTRB)
* tHFCOR-
ECLK)
ns
IOVDD ≥ 3.0 V -5 +
(MAX(1,
WRSTRB)
* tHFCOR-
ECLK)
ns
Note:
1. The figure shows the timing for the case that the half strobe length functionality is not used, i.e. HALFWE=0. The leading edge of
EBI_WEn can be moved to the right by setting HALFWE=1. This decreases the length of tWIDTH_WEn and increases the length of
tOSU_WEn by 1/2 * tHFCLKNODIV.
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 75
WRSETUP
(0, 1, 2, ...)
EBI_BL
EBI_BL[N-1:0] Z
EBI_A
EBI_A[N-1:0] Z
DATA[15:0]
EBI_AD[15:0] Z
EBI_CSn
EBI_WEn
WRSTRB
(1, 2, 3, ...)
WRHOLD
(0, 1, 2, ...)
tOSU_WEn
tOSU_WEn
tOSU_WEn
tOSU_WEn
tWIDTH_WEn
tOH_WEn
tOH_WEn
tOH_WEn
tOH_WEn
Figure 4.3. EBI Write Enable Output Timing Diagram
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 76
EBI Address Latch Enable Output Timing
Timing applies to multiplexed addressing modes D8A24ALE and D16A16ALE for both polarities. All numbers are based on route loca-
tions 0,1,2 only (with all EBI alternate functions using the same location at the same time). Timing is specified at 10% and 90% of
IOVDD, 25 pF external loading, and slew rate for all GPIO set to 6.
Table 4.37. EBI Address Latch Enable Output Timing
Parameter Symbol Test Condition Min Typ Max Unit
Output hold time, from trail-
ing EBI_ALE edge to
EBI_AD invalid1 2
tOH_ALEn IOVDD ≥ 1.62 V -22 +
(ADDR-
HOLD *
tHFCOR-
ECLK)
ns
IOVDD ≥ 3.0 V -11 +
(ADDR-
HOLD *
tHFCOR-
ECLK)
ns
Output setup time, from
EBI_AD valid to leading
EBI_ALE edge
tOSU_ALEn IOVDD ≥ 1.62 V -12 ns
IOVDD ≥ 3.0 V -9 ns
EBI_ALEn pulse width1tWIDTH_ALEn IOVDD ≥ 1.62 V -4 +
((ADDR-
SETUP +
1) *
t{}HFCOR-
ECLK{})
ns
IOVDD ≥ 3.0 V -3 +
((ADDR-
SETUP +
1) *
t{}HFCOR-
ECLK{})
ns
Note:
1. The figure shows the timing for the case that the half strobe length functionality is not used, i.e. HALFALE=0. The trailing edge of
EBI_ALEn can be moved to the left by setting HALFALE=1. This decreases the length of tWIDTH_ALEn and increases the length of
tOSU_ALEn by tHFCORECLK - 1/2 * tHFCLKNODIV.
2. The figure shows a write operation. For a multiplexed read operation the address hold time is controlled via the RDSETUP state
instead of via the ADDRHOLD state.
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 77
tOSU_ALEn
ADDRSETUP
(1, 2, 3, ...)
ADDR[16:1]
ADDRHOLD
(0, 1, 2, ...)
WRSETUP
(0, 1, 2, ...)
WRSTRB
(1, 2, 3, ...)
WRHOLD
(0, 1, 2, ...)
Z
DATA[15:0]
tWIDTH_ALEn
tWIDTH_ALEn
EBI_AD[15:0]
EBI_ALE
EBI_CSn
EBI_WEn
Figure 4.4. EBI Address Latch Enable Output Timing Diagram
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 78
EBI Read Enable Output Timing
Timing applies to both EBI_REn and EBI_NANDREn for all addressing modes and both polarities. Output timing for EBI_AD applies
only to multiplexed addressing modes D8A24ALE and D16A16ALE. All numbers are based on route locations 0,1,2 only (with all EBI
alternate functions using the same location at the same time). Timing is specified at 10% and 90% of IOVDD, 25 pF external loading,
and slew rate for all GPIO set to 6.
Table 4.38. EBI Read Enable Output Timing
Parameter Symbol Test Condition Min Typ Max Unit
Output hold time, from trail-
ing EBI_REn / EBI_NAN-
DREn edge to EBI_AD,
EBI_A, EBI_CSn, EBI_BLn
invalid
tOH_REn IOVDD ≥ 1.62 V -23 +
(RDHOLD *
tHFCOR-
ECLK)
ns
IOVDD ≥ 3.0 V -13 +
(RDHOLD *
tHFCOR-
ECLK)
ns
Output setup time, from
EBI_AD, EBI_A, EBI_CSn,
EBI_BLn valid to leading
EBI_REn / EBI_NANDREn
edge 1
tOSU_REn IOVDD ≥ 1.62 V -12 +
(RDSETUP
* tHFCOR-
ECLK)
ns
IOVDD ≥ 3.0 V -11 +
(RDSETUP
* tHFCOR-
ECLK)
ns
EBI_REn pulse width1 2tWIDTH_REn IOVDD ≥ 1.62 V -6 +
(MAX(1,
RDSTRB) *
tHFCOR-
ECLK)
ns
IOVDD ≥ 3.0 V -4 +
(MAX(1,
RDSTRB) *
tHFCOR-
ECLK)
ns
Note:
1. The figure shows the timing for the case that the half strobe length functionality is not used, i.e. HALFRE=0. The leading edge of
EBI_REn can be moved to the right by setting HALFRE=1. This decreases the length of tWIDTH_REn and increases the length of
tOSU_REn by 1/2 * tHFCLKNODIV.
2. When page mode is used, RDSTRB is replaced by RDPA for page hits.
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 79
EBI_BL[1:0]
RDSETUP
(0, 1, 2, ...)
EBI_A[27:0]
EBI_BL
EBI_A
EBI_AD[15:8] ADDR[7:0]
EBI_CSn
EBI_AD[7:0]
EBI_REn
RDSTRB
(1, 2, 3, ...)
RDHOLD
(0, 1, 2, ...)
tSU_REn
tSU_REn
tSU_REn
tSU_REn
tWIDTH_REn
Z
Z
tH_REn
tH_REn
tH_REn
tH_REn
Z
ZZ
DATA[7:0]
Figure 4.5. EBI Read Enable Output Timing Diagram
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 80
EBI TFT Output Timing
All numbers are based on route locations 0,1,2 only (with all EBI alternate functions using the same location at the same time). Timing
is specified at 10% and 90% of IOVDD, 25 pF external loading, and slew rate for all GPIO set to 6.
Table 4.39. EBI TFT Output Timing
Parameter Symbol Test Condition Min Typ Max Unit
Output hold time, EBI_DCLK
to EBI_AD invalid
tOH_DCLK IOVDD ≥ 1.62 V -23 +
(TFTHOLD
* tHFCOR-
ECLK)
ns
IOVDD ≥ 3.0 V -12 +
(TFTHOLD
* tHFCOR-
ECLK)
ns
Output setup time, EBI_AD
valid to EBI_DCLK
tOSU_DCLK IOVDD ≥ 1.62 V -11 +
(TFTSET-
UP *
tHFCOR-
ECLK)
ns
IOVDD ≥ 3.0 V -9 +
(TFTSET-
UP *
tHFCOR-
ECLK)
ns
EBI_DCLK
EBI_AD
tOSU_DCLK tOH_DCLK
DATA[15:0] DATA[15:0] DATA[15:0]
Figure 4.6. EBI TFT Output Timing
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 81
EBI Read Enable Timing Requirements
Timing applies to both EBI_REn and EBI_NANDREn for all addressing modes and both polarities. All numbers are based on route loca-
tions 0,1,2 only (with all EBI alternate functions using the same location at the same time). Timing is specified at 10% and 90% of
IOVDD, 25 pF external loading, and slew rate for all GPIO set to 6.
Table 4.40. EBI Read Enable Timing Requirements
Parameter Symbol Test Condition Min Typ Max Unit
Setup time, from EBI_AD
valid to trailing EBI_REn
edge
tSU_REn IOVDD ≥ 1.62 V 55 ns
IOVDD ≥ 3.0 V 36 ns
Hold time, from trailing
EBI_REn edge to EBI_AD in-
valid
tH_REn IOVDD ≥ 1.62 V -9 ns
EBI_A[N-1:0]
EBI_AD[15:0]
ADDR[N:1]
RDSETUP
(0, 1, 2, ...)
EBI_CSn
EBI_REn
RDSTRB
(1, 2, 3, ...)
RDHOLD
(0, 1, 2, ...)
tSU_REn
tH_REn
Z
Z
DATA[15:0]
Z
Figure 4.7. EBI Read Enable Timing Requirements
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 82
EBI Ready/Wait Timing Requirements
Timing applies to both EBI_REn and EBI_WEn for all addressing modes and both polarities. All numbers are based on route locations
0,1,2 only (with all EBI alternate functions using the same location at the same time). Timing is specified at 10% and 90% of IOVDD, 25
pF external loading, and slew rate for all GPIO set to 6.
Table 4.41. EBI Ready/Wait Timing Requirements
Parameter Symbol Test Condition Min Typ Max Unit
Setup time, from EBI_ARDY
valid to trailing EBI_REn,
EBI_WEn edge
tSU_ARDY IOVDD ≥ 1.62 V 55 + (3 *
tHFCOR-
ECLK)
ns
IOVDD ≥ 3.0 V 36 + (3 *
tHFCOR-
ECLK)
ns
Hold time, from trailing
EBI_REn, EBI_WEn edge to
EBI_ARDY invalid
tH_ARDY IOVDD ≥ 1.62 V -9 ns
EBI_RDY
EBI_AD[15:0]
EBI_CSn
EBI_REn
RDSETUP
(0, 1, 2, ...)
RDSTRB
(1, 2, 3, ...)
SYNC
(3)
RDHOLD
(0, 1, 2, ...)
ZDATA[15:0]
tSU_ARDY
tH_ARDY
Figure 4.8. EBI Ready/Wait Timing Requirements
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 83
4.1.26 Ethernet (ETH)
MII Transmit Timing
Timing is specified with 3.0 V ≤ IOVDD ≤ 3.8 V, 25 pF external loading, and slew rate for all GPIO set to 6 unless otherwise indicated.
Table 4.42. Ethernet MII Transmit Timing
Parameter Symbol Test Condition Min Typ Max Unit
TX_CLK frequency FTX_CLK Output slew rate set to 7 25 MHz
TX_CLK duty cycle DCTX_CLK 35 65 %
Output delay, TX_CLK to
TXD[3:0], TX_EN, TX_ER
tOUT 0 25 ns
TX_CLK
TXD[3:0],
TX_EN, TX_ER
tOUT
Figure 4.9. Ethernet MII Transmit Timing
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 84
MII Receive Timing
Timing is specified with 3.0 V ≤ IOVDD ≤ 3.8 V, 25 pF external loading, and slew rate for all GPIO set to 6 unless otherwise indicated.
Table 4.43. Ethernet MII Receive Timing
Parameter Symbol Test Condition Min Typ Max Unit
RX_CLK frequency FRX_CLK 25 MHz
RX_CLK duty cycle DCRX_CLK 35 65 %
Setup time, RXD[3:0],
RX_DV, RX_ER valid to
RX_CLK
tSU 6 ns
Hold time, RX_CLK to
RXD[3:0], RX_DV, RX_ER
change
tHD 5 ns
RX_CLK
RXD[3:0],
RX_DV, RX_ER
tSU tHD
Figure 4.10. Ethernet MII Receive Timing
RMII Transmit Timing
Timing is specified with 3.0 V ≤ IOVDD ≤ 3.8 V, 25 pF external loading, and slew rate for all GPIO set to 6 unless otherwise indicated.
Table 4.44. Ethernet RMII Transmit Timing
Parameter Symbol Test Condition Min Typ Max Unit
REF_CLK frequency FREF_CLK Output slew rate set to 7 50 MHz
REF_CLK duty cycle DCREF_CLK 35 65 %
Output delay, REF_CLK to
TXD[1:0], TX_EN
tOUT 2.3 14.1 ns
REF_CLK
TXD[1:0], TX_EN
tOUT
Figure 4.11. Ethernet RMII Transmit Timing
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 85
RMII Receive Timing
Timing is specified with 3.0 V ≤ IOVDD ≤ 3.8 V, 25 pF external loading, and slew rate for all GPIO set to 6 unless otherwise indicated.
Table 4.45. Ethernet RMII Receive Timing
Parameter Symbol Test Condition Min Typ Max Unit
REF_CLK frequency FREF_CLK Output slew rate set to 7 50 MHz
REF_CLK duty cycle DCREF_CLK 35 65 %
Setup time, RXD[1:0],
CRS_DV, RX_ER valid to
REF_CLK
tSU 4 ns
Hold time, REF_CLK to
RXD[1:0], CRS_DV, RX_ER
change
tHD 2 ns
REF_CLK
RXD[1:0],
CRS_DV, RX_ER
tSU tHD
Figure 4.12. Ethernet RMII Receive Timing
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 86
4.1.27 Serial Data I/O Host Controller (SDIO)
SDIO DS Mode Timing
Timing is specified for route location 0 at 3.0 V IOVDD with voltage scaling disabled. Slew rate for SD_CLK set to 6, all other GPIO set
to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 1. Loading between 5 and 10 pF on all pins or be-
tween 10 and 40 pF on all pins.
Table 4.46. SDIO DS Mode Timing (Location 0)
Parameter Symbol Test Condition Min Typ Max Unit
Clock frequency during data
transfer
FSD_CLK Using HFRCO, AUXHFRCO, or
USHFRCO
23 MHz
Using HFXO TBD MHz
Clock low time tWL Using HFRCO, AUXHFRCO, or
USHFRCO
19.7 ns
Using HFXO TBD ns
Clock high time tWH Using HFRCO, AUXHFRCO, or
USHFRCO
19.7 ns
Using HFXO TBD ns
Clock rise time tR1.69 3.23 ns
Clock fall time tF1.42 2.79 ns
Input setup time, CMD,
DAT[0:3] valid to SD_CLK
tISU 6 ns
Input hold time, SD_CLK to
CMD, DAT[0:3] change
tIH 0 ns
Output delay time, SD_CLK
to CMD, DAT[0:3] valid
tODLY 0 14 ns
Output hold time, SD_CLK to
CMD, DAT[0:3] change
tOH 5 ns
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 87
Not Valid Valid Not Valid
SD_CLK
CMD,
DAT[0:3]
tWL tWH
tISU tIH
Input Timing
Not Valid Valid Not Valid
SD_CLK
CMD,
DAT[0:3]
tODLY (max) tOH (min)
Output Timing
Figure 4.13. SDIO DS Mode Timing
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 88
SDIO HS Mode Timing
Timing is specified for route location 0 at 3.0 V IOVDD with voltage scaling disabled. Slew rate for SD_CLK set to 7, all other GPIO set
to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 0. Loading between 5 and 10 pF on all pins or be-
tween 10 and 20 pF on all pins.
Table 4.47. SDIO HS Mode Timing (Location 0)
Parameter Symbol Test Condition Min Typ Max Unit
Clock frequency during data
transfer
FSD_CLK Using HFRCO, AUXHFRCO, or
USHFRCO
45 MHz
Using HFXO TBD MHz
Clock low time tWL Using HFRCO, AUXHFRCO, or
USHFRCO
10.0 ns
Using HFXO TBD ns
Clock high time tWH Using HFRCO, AUXHFRCO, or
USHFRCO
10.0 ns
Using HFXO TBD ns
Clock rise time tR1.69 3.23 ns
Clock fall time tF1.42 2.79 ns
Input setup time, CMD,
DAT[0:3] valid to SD_CLK
tISU 6 ns
Input hold time, SD_CLK to
CMD, DAT[0:3] change
tIH 2.5 ns
Output delay time, SD_CLK
to CMD, DAT[0:3] valid
tODLY 0 13 ns
Output hold time, SD_CLK to
CMD, DAT[0:3] change
tOH 2 ns
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 89
Not Valid Valid Not Valid
SD_CLK
CMD,
DAT[0:7]
Input Timing
Not Valid Valid Not Valid
SD_CLK
CMD,
DAT[0:7]
Output Timing
tWL tWH
tISU tIH
tODLY (max) tOH (min)
Figure 4.14. SDIO HS Mode Timing
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 90
SDIO SDR Mode Timing
Timing is specified for route location 0 at 1.8 V IOVDD with voltage scaling disabled. Slew rate for SD_CLK set to 7, all other GPIO set
to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 0. Loading between 5 and 10 pF on all pins or be-
tween 10 and 40 pF on all pins.
Table 4.48. SDIO SDR Mode Timing (Location 0)
Parameter Symbol Test Condition Min Typ Max Unit
Clock frequency during data
transfer
FSD_CLK Using HFRCO, AUXHFRCO, or
USHFRCO
20 MHz
Using HFXO TBD MHz
Clock low time tWL Using HFRCO, AUXHFRCO, or
USHFRCO
22.6 ns
Using HFXO TBD ns
Clock high time tWH Using HFRCO, AUXHFRCO, or
USHFRCO
22.6 ns
Using HFXO TBD ns
Clock rise time tR0.99 4.68 ns
Clock fall time tF0.90 3.64 ns
Input setup time, CMD,
DAT[0:3] valid to SD_CLK
tISU 8 ns
Input hold time, SD_CLK to
CMD, DAT[0:3] change
tIH 1.5 ns
Output delay time, SD_CLK
to CMD, DAT[0:3] valid
tODLY 0 35 ns
Output hold time, SD_CLK to
CMD, DAT[0:3] change
tOH 0.8 ns
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 91
Not Valid Valid Not Valid
SD_CLK
CMD,
DAT[0:7]
Input Timing
Not Valid Valid Not Valid
SD_CLK
CMD,
DAT[0:7]
Output Timing
tWL tWH
tISU tIH
tODLY (max) tOH (min)
Figure 4.15. SDIO SDR Mode Timing
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 92
SDIO DDR Mode Timing
Timing is specified for route location 0 at 1.8 V IOVDD with voltage scaling disabled. Slew rate for SD_CLK set to 6, all other GPIO set
to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 1. Loading between 5 and 10 pF on all pins or be-
tween 10 and 30 pF on all pins.
Table 4.49. SDIO DS Mode Timing (Location 0)
Parameter Symbol Test Condition Min Typ Max Unit
Clock frequency during data
transfer
FSD_CLK Using HFRCO, AUXHFRCO, or
USHFRCO
20 MHz
Using HFXO TBD MHz
Clock low time tWL Using HFRCO, AUXHFRCO, or
USHFRCO
22.6 ns
Using HFXO TBD ns
Clock high time tWH Using HFRCO, AUXHFRCO, or
USHFRCO
22.6 ns
Using HFXO TBD ns
Clock rise time tR1.69 6.52 ns
Clock fall time tF1.42 4.96 ns
Input setup time, CMD valid
to SD_CLK
tISU 6 ns
Input hold time, SD_CLK to
CMD change
tIH 1.8 ns
Output delay time, SD_CLK
to CMD valid
tODLY 0 16 ns
Output hold time, SD_CLK to
CMD change
tOH 0.8 ns
Input setup time, DAT[0:3]
valid to SD_CLK
tISU2X 6 ns
Input hold time, SD_CLK to
DAT[0:3] change
tIH2X 1.5 ns
Output delay time, SD_CLK
to DAT[0:3] valid
tODLY2X 0 16 ns
Output hold time, SD_CLK to
DAT[0:3] change
tOH2X 0.8 ns
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 93
xxxx
SD_CLK
DAT[0:3]
tWH tWL
tISU2X tIH2X
Input Timing
Output Timing
Valid xxxx xxxx xxxx xxxx
SD_CLK
DAT[0:3]
tODLY2X (max)
tODLY2X (min)
Not Valid Valid Not Valid
CMD
tISU tIH
Not Valid Valid Not Valid
CMD
tODLY (max) tOH (min)
tISU2X tIH2X
Valid Valid Valid
tWH tWL
tODLY2X (max)
tODLY2X (min)
xxxx Valid xxxx xxxx xxxx xxxxValid Valid Valid
Figure 4.16. SDIO DDR Mode Timing
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 94
SDIO MMC SDR Mode Timing at 1.8 V
Timing is specified for route location 0 at 1.8 V IOVDD with voltage scaling disabled. Slew rate for SD_CLK set to 7, all other GPIO set
to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 1. Loading between 5 and 10 pF on all pins or be-
tween 10 and 20 pF on all pins.
Table 4.50. SDIO MMC SDR Mode Timing (Location 0, 1.8V I/O)
Parameter Symbol Test Condition Min Typ Max Unit
Clock frequency during data
transfer
FSD_CLK Using HFRCO, AUXHFRCO, or
USHFRCO
25 MHz
Using HFXO TBD MHz
Clock low time tWL Using HFRCO, AUXHFRCO, or
USHFRCO
18.1 ns
Using HFXO TBD ns
Clock high time tWH Using HFRCO, AUXHFRCO, or
USHFRCO
18.1 ns
Using HFXO TBD ns
Clock rise time tR1.96 8.27 ns
Clock fall time tF1.67 6.90 ns
Input setup time, CMD,
DAT[0:7] valid to SD_CLK
tISU 5.3 ns
Input hold time, SD_CLK to
CMD, DAT[0:7] change
tIH 2.5 ns
Output delay time, SD_CLK
to CMD, DAT[0:7] valid
tODLY 0 16 ns
Output hold time, SD_CLK to
CMD, DAT[0:7] change
tOH 3 ns
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 95
Not Valid Valid Not Valid
SD_CLK
CMD,
DAT[0:7]
Input Timing
Not Valid Valid Not Valid
SD_CLK
CMD,
DAT[0:7]
Output Timing
tWL tWH
tISU tIH
tODLY (max) tOH (min)
Figure 4.17. SDIO MMC SDR Mode Timing
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 96
SDIO MMC SDR Mode Timing at 3.0 V
Timing is specified for route location 0 at 3.0 V IOVDD with voltage scaling disabled. Slew rate for SD_CLK set to 7, all other GPIO set
to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 1. Loading between 5 and 10 pF on all pins or be-
tween 10 and 20 pF on all pins.
Table 4.51. SDIO MMC SDR Mode Timing (Location 0, 3V I/O)
Parameter Symbol Test Condition Min Typ Max Unit
Clock frequency during data
transfer
FSD_CLK Using HFRCO, AUXHFRCO, or
USHFRCO
48 MHz
Using HFXO TBD MHz
Clock low time tWL Using HFRCO, AUXHFRCO, or
USHFRCO
9.4 ns
Using HFXO TBD ns
Clock high time tWH Using HFRCO, AUXHFRCO, or
USHFRCO
9.4 ns
Using HFXO TBD ns
Clock rise time tR1.96 3.87 ns
Clock fall time tF1.67 3.31 ns
Input setup time, CMD,
DAT[0:7] valid to SD_CLK
tISU 5.3 ns
Input hold time, SD_CLK to
CMD, DAT[0:7] change
tIH 2.5 ns
Output delay time, SD_CLK
to CMD, DAT[0:7] valid
tODLY 0 16 ns
Output hold time, SD_CLK to
CMD, DAT[0:7] change
tOH 3 ns
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 97
Not Valid Valid Not Valid
SD_CLK
CMD,
DAT[0:7]
Input Timing
Not Valid Valid Not Valid
SD_CLK
CMD,
DAT[0:7]
Output Timing
tWL tWH
tISU tIH
tODLY (max) tOH (min)
Figure 4.18. SDIO MMC SDR Mode Timing
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 98
SDIO MMC DDR Mode Timing at 1.8 V
Timing is specified for route location 0 at 1.8 V IOVDD with voltage scaling disabled. Slew rate for SD_CLK set to 7, all other GPIO set
to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 1. Loading between 5 and 10 pF on all pins or be-
tween 10 and 25 pF on all pins.
Table 4.52. SDIO MMC DDR Mode Timing (Location 0, 1.8V I/O)
Parameter Symbol Test Condition Min Typ Max Unit
Clock frequency during data
transfer
FSD_CLK Using HFRCO, AUXHFRCO, or
USHFRCO
18 MHz
Using HFXO TBD MHz
Clock low time tWL Using HFRCO, AUXHFRCO, or
USHFRCO
25.1 ns
Using HFXO TBD ns
Clock high time tWH Using HFRCO, AUXHFRCO, or
USHFRCO
25.1 ns
Using HFXO TBD ns
Clock rise time tR1.13 5.21 ns
Clock fall time tF1.01 4.10 ns
Input setup time, CMD valid
to SD_CLK
tISU 5.3 ns
Input hold time, SD_CLK to
CMD change
tIH 2.5 ns
Output delay time, SD_CLK
to CMD valid
tODLY 0 16 ns
Output hold time, SD_CLK to
CMD change
tOH 3 ns
Input setup time, DAT[0:7]
valid to SD_CLK
tISU2X 5.3 ns
Input hold time, SD_CLK to
DAT[0:7] change
tIH2X 2.5 ns
Output delay time, SD_CLK
to DAT[0:7] valid
tODLY2X 0 16 ns
Output hold time, SD_CLK to
DAT[0:7] change
tOH2X 3 ns
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 99
xxxx
SD_CLK
DAT[0:7]
tWH tWL
tISU2X tIH2X
Input Timing
Output Timing
Valid xxxx xxxx xxxx xxxx
SD_CLK
DAT[0:7]
tODLY2X (max)
tODLY2X (min)
Not Valid Valid Not Valid
CMD
tISU tIH
Not Valid Valid Not Valid
CMD
tODLY (max) tOH (min)
tISU2X tIH2X
Valid Valid Valid
tWH tWL
tODLY2X (max)
tODLY2X (min)
xxxx Valid xxxx xxxx xxxx xxxxValid Valid Valid
Figure 4.19. SDIO MMC DDR Mode Timing
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 100
SDIO MMC DDR Mode Timing at 3.0 V
Timing is specified for route location 0 at 3.0 V IOVDD with voltage scaling disabled. Slew rate for SD_CLK set to 7, all other GPIO set
to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 1. Loading between 5 and 10 pF on all pins or be-
tween 10 and 25 pF on all pins.
Table 4.53. SDIO MMC DDR Mode Timing (Location 0, 3V I/O)
Parameter Symbol Test Condition Min Typ Max Unit
Clock frequency during data
transfer
FSD_CLK Using HFRCO, AUXHFRCO, or
USHFRCO
20 MHz
Using HFXO TBD MHz
Clock low time tWL Using HFRCO, AUXHFRCO, or
USHFRCO
22.6 ns
Using HFXO TBD ns
Clock high time tWH Using HFRCO, AUXHFRCO, or
USHFRCO
22.6 ns
Using HFXO TBD ns
Clock rise time tR1.13 2.37 ns
Clock fall time tF1.01 2.02 ns
Input setup time, CMD valid
to SD_CLK
tISU 5.3 ns
Input hold time, SD_CLK to
CMD change
tIH 2.5 ns
Output delay time, SD_CLK
to CMD valid
tODLY 0 16 ns
Output hold time, SD_CLK to
CMD change
tOH 3 ns
Input setup time, DAT[0:7]
valid to SD_CLK
tISU2X 5.3 ns
Input hold time, SD_CLK to
DAT[0:7] change
tIH2X 2.5 ns
Output delay time, SD_CLK
to DAT[0:7] valid
tODLY2X 0 16 ns
Output hold time, SD_CLK to
DAT[0:7] change
tOH2X 3 ns
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 101
xxxx
SD_CLK
DAT[0:7]
tWH tWL
tISU2X tIH2X
Input Timing
Output Timing
Valid xxxx xxxx xxxx xxxx
SD_CLK
DAT[0:7]
tODLY2X (max)
tODLY2X (min)
Not Valid Valid Not Valid
CMD
tISU tIH
Not Valid Valid Not Valid
CMD
tODLY (max) tOH (min)
tISU2X tIH2X
Valid Valid Valid
tWH tWL
tODLY2X (max)
tODLY2X (min)
xxxx Valid xxxx xxxx xxxx xxxxValid Valid Valid
Figure 4.20. SDIO MMC DDR Mode Timing
4.1.28 Quad SPI (QSPI)
4.1.28.1 QSPI SDR Mode
QSPI SDR Mode Timing (Location 0)
Timing is specified with voltage scaling disabled, PHY-mode, route location 0 only, TX DLL = 23, RX DLL = 48, 20-25 pF loading per
GPIO, and slew rate for all GPIO set to 6, DRIVESTRENGTH = STRONG.
Table 4.54. QSPI SDR Mode Timing (Location 0)
Parameter Symbol Test Condition Min Typ Max Unit
Full SCLK period T (1/FSCLK) *
0.95
ns
Output valid tOV T/2 - 2.4 ns
Output hold tOH T/2 - 32.9 ns
Input setup tSU 36.2 - T/2 ns
Input hold tHT/2 - 3.3 ns
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 102
QSPI SDR Mode Timing (Locations 1, 2)
Timing is specified with voltage scaling disabled, PHY-mode, route locations other than 0, TX DLL = 34, RX DLL = 59, 20-25 pF loading
per GPIO, and slew rate for all GPIO set to 6, DRIVESTRENGTH = STRONG.
Table 4.55. QSPI SDR Mode Timing (Locations 1, 2)
Parameter Symbol Test Condition Min Typ Max Unit
Full SCLK period T (1/FSCLK) *
0.95
ns
Output valid tOV T/2 - 2.1 ns
Output hold tOH T/2 - 42.3 ns
Input setup tSU 48.2 - T/2 ns
Input hold tHT/2 - 5.1 ns
SCLK
DQx
tOH
tOV
DQx Output Timing
tH
tSU
DQx Input Timing
SCLK
DQx
Figure 4.21. QSPI SDR Timing Diagrams
QSPI SDR Flash Timing Example
This example uses timing values for location 0 (SDR mode) to demonstrate the calculation of allowable flash timing using the QSPI in
SDR mode.
Using a configured SCLK frequency (FSCLK) of 19 MHz:
The resulting minimum period, T(min) = (1/FSCLK) * 0.95 = 50.0 ns.
Flash will see a minimum setup time of T/2 – tOV = T/2 – (T/2 – 2.4) = 2.4 ns.
Flash will see a minimum hold time of T/2 + tOH = T/2 + (T/2 – 32.9) = T – 32.9 = 50.0 – 32.9 = 17.1 ns.
Flash can have a maximum output valid time of T/2 – tSU = T/2 – (36.2 – T/2) = T – 36.2 = 50.0 – 36.2 = 13.8 ns.
Flash can have a minimum output hold time of tH – T/2 = (T/2 – 3.3) – T/2 = - 3.3 ns.
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 103
4.1.28.2 QSPI DDR Mode
QSPI DDR Mode Timing (Location 0)
Timing is specified with voltage scaling disabled, PHY-mode, route location 0 only, TX DLL = 35, RX DLL = 70, 20-25 pF loading per
GPIO, and slew rate for all GPIO set to 6, DRIVESTRENGTH = STRONG.
Table 4.56. QSPI DDR Mode Timing (Location 0)
Parameter Symbol Test Condition Min Typ Max Unit
Half SCLK period T/2 HFXO (1/FSCLK) *
0.4 - 0.4
ns
HFRCO, AUXHFRCO, USHFRCO (1/FSCLK) *
0.44
ns
Output valid tOV T/2 - 5.0 ns
Output hold tOH T/2 - 39.4 ns
Input setup tSU 33.1 ns
Input hold tH-0.9 ns
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 104
QSPI DDR Mode Timing (Locations 1, 2)
Timing is specified with voltage scaling disabled, PHY-mode, route locations other than 0, TX DLL = 53, RX DLL = 88, 20-25 pF loading
per GPIO, and slew rate for all GPIO set to 6, DRIVESTRENGTH = STRONG.
Table 4.57. QSPI DDR Mode Timing (Locations 1, 2)
Parameter Symbol Test Condition Min Typ Max Unit
Half SCLK period T/2 HFXO (1/FSCLK) *
0.4 - 0.4
ns
HFRCO, AUXHFRCO, USHFRCO (1/FSCLK) *
0.44
ns
Output valid tOV T/2 - 6.6 ns
Output hold tOH T/2 - 52.2 ns
Input setup tSU 44.8 ns
Input hold tH-2.4 ns
SCLK
DQx
tOH
tOV
DQx Output Timing
tH
tSU
DQx Input Timing
SCLK
DQx
tOH
tOV
tH
tSU
Figure 4.22. QSPI DDR Timing Diagrams
QSPI DDR Flash Timing Example
This example uses timing values for location 0 (DDR mode) to demonstrate the calculation of allowable flash timing using the QSPI in
DDR mode.
Using a configured SCLK frequency (FSCLK) of 8 MHz from the HFXO clock source:
The resulting minimum half-period, T/2(min) = (1/FSCLK) * 0.4 - 0.4 = 49.6 ns.
Flash will see a minimum setup time of T/2 – tOV = T/2 – (T/2 – 5.0) = 5.0 ns.
Flash will see a minimum hold time of tOH = T/2 – 39.4 = 49.6 – 39.4 = 10.2 ns.
Flash can have a maximum output valid time of T/2 – tSU = T/2 – 33.1 = 49.6 – 33.1 = 16.5 ns.
Flash can have a minimum output hold time of tH = - 0.9 ns.
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 105
4.2 Typical Performance Curves
Typical performance curves indicate typical characterized performance under the stated conditions.
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 106
4.2.1 Supply Current
Figure 4.23. EM0 Full Speed Active Mode Typical Supply Current vs. Temperature
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 107
Figure 4.24. EM0 Active Mode Typical Supply Current vs. Temperature
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 108
Figure 4.25. EM1 Sleep Mode Typical Supply Current vs. Temperature
Typical supply current for EM2, EM3 and EM4H using standard software libraries from Silicon Laboratories.
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 109
Figure 4.26. EM2, EM3, EM4H and EM4S Typical Supply Current vs. Temperature
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 110
Figure 4.27. EM0 and EM1 Mode Typical Supply Current vs. Supply
Typical supply current for EM2, EM3 and EM4H using standard software libraries from Silicon Laboratories.
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 111
Figure 4.28. EM2, EM3, EM4H and EM4S Typical Supply Current vs. Supply
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 112
4.2.2 DC-DC Converter
Default test conditions: CCM mode, LDCDC = 4.7 μH, CDCDC = 4.7 μF, VDCDC_I = 3.3 V, VDCDC_O = 1.8 V, FDCDC_LN = 7 MHz
Figure 4.29. DC-DC Converter Typical Performance Characteristics
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 113
100μs/div 10μs/div
2V/div
offset:1.8V
20mV/div
offset:1.8V
100mA
1mA
ILOAD
60mV/div
offset:1.8V
VSW
DVDD
DVDD
Load Step Response in LN (CCM) mode
(Heavy Drive)
LN (CCM) and LP mode transition (load: 5mA)
Figure 4.30. DC-DC Converter Transition Waveforms
EFM32GG11 Family Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 114
5. Pin Definitions
5.1 EFM32GG11B8xx in BGA192 Device Pinout
Figure 5.1. EFM32GG11B8xx in BGA192 Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the sup-
ported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.
Table 5.1. EFM32GG11B8xx in BGA192 Device Pinout
Pin Name Pin(s) Description Pin Name Pin(s) Description
PA15 A1 GPIO PE15 A2 GPIO
PE14 A3 GPIO PE13 A4 GPIO
PE12 A5 GPIO PE11 A6 GPIO
PE10 A7 GPIO PE9 A8 GPIO
PE8 A9 GPIO PI9 A10 GPIO (5V)
PI6 A11 GPIO (5V) PF14 A12 GPIO (5V)
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 115
Pin Name Pin(s) Description Pin Name Pin(s) Description
VBUS A13 USB VBUS signal and auxiliary input to
5 V regulator. PF11 A14 GPIO (5V)
PF10 A15 GPIO (5V) PF0 A16 GPIO (5V)
PA0 B1 GPIO PD11 B2 GPIO
PD10 B3 GPIO PD9 B4 GPIO
PF9 B5 GPIO PF8 B6 GPIO
PF7 B7 GPIO PF6 B8 GPIO
PI11 B9 GPIO (5V) PI8 B10 GPIO (5V)
PF5 B11 GPIO PF13 B12 GPIO (5V)
PF3 B13 GPIO PF2 B14 GPIO
PF1 B15 GPIO (5V) VREGO B16
Decoupling for 5 V regulator and regu-
lator output. Power for USB PHY in
USB-enabled OPNs
PA1 C1 GPIO PD12 C2 GPIO
PD14 C3 GPIO (5V) PD13 C4 GPIO (5V)
PI15 C5 GPIO (5V) PI14 C6 GPIO (5V)
PI13 C7 GPIO (5V) PI12 C8 GPIO (5V)
PI10 C9 GPIO (5V) PI7 C10 GPIO (5V)
PF15 C11 GPIO (5V) PF12 C12 GPIO
PF4 C13 GPIO PC15 C14 GPIO (5V)
PC14 C15 GPIO (5V) VREGI C16 Input to 5 V regulator.
PA2 D1 GPIO PG0 D2 GPIO (5V)
PD15 D3 GPIO (5V) PC13 D14 GPIO (5V)
PC12 D15 GPIO (5V) PC11 D16 GPIO (5V)
PA3 E1 GPIO PG2 E2 GPIO (5V)
PG1 E3 GPIO (5V) PC10 E14 GPIO (5V)
PC9 E15 GPIO (5V) PC8 E16 GPIO (5V)
PA4 F1 GPIO PG4 F2 GPIO (5V)
PG3 F3 GPIO (5V) IOVDD2 F6
G6 Digital IO power supply 2.
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 116
Pin Name Pin(s) Description Pin Name Pin(s) Description
IOVDD1 F7
G7 Digital IO power supply 1. VSS
F8
G8
G9
H6
H7
H8
H9
H10
H11
J6
J7
J8
J9
J10
J11
K8
K9
L8
L9
Ground
NC F9 No Connect. IOVDD0
F10
F11
G10
G11
K6
K7
K10
K11
L6
L7
L10
L11
Digital IO power supply 0.
PI5 F14 GPIO (5V) PI4 F15 GPIO (5V)
PI3 F16 GPIO (5V) PA5 G1 GPIO
PG6 G2 GPIO (5V) PG5 G3 GPIO (5V)
PI2 G14 GPIO (5V) PI1 G15 GPIO (5V)
PI0 G16 GPIO (5V) PA6 H1 GPIO
PG8 H2 GPIO (5V) PG7 H3 GPIO (5V)
PE5 H14 GPIO PE6 H15 GPIO
PE7 H16 GPIO PG11 J1 GPIO (5V)
PG10 J2 GPIO (5V) PG9 J3 GPIO (5V)
PE3 J14 GPIO PE4 J15 GPIO
DECOUPLE J16
Decouple output for on-chip voltage
regulator. An external decoupling ca-
pacitor is required at this pin.
PG14 K1 GPIO
PG13 K2 GPIO PG12 K3 GPIO
PE1 K14 GPIO (5V) PE2 K15 GPIO
DVDD K16 Digital power supply. PG15 L1 GPIO (5V)
PB15 L2 GPIO (5V) PB0 L3 GPIO
PE0 L14 GPIO (5V) PC7 L15 GPIO
VREGVDD L16 Voltage regulator VDD input PB1 M1 GPIO
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 117
Pin Name Pin(s) Description Pin Name Pin(s) Description
PB2 M2 GPIO PB3 M3 GPIO
PC6 M14 GPIO VREGVSS M15
N16 Voltage regulator VSS
VREGSW M16 DCDC regulator switching node PB4 N1 GPIO
PB5 N2 GPIO PB6 N3 GPIO
PD5 N14 GPIO PD4 N15 GPIO
PC0 P1 GPIO (5V) PC1 P2 GPIO (5V)
PC2 P3 GPIO (5V) PA8 P4 GPIO
PA11 P5 GPIO PA13 P6 GPIO (5V)
PB9 P7 GPIO (5V) PB12 P8 GPIO
PH2 P9 GPIO (5V) PH5 P10 GPIO
PH8 P11 GPIO (5V) PH11 P12 GPIO (5V)
PH13 P13 GPIO (5V) PD0 P14 GPIO (5V)
PD3 P15 GPIO PD8 P16 GPIO
PB7 R1 GPIO PC3 R2 GPIO (5V)
PC5 R3 GPIO PA9 R4 GPIO
BODEN R5
Brown-Out Detector Enable. This pin
may be left disconnected or tied to
AVDD.
RESETn R6
Reset input, active low. To apply an ex-
ternal reset source to this pin, it is re-
quired to only drive this pin low during
reset, and let the internal pull-up ensure
that reset is released.
PB10 R7 GPIO (5V) PH0 R8 GPIO (5V)
PH3 R9 GPIO (5V) PH6 R10 GPIO
PH9 R11 GPIO (5V) PH12 R12 GPIO (5V)
PH14 R13 GPIO (5V) PH15 R14 GPIO (5V)
PD2 R15 GPIO (5V) PD7 R16 GPIO
PB8 T1 GPIO PC4 T2 GPIO
PA7 T3 GPIO PA10 T4 GPIO
PA12 T5 GPIO (5V) PA14 T6 GPIO
PB11 T7 GPIO PH1 T8 GPIO (5V)
PH4 T9 GPIO PH7 T10 GPIO (5V)
PH10 T11 GPIO (5V) PB13 T12 GPIO
PB14 T13 GPIO AVDD T14 Analog power supply.
PD1 T15 GPIO PD6 T16 GPIO
Note:
1. GPIO with 5V tolerance are indicated by (5V).
2. The pins PD13, PD14, and PD15 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hard-
ware compatibility, do not use these pins with 5V domains.
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 118
5.2 EFM32GG11B8xx in BGA152 Device Pinout
Figure 5.2. EFM32GG11B8xx in BGA152 Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the sup-
ported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.
Table 5.2. EFM32GG11B8xx in BGA152 Device Pinout
Pin Name Pin(s) Description Pin Name Pin(s) Description
PE15 A1 GPIO PE13 A2 GPIO
PE11 A3 GPIO PE9 A4 GPIO
PD12 A5 GPIO PD10 A6 GPIO
PF9 A7 GPIO PF7 A8 GPIO
PF13 A9 GPIO (5V) VBUS A10 USB VBUS signal and auxiliary input to
5 V regulator.
PF1 A11 GPIO (5V) PC15 A12 GPIO (5V)
PF11 A13 GPIO (5V) PF10 A14 GPIO (5V)
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 119
Pin Name Pin(s) Description Pin Name Pin(s) Description
PA15 B1 GPIO PE14 B2 GPIO
PE12 B3 GPIO PE8 B4 GPIO
PD11 B5 GPIO PD9 B6 GPIO
PF8 B7 GPIO PF6 B8 GPIO
PF14 B9 GPIO (5V) PF12 B10 GPIO
PF2 B11 GPIO PF0 B12 GPIO (5V)
PC14 B13 GPIO (5V) VREGO B14
Decoupling for 5 V regulator and regu-
lator output. Power for USB PHY in
USB-enabled OPNs
PA1 C1 GPIO PA0 C2 GPIO
PD13 C3 GPIO (5V) PE10 C4 GPIO
PI8 C5 GPIO (5V) PI7 C6 GPIO (5V)
PI6 C7 GPIO (5V) PF5 C8 GPIO
PF15 C9 GPIO (5V) PF4 C10 GPIO
PF3 C11 GPIO PC13 C12 GPIO (5V)
PC12 C13 GPIO (5V) VREGI C14 Input to 5 V regulator.
PA3 D1 GPIO PA2 D2 GPIO
PD14 D3 GPIO (5V) PC11 D12 GPIO (5V)
PC10 D13 GPIO (5V) PC9 D14 GPIO (5V)
PA5 E1 GPIO PA4 E2 GPIO
PD15 E3 GPIO (5V) IOVDD1 E6 Digital IO power supply 1.
VSS
E7
E8
G5
G7
G8
G10
H5
H7
H8
H10
K7
K8
Ground IOVDD0
E9
F10
J5
J10
K6
K9
Digital IO power supply 0.
PC8 E12 GPIO (5V) PI5 E13 GPIO (5V)
PI4 E14 GPIO (5V) PG0 F1 GPIO (5V)
PA6 F2 GPIO PG1 F3 GPIO (5V)
IOVDD2 F5 Digital IO power supply 2. PI3 F12 GPIO (5V)
PI2 F13 GPIO (5V) PI1 F14 GPIO (5V)
PG3 G1 GPIO (5V) PG4 G2 GPIO (5V)
PG2 G3 GPIO (5V) PE7 G12 GPIO
PI0 G13 GPIO (5V) DECOUPLE G14
Decouple output for on-chip voltage
regulator. An external decoupling ca-
pacitor is required at this pin.
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 120
Pin Name Pin(s) Description Pin Name Pin(s) Description
PG6 H1 GPIO (5V) PG7 H2 GPIO (5V)
PG5 H3 GPIO (5V) PE6 H12 GPIO
PE5 H13 GPIO DVDD H14 Digital power supply.
PG9 J1 GPIO (5V) PG10 J2 GPIO (5V)
PG8 J3 GPIO (5V) PE3 J12 GPIO
PE4 J13 GPIO VREGVDD J14 Voltage regulator VDD input
PG12 K1 GPIO PG13 K2 GPIO
PG11 K3 GPIO (5V) PE2 K12 GPIO
PE1 K13 GPIO (5V) VREGSW K14 DCDC regulator switching node
PG15 L1 GPIO (5V) PB15 L2 GPIO (5V)
PG14 L3 GPIO PC7 L12 GPIO
PE0 L13 GPIO (5V) VREGVSS L14 Voltage regulator VSS
PB0 M1 GPIO PB1 M2 GPIO
PB4 M3 GPIO PC0 M4 GPIO (5V)
PC3 M5 GPIO (5V) PA9 M6 GPIO
BODEN M7
Brown-Out Detector Enable. This pin
may be left disconnected or tied to
AVDD.
PA12 M8 GPIO (5V)
RESETn M9
Reset input, active low. To apply an ex-
ternal reset source to this pin, it is re-
quired to only drive this pin low during
reset, and let the internal pull-up ensure
that reset is released.
PB10 M10 GPIO (5V)
PD1 M11 GPIO PC6 M12 GPIO
PD5 M13 GPIO PD8 M14 GPIO
PB7 N1 GPIO PB2 N2 GPIO
PB5 N3 GPIO PC2 N4 GPIO (5V)
PC5 N5 GPIO PA8 N6 GPIO
PA11 N7 GPIO PA14 N8 GPIO
PB11 N9 GPIO PB12 N10 GPIO
PD0 N11 GPIO (5V) PD2 N12 GPIO (5V)
PD4 N13 GPIO PD7 N14 GPIO
PB8 P1 GPIO PB3 P2 GPIO
PB6 P3 GPIO PC1 P4 GPIO (5V)
PC4 P5 GPIO PA7 P6 GPIO
PA10 P7 GPIO PA13 P8 GPIO (5V)
PB9 P9 GPIO (5V) PB13 P10 GPIO
PB14 P11 GPIO AVDD P12 Analog power supply.
PD3 P13 GPIO PD6 P14 GPIO
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 121
Pin Name Pin(s) Description Pin Name Pin(s) Description
Note:
1. GPIO with 5V tolerance are indicated by (5V).
2. The pins PD13, PD14, and PD15 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hard-
ware compatibility, do not use these pins with 5V domains.
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 122
5.3 EFM32GG11B8xx in BGA120 Device Pinout
Figure 5.3. EFM32GG11B8xx in BGA120 Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the sup-
ported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.
Table 5.3. EFM32GG11B8xx in BGA120 Device Pinout
Pin Name Pin(s) Description Pin Name Pin(s) Description
PE15 A1 GPIO PE14 A2 GPIO
PE12 A3 GPIO PE9 A4 GPIO
PD11 A5 GPIO PD9 A6 GPIO
PF7 A7 GPIO PF5 A8 GPIO
PF14 A9 GPIO (5V) PF12 A10 GPIO
VREGI A11 Input to 5 V regulator. VREGO A12
Decoupling for 5 V regulator and regu-
lator output. Power for USB PHY in
USB-enabled OPNs
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 123
Pin Name Pin(s) Description Pin Name Pin(s) Description
PF11 A13 GPIO (5V) PA15 B1 GPIO
PE13 B2 GPIO PE11 B3 GPIO
PE8 B4 GPIO PD12 B5 GPIO
PD10 B6 GPIO PF8 B7 GPIO
PF6 B8 GPIO PF13 B9 GPIO (5V)
PF4 B10 GPIO PF3 B11 GPIO
VBUS B12 USB VBUS signal and auxiliary input to
5 V regulator. PF10 B13 GPIO (5V)
PA1 C1 GPIO PA0 C2 GPIO
PE10 C3 GPIO PD13 C4 GPIO (5V)
VSS
C5
C8
H3
J3
K11
L12
L15
Ground IOVDD1 C6 Digital IO power supply 1.
PF9 C7 GPIO IOVDD0
C9
J11
K3
L11
L16
Digital IO power supply 0.
PF2 C10 GPIO PF1 C11 GPIO (5V)
PC14 C12 GPIO (5V) PC15 C13 GPIO (5V)
PA3 D1 GPIO PA2 D2 GPIO
PB15 D3 GPIO (5V) PF0 D11 GPIO (5V)
PC12 D12 GPIO (5V) PC13 D13 GPIO (5V)
PA6 E1 GPIO PA5 E2 GPIO
PA4 E3 GPIO PC9 E11 GPIO (5V)
PC10 E12 GPIO (5V) PC11 E13 GPIO (5V)
PB0 F1 GPIO PB1 F2 GPIO
PB2 F3 GPIO PE6 F11 GPIO
PE7 F12 GPIO PC8 F13 GPIO (5V)
PB3 G1 GPIO PB4 G2 GPIO
IOVDD2 G3 Digital IO power supply 2. PE3 G11 GPIO
PE4 G12 GPIO PE5 G13 GPIO
PB5 H1 GPIO PB6 H2 GPIO
DVDD H11 Digital power supply. PE2 H12 GPIO
DECOUPLE H13
Decouple output for on-chip voltage
regulator. An external decoupling ca-
pacitor is required at this pin.
PD14 J1 GPIO (5V)
PD15 J2 GPIO (5V) PE1 J12 GPIO (5V)
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 124
Pin Name Pin(s) Description Pin Name Pin(s) Description
VREGVDD J13 Voltage regulator VDD input PC0 K1 GPIO (5V)
PC1 K2 GPIO (5V) PE0 K12 GPIO (5V)
VREGSW K13 DCDC regulator switching node PC2 L1 GPIO (5V)
PC3 L2 GPIO (5V) PA7 L3 GPIO
PB9 L13 GPIO (5V) PB10 L14 GPIO (5V)
PD1 L17 GPIO PC6 L18 GPIO
PC7 L19 GPIO VREGVSS L20 Voltage regulator VSS
PB7 M1 GPIO PC4 M2 GPIO
PA8 M3 GPIO PA10 M4 GPIO
PA13 M5 GPIO (5V) PA14 M6 GPIO
RESETn M7
Reset input, active low. To apply an ex-
ternal reset source to this pin, it is re-
quired to only drive this pin low during
reset, and let the internal pull-up ensure
that reset is released.
PB12 M8 GPIO
PD0 M9 GPIO (5V) PD2 M10 GPIO (5V)
PD3 M11 GPIO PD4 M12 GPIO
PD8 M13 GPIO PB8 N1 GPIO
PC5 N2 GPIO PA9 N3 GPIO
PA11 N4 GPIO PA12 N5 GPIO (5V)
PB11 N6 GPIO BODEN N7
Brown-Out Detector Enable. This pin
may be left disconnected or tied to
AVDD.
PB13 N8 GPIO PB14 N9 GPIO
AVDD N10 Analog power supply. PD5 N11 GPIO
PD6 N12 GPIO PD7 N13 GPIO
Note:
1. GPIO with 5V tolerance are indicated by (5V).
2. The pins PD13, PD14, and PD15 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hard-
ware compatibility, do not use these pins with 5V domains.
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 125
5.4 EFM32GG11B5xx in BGA120 Device Pinout
Figure 5.4. EFM32GG11B5xx in BGA120 Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the sup-
ported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.
Table 5.4. EFM32GG11B5xx in BGA120 Device Pinout
Pin Name Pin(s) Description Pin Name Pin(s) Description
PE15 A1 GPIO PE14 A2 GPIO
PE12 A3 GPIO PE9 A4 GPIO
PD11 A5 GPIO PD9 A6 GPIO
PF7 A7 GPIO PF5 A8 GPIO
PF14 A9 GPIO (5V) PF12 A10 GPIO
VREGI A11 Input to 5 V regulator. VREGO A12
Decoupling for 5 V regulator and regu-
lator output. Power for USB PHY in
USB-enabled OPNs
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 126
Pin Name Pin(s) Description Pin Name Pin(s) Description
PF11 A13 GPIO (5V) PA15 B1 GPIO
PE13 B2 GPIO PE11 B3 GPIO
PE8 B4 GPIO PD12 B5 GPIO
PD10 B6 GPIO PF8 B7 GPIO
PF6 B8 GPIO PF13 B9 GPIO (5V)
PF4 B10 GPIO PF3 B11 GPIO
NC B12 No Connect. PF10 B13 GPIO (5V)
PA1 C1 GPIO PA0 C2 GPIO
PE10 C3 GPIO PD13 C4 GPIO (5V)
VSS
C5
C8
H3
J3
K11
L12
L15
Ground IOVDD1 C6 Digital IO power supply 1.
PF9 C7 GPIO IOVDD0
C9
J11
K3
L11
L16
Digital IO power supply 0.
PF2 C10 GPIO PF1 C11 GPIO (5V)
PC14 C12 GPIO (5V) PC15 C13 GPIO (5V)
PA3 D1 GPIO PA2 D2 GPIO
PB15 D3 GPIO (5V) PF0 D11 GPIO (5V)
PC12 D12 GPIO (5V) PC13 D13 GPIO (5V)
PA6 E1 GPIO PA5 E2 GPIO
PA4 E3 GPIO PC9 E11 GPIO (5V)
PC10 E12 GPIO (5V) PC11 E13 GPIO (5V)
PB0 F1 GPIO PB1 F2 GPIO
PB2 F3 GPIO PE6 F11 GPIO
PE7 F12 GPIO PC8 F13 GPIO (5V)
PB3 G1 GPIO PB4 G2 GPIO
IOVDD2 G3 Digital IO power supply 2. PE3 G11 GPIO
PE4 G12 GPIO PE5 G13 GPIO
PB5 H1 GPIO PB6 H2 GPIO
DVDD H11 Digital power supply. PE2 H12 GPIO
DECOUPLE H13
Decouple output for on-chip voltage
regulator. An external decoupling ca-
pacitor is required at this pin.
PD14 J1 GPIO (5V)
PD15 J2 GPIO (5V) PE1 J12 GPIO (5V)
VREGVDD J13 Voltage regulator VDD input PC0 K1 GPIO (5V)
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 127
Pin Name Pin(s) Description Pin Name Pin(s) Description
PC1 K2 GPIO (5V) PE0 K12 GPIO (5V)
VREGSW K13 DCDC regulator switching node PC2 L1 GPIO (5V)
PC3 L2 GPIO (5V) PA7 L3 GPIO
PB9 L13 GPIO (5V) PB10 L14 GPIO (5V)
PD1 L17 GPIO PC6 L18 GPIO
PC7 L19 GPIO VREGVSS L20 Voltage regulator VSS
PB7 M1 GPIO PC4 M2 GPIO
PA8 M3 GPIO PA10 M4 GPIO
PA13 M5 GPIO (5V) PA14 M6 GPIO
RESETn M7
Reset input, active low. To apply an ex-
ternal reset source to this pin, it is re-
quired to only drive this pin low during
reset, and let the internal pull-up ensure
that reset is released.
PB12 M8 GPIO
PD0 M9 GPIO (5V) PD2 M10 GPIO (5V)
PD3 M11 GPIO PD4 M12 GPIO
PD8 M13 GPIO PB8 N1 GPIO
PC5 N2 GPIO PA9 N3 GPIO
PA11 N4 GPIO PA12 N5 GPIO (5V)
PB11 N6 GPIO BODEN N7
Brown-Out Detector Enable. This pin
may be left disconnected or tied to
AVDD.
PB13 N8 GPIO PB14 N9 GPIO
AVDD N10 Analog power supply. PD5 N11 GPIO
PD6 N12 GPIO PD7 N13 GPIO
Note:
1. GPIO with 5V tolerance are indicated by (5V).
2. The pins PD13, PD14, and PD15 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hard-
ware compatibility, do not use these pins with 5V domains.
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 128
5.5 EFM32GG11B4xx in BGA120 Device Pinout
Figure 5.5. EFM32GG11B4xx in BGA120 Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the sup-
ported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.
Table 5.5. EFM32GG11B4xx in BGA120 Device Pinout
Pin Name Pin(s) Description Pin Name Pin(s) Description
PE15 A1 GPIO PE14 A2 GPIO
PE12 A3 GPIO PE9 A4 GPIO
PD11 A5 GPIO PD9 A6 GPIO
PF7 A7 GPIO PF5 A8 GPIO
PF4 A9 GPIO PF2 A10 GPIO
VREGI A11 Input to 5 V regulator. VREGO A12
Decoupling for 5 V regulator and regu-
lator output. Power for USB PHY in
USB-enabled OPNs
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 129
Pin Name Pin(s) Description Pin Name Pin(s) Description
PF11 A13 GPIO (5V) PA15 B1 GPIO
PE13 B2 GPIO PE11 B3 GPIO
PE8 B4 GPIO PD12 B5 GPIO
PD10 B6 GPIO PF8 B7 GPIO
PF6 B8 GPIO PF3 B9 GPIO
PF1 B10 GPIO (5V) PF12 B11 GPIO
VBUS B12 USB VBUS signal and auxiliary input to
5 V regulator. PF10 B13 GPIO (5V)
PA1 C1 GPIO PA0 C2 GPIO
PE10 C3 GPIO PD13 C4 GPIO (5V)
VSS
C5
C8
H3
J3
K11
K12
L12
L13
M8
M11
N8
Ground IOVDD1 C6 Digital IO power supply 1.
PF9 C7 GPIO IOVDD0
C9
J11
K3
L11
L14
Digital IO power supply 0.
PF0 C10 GPIO (5V) PE4 C11 GPIO
PC14 C12 GPIO (5V) PC15 C13 GPIO (5V)
PA3 D1 GPIO PA2 D2 GPIO
PB15 D3 GPIO (5V) PE5 D11 GPIO
PC12 D12 GPIO (5V) PC13 D13 GPIO (5V)
PA6 E1 GPIO PA5 E2 GPIO
PA4 E3 GPIO PE6 E11 GPIO
PC10 E12 GPIO (5V) PC11 E13 GPIO (5V)
PB0 F1 GPIO PB1 F2 GPIO
PB2 F3 GPIO PE7 F11 GPIO
PC8 F12 GPIO (5V) PC9 F13 GPIO (5V)
PB3 G1 GPIO PB4 G2 GPIO
IOVDD2 G3 Digital IO power supply 2. PE0 G11 GPIO (5V)
PE1 G12 GPIO (5V) PE3 G13 GPIO
PB5 H1 GPIO PB6 H2 GPIO
DVDD H11 Digital power supply. PE2 H12 GPIO
PC7 H13 GPIO PD14 J1 GPIO (5V)
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 130
Pin Name Pin(s) Description Pin Name Pin(s) Description
PD15 J2 GPIO (5V) PC6 J12 GPIO
DECOUPLE J13
Decouple output for on-chip voltage
regulator. An external decoupling ca-
pacitor is required at this pin.
PC0 K1 GPIO (5V)
PC1 K2 GPIO (5V) PD8 K13 GPIO
PC2 L1 GPIO (5V) PC3 L2 GPIO (5V)
PA7 L3 GPIO PB9 L15 GPIO (5V)
PB10 L16 GPIO (5V) PD0 L17 GPIO (5V)
PD1 L18 GPIO PD4 L19 GPIO
PD7 L20 GPIO PB7 M1 GPIO
PC4 M2 GPIO PA8 M3 GPIO
PA10 M4 GPIO PA13 M5 GPIO (5V)
PA14 M6 GPIO RESETn M7
Reset input, active low. To apply an ex-
ternal reset source to this pin, it is re-
quired to only drive this pin low during
reset, and let the internal pull-up ensure
that reset is released.
AVDD
M9
M10
N11
Analog power supply. PD3 M12 GPIO
PD6 M13 GPIO PB8 N1 GPIO
PC5 N2 GPIO PA9 N3 GPIO
PA11 N4 GPIO PA12 N5 GPIO (5V)
PB11 N6 GPIO PB12 N7 GPIO
PB13 N9 GPIO PB14 N10 GPIO
PD2 N12 GPIO (5V) PD5 N13 GPIO
Note:
1. GPIO with 5V tolerance are indicated by (5V).
2. The pins PD13, PD14, and PD15 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hard-
ware compatibility, do not use these pins with 5V domains.
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 131
5.6 EFM32GG11B4xx in BGA112 Device Pinout
Figure 5.6. EFM32GG11B4xx in BGA112 Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the sup-
ported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.
Table 5.6. EFM32GG11B4xx in BGA112 Device Pinout
Pin Name Pin(s) Description Pin Name Pin(s) Description
PE15 A1 GPIO PE14 A2 GPIO
PE12 A3 GPIO PE9 A4 GPIO
PD10 A5 GPIO PF7 A6 GPIO
PF5 A7 GPIO PF12 A8 GPIO
PE4 A9 GPIO PF10 A10 GPIO (5V)
PF11 A11 GPIO (5V) PA15 B1 GPIO
PE13 B2 GPIO PE11 B3 GPIO
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 132
Pin Name Pin(s) Description Pin Name Pin(s) Description
PE8 B4 GPIO PD11 B5 GPIO
PF8 B6 GPIO PF6 B7 GPIO
VBUS B8 USB VBUS signal and auxiliary input to
5 V regulator. PE5 B9 GPIO
VREGI B10 Input to 5 V regulator. VREGO B11
Decoupling for 5 V regulator and regu-
lator output. Power for USB PHY in
USB-enabled OPNs
PA1 C1 GPIO PA0 C2 GPIO
PE10 C3 GPIO PD13 C4 GPIO (5V)
PD12 C5 GPIO PF9 C6 GPIO
VSS
C7
D4
F9
G3
G9
H6
K4
K7
K10
L7
Ground PF2 C8 GPIO
PE6 C9 GPIO PC10 C10 GPIO (5V)
PC11 C11 GPIO (5V) PA3 D1 GPIO
PA2 D2 GPIO PB15 D3 GPIO (5V)
IOVDD1 D5 Digital IO power supply 1. PD9 D6 GPIO
IOVDD0
D7
G8
H7
L4
Digital IO power supply 0. PF1 D8 GPIO (5V)
PE7 D9 GPIO PC8 D10 GPIO (5V)
PC9 D11 GPIO (5V) PA6 E1 GPIO
PA5 E2 GPIO PA4 E3 GPIO
PB0 E4 GPIO PF0 E8 GPIO (5V)
PE0 E9 GPIO (5V) PE1 E10 GPIO (5V)
PE3 E11 GPIO PB1 F1 GPIO
PB2 F2 GPIO PB3 F3 GPIO
PB4 F4 GPIO DVDD F8 Digital power supply.
PE2 F10 GPIO DECOUPLE F11
Decouple output for on-chip voltage
regulator. An external decoupling ca-
pacitor is required at this pin.
PB5 G1 GPIO PB6 G2 GPIO
IOVDD2 G4 Digital IO power supply 2. PC6 G10 GPIO
PC7 G11 GPIO PC0 H1 GPIO (5V)
PC2 H2 GPIO (5V) PD14 H3 GPIO (5V)
PA7 H4 GPIO PA8 H5 GPIO
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 133
Pin Name Pin(s) Description Pin Name Pin(s) Description
PD8 H8 GPIO PD5 H9 GPIO
PD6 H10 GPIO PD7 H11 GPIO
PC1 J1 GPIO (5V) PC3 J2 GPIO (5V)
PD15 J3 GPIO (5V) PA12 J4 GPIO (5V)
PA9 J5 GPIO PA10 J6 GPIO
PB9 J7 GPIO (5V) PB10 J8 GPIO (5V)
PD2 J9 GPIO (5V) PD3 J10 GPIO
PD4 J11 GPIO PB7 K1 GPIO
PC4 K2 GPIO PA13 K3 GPIO (5V)
PA11 K5 GPIO RESETn K6
Reset input, active low. To apply an ex-
ternal reset source to this pin, it is re-
quired to only drive this pin low during
reset, and let the internal pull-up ensure
that reset is released.
AVDD
K8
K9
L10
Analog power supply. PD1 K11 GPIO
PB8 L1 GPIO PC5 L2 GPIO
PA14 L3 GPIO PB11 L5 GPIO
PB12 L6 GPIO PB13 L8 GPIO
PB14 L9 GPIO PD0 L11 GPIO (5V)
Note:
1. GPIO with 5V tolerance are indicated by (5V).
2. The pins PD13, PD14, and PD15 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hard-
ware compatibility, do not use these pins with 5V domains.
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 134
5.7 EFM32GG11B3xx in BGA112 Device Pinout
Figure 5.7. EFM32GG11B3xx in BGA112 Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the sup-
ported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.
Table 5.7. EFM32GG11B3xx in BGA112 Device Pinout
Pin Name Pin(s) Description Pin Name Pin(s) Description
PE15 A1 GPIO PE14 A2 GPIO
PE12 A3 GPIO PE9 A4 GPIO
PD10 A5 GPIO PF7 A6 GPIO
PF5 A7 GPIO PF4 A8 GPIO
PE4 A9 GPIO PC14 A10 GPIO (5V)
PC15 A11 GPIO (5V) PA15 B1 GPIO
PE13 B2 GPIO PE11 B3 GPIO
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 135
Pin Name Pin(s) Description Pin Name Pin(s) Description
PE8 B4 GPIO PD11 B5 GPIO
PF8 B6 GPIO PF6 B7 GPIO
PF3 B8 GPIO PE5 B9 GPIO
PC12 B10 GPIO (5V) PC13 B11 GPIO (5V)
PA1 C1 GPIO PA0 C2 GPIO
PE10 C3 GPIO PD13 C4 GPIO (5V)
PD12 C5 GPIO PF9 C6 GPIO
VSS
C7
D4
F9
G3
G9
H6
K4
K7
K10
L7
Ground PF2 C8 GPIO
PE6 C9 GPIO PC10 C10 GPIO (5V)
PC11 C11 GPIO (5V) PA3 D1 GPIO
PA2 D2 GPIO PB15 D3 GPIO (5V)
IOVDD1 D5 Digital IO power supply 1. PD9 D6 GPIO
IOVDD0
D7
G8
H7
L4
Digital IO power supply 0. PF1 D8 GPIO (5V)
PE7 D9 GPIO PC8 D10 GPIO (5V)
PC9 D11 GPIO (5V) PA6 E1 GPIO
PA5 E2 GPIO PA4 E3 GPIO
PB0 E4 GPIO PF0 E8 GPIO (5V)
PE0 E9 GPIO (5V) PE1 E10 GPIO (5V)
PE3 E11 GPIO PB1 F1 GPIO
PB2 F2 GPIO PB3 F3 GPIO
PB4 F4 GPIO DVDD F8 Digital power supply.
PE2 F10 GPIO DECOUPLE F11
Decouple output for on-chip voltage
regulator. An external decoupling ca-
pacitor is required at this pin.
PB5 G1 GPIO PB6 G2 GPIO
IOVDD2 G4 Digital IO power supply 2. PC6 G10 GPIO
PC7 G11 GPIO PC0 H1 GPIO (5V)
PC2 H2 GPIO (5V) PD14 H3 GPIO (5V)
PA7 H4 GPIO PA8 H5 GPIO
PD8 H8 GPIO PD5 H9 GPIO
PD6 H10 GPIO PD7 H11 GPIO
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 136
Pin Name Pin(s) Description Pin Name Pin(s) Description
PC1 J1 GPIO (5V) PC3 J2 GPIO (5V)
PD15 J3 GPIO (5V) PA12 J4 GPIO (5V)
PA9 J5 GPIO PA10 J6 GPIO
PB9 J7 GPIO (5V) PB10 J8 GPIO (5V)
PD2 J9 GPIO (5V) PD3 J10 GPIO
PD4 J11 GPIO PB7 K1 GPIO
PC4 K2 GPIO PA13 K3 GPIO (5V)
PA11 K5 GPIO RESETn K6
Reset input, active low. To apply an ex-
ternal reset source to this pin, it is re-
quired to only drive this pin low during
reset, and let the internal pull-up ensure
that reset is released.
AVDD
K8
K9
L10
Analog power supply. PD1 K11 GPIO
PB8 L1 GPIO PC5 L2 GPIO
PA14 L3 GPIO PB11 L5 GPIO
PB12 L6 GPIO PB13 L8 GPIO
PB14 L9 GPIO PD0 L11 GPIO (5V)
Note:
1. GPIO with 5V tolerance are indicated by (5V).
2. The pins PD13, PD14, and PD15 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hard-
ware compatibility, do not use these pins with 5V domains.
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 137
5.8 EFM32GG11B8xx in QFP100 Device Pinout
Figure 5.8. EFM32GG11B8xx in QFP100 Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the sup-
ported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.
Table 5.8. EFM32GG11B8xx in QFP100 Device Pinout
Pin Name Pin(s) Description Pin Name Pin(s) Description
PA0 1 GPIO PA1 2 GPIO
PA2 3 GPIO PA3 4 GPIO
PA4 5 GPIO PA5 6 GPIO
PA6 7 GPIO IOVDD0
8
17
31
44
82
Digital IO power supply 0.
PB0 9 GPIO PB1 10 GPIO
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 138
Pin Name Pin(s) Description Pin Name Pin(s) Description
PB2 11 GPIO PB3 12 GPIO
PB4 13 GPIO PB5 14 GPIO
PB6 15 GPIO VSS
16
32
59
83
Ground
PC0 18 GPIO (5V) PC1 19 GPIO (5V)
PC2 20 GPIO (5V) PC3 21 GPIO (5V)
PC4 22 GPIO PC5 23 GPIO
PB7 24 GPIO PB8 25 GPIO
PA7 26 GPIO PA8 27 GPIO
PA9 28 GPIO PA10 29 GPIO
PA11 30 GPIO PA12 33 GPIO (5V)
PA13 34 GPIO (5V) PA14 35 GPIO
RESETn 36
Reset input, active low. To apply an ex-
ternal reset source to this pin, it is re-
quired to only drive this pin low during
reset, and let the internal pull-up ensure
that reset is released.
PB9 37 GPIO (5V)
PB10 38 GPIO (5V) PB11 39 GPIO
PB12 40 GPIO AVDD 41 Analog power supply.
PB13 42 GPIO PB14 43 GPIO
PD0 45 GPIO (5V) PD1 46 GPIO
PD2 47 GPIO (5V) PD3 48 GPIO
PD4 49 GPIO PD5 50 GPIO
PD6 51 GPIO PD7 52 GPIO
PD8 53 GPIO PC7 54 GPIO
VREGVSS 55 Voltage regulator VSS VREGSW 56 DCDC regulator switching node
VREGVDD 57 Voltage regulator VDD input DVDD 58 Digital power supply.
DECOUPLE 60
Decouple output for on-chip voltage
regulator. An external decoupling ca-
pacitor is required at this pin.
PE1 61 GPIO (5V)
PE2 62 GPIO PE3 63 GPIO
PE4 64 GPIO PE5 65 GPIO
PE6 66 GPIO PE7 67 GPIO
PC8 68 GPIO (5V) PC9 69 GPIO (5V)
PC10 70 GPIO (5V) PC11 71 GPIO (5V)
VREGI 72 Input to 5 V regulator. VREGO 73
Decoupling for 5 V regulator and regu-
lator output. Power for USB PHY in
USB-enabled OPNs
PF10 74 GPIO (5V) PF11 75 GPIO (5V)
PF0 76 GPIO (5V) PF1 77 GPIO (5V)
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 139
Pin Name Pin(s) Description Pin Name Pin(s) Description
PF2 78 GPIO VBUS 79 USB VBUS signal and auxiliary input to
5 V regulator.
PF12 80 GPIO PF5 81 GPIO
PF6 84 GPIO PF7 85 GPIO
PF8 86 GPIO PF9 87 GPIO
PD9 88 GPIO PD10 89 GPIO
PD11 90 GPIO PD12 91 GPIO
PE8 92 GPIO PE9 93 GPIO
PE10 94 GPIO PE11 95 GPIO
PE12 96 GPIO PE13 97 GPIO
PE14 98 GPIO PE15 99 GPIO
PA15 100 GPIO
Note:
1. GPIO with 5V tolerance are indicated by (5V).
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 140
5.9 EFM32GG11B5xx in QFP100 Device Pinout
Figure 5.9. EFM32GG11B5xx in QFP100 Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the sup-
ported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.
Table 5.9. EFM32GG11B5xx in QFP100 Device Pinout
Pin Name Pin(s) Description Pin Name Pin(s) Description
PA0 1 GPIO PA1 2 GPIO
PA2 3 GPIO PA3 4 GPIO
PA4 5 GPIO PA5 6 GPIO
PA6 7 GPIO IOVDD0
8
17
31
44
82
Digital IO power supply 0.
PB0 9 GPIO PB1 10 GPIO
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 141
Pin Name Pin(s) Description Pin Name Pin(s) Description
PB2 11 GPIO PB3 12 GPIO
PB4 13 GPIO PB5 14 GPIO
PB6 15 GPIO VSS
16
32
59
83
Ground
PC0 18 GPIO (5V) PC1 19 GPIO (5V)
PC2 20 GPIO (5V) PC3 21 GPIO (5V)
PC4 22 GPIO PC5 23 GPIO
PB7 24 GPIO PB8 25 GPIO
PA7 26 GPIO PA8 27 GPIO
PA9 28 GPIO PA10 29 GPIO
PA11 30 GPIO PA12 33 GPIO (5V)
PA13 34 GPIO (5V) PA14 35 GPIO
RESETn 36
Reset input, active low. To apply an ex-
ternal reset source to this pin, it is re-
quired to only drive this pin low during
reset, and let the internal pull-up ensure
that reset is released.
PB9 37 GPIO (5V)
PB10 38 GPIO (5V) PB11 39 GPIO
PB12 40 GPIO AVDD 41 Analog power supply.
PB13 42 GPIO PB14 43 GPIO
PD0 45 GPIO (5V) PD1 46 GPIO
PD2 47 GPIO (5V) PD3 48 GPIO
PD4 49 GPIO PD5 50 GPIO
PD6 51 GPIO PD7 52 GPIO
PD8 53 GPIO PC7 54 GPIO
VREGVSS 55 Voltage regulator VSS VREGSW 56 DCDC regulator switching node
VREGVDD 57 Voltage regulator VDD input DVDD 58 Digital power supply.
DECOUPLE 60
Decouple output for on-chip voltage
regulator. An external decoupling ca-
pacitor is required at this pin.
PE1 61 GPIO (5V)
PE2 62 GPIO PE3 63 GPIO
PE4 64 GPIO PE5 65 GPIO
PE6 66 GPIO PE7 67 GPIO
PC8 68 GPIO (5V) PC9 69 GPIO (5V)
PC10 70 GPIO (5V) PC11 71 GPIO (5V)
VREGI 72 Input to 5 V regulator. VREGO 73
Decoupling for 5 V regulator and regu-
lator output. Power for USB PHY in
USB-enabled OPNs
PF10 74 GPIO (5V) PF11 75 GPIO (5V)
PF0 76 GPIO (5V) PF1 77 GPIO (5V)
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 142
Pin Name Pin(s) Description Pin Name Pin(s) Description
PF2 78 GPIO NC 79 No Connect.
PF12 80 GPIO PF5 81 GPIO
PF6 84 GPIO PF7 85 GPIO
PF8 86 GPIO PF9 87 GPIO
PD9 88 GPIO PD10 89 GPIO
PD11 90 GPIO PD12 91 GPIO
PE8 92 GPIO PE9 93 GPIO
PE10 94 GPIO PE11 95 GPIO
PE12 96 GPIO PE13 97 GPIO
PE14 98 GPIO PE15 99 GPIO
PA15 100 GPIO
Note:
1. GPIO with 5V tolerance are indicated by (5V).
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 143
5.10 EFM32GG11B4xx in QFP100 Device Pinout
Figure 5.10. EFM32GG11B4xx in QFP100 Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the sup-
ported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.
Table 5.10. EFM32GG11B4xx in QFP100 Device Pinout
Pin Name Pin(s) Description Pin Name Pin(s) Description
PA0 1 GPIO PA1 2 GPIO
PA2 3 GPIO PA3 4 GPIO
PA4 5 GPIO PA5 6 GPIO
PA6 7 GPIO IOVDD0
8
17
31
44
82
Digital IO power supply 0.
PB0 9 GPIO PB1 10 GPIO
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 144
Pin Name Pin(s) Description Pin Name Pin(s) Description
PB2 11 GPIO PB3 12 GPIO
PB4 13 GPIO PB5 14 GPIO
PB6 15 GPIO VSS
16
32
58
83
Ground
PC0 18 GPIO (5V) PC1 19 GPIO (5V)
PC2 20 GPIO (5V) PC3 21 GPIO (5V)
PC4 22 GPIO PC5 23 GPIO
PB7 24 GPIO PB8 25 GPIO
PA7 26 GPIO PA8 27 GPIO
PA9 28 GPIO PA10 29 GPIO
PA11 30 GPIO PA12 33 GPIO (5V)
PA13 34 GPIO (5V) PA14 35 GPIO
RESETn 36
Reset input, active low. To apply an ex-
ternal reset source to this pin, it is re-
quired to only drive this pin low during
reset, and let the internal pull-up ensure
that reset is released.
PB9 37 GPIO (5V)
PB10 38 GPIO (5V) PB11 39 GPIO
PB12 40 GPIO AVDD 41
45 Analog power supply.
PB13 42 GPIO PB14 43 GPIO
PD0 46 GPIO (5V) PD1 47 GPIO
PD2 48 GPIO (5V) PD3 49 GPIO
PD4 50 GPIO PD5 51 GPIO
PD6 52 GPIO PD7 53 GPIO
PD8 54 GPIO PC6 55 GPIO
PC7 56 GPIO DVDD 57 Digital power supply.
DECOUPLE 59
Decouple output for on-chip voltage
regulator. An external decoupling ca-
pacitor is required at this pin.
PE0 60 GPIO (5V)
PE1 61 GPIO (5V) PE2 62 GPIO
PE3 63 GPIO PE4 64 GPIO
PE5 65 GPIO PE6 66 GPIO
PE7 67 GPIO PC8 68 GPIO (5V)
PC9 69 GPIO (5V) PC10 70 GPIO (5V)
PC11 71 GPIO (5V) VREGI 72 Input to 5 V regulator.
VREGO 73
Decoupling for 5 V regulator and regu-
lator output. Power for USB PHY in
USB-enabled OPNs
PF10 74 GPIO (5V)
PF11 75 GPIO (5V) PF0 76 GPIO (5V)
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 145
Pin Name Pin(s) Description Pin Name Pin(s) Description
PF1 77 GPIO (5V) PF2 78 GPIO
VBUS 79 USB VBUS signal and auxiliary input to
5 V regulator. PF12 80 GPIO
PF5 81 GPIO PF6 84 GPIO
PF7 85 GPIO PF8 86 GPIO
PF9 87 GPIO PD9 88 GPIO
PD10 89 GPIO PD11 90 GPIO
PD12 91 GPIO PE8 92 GPIO
PE9 93 GPIO PE10 94 GPIO
PE11 95 GPIO PE12 96 GPIO
PE13 97 GPIO PE14 98 GPIO
PE15 99 GPIO PA15 100 GPIO
Note:
1. GPIO with 5V tolerance are indicated by (5V).
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 146
5.11 EFM32GG11B3xx in QFP100 Device Pinout
Figure 5.11. EFM32GG11B3xx in QFP100 Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the sup-
ported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.
Table 5.11. EFM32GG11B3xx in QFP100 Device Pinout
Pin Name Pin(s) Description Pin Name Pin(s) Description
PA0 1 GPIO PA1 2 GPIO
PA2 3 GPIO PA3 4 GPIO
PA4 5 GPIO PA5 6 GPIO
PA6 7 GPIO IOVDD0
8
17
31
44
82
Digital IO power supply 0.
PB0 9 GPIO PB1 10 GPIO
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 147
Pin Name Pin(s) Description Pin Name Pin(s) Description
PB2 11 GPIO PB3 12 GPIO
PB4 13 GPIO PB5 14 GPIO
PB6 15 GPIO VSS
16
32
58
83
Ground
PC0 18 GPIO (5V) PC1 19 GPIO (5V)
PC2 20 GPIO (5V) PC3 21 GPIO (5V)
PC4 22 GPIO PC5 23 GPIO
PB7 24 GPIO PB8 25 GPIO
PA7 26 GPIO PA8 27 GPIO
PA9 28 GPIO PA10 29 GPIO
PA11 30 GPIO PA12 33 GPIO (5V)
PA13 34 GPIO (5V) PA14 35 GPIO
RESETn 36
Reset input, active low. To apply an ex-
ternal reset source to this pin, it is re-
quired to only drive this pin low during
reset, and let the internal pull-up ensure
that reset is released.
PB9 37 GPIO (5V)
PB10 38 GPIO (5V) PB11 39 GPIO
PB12 40 GPIO AVDD 41
45 Analog power supply.
PB13 42 GPIO PB14 43 GPIO
PD0 46 GPIO (5V) PD1 47 GPIO
PD2 48 GPIO (5V) PD3 49 GPIO
PD4 50 GPIO PD5 51 GPIO
PD6 52 GPIO PD7 53 GPIO
PD8 54 GPIO PC6 55 GPIO
PC7 56 GPIO DVDD 57 Digital power supply.
DECOUPLE 59
Decouple output for on-chip voltage
regulator. An external decoupling ca-
pacitor is required at this pin.
PE0 60 GPIO (5V)
PE1 61 GPIO (5V) PE2 62 GPIO
PE3 63 GPIO PE4 64 GPIO
PE5 65 GPIO PE6 66 GPIO
PE7 67 GPIO PC8 68 GPIO (5V)
PC9 69 GPIO (5V) PC10 70 GPIO (5V)
PC11 71 GPIO (5V) PC12 72 GPIO (5V)
PC13 73 GPIO (5V) PC14 74 GPIO (5V)
PC15 75 GPIO (5V) PF0 76 GPIO (5V)
PF1 77 GPIO (5V) PF2 78 GPIO
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 148
Pin Name Pin(s) Description Pin Name Pin(s) Description
PF3 79 GPIO PF4 80 GPIO
PF5 81 GPIO PF6 84 GPIO
PF7 85 GPIO PF8 86 GPIO
PF9 87 GPIO PD9 88 GPIO
PD10 89 GPIO PD11 90 GPIO
PD12 91 GPIO PE8 92 GPIO
PE9 93 GPIO PE10 94 GPIO
PE11 95 GPIO PE12 96 GPIO
PE13 97 GPIO PE14 98 GPIO
PE15 99 GPIO PA15 100 GPIO
Note:
1. GPIO with 5V tolerance are indicated by (5V).
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 149
5.12 EFM32GG11B8xx in QFP64 Device Pinout
Figure 5.12. EFM32GG11B8xx in QFP64 Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the sup-
ported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.
Table 5.12. EFM32GG11B8xx in QFP64 Device Pinout
Pin Name Pin(s) Description Pin Name Pin(s) Description
PA0 1 GPIO PA1 2 GPIO
PA2 3 GPIO PA3 4 GPIO
PA4 5 GPIO PA5 6 GPIO
IOVDD0
7
27
55
Digital IO power supply 0. VSS
8
23
56
Ground
PB3 9 GPIO PB4 10 GPIO
PB5 11 GPIO PB6 12 GPIO
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 150
Pin Name Pin(s) Description Pin Name Pin(s) Description
PC4 13 GPIO PC5 14 GPIO
PB7 15 GPIO PB8 16 GPIO
PA8 17 GPIO PA12 18 GPIO (5V)
PA14 19 GPIO RESETn 20
Reset input, active low. To apply an ex-
ternal reset source to this pin, it is re-
quired to only drive this pin low during
reset, and let the internal pull-up ensure
that reset is released.
PB11 21 GPIO PB12 22 GPIO
AVDD 24 Analog power supply. PB13 25 GPIO
PB14 26 GPIO PD0 28 GPIO (5V)
PD1 29 GPIO PD2 30 GPIO (5V)
PD3 31 GPIO PD4 32 GPIO
PD5 33 GPIO PD6 34 GPIO
PD8 35 GPIO VREGVSS 36 Voltage regulator VSS
VREGSW 37 DCDC regulator switching node VREGVDD 38 Voltage regulator VDD input
DVDD 39 Digital power supply. DECOUPLE 40
Decouple output for on-chip voltage
regulator. An external decoupling ca-
pacitor is required at this pin.
PE4 41 GPIO PE5 42 GPIO
PE6 43 GPIO PE7 44 GPIO
VREGI 45 Input to 5 V regulator. VREGO 46
Decoupling for 5 V regulator and regu-
lator output. Power for USB PHY in
USB-enabled OPNs
PF10 47 GPIO (5V) PF11 48 GPIO (5V)
PF0 49 GPIO (5V) PF1 50 GPIO (5V)
PF2 51 GPIO VBUS 52 USB VBUS signal and auxiliary input to
5 V regulator.
PF12 53 GPIO PF5 54 GPIO
PE8 57 GPIO PE9 58 GPIO
PE10 59 GPIO PE11 60 GPIO
PE12 61 GPIO PE13 62 GPIO
PE14 63 GPIO PE15 64 GPIO
Note:
1. GPIO with 5V tolerance are indicated by (5V).
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 151
5.13 EFM32GG11B5xx in QFP64 Device Pinout
Figure 5.13. EFM32GG11B5xx in QFP64 Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the sup-
ported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.
Table 5.13. EFM32GG11B5xx in QFP64 Device Pinout
Pin Name Pin(s) Description Pin Name Pin(s) Description
PA0 1 GPIO PA1 2 GPIO
PA2 3 GPIO PA3 4 GPIO
PA4 5 GPIO PA5 6 GPIO
IOVDD0
7
27
55
Digital IO power supply 0. VSS
8
23
56
Ground
PB3 9 GPIO PB4 10 GPIO
PB5 11 GPIO PB6 12 GPIO
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 152
Pin Name Pin(s) Description Pin Name Pin(s) Description
PC4 13 GPIO PC5 14 GPIO
PB7 15 GPIO PB8 16 GPIO
PA8 17 GPIO PA12 18 GPIO (5V)
PA14 19 GPIO RESETn 20
Reset input, active low. To apply an ex-
ternal reset source to this pin, it is re-
quired to only drive this pin low during
reset, and let the internal pull-up ensure
that reset is released.
PB11 21 GPIO PB12 22 GPIO
AVDD 24 Analog power supply. PB13 25 GPIO
PB14 26 GPIO PD0 28 GPIO (5V)
PD1 29 GPIO PD2 30 GPIO (5V)
PD3 31 GPIO PD4 32 GPIO
PD5 33 GPIO PD6 34 GPIO
PD7 35 GPIO PD8 36 GPIO
PC7 37 GPIO VREGVSS 38 Voltage regulator VSS
VREGSW 39 DCDC regulator switching node VREGVDD 40 Voltage regulator VDD input
DVDD 41 Digital power supply. DECOUPLE 42
Decouple output for on-chip voltage
regulator. An external decoupling ca-
pacitor is required at this pin.
PE4 43 GPIO PE5 44 GPIO
PE6 45 GPIO PE7 46 GPIO
PC12 47 GPIO (5V) PC13 48 GPIO (5V)
PF0 49 GPIO (5V) PF1 50 GPIO (5V)
PF2 51 GPIO PF3 52 GPIO
PF4 53 GPIO PF5 54 GPIO
PE8 57 GPIO PE9 58 GPIO
PE10 59 GPIO PE11 60 GPIO
PE12 61 GPIO PE13 62 GPIO
PE14 63 GPIO PE15 64 GPIO
Note:
1. GPIO with 5V tolerance are indicated by (5V).
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 153
5.14 EFM32GG11B4xx in QFP64 Device Pinout
Figure 5.14. EFM32GG11B4xx in QFP64 Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the sup-
ported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.
Table 5.14. EFM32GG11B4xx in QFP64 Device Pinout
Pin Name Pin(s) Description Pin Name Pin(s) Description
PA0 1 GPIO PA1 2 GPIO
PA2 3 GPIO PA3 4 GPIO
PA4 5 GPIO PA5 6 GPIO
IOVDD0
7
26
55
Digital IO power supply 0. VSS
8
22
56
Ground
PB3 9 GPIO PB4 10 GPIO
PB5 11 GPIO PB6 12 GPIO
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 154
Pin Name Pin(s) Description Pin Name Pin(s) Description
PC4 13 GPIO PC5 14 GPIO
PB7 15 GPIO PB8 16 GPIO
PA12 17 GPIO (5V) PA13 18 GPIO (5V)
PA14 19 GPIO RESETn 20
Reset input, active low. To apply an ex-
ternal reset source to this pin, it is re-
quired to only drive this pin low during
reset, and let the internal pull-up ensure
that reset is released.
PB11 21 GPIO AVDD 23
27 Analog power supply.
PB13 24 GPIO PB14 25 GPIO
PD0 28 GPIO (5V) PD1 29 GPIO
PD2 30 GPIO (5V) PD3 31 GPIO
PD4 32 GPIO PD5 33 GPIO
PD6 34 GPIO PD7 35 GPIO
PD8 36 GPIO PC6 37 GPIO
PC7 38 GPIO DVDD 39 Digital power supply.
DECOUPLE 40
Decouple output for on-chip voltage
regulator. An external decoupling ca-
pacitor is required at this pin.
PE4 41 GPIO
PE5 42 GPIO PE6 43 GPIO
PE7 44 GPIO VREGI 45 Input to 5 V regulator.
VREGO 46
Decoupling for 5 V regulator and regu-
lator output. Power for USB PHY in
USB-enabled OPNs
PF10 47 GPIO (5V)
PF11 48 GPIO (5V) PF0 49 GPIO (5V)
PF1 50 GPIO (5V) PF2 51 GPIO
VBUS 52 USB VBUS signal and auxiliary input to
5 V regulator. PF12 53 GPIO
PF5 54 GPIO PE8 57 GPIO
PE9 58 GPIO PE10 59 GPIO
PE11 60 GPIO PE12 61 GPIO
PE13 62 GPIO PE14 63 GPIO
PE15 64 GPIO
Note:
1. GPIO with 5V tolerance are indicated by (5V).
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 155
5.15 EFM32GG11B1xx in QFP64 Device Pinout
Figure 5.15. EFM32GG11B1xx in QFP64 Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the sup-
ported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.
Table 5.15. EFM32GG11B1xx in QFP64 Device Pinout
Pin Name Pin(s) Description Pin Name Pin(s) Description
PA0 1 GPIO PA1 2 GPIO
PA2 3 GPIO PA3 4 GPIO
PA4 5 GPIO PA5 6 GPIO
IOVDD0
7
26
55
Digital IO power supply 0. VSS
8
22
56
Ground
PC0 9 GPIO (5V) PC1 10 GPIO (5V)
PC2 11 GPIO (5V) PC3 12 GPIO (5V)
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 156
Pin Name Pin(s) Description Pin Name Pin(s) Description
PC4 13 GPIO PC5 14 GPIO
PB7 15 GPIO PB8 16 GPIO
PA8 17 GPIO PA9 18 GPIO
PA10 19 GPIO RESETn 20
Reset input, active low. To apply an ex-
ternal reset source to this pin, it is re-
quired to only drive this pin low during
reset, and let the internal pull-up ensure
that reset is released.
PB11 21 GPIO AVDD 23
27 Analog power supply.
PB13 24 GPIO PB14 25 GPIO
PD0 28 GPIO (5V) PD1 29 GPIO
PD2 30 GPIO (5V) PD3 31 GPIO
PD4 32 GPIO PD5 33 GPIO
PD6 34 GPIO PD7 35 GPIO
PD8 36 GPIO PC6 37 GPIO
PC7 38 GPIO DVDD 39 Digital power supply.
DECOUPLE 40
Decouple output for on-chip voltage
regulator. An external decoupling ca-
pacitor is required at this pin.
PC8 41 GPIO (5V)
PC9 42 GPIO (5V) PC10 43 GPIO (5V)
PC11 44 GPIO (5V) PC12 45 GPIO (5V)
PC13 46 GPIO (5V) PC14 47 GPIO (5V)
PC15 48 GPIO (5V) PF0 49 GPIO (5V)
PF1 50 GPIO (5V) PF2 51 GPIO
PF3 52 GPIO PF4 53 GPIO
PF5 54 GPIO PE8 57 GPIO
PE9 58 GPIO PE10 59 GPIO
PE11 60 GPIO PE12 61 GPIO
PE13 62 GPIO PE14 63 GPIO
PE15 64 GPIO
Note:
1. GPIO with 5V tolerance are indicated by (5V).
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 157
5.16 EFM32GG11B8xx in QFN64 Device Pinout
Figure 5.16. EFM32GG11B8xx in QFN64 Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the sup-
ported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.
Table 5.16. EFM32GG11B8xx in QFN64 Device Pinout
Pin Name Pin(s) Description Pin Name Pin(s) Description
VSS 0 Ground PA0 1 GPIO
PA1 2 GPIO PA2 3 GPIO
PA3 4 GPIO PA4 5 GPIO
PA5 6 GPIO PA6 7 GPIO
IOVDD0
8
27
55
Digital IO power supply 0. PB3 9 GPIO
PB4 10 GPIO PB5 11 GPIO
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 158
Pin Name Pin(s) Description Pin Name Pin(s) Description
PB6 12 GPIO PC4 13 GPIO
PC5 14 GPIO PB7 15 GPIO
PB8 16 GPIO PA8 17 GPIO
PA12 18 GPIO (5V) PA13 19 GPIO (5V)
PA14 20 GPIO RESETn 21
Reset input, active low. To apply an ex-
ternal reset source to this pin, it is re-
quired to only drive this pin low during
reset, and let the internal pull-up ensure
that reset is released.
PB11 22 GPIO PB12 23 GPIO
AVDD 24 Analog power supply. PB13 25 GPIO
PB14 26 GPIO PD0 28 GPIO (5V)
PD1 29 GPIO PD2 30 GPIO (5V)
PD3 31 GPIO PD4 32 GPIO
PD5 33 GPIO PD6 34 GPIO
PD8 35 GPIO VREGVSS 36 Voltage regulator VSS
VREGSW 37 DCDC regulator switching node VREGVDD 38 Voltage regulator VDD input
DVDD 39 Digital power supply. DECOUPLE 40
Decouple output for on-chip voltage
regulator. An external decoupling ca-
pacitor is required at this pin.
PE4 41 GPIO PE5 42 GPIO
PE6 43 GPIO PE7 44 GPIO
VREGI 45 Input to 5 V regulator. VREGO 46
Decoupling for 5 V regulator and regu-
lator output. Power for USB PHY in
USB-enabled OPNs
PF10 47 GPIO (5V) PF11 48 GPIO (5V)
PF0 49 GPIO (5V) PF1 50 GPIO (5V)
PF2 51 GPIO VBUS 52 USB VBUS signal and auxiliary input to
5 V regulator.
PF12 53 GPIO PF5 54 GPIO
PE8 56 GPIO PE9 57 GPIO
PE10 58 GPIO PE11 59 GPIO
PE12 60 GPIO PE13 61 GPIO
PE14 62 GPIO PE15 63 GPIO
PA15 64 GPIO
Note:
1. GPIO with 5V tolerance are indicated by (5V).
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 159
5.17 EFM32GG11B5xx in QFN64 Device Pinout
Figure 5.17. EFM32GG11B5xx in QFN64 Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the sup-
ported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.
Table 5.17. EFM32GG11B5xx in QFN64 Device Pinout
Pin Name Pin(s) Description Pin Name Pin(s) Description
VSS 0 Ground PA0 1 GPIO
PA1 2 GPIO PA2 3 GPIO
PA3 4 GPIO PA4 5 GPIO
PA5 6 GPIO PA6 7 GPIO
IOVDD0
8
27
55
Digital IO power supply 0. PB3 9 GPIO
PB4 10 GPIO PB5 11 GPIO
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 160
Pin Name Pin(s) Description Pin Name Pin(s) Description
PB6 12 GPIO PC4 13 GPIO
PC5 14 GPIO PB7 15 GPIO
PB8 16 GPIO PA8 17 GPIO
PA12 18 GPIO (5V) PA13 19 GPIO (5V)
PA14 20 GPIO RESETn 21
Reset input, active low. To apply an ex-
ternal reset source to this pin, it is re-
quired to only drive this pin low during
reset, and let the internal pull-up ensure
that reset is released.
PB11 22 GPIO PB12 23 GPIO
AVDD 24 Analog power supply. PB13 25 GPIO
PB14 26 GPIO PD0 28 GPIO (5V)
PD1 29 GPIO PD2 30 GPIO (5V)
PD3 31 GPIO PD4 32 GPIO
PD5 33 GPIO PD6 34 GPIO
PD7 35 GPIO PD8 36 GPIO
PC7 37 GPIO VREGVSS 38 Voltage regulator VSS
VREGSW 39 DCDC regulator switching node VREGVDD 40 Voltage regulator VDD input
DVDD 41 Digital power supply. DECOUPLE 42
Decouple output for on-chip voltage
regulator. An external decoupling ca-
pacitor is required at this pin.
PE4 43 GPIO PE5 44 GPIO
PE6 45 GPIO PE7 46 GPIO
PC12 47 GPIO (5V) PC13 48 GPIO (5V)
PF0 49 GPIO (5V) PF1 50 GPIO (5V)
PF2 51 GPIO PF3 52 GPIO
PF4 53 GPIO PF5 54 GPIO
PE8 56 GPIO PE9 57 GPIO
PE10 58 GPIO PE11 59 GPIO
PE12 60 GPIO PE13 61 GPIO
PE14 62 GPIO PE15 63 GPIO
PA15 64 GPIO
Note:
1. GPIO with 5V tolerance are indicated by (5V).
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 161
5.18 EFM32GG11B4xx in QFN64 Device Pinout
Figure 5.18. EFM32GG11B4xx in QFN64 Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the sup-
ported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.
Table 5.18. EFM32GG11B4xx in QFN64 Device Pinout
Pin Name Pin(s) Description Pin Name Pin(s) Description
VSS 0 Ground PA0 1 GPIO
PA1 2 GPIO PA2 3 GPIO
PA3 4 GPIO PA4 5 GPIO
PA5 6 GPIO PA6 7 GPIO
IOVDD0
8
26
55
Digital IO power supply 0. PB3 9 GPIO
PB4 10 GPIO PB5 11 GPIO
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 162
Pin Name Pin(s) Description Pin Name Pin(s) Description
PB6 12 GPIO PC4 13 GPIO
PC5 14 GPIO PB7 15 GPIO
PB8 16 GPIO PA12 17 GPIO (5V)
PA13 18 GPIO (5V) PA14 19 GPIO
RESETn 20
Reset input, active low. To apply an ex-
ternal reset source to this pin, it is re-
quired to only drive this pin low during
reset, and let the internal pull-up ensure
that reset is released.
PB11 21 GPIO
PB12 22 GPIO AVDD 23
27 Analog power supply.
PB13 24 GPIO PB14 25 GPIO
PD0 28 GPIO (5V) PD1 29 GPIO
PD2 30 GPIO (5V) PD3 31 GPIO
PD4 32 GPIO PD5 33 GPIO
PD6 34 GPIO PD7 35 GPIO
PD8 36 GPIO PC6 37 GPIO
PC7 38 GPIO DVDD 39 Digital power supply.
DECOUPLE 40
Decouple output for on-chip voltage
regulator. An external decoupling ca-
pacitor is required at this pin.
PE4 41 GPIO
PE5 42 GPIO PE6 43 GPIO
PE7 44 GPIO VREGI 45 Input to 5 V regulator.
VREGO 46
Decoupling for 5 V regulator and regu-
lator output. Power for USB PHY in
USB-enabled OPNs
PF10 47 GPIO (5V)
PF11 48 GPIO (5V) PF0 49 GPIO (5V)
PF1 50 GPIO (5V) PF2 51 GPIO
VBUS 52 USB VBUS signal and auxiliary input to
5 V regulator. PF12 53 GPIO
PF5 54 GPIO PE8 56 GPIO
PE9 57 GPIO PE10 58 GPIO
PE11 59 GPIO PE12 60 GPIO
PE13 61 GPIO PE14 62 GPIO
PE15 63 GPIO PA15 64 GPIO
Note:
1. GPIO with 5V tolerance are indicated by (5V).
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 163
5.19 EFM32GG11B1xx in QFN64 Device Pinout
Figure 5.19. EFM32GG11B1xx in QFN64 Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the sup-
ported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.
Table 5.19. EFM32GG11B1xx in QFN64 Device Pinout
Pin Name Pin(s) Description Pin Name Pin(s) Description
VSS 0 Ground PA0 1 GPIO
PA1 2 GPIO PA2 3 GPIO
PA3 4 GPIO PA4 5 GPIO
PA5 6 GPIO PA6 7 GPIO
IOVDD0
8
26
55
Digital IO power supply 0. PC0 9 GPIO (5V)
PC1 10 GPIO (5V) PC2 11 GPIO (5V)
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 164
Pin Name Pin(s) Description Pin Name Pin(s) Description
PC3 12 GPIO (5V) PC4 13 GPIO
PC5 14 GPIO PB7 15 GPIO
PB8 16 GPIO PA8 17 GPIO
PA9 18 GPIO PA10 19 GPIO
RESETn 20
Reset input, active low. To apply an ex-
ternal reset source to this pin, it is re-
quired to only drive this pin low during
reset, and let the internal pull-up ensure
that reset is released.
PB11 21 GPIO
PB12 22 GPIO AVDD 23
27 Analog power supply.
PB13 24 GPIO PB14 25 GPIO
PD0 28 GPIO (5V) PD1 29 GPIO
PD2 30 GPIO (5V) PD3 31 GPIO
PD4 32 GPIO PD5 33 GPIO
PD6 34 GPIO PD7 35 GPIO
PD8 36 GPIO PC6 37 GPIO
PC7 38 GPIO DVDD 39 Digital power supply.
DECOUPLE 40
Decouple output for on-chip voltage
regulator. An external decoupling ca-
pacitor is required at this pin.
PC8 41 GPIO (5V)
PC9 42 GPIO (5V) PC10 43 GPIO (5V)
PC11 44 GPIO (5V) PC12 45 GPIO (5V)
PC13 46 GPIO (5V) PC14 47 GPIO (5V)
PC15 48 GPIO (5V) PF0 49 GPIO (5V)
PF1 50 GPIO (5V) PF2 51 GPIO
PF3 52 GPIO PF4 53 GPIO
PF5 54 GPIO PE8 56 GPIO
PE9 57 GPIO PE10 58 GPIO
PE11 59 GPIO PE12 60 GPIO
PE13 61 GPIO PE14 62 GPIO
PE15 63 GPIO PA15 64 GPIO
Note:
1. GPIO with 5V tolerance are indicated by (5V).
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 165
5.20 GPIO Functionality Table
A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of each GPIO
pin, followed by the functionality available on that pin. Refer to 5.21 Alternate Functionality Overview for a list of GPIO locations availa-
ble for each function.
Table 5.20. GPIO Functionality Table
GPIO Name Pin Alternate Functionality / Description
Analog EBI Timers Communication Other
PA15 BUSAY BUSBX
LCD_SEG12 EBI_AD08 #0 TIM3_CC2 #0
ETH_MIIRXCLK #0
ETH_MDIO #3
US2_CLK #3
PRS_CH15 #0
PE15 BUSCY BUSDX
LCD_SEG11 EBI_AD07 #0 TIM2_CDTI2 #2
TIM3_CC1 #0
ETH_RMIITXD0 #0
ETH_MIIRXD3 #0
SDIO_CMD #1
US0_RTS #0
QSPI0_DQS #1
LEU0_RX #2
PRS_CH14 #2
ETM_TD3 #4
PE14 BUSDY BUSCX
LCD_SEG10 EBI_AD06 #0 TIM2_CDTI1 #2
TIM3_CC0 #0
ETH_RMIITXD1 #0
ETH_MIIRXD2 #0
SDIO_CLK #1
US0_CTS #0
QSPI0_SCLK #1
LEU0_TX #2
PRS_CH13 #2
ETM_TD2 #4
PE13 BUSCY BUSDX
LCD_SEG9 EBI_AD05 #0
TIM1_CC3 #1
TIM2_CC2 #3 LE-
TIM0_OUT1 #4
SDIO_CLK #0
ETH_MIIRXD1 #0
US0_TX #3 US0_CS
#0 U1_RX #4
I2C0_SCL #6
LES_ALTEX7
PRS_CH2 #3
ACMP0_O #0
ETM_TD1 #4
GPIO_EM4WU5
PE12 BUSDY BUSCX
LCD_SEG8 EBI_AD04 #0
TIM1_CC2 #1
TIM2_CC1 #3
WTIM0_CDTI2 #0
LETIM0_OUT0 #4
SDIO_CMD #0
ETH_MIIRXD0 #0
US0_RX #3
US0_CLK #0 U1_TX
#4 I2C0_SDA #6
CMU_CLK1 #2
CMU_CLKI0 #6
LES_ALTEX6
PRS_CH1 #3
ETM_TD0 #4
PE11 BUSCY BUSDX
LCD_SEG7
EBI_AD03 #0
EBI_CS3 #4
TIM1_CC1 #1
TIM4_CC2 #7
WTIM0_CDTI1 #0
SDIO_DAT0 #0
QSPI0_DQ7 #0
ETH_MIIRXDV #0
US0_RX #0
LES_ALTEX5
PRS_CH3 #2
ETM_TCLK #4
PE10 BUSDY BUSCX
LCD_SEG6
EBI_AD02 #0
EBI_CS2 #4
TIM1_CC0 #1
TIM4_CC1 #7
WTIM0_CDTI0 #0
SDIO_DAT1 #0
QSPI0_DQ6 #0
ETH_MIIRXER #0
US0_TX #0
PRS_CH2 #2
GPIO_EM4WU9
PE9 BUSCY BUSDX
LCD_SEG5
EBI_AD01 #0
EBI_CS1 #4
TIM4_CC0 #7
PCNT2_S1IN #1
SDIO_DAT2 #0
QSPI0_DQ5 #0
US5_RX #0
PRS_CH8 #2
PE8 BUSDY BUSCX
LCD_SEG4
EBI_AD00 #0
EBI_CS0 #4
TIM2_CDTI0 #2
TIM4_CC2 #6
PCNT2_S0IN #1
SDIO_DAT3 #0
QSPI0_DQ4 #0
US5_TX #0
I2C2_SDA #0
PRS_CH3 #1
PI9 EBI_A14 #2 TIM1_CC3 #7
TIM4_CC1 #3 US4_CS #3
PI6 EBI_A11 #2
TIM1_CC0 #7
TIM4_CC1 #2
WTIM3_CC0 #5
US4_TX #3
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 166
GPIO Name Pin Alternate Functionality / Description
Analog EBI Timers Communication Other
PF14 BUSDY BUSCX
TIM1_CC1 #6
TIM4_CC1 #1
TIM5_CC2 #7
WTIM3_CC1 #7
I2C2_SCL #4
PF11 BUSCY BUSDX EBI_NANDWEn #5
TIM5_CC2 #6
WTIM3_CC2 #3
PCNT2_S1IN #3
US5_CTS #2 U1_RX
#1 I2C2_SCL #2
USB_DP
PF10 BUSDY BUSCX EBI_ARDY #5
TIM5_CC1 #6
WTIM3_CC1 #3
PCNT2_S0IN #3
US5_RTS #2 U1_TX
#1 I2C2_SDA #2
USB_DM
PF0 BUSDY BUSCX EBI_A24 #1
TIM0_CC0 #4
WTIM0_CC1 #4 LE-
TIM0_OUT0 #2
US2_TX #5
CAN0_RX #1
US1_CLK #2
LEU0_TX #3
I2C0_SDA #5
PRS_CH15 #2
ACMP3_O #0
DBG_SWCLKTCK
BOOT_TX
PA0 BUSBY BUSAX
LCD_SEG13
EBI_AD09 #0
EBI_CSTFT #3
TIM0_CC0 #0
TIM0_CC1 #7
TIM3_CC0 #4
PCNT0_S0IN #4
ETH_RMIITXEN #0
ETH_MIITXCLK #0
SDIO_DAT0 #1
US1_RX #5 US3_TX
#0 QSPI0_CS0 #1
LEU0_RX #4
I2C0_SDA #0
CMU_CLK2 #0
PRS_CH0 #0
PRS_CH3 #3
GPIO_EM4WU0
PD11 LCD_SEG30 EBI_CS2 #0
EBI_HSNC #1
TIM4_CC0 #6
WTIM3_CC2 #0
ETH_RMIICRSDV #1
SDIO_DAT5 #0
QSPI0_DQ2 #0
ETH_MIIRXD3 #2
US4_CLK #1
PD10 LCD_SEG29 EBI_CS1 #0
EBI_VSNC #1
TIM4_CC2 #5
WTIM3_CC1 #0
ETH_RMIIREFCLK
#1 SDIO_DAT6 #0
QSPI0_DQ1 #0
ETH_MIIRXD2 #2
US4_RX #1
CMU_CLK2 #5
CMU_CLKI0 #5
PD9 LCD_SEG28 EBI_CS0 #0
EBI_DTEN #1
TIM4_CC1 #5
WTIM3_CC0 #0
ETH_RMIIRXD0 #1
SDIO_DAT7 #0
QSPI0_DQ0 #0
ETH_MIIRXD1 #2
US4_TX #1
PF9 BUSCY BUSDX
LCD_SEG27
EBI_REn #4
EBI_BL1 #1 TIM4_CC0 #5
ETH_RMIIRXD1 #1
US2_CS #4
QSPI0_DQS #0
ETH_MIIRXD0 #2
ETH_TSUTMRTOG
#3 SDIO_WP #0
U0_RTS #0 U1_CTS
#1
ETM_TD0 #1
PF8 BUSDY BUSCX
LCD_SEG26
EBI_WEn #4
EBI_BL0 #1
TIM0_CC2 #1
TIM4_CC2 #4
ETH_RMIITXEN #1
US2_CLK #4
QSPI0_CS1 #0
ETH_MIIRXDV #2
ETH_TSUEXTCLK
#3 SDIO_CD #0
U0_CTS #0 U1_RTS
#1
ETM_TCLK #1
GPIO_EM4WU8
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 167
GPIO Name Pin Alternate Functionality / Description
Analog EBI Timers Communication Other
PF7 BUSCY BUSDX
LCD_SEG25
EBI_BL1 #0 EBI_BL1
#4 EBI_BL1 #5
EBI_DCLK #1
TIM0_CC1 #1
TIM4_CC1 #4
ETH_RMIITXD0 #1
US2_RX #4
QSPI0_CS0 #0
ETH_MIIRXER #2
US1_RX #3 U0_RX
#0
PRS_CH23 #2
PF6 BUSDY BUSCX
LCD_SEG24
EBI_BL0 #0 EBI_BL0
#4 EBI_BL0 #5
EBI_CSTFT #1
TIM0_CC0 #1
TIM4_CC0 #4
WTIM3_CC2 #5
ETH_RMIITXD1 #1
US2_TX #4
QSPI0_SCLK #0
US1_TX #3 U0_TX
#0
PRS_CH22 #2
PI11 US4_RTS #3
PI8 EBI_A13 #2 TIM1_CC2 #7
TIM4_CC0 #3 US4_CLK #3
PF5 BUSCY BUSDX
LCD_SEG3
EBI_REn #0
EBI_REn #5
EBI_A27 #1
TIM0_CDTI2 #2
TIM1_CC3 #6
TIM4_CC0 #2
US2_CS #5
I2C2_SCL #0
USB_VBUSEN
PRS_CH2 #1
DBG_TDI
PF13 BUSCY BUSDX
TIM1_CC0 #6
TIM4_CC0 #1
TIM5_CC1 #7
WTIM3_CC0 #7
US5_CLK #2
I2C2_SDA #4
PF3 BUSCY BUSDX
LCD_SEG1 EBI_ALE #0
TIM4_CC0 #0
TIM0_CDTI0 #2
TIM1_CC1 #5
CAN1_TX #1
US1_CTS #2
I2C2_SCL #5
CMU_CLK1 #4
PRS_CH0 #1
ETM_TD3 #1
PF2 BUSDY BUSCX
LCD_SEG0
EBI_ARDY #0
EBI_A26 #1
TIM0_CC2 #4
TIM1_CC0 #5
TIM2_CC0 #3
US2_CLK #5
CAN0_TX #1
US1_TX #5 U0_RX
#5 LEU0_TX #4
I2C1_SCL #4
CMU_CLK0 #4
PRS_CH0 #3
ACMP1_O #0
DBG_TDO
DBG_SWO #0
GPIO_EM4WU4
PF1 BUSCY BUSDX EBI_A25 #1
TIM0_CC1 #4
WTIM0_CC2 #4 LE-
TIM0_OUT1 #2
US2_RX #5
CAN1_RX #1
US1_CS #2 U0_TX
#5 LEU0_RX #3
I2C0_SCL #5
PRS_CH4 #2
DBG_SWDIOTMS
GPIO_EM4WU3
BOOT_RX
PA1 BUSAY BUSBX
LCD_SEG14
EBI_AD10 #0
EBI_DCLK #3
TIM0_CC0 #7
TIM0_CC1 #0
TIM3_CC1 #4
PCNT0_S1IN #4
ETH_RMIIRXD1 #0
ETH_MIITXD3 #0
SDIO_DAT1 #1
US3_RX #0
QSPI0_CS1 #1
I2C0_SCL #0
CMU_CLK1 #0
PRS_CH1 #0
PD12 LCD_SEG31 EBI_CS3 #0 TIM4_CC1 #6
ETH_RMIIRXER #1
SDIO_DAT4 #0
QSPI0_DQ3 #0
ETH_MIIRXCLK #2
US4_CS #1
PD14 EBI_NANDWEn #1
TIM2_CDTI1 #1
TIM3_CC2 #6
WTIM0_CC2 #1
ETH_MDC #1
CAN0_RX #5
US4_RTS #1
US5_CS #1
I2C0_SDA #3
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 168
GPIO Name Pin Alternate Functionality / Description
Analog EBI Timers Communication Other
PD13 EBI_ARDY #1
TIM2_CDTI0 #1
TIM3_CC1 #6
WTIM0_CC1 #1
ETH_MDIO #1
US4_CTS #1
US5_CLK #1
ETM_TD1 #1
PI15 CAN1_TX #7
US3_CS #5
PI14 CAN1_RX #7
US3_CLK #5
PI13 CAN0_TX #7
US3_RX #5
PI12 CAN0_RX #7
US3_TX #5
PI10 EBI_A15 #2 TIM4_CC2 #3 US4_CTS #3
PI7 EBI_A12 #2
TIM1_CC1 #7
TIM4_CC2 #2
WTIM3_CC1 #5
US4_RX #3
PF15 BUSCY BUSDX
TIM1_CC2 #6
TIM4_CC2 #1
WTIM3_CC2 #7
US5_TX #2
I2C2_SDA #5
PF12 BUSDY BUSCX EBI_NANDREn #5
TIM4_CC2 #0
TIM1_CC3 #5
TIM5_CC0 #7
WTIM3_CC2 #6
US5_CS #2
I2C2_SCL #3
USB_ID
PF4 BUSDY BUSCX
LCD_SEG2
EBI_WEn #0
EBI_WEn #5
TIM4_CC1 #0
TIM0_CDTI1 #2
TIM1_CC2 #5
WTIM3_CC1 #6
US1_RTS #2
I2C2_SDA #3 PRS_CH1 #1
PC15
VDAC0_OUT1ALT /
OPA1_OUTALT #3
BUSACMP1Y BU-
SACMP1X
EBI_NANDREn #4
TIM0_CDTI2 #1
TIM1_CC2 #0
WTIM0_CC0 #4 LE-
TIM0_OUT1 #5
US0_CLK #3
US1_CLK #3
US3_RTS #3 U0_RX
#3 U1_RTS #0
LEU0_RX #5
I2C2_SCL #1
LES_CH15
PRS_CH1 #2
ACMP3_O #1
DBG_SWO #1
PC14
VDAC0_OUT1ALT /
OPA1_OUTALT #2
BUSACMP1Y BU-
SACMP1X
EBI_NANDWEn #4
TIM0_CDTI1 #1
TIM1_CC1 #0
TIM1_CC3 #4
TIM5_CC0 #6
WTIM3_CC0 #3 LE-
TIM0_OUT0 #5
PCNT0_S1IN #0
US0_CS #3 US1_CS
#3 US2_RTS #3
US3_CS #2 U0_TX
#3 U1_CTS #0
LEU0_TX #5
I2C2_SDA #1
LES_CH14
PRS_CH0 #2
ACMP3_O #2
PA2 BUSBY BUSAX
LCD_SEG15
EBI_AD11 #0
EBI_DTEN #3
TIM0_CC2 #0
TIM3_CC2 #4
ETH_RMIIRXD0 #0
ETH_MIITXD2 #0
SDIO_DAT2 #1
US1_RX #6
US3_CLK #0
QSPI0_DQ0 #1
CMU_CLK0 #0
PRS_CH8 #1
ETM_TD0 #3
PG0 BUSACMP2Y BU-
SACMP2X EBI_AD00 #2
TIM6_CC0 #0
TIM2_CDTI0 #3
WTIM0_CDTI1 #1
LETIM1_OUT0 #6
ETH_MIITXCLK #1
US3_TX #4
QSPI0_SCLK #2
CMU_CLK2 #3
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 169
GPIO Name Pin Alternate Functionality / Description
Analog EBI Timers Communication Other
PD15 EBI_NANDREn #1
TIM2_CDTI2 #1
TIM3_CC0 #7
WTIM0_CDTI0 #1
PCNT1_S0IN #2
ETH_TSUEXTCLK
#1 CAN0_TX #5
US5_CTS #1
I2C0_SCL #3
PC13
VDAC0_OUT1ALT /
OPA1_OUTALT #1
BUSACMP1Y BU-
SACMP1X
EBI_ARDY #4
TIM0_CDTI0 #1
TIM1_CC0 #0
TIM1_CC2 #4
TIM5_CC2 #5
WTIM3_CC2 #2
PCNT0_S0IN #0
PCNT2_S1IN #4
US0_CTS #3
US1_RTS #4
US2_RTS #4
U0_CTS #3 U1_RX
#0 I2C2_SCL #6
LES_CH13
PRS_CH21 #1
ACMP3_O #3
PC12
VDAC0_OUT1ALT /
OPA1_OUTALT #0
BUSACMP1Y BU-
SACMP1X
TIM1_CC3 #0
TIM5_CC1 #5
WTIM3_CC1 #2
PCNT2_S0IN #4
CAN1_RX #4
US0_RTS #3
US1_CTS #4
US2_CTS #4
U0_RTS #3 U1_TX
#0 I2C2_SDA #6
CMU_CLK0 #1
LES_CH12
PRS_CH20 #1
PC11 BUSACMP1Y BU-
SACMP1X
EBI_ALE #4
EBI_ALE #5 EBI_A23
#1
TIM5_CC0 #5
WTIM3_CC0 #2
CAN1_TX #4
US0_TX #2
I2C1_SDA #4
LES_CH11
PRS_CH19 #1
PA3 BUSAY BUSBX
LCD_SEG16
EBI_AD12 #0
EBI_VSNC #3
TIM0_CDTI0 #0
TIM3_CC0 #5
ETH_RMIIREFCLK
#0 ETH_MIITXD1 #0
SDIO_DAT3 #1
US3_CS #0 U0_TX
#2 QSPI0_DQ1 #1
CMU_CLK2 #1
CMU_CLKI0 #1
CMU_CLK2 #4
LES_ALTEX2
PRS_CH9 #1
ETM_TD1 #3
PG2 BUSACMP2Y BU-
SACMP2X EBI_AD02 #2
TIM6_CC2 #0
TIM2_CDTI2 #3
WTIM0_CC0 #2 LE-
TIM1_OUT0 #7
ETH_MIITXD2 #1
US3_CLK #4
QSPI0_DQ1 #2
CMU_CLK0 #3
PG1 BUSACMP2Y BU-
SACMP2X EBI_AD01 #2
TIM6_CC1 #0
TIM2_CDTI1 #3
WTIM0_CDTI2 #1
LETIM1_OUT1 #6
ETH_MIITXD3 #1
US3_RX #4
QSPI0_DQ0 #2
CMU_CLK1 #3
PC10 BUSACMP1Y BU-
SACMP1X
EBI_A10 #2 EBI_A22
#1
TIM2_CC2 #2
TIM5_CC2 #4
WTIM3_CC2 #1
CAN1_TX #3
US0_RX #2
LES_CH10
PRS_CH18 #1
PC9 BUSACMP1Y BU-
SACMP1X
EBI_A09 #2 EBI_A21
#1 EBI_A27 #3
TIM2_CC1 #2
TIM5_CC1 #4
WTIM3_CC1 #1
CAN1_RX #3
US0_CLK #2
LES_CH9 PRS_CH5
#0 GPIO_EM4WU2
PC8 BUSACMP1Y BU-
SACMP1X
EBI_A08 #2 EBI_A15
#0 EBI_A20 #1
EBI_A26 #3
TIM2_CC0 #2
TIM5_CC0 #4
WTIM3_CC0 #1
US0_CS #2 LES_CH8 PRS_CH4
#0
PA4 BUSBY BUSAX
LCD_SEG17
EBI_AD13 #0
EBI_HSNC #3
TIM0_CDTI1 #0
TIM3_CC1 #5
ETH_RMIICRSDV #0
ETH_MIITXD0 #0
SDIO_DAT4 #1
US3_CTS #0 U0_RX
#2 QSPI0_DQ2 #1
LES_ALTEX3
PRS_CH16 #0
ETM_TD2 #3
PG4 BUSACMP2Y BU-
SACMP2X EBI_AD04 #2 TIM6_CDTI1 #0
WTIM0_CC2 #2
ETH_MIITXD0 #1
US3_CTS #4
QSPI0_DQ3 #2
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 170
GPIO Name Pin Alternate Functionality / Description
Analog EBI Timers Communication Other
PG3 BUSACMP2Y BU-
SACMP2X EBI_AD03 #2
TIM6_CDTI0 #0
WTIM0_CC1 #2 LE-
TIM1_OUT1 #7
ETH_MIITXD1 #1
US3_CS #4
QSPI0_DQ2 #2
PI5 EBI_A07 #2 WTIM3_CC2 #4 US4_RTS #2
I2C2_SCL #7 ACMP3_O #5
PI4 EBI_A06 #2 WTIM3_CC1 #4 US4_CTS #2
I2C2_SDA #7 ACMP3_O #4
PI3 EBI_A05 #2 WTIM3_CC0 #4 US4_CS #2
I2C1_SCL #7
PA5 BUSAY BUSBX
LCD_SEG18 EBI_AD14 #0
TIM0_CDTI2 #0
TIM3_CC2 #5
PCNT1_S0IN #0
ETH_RMIIRXER #0
ETH_MIITXEN #0
SDIO_DAT5 #1
US3_RTS #0
U0_CTS #2
QSPI0_DQ3 #1
LEU1_TX #1
LES_ALTEX4
PRS_CH17 #0
ACMP1_O #7
ETM_TD3 #3
PG6 BUSACMP2Y BU-
SACMP2X EBI_AD06 #2 TIM2_CC1 #7
TIM6_CC0 #1
ETH_MIITXER #1
US3_TX #3
QSPI0_DQ5 #2
PG5 BUSACMP2Y BU-
SACMP2X EBI_AD05 #2 TIM6_CDTI2 #0
TIM2_CC0 #7
ETH_MIITXEN #1
US3_RTS #4
QSPI0_DQ4 #2
PI2 EBI_A04 #2
TIM5_CC2 #3
WTIM1_CC3 #5
PCNT2_S0IN #5
US4_CLK #2
I2C1_SDA #7 ACMP2_O #5
PI1 EBI_A03 #2
TIM5_CC1 #3
WTIM1_CC2 #5
PCNT2_S1IN #5
US4_RX #2 ACMP2_O #4
PI0 EBI_A02 #2
TIM5_CC0 #3
WTIM1_CC1 #5
PCNT2_S0IN #6
US4_TX #2 ACMP2_O #3
PA6 BUSBY BUSAX
LCD_SEG19 EBI_AD15 #0
TIM3_CC0 #6
WTIM0_CC0 #1 LE-
TIM1_OUT1 #0
PCNT1_S1IN #0
ETH_MIITXER #0
ETH_MDC #3
SDIO_CD #2
US5_TX #1 U0_RTS
#2 LEU1_RX #1
PRS_CH6 #0
ACMP0_O #4
ETM_TCLK #3
GPIO_EM4WU1
PG8 EBI_AD08 #2
TIM2_CC0 #6
TIM6_CC2 #1
WTIM0_CC0 #3
ETH_MIIRXD3 #1
CAN0_RX #4
US3_CLK #3
QSPI0_DQ7 #2
PG7 BUSACMP2Y BU-
SACMP2X EBI_AD07 #2 TIM2_CC2 #7
TIM6_CC1 #1
ETH_MIIRXCLK #1
US3_RX #3
QSPI0_DQ6 #2
PE5 BUSCY BUSDX
LCD_COM1
EBI_A12 #0 EBI_A17
#1 EBI_A23 #3
TIM3_CC0 #3
TIM3_CC2 #2
TIM5_CC1 #0
TIM6_CDTI1 #2
WTIM0_CC1 #0
WTIM1_CC2 #4
US0_CLK #1
US1_CLK #6
US3_CTS #1
U1_RTS #3
I2C0_SCL #7
PRS_CH17 #2
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 171
GPIO Name Pin Alternate Functionality / Description
Analog EBI Timers Communication Other
PE6 BUSDY BUSCX
LCD_COM2
EBI_A13 #0 EBI_A18
#1 EBI_A24 #3
TIM3_CC1 #3
TIM5_CC2 #0
TIM6_CDTI2 #2
WTIM0_CC2 #0
WTIM1_CC3 #4
US0_RX #1 US3_TX
#1 PRS_CH6 #2
PE7 BUSCY BUSDX
LCD_COM3
EBI_A14 #0 EBI_A19
#1 EBI_A25 #3
TIM3_CC2 #3
TIM5_CC0 #1
WTIM1_CC0 #5
US0_TX #1 US3_RX
#1 PRS_CH7 #2
PG11 EBI_AD11 #2 TIM6_CDTI2 #1
WTIM0_CDTI0 #3
ETH_MIIRXD0 #1
CAN1_TX #6
US3_RTS #5
QSPI0_DQS #2
ETM_TD3 #5
PG10 EBI_AD10 #2
TIM2_CC2 #6
TIM6_CDTI1 #1
WTIM0_CC2 #3
ETH_MIIRXD1 #1
CAN1_RX #6
US3_CTS #3
QSPI0_CS1 #2
PG9 EBI_AD09 #2
TIM2_CC1 #6
TIM6_CDTI0 #1
WTIM0_CC1 #3
ETH_MIIRXD2 #1
CAN0_TX #4
US3_CTS #5
QSPI0_CS0 #2
PE3 BU_STAT EBI_A10 #0 EBI_A15
#1
TIM3_CC0 #2
WTIM1_CC0 #4
US0_CTS #1
U0_RTS #1 U1_RX
#3
ACMP1_O #1
PE4 BUSDY BUSCX
LCD_COM0
EBI_A11 #0 EBI_A16
#1 EBI_A22 #3
TIM3_CC1 #2
TIM5_CC0 #0
TIM6_CDTI0 #2
WTIM0_CC0 #0
WTIM1_CC1 #4
US0_CS #1 US1_CS
#5 US3_CS #1
U0_RX #6 U1_CTS
#3 I2C0_SDA #7
PRS_CH16 #2
PG14 EBI_AD14 #2
TIM6_CC2 #2
WTIM2_CC0 #4
PCNT1_S0IN #7
ETH_MIICRS #1
US0_CLK #6 ETM_TD0 #5
PG13 EBI_AD13 #2
TIM6_CC1 #2
WTIM0_CDTI2 #3
WTIM2_CC2 #3
ETH_MIIRXER #1
US0_RX #6 ETM_TD1 #5
PG12 EBI_AD12 #2
TIM6_CC0 #2
WTIM0_CDTI1 #3
WTIM2_CC1 #3
ETH_MIIRXDV #1
US0_TX #6 ETM_TD2 #5
PE1 BUSCY BUSDX EBI_A01 #2 EBI_A08
#0
TIM3_CC1 #1
WTIM1_CC2 #3
PCNT0_S1IN #1
CAN0_TX #6 U0_RX
#1 I2C1_SCL #2
CMU_CLKI0 #4
PRS_CH23 #1
ACMP2_O #2
PE2 BU_VOUT EBI_A09 #0 EBI_A14
#1
TIM3_CC2 #1
WTIM1_CC3 #3
US0_RTS #1
U0_CTS #1 U1_TX
#3
PRS_CH20 #2
ACMP0_O #1
PG15 EBI_AD15 #2 WTIM2_CC1 #4
PCNT1_S1IN #7
ETH_MIICOL #1
US0_CS #6 ETM_TCLK #5
PB15 BUSAY BUSBX EBI_CS3 #1 EBI_AR-
DY #2 TIM3_CC1 #7
ETH_TSUTMRTOG
#1 SDIO_WP #2
US2_RTS #1
US5_RTS #1
PRS_CH17 #1
ETM_TD2 #1
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 172
GPIO Name Pin Alternate Functionality / Description
Analog EBI Timers Communication Other
PB0 BUSBY BUSAX
LCD_SEG32
EBI_AD00 #1
EBI_CS0 #3
EBI_A16 #0
TIM2_CDTI0 #0
TIM1_CC0 #2
TIM3_CC2 #7
WTIM0_CC0 #5
PCNT0_S0IN #5
PCNT1_S1IN #2
LEU1_TX #3 PRS_CH4 #1
ACMP0_O #5
PE0 BUSDY BUSCX EBI_A00 #2 EBI_A07
#0
TIM3_CC0 #1
WTIM1_CC1 #3
PCNT0_S0IN #1
CAN0_RX #6 U0_TX
#1 I2C1_SDA #2
PRS_CH22 #1
ACMP2_O #1
PC7 BUSACMP0Y BU-
SACMP0X OPA3_N
EBI_A06 #0 EBI_A13
#1 EBI_A21 #3 WTIM1_CC0 #3
US0_CTS #2
US1_RTS #3
LEU1_RX #0
I2C0_SCL #2
LES_CH7
PRS_CH15 #1
ETM_TD0 #2
PB1 BUSAY BUSBX
LCD_SEG33
EBI_AD01 #1
EBI_CS1 #3
EBI_A17 #0
TIM2_CDTI1 #0
TIM1_CC1 #2
WTIM0_CC1 #5 LE-
TIM1_OUT1 #5
PCNT0_S1IN #5
ETH_MIICRS #0
US5_RX #2
LEU1_RX #3
PRS_CH5 #1
PB2 BUSBY BUSAX
LCD_SEG34
EBI_AD02 #1
EBI_CS2 #3
EBI_A18 #0
TIM2_CDTI2 #0
TIM1_CC2 #2
WTIM0_CC2 #5 LE-
TIM1_OUT0 #5
ETH_MIICOL #0
US1_CS #6
PRS_CH18 #0
ACMP0_O #6
PB3
BUSAY BUSBX
LCD_SEG20 /
LCD_COM4
EBI_AD03 #1
EBI_CS3 #3
EBI_A19 #0
TIM1_CC3 #2
WTIM0_CC0 #6
PCNT1_S0IN #1
ETH_MIICRS #2
ETH_MDIO #0
SDIO_DAT6 #1
US2_TX #1 US3_TX
#2 QSPI0_DQ4 #1
PRS_CH19 #0
ACMP0_O #7
PC6 BUSACMP0Y BU-
SACMP0X OPA3_P EBI_A05 #0 WTIM1_CC3 #2
US0_RTS #2
US1_CTS #3
LEU1_TX #0
I2C0_SDA #2
LES_CH6
PRS_CH14 #1
ETM_TCLK #2
PB4
BUSBY BUSAX
LCD_SEG21 /
LCD_COM5
EBI_AD04 #1
EBI_ARDY #3
EBI_A20 #0
WTIM0_CC1 #6
PCNT1_S1IN #1
ETH_MIICOL #2
ETH_MDC #0
SDIO_DAT7 #1
US2_RX #1
QSPI0_DQ5 #1
LEU1_TX #4
PRS_CH20 #0
PB5
BUSAY BUSBX
LCD_SEG22 /
LCD_COM6
EBI_AD05 #1
EBI_ALE #3 EBI_A21
#0
WTIM0_CC2 #6 LE-
TIM1_OUT0 #4
PCNT0_S0IN #6
ETH_TSUEXTCLK
#0 US0_RTS #4
US2_CLK #1
QSPI0_DQ6 #1
LEU1_RX #4
PRS_CH21 #0
PB6
BUSBY BUSAX
LCD_SEG23 /
LCD_COM7
EBI_AD06 #1
EBI_WEn #3
EBI_A22 #0
TIM0_CC0 #3
TIM2_CC0 #4
WTIM3_CC0 #6 LE-
TIM1_OUT1 #4
PCNT0_S1IN #6
ETH_TSUTMRTOG
#0 US0_CTS #4
US2_CS #1
QSPI0_DQ7 #1
PRS_CH12 #1
PD5 BUSADC0Y BU-
SADC0X OPA2_OUT
EBI_A09 #1 EBI_A18
#3
TIM6_CC1 #7
WTIM0_CDTI1 #4
WTIM1_CC3 #1
WTIM2_CC2 #5
US1_RTS #1
U0_CTS #5
LEU0_RX #0
I2C1_SCL #3
PRS_CH11 #2
ETM_TD3 #0
ETM_TD3 #2
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 173
GPIO Name Pin Alternate Functionality / Description
Analog EBI Timers Communication Other
PD4 BUSADC0Y BU-
SADC0X OPA2_P
EBI_A08 #1 EBI_A17
#3
TIM6_CC0 #7
WTIM0_CDTI0 #4
WTIM1_CC2 #1
WTIM2_CC1 #5
CAN1_TX #2
US1_CTS #1
US3_CLK #2
LEU0_TX #0
I2C1_SDA #3
CMU_CLKI0 #0
PRS_CH10 #2
ETM_TD2 #0
ETM_TD2 #2
PC0
VDAC0_OUT0ALT /
OPA0_OUTALT #0
BUSACMP0Y BU-
SACMP0X
EBI_AD07 #1
EBI_CS0 #2
EBI_REn #3
EBI_A23 #0
TIM0_CC1 #3
TIM2_CC1 #4
PCNT0_S0IN #2
ETH_MDIO #2
CAN0_RX #0
US0_TX #5 US1_TX
#0 US1_CS #4
US2_RTS #0
US3_CS #3
I2C0_SDA #4
LES_CH0 PRS_CH2
#0
PC1
VDAC0_OUT0ALT /
OPA0_OUTALT #1
BUSACMP0Y BU-
SACMP0X
EBI_AD08 #1
EBI_CS1 #2
EBI_BL0 #3 EBI_A24
#0
TIM0_CC2 #3
TIM2_CC2 #4
WTIM0_CC0 #7
PCNT0_S1IN #2
ETH_MDC #2
CAN0_TX #0
US0_RX #5 US1_TX
#4 US1_RX #0
US2_CTS #0
US3_RTS #1
I2C0_SCL #4
LES_CH1 PRS_CH3
#0
PC2
VDAC0_OUT0ALT /
OPA0_OUTALT #2
BUSACMP0Y BU-
SACMP0X
EBI_AD09 #1
EBI_CS2 #2
EBI_NANDWEn #3
EBI_A25 #0
TIM0_CDTI0 #3
TIM2_CC0 #5
WTIM0_CC1 #7 LE-
TIM1_OUT0 #3
ETH_TSUEXTCLK
#2 CAN1_RX #0
US1_RX #4 US2_TX
#0
LES_CH2
PRS_CH10 #1
PA8 BUSBY BUSAX
LCD_SEG36
EBI_AD14 #1
EBI_A02 #3
EBI_DCLK #0
TIM2_CC0 #0
TIM0_CC0 #6 LE-
TIM0_OUT0 #6
PCNT1_S1IN #4
US2_RX #2
US4_RTS #0 PRS_CH8 #0
PA11 BUSAY BUSBX
LCD_SEG39
EBI_CS1 #1
EBI_A05 #3
EBI_HSNC #0
WTIM2_CC2 #0 LE-
TIM1_OUT0 #1 US2_CTS #2 PRS_CH11 #0
PA13 BUSAY BUSBX
EBI_WEn #1
EBI_NANDWEn #2
EBI_A01 #0 EBI_A07
#3
TIM0_CC2 #7
TIM2_CC1 #1
WTIM0_CDTI1 #2
WTIM2_CC1 #1 LE-
TIM1_OUT1 #1
PCNT1_S1IN #5
CAN1_TX #5
US0_CS #5 US2_TX
#3
PRS_CH13 #0
PB9 BUSAY BUSBX
EBI_ALE #1
EBI_NANDREn #2
EBI_A00 #1 EBI_A03
#0 EBI_A09 #3
WTIM2_CC0 #2 LE-
TIM0_OUT0 #7
SDIO_WP #3
CAN0_RX #3
US1_CTS #0 U1_TX
#2
PRS_CH13 #1
ACMP1_O #5
PB12
BUSBY BUSAX
VDAC0_OUT1 /
OPA1_OUT
EBI_A03 #1 EBI_A12
#3 EBI_CSTFT #2
TIM1_CC3 #3
WTIM2_CC0 #3 LE-
TIM0_OUT1 #1
PCNT0_S0IN #7
PCNT1_S1IN #6
US2_CTS #1
US5_RTS #0
U1_RTS #2
I2C1_SCL #1
PRS_CH16 #1
PH2 BUSADC1Y BU-
SADC1X EBI_VSNC #2 TIM6_CC0 #3 US1_CTS #6
PH5 BUSADC1Y BU-
SADC1X EBI_A17 #2 TIM6_CDTI0 #3
WTIM2_CC1 #6 US4_RX #4
PH8 BUSACMP3Y BU-
SACMP3X EBI_A20 #2
TIM6_CC0 #4
WTIM1_CC0 #6
WTIM2_CC1 #7
US4_CTS #4
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 174
GPIO Name Pin Alternate Functionality / Description
Analog EBI Timers Communication Other
PH11 BUSACMP3Y BU-
SACMP3X EBI_A23 #2 TIM5_CC1 #1
WTIM1_CC3 #6
US5_RX #3 U1_TX
#5 I2C1_SDA #5
PH13 BUSACMP3Y BU-
SACMP3X EBI_A25 #2
TIM5_CC0 #2
WTIM1_CC1 #7
PCNT2_S1IN #7
US5_CS #3 U1_CTS
#5 I2C1_SDA #6
PD0
VDAC0_OUT0ALT /
OPA0_OUTALT #4
OPA2_OUTALT BU-
SADC0Y BUSADC0X
EBI_A04 #1 EBI_A13
#3
TIM4_CDTI0
TIM6_CC2 #5
WTIM1_CC2 #0
PCNT2_S0IN #0
CAN0_RX #2
US1_TX #1
PD3 BUSADC0Y BU-
SADC0X OPA2_N
EBI_A07 #1 EBI_A16
#3
TIM4_CDTI2
TIM0_CC2 #2
TIM6_CC2 #6
WTIM1_CC1 #1
WTIM2_CC0 #5
CAN1_RX #2
US1_CS #1
LEU1_RX #2
ETM_TD1 #0
ETM_TD1 #2
PD8 BU_VIN EBI_A12 #1 WTIM1_CC2 #2 US2_RTS #5
CMU_CLK1 #1
PRS_CH12 #2
ACMP2_O #0
PB7 LFXTAL_P TIM0_CDTI0 #4
TIM1_CC0 #3
US0_TX #4
US1_CLK #0
US3_RX #2 US4_TX
#0 U0_CTS #4
PRS_CH22 #0
PC3
VDAC0_OUT0ALT /
OPA0_OUTALT #3
BUSACMP0Y BU-
SACMP0X
EBI_AD10 #1
EBI_CS3 #2
EBI_BL1 #3
EBI_NANDREn #0
TIM0_CDTI1 #3
TIM2_CC1 #5
WTIM0_CC2 #7 LE-
TIM1_OUT1 #3
ETH_TSUTMRTOG
#2 CAN1_TX #0
US1_CLK #4
US2_RX #0
LES_CH3
PRS_CH11 #1
PC5 BUSACMP0Y BU-
SACMP0X OPA0_N
EBI_AD12 #1
EBI_WEn #2
EBI_NANDWEn #0
EBI_A00 #3
TIM0_CC1 #5 LE-
TIM0_OUT1 #3
PCNT1_S1IN #3
SDIO_WP #1
US2_CS #0 US4_CS
#0 U0_RX #4
U1_RTS #4
I2C1_SCL #0
LES_CH5
PRS_CH19 #2
PA9 BUSAY BUSBX
LCD_SEG37
EBI_AD15 #1
EBI_A03 #3
EBI_DTEN #0
TIM2_CC1 #0
TIM0_CC1 #6
WTIM2_CC0 #0 LE-
TIM0_OUT1 #6
US2_CLK #2 PRS_CH9 #0
PB10 BUSBY BUSAX
EBI_BL0 #2 EBI_A01
#1 EBI_A04 #0
EBI_A10 #3
WTIM2_CC1 #2 LE-
TIM0_OUT1 #7
SDIO_CD #3
CAN0_TX #3
US1_RTS #0
US2_CTS #3 U1_RX
#2
PRS_CH9 #2
ACMP1_O #6
PH0 BUSADC1Y BU-
SADC1X EBI_DCLK #2 WTIM2_CC2 #4 US0_CTS #6
LEU1_TX #5
PH3 BUSADC1Y BU-
SADC1X EBI_HSNC #2 TIM6_CC1 #3 US1_RTS #6
PH6 BUSADC1Y BU-
SADC1X EBI_A18 #2 TIM6_CDTI1 #3
WTIM2_CC2 #6 US4_CLK #4
PH9 BUSACMP3Y BU-
SACMP3X EBI_A21 #2
TIM6_CC1 #4
WTIM1_CC1 #6
WTIM2_CC2 #7
US4_RTS #4
PH12 BUSACMP3Y BU-
SACMP3X EBI_A24 #2 TIM5_CC2 #1
WTIM1_CC0 #7
US5_CLK #3 U1_RX
#5 I2C1_SCL #5
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 175
GPIO Name Pin Alternate Functionality / Description
Analog EBI Timers Communication Other
PH14 BUSACMP3Y BU-
SACMP3X EBI_A26 #2
TIM5_CC1 #2
WTIM1_CC2 #7
PCNT2_S0IN #7
US5_CTS #3
U1_RTS #5
I2C1_SCL #6
PH15 BUSACMP3Y BU-
SACMP3X EBI_A27 #2
TIM5_CC2 #2
WTIM1_CC3 #7
PCNT2_S1IN #6
US5_RTS #3
PD2 BUSADC0Y BU-
SADC0X
EBI_A06 #1 EBI_A15
#3 EBI_A27 #0
TIM0_CC1 #2
TIM6_CC1 #6
WTIM1_CC0 #1
US1_CLK #1
LEU1_TX #2 DBG_SWO #3
PD7
BUSADC0Y BU-
SADC0X
ADC0_EXTN
ADC1_EXTN
OPA1_N
EBI_A11 #1 EBI_A20
#3
TIM1_CC1 #4
WTIM1_CC1 #2 LE-
TIM0_OUT1 #0
PCNT0_S1IN #3
US1_TX #2
US3_CLK #1 U0_TX
#6 I2C0_SCL #1
CMU_CLK0 #2
LES_ALTEX1
ACMP1_O #2
ETM_TCLK #0
PB8 LFXTAL_N TIM0_CDTI1 #4
TIM1_CC1 #3
US0_RX #4 US1_CS
#0 US4_RX #0
U0_RTS #4
CMU_CLKI0 #2
PRS_CH23 #0
PC4 BUSACMP0Y BU-
SACMP0X OPA0_P
EBI_AD11 #1
EBI_ALE #2
EBI_NANDREn #3
EBI_A26 #0
TIM0_CC0 #5
TIM0_CDTI2 #3
TIM2_CC2 #5 LE-
TIM0_OUT0 #3
PCNT1_S0IN #3
SDIO_CD #1
US2_CLK #0
US4_CLK #0 U0_TX
#4 U1_CTS #4
I2C1_SDA #0
LES_CH4
PRS_CH18 #2
GPIO_EM4WU6
PA7 BUSAY BUSBX
LCD_SEG35
EBI_AD13 #1
EBI_A01 #3
EBI_CSTFT #0
TIM0_CC2 #5 LE-
TIM1_OUT0 #0
PCNT1_S0IN #4
US2_TX #2
US4_CTS #0
US5_RX #1
PRS_CH7 #1
PA10 BUSBY BUSAX
LCD_SEG38
EBI_CS0 #1
EBI_A04 #3
EBI_VSNC #0
TIM2_CC2 #0
TIM0_CC2 #6
WTIM2_CC1 #0
US2_CS #2 PRS_CH10 #0
PA12 BUSBY BUSAX
EBI_CS2 #1
EBI_REn #2
EBI_A00 #0 EBI_A06
#3
TIM2_CC0 #1
WTIM0_CDTI0 #2
WTIM2_CC0 #1 LE-
TIM1_OUT0 #2
PCNT1_S0IN #5
CAN1_RX #5
US0_CLK #5
US2_RTS #2
CMU_CLK0 #5
PRS_CH12 #0
ACMP1_O #3
PA14 BUSBY BUSAX
LCD_BEXT
EBI_REn #1
EBI_A02 #0 EBI_A08
#3
TIM2_CC2 #1
WTIM0_CDTI2 #2
WTIM2_CC2 #1 LE-
TIM1_OUT1 #2
US1_TX #6 US2_RX
#3 US3_RTS #2
PRS_CH14 #0
ACMP1_O #4
PB11
BUSAY BUSBX
VDAC0_OUT0 /
OPA0_OUT
IDAC0_OUT
EBI_BL1 #2 EBI_A02
#1 EBI_A11 #3
TIM0_CDTI2 #4
TIM1_CC2 #3
WTIM2_CC2 #2 LE-
TIM0_OUT0 #1
PCNT0_S1IN #7
PCNT1_S0IN #6
US0_CTS #5
US1_CLK #5
US2_CS #3
US5_CLK #0
U1_CTS #2
I2C1_SDA #1
CMU_CLK1 #5
CMU_CLKI0 #7
PRS_CH21 #2
ACMP0_O #3
GPIO_EM4WU7
PH1 BUSADC1Y BU-
SADC1X EBI_DTEN #2 US0_RTS #6
LEU1_RX #5
PH4 BUSADC1Y BU-
SADC1X EBI_A16 #2 TIM6_CC2 #3
WTIM2_CC0 #6 US4_TX #4
PH7 BUSADC1Y BU-
SADC1X EBI_A19 #2 TIM6_CDTI2 #3
WTIM2_CC0 #7 US4_CS #4
PH10 BUSACMP3Y BU-
SACMP3X EBI_A22 #2 TIM6_CC2 #4
WTIM1_CC2 #6 US5_TX #3
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 176
GPIO Name Pin Alternate Functionality / Description
Analog EBI Timers Communication Other
PB13 BUSAY BUSBX
HFXTAL_P
TIM6_CC0 #5
WTIM1_CC0 #0
PCNT2_S0IN #2
US0_CLK #4
US1_CTS #5
US5_CS #0
LEU0_TX #1
CMU_CLKI0 #3
PRS_CH7 #0
PB14 BUSBY BUSAX
HFXTAL_N
TIM6_CC1 #5
WTIM1_CC1 #0
PCNT2_S1IN #2
US0_CS #4
US1_RTS #5
US5_CTS #0
LEU0_RX #1
PRS_CH6 #1
PD1
VDAC0_OUT1ALT /
OPA1_OUTALT #4
BUSADC0Y BU-
SADC0X OPA3_OUT
EBI_A05 #1 EBI_A14
#3
TIM4_CDTI1
TIM0_CC0 #2
TIM6_CC0 #6
WTIM1_CC3 #0
PCNT2_S1IN #0
CAN0_TX #2
US1_RX #1 DBG_SWO #2
PD6
BUSADC0Y BU-
SADC0X
ADC0_EXTP
VDAC0_EXT
ADC1_EXTP
OPA1_P
EBI_A10 #1 EBI_A19
#3
TIM1_CC0 #4
TIM6_CC2 #7
WTIM0_CDTI2 #4
WTIM1_CC0 #2 LE-
TIM0_OUT0 #0
PCNT0_S0IN #3
US0_RTS #5
US1_RX #2
US2_CTS #5
US3_CTS #2
U0_RTS #5
I2C0_SDA #1
CMU_CLK2 #2
LES_ALTEX0
PRS_CH5 #2
ACMP0_O #2
ETM_TD0 #0
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 177
5.21 Alternate Functionality Overview
A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of the alter-
nate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings and the associated GPIO
pin. Refer to 5.20 GPIO Functionality Table for a list of functions available on each GPIO pin.
Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout
is shown in the column corresponding to LOCATION 0.
Table 5.21. Alternate Functionality Overview
Alternate LOCATION
Functionality 0 - 3 4 - 7 Description
ACMP0_O
0: PE13
1: PE2
2: PD6
3: PB11
4: PA6
5: PB0
6: PB2
7: PB3
Analog comparator ACMP0, digital output.
ACMP1_O
0: PF2
1: PE3
2: PD7
3: PA12
4: PA14
5: PB9
6: PB10
7: PA5
Analog comparator ACMP1, digital output.
ACMP2_O
0: PD8
1: PE0
2: PE1
3: PI0
4: PI1
5: PI2 Analog comparator ACMP2, digital output.
ACMP3_O
0: PF0
1: PC15
2: PC14
3: PC13
4: PI4
5: PI5 Analog comparator ACMP3, digital output.
ADC0_EXTN
0: PD7
Analog to digital converter ADC0 external reference input negative pin.
ADC0_EXTP
0: PD6
Analog to digital converter ADC0 external reference input positive pin.
ADC1_EXTN
0: PD7
Analog to digital converter ADC1 external reference input negative pin.
ADC1_EXTP
0: PD6
Analog to digital converter ADC1 external reference input positive pin.
BOOT_RX
0: PF1
Bootloader RX.
BOOT_TX
0: PF0
Bootloader TX.
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 178
Alternate LOCATION
Functionality 0 - 3 4 - 7 Description
BU_STAT
0: PE3
Backup Power Domain status, whether or not the system is in backup mode.
BU_VIN
0: PD8
Battery input for Backup Power Domain.
BU_VOUT
0: PE2
Power output for Backup Power Domain.
CAN0_RX
0: PC0
1: PF0
2: PD0
3: PB9
4: PG8
5: PD14
6: PE0
7: PI12
CAN0 RX.
CAN0_TX
0: PC1
1: PF2
2: PD1
3: PB10
4: PG9
5: PD15
6: PE1
7: PI13
CAN0 TX.
CAN1_RX
0: PC2
1: PF1
2: PD3
3: PC9
4: PC12
5: PA12
6: PG10
7: PI14
CAN1 RX.
CAN1_TX
0: PC3
1: PF3
2: PD4
3: PC10
4: PC11
5: PA13
6: PG11
7: PI15
CAN1 TX.
CMU_CLK0
0: PA2
1: PC12
2: PD7
3: PG2
4: PF2
5: PA12 Clock Management Unit, clock output number 0.
CMU_CLK1
0: PA1
1: PD8
2: PE12
3: PG1
4: PF3
5: PB11 Clock Management Unit, clock output number 1.
CMU_CLK2
0: PA0
1: PA3
2: PD6
3: PG0
4: PA3
5: PD10 Clock Management Unit, clock output number 2.
CMU_CLKI0
0: PD4
1: PA3
2: PB8
3: PB13
4: PE1
5: PD10
6: PE12
7: PB11
Clock Management Unit, clock input number 0.
DBG_SWCLKTCK
0: PF0 Debug-interface Serial Wire clock input and JTAG Test Clock.
Note that this function is enabled to the pin out of reset, and has a built-in pull down.
DBG_SWDIOTMS
0: PF1 Debug-interface Serial Wire data input / output and JTAG Test Mode Select.
Note that this function is enabled to the pin out of reset, and has a built-in pull up.
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 179
Alternate LOCATION
Functionality 0 - 3 4 - 7 Description
DBG_SWO
0: PF2
1: PC15
2: PD1
3: PD2
Debug-interface Serial Wire viewer Output.
Note that this function is not enabled after reset, and must be enabled by software to be
used.
DBG_TDI
0: PF5 Debug-interface JTAG Test Data In.
Note that this function becomes available after the first valid JTAG command is re-
ceived, and has a built-in pull up when JTAG is active.
DBG_TDO
0: PF2 Debug-interface JTAG Test Data Out.
Note that this function becomes available after the first valid JTAG command is re-
ceived.
EBI_A00
0: PA12
1: PB9
2: PE0
3: PC5
External Bus Interface (EBI) address output pin 00.
EBI_A01
0: PA13
1: PB10
2: PE1
3: PA7
External Bus Interface (EBI) address output pin 01.
EBI_A02
0: PA14
1: PB11
2: PI0
3: PA8
External Bus Interface (EBI) address output pin 02.
EBI_A03
0: PB9
1: PB12
2: PI1
3: PA9
External Bus Interface (EBI) address output pin 03.
EBI_A04
0: PB10
1: PD0
2: PI2
3: PA10
External Bus Interface (EBI) address output pin 04.
EBI_A05
0: PC6
1: PD1
2: PI3
3: PA11
External Bus Interface (EBI) address output pin 05.
EBI_A06
0: PC7
1: PD2
2: PI4
3: PA12
External Bus Interface (EBI) address output pin 06.
EBI_A07
0: PE0
1: PD3
2: PI5
3: PA13
External Bus Interface (EBI) address output pin 07.
EBI_A08
0: PE1
1: PD4
2: PC8
3: PA14
External Bus Interface (EBI) address output pin 08.
EBI_A09
0: PE2
1: PD5
2: PC9
3: PB9
External Bus Interface (EBI) address output pin 09.
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 180
Alternate LOCATION
Functionality 0 - 3 4 - 7 Description
EBI_A10
0: PE3
1: PD6
2: PC10
3: PB10
External Bus Interface (EBI) address output pin 10.
EBI_A11
0: PE4
1: PD7
2: PI6
3: PB11
External Bus Interface (EBI) address output pin 11.
EBI_A12
0: PE5
1: PD8
2: PI7
3: PB12
External Bus Interface (EBI) address output pin 12.
EBI_A13
0: PE6
1: PC7
2: PI8
3: PD0
External Bus Interface (EBI) address output pin 13.
EBI_A14
0: PE7
1: PE2
2: PI9
3: PD1
External Bus Interface (EBI) address output pin 14.
EBI_A15
0: PC8
1: PE3
2: PI10
3: PD2
External Bus Interface (EBI) address output pin 15.
EBI_A16
0: PB0
1: PE4
2: PH4
3: PD3
External Bus Interface (EBI) address output pin 16.
EBI_A17
0: PB1
1: PE5
2: PH5
3: PD4
External Bus Interface (EBI) address output pin 17.
EBI_A18
0: PB2
1: PE6
2: PH6
3: PD5
External Bus Interface (EBI) address output pin 18.
EBI_A19
0: PB3
1: PE7
2: PH7
3: PD6
External Bus Interface (EBI) address output pin 19.
EBI_A20
0: PB4
1: PC8
2: PH8
3: PD7
External Bus Interface (EBI) address output pin 20.
EBI_A21
0: PB5
1: PC9
2: PH9
3: PC7
External Bus Interface (EBI) address output pin 21.
EBI_A22
0: PB6
1: PC10
2: PH10
3: PE4
External Bus Interface (EBI) address output pin 22.
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 181
Alternate LOCATION
Functionality 0 - 3 4 - 7 Description
EBI_A23
0: PC0
1: PC11
2: PH11
3: PE5
External Bus Interface (EBI) address output pin 23.
EBI_A24
0: PC1
1: PF0
2: PH12
3: PE6
External Bus Interface (EBI) address output pin 24.
EBI_A25
0: PC2
1: PF1
2: PH13
3: PE7
External Bus Interface (EBI) address output pin 25.
EBI_A26
0: PC4
1: PF2
2: PH14
3: PC8
External Bus Interface (EBI) address output pin 26.
EBI_A27
0: PD2
1: PF5
2: PH15
3: PC9
External Bus Interface (EBI) address output pin 27.
EBI_AD00
0: PE8
1: PB0
2: PG0 External Bus Interface (EBI) address and data input / output pin 00.
EBI_AD01
0: PE9
1: PB1
2: PG1 External Bus Interface (EBI) address and data input / output pin 01.
EBI_AD02
0: PE10
1: PB2
2: PG2 External Bus Interface (EBI) address and data input / output pin 02.
EBI_AD03
0: PE11
1: PB3
2: PG3 External Bus Interface (EBI) address and data input / output pin 03.
EBI_AD04
0: PE12
1: PB4
2: PG4 External Bus Interface (EBI) address and data input / output pin 04.
EBI_AD05
0: PE13
1: PB5
2: PG5 External Bus Interface (EBI) address and data input / output pin 05.
EBI_AD06
0: PE14
1: PB6
2: PG6 External Bus Interface (EBI) address and data input / output pin 06.
EBI_AD07
0: PE15
1: PC0
2: PG7 External Bus Interface (EBI) address and data input / output pin 07.
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 182
Alternate LOCATION
Functionality 0 - 3 4 - 7 Description
EBI_AD08
0: PA15
1: PC1
2: PG8 External Bus Interface (EBI) address and data input / output pin 08.
EBI_AD09
0: PA0
1: PC2
2: PG9 External Bus Interface (EBI) address and data input / output pin 09.
EBI_AD10
0: PA1
1: PC3
2: PG10 External Bus Interface (EBI) address and data input / output pin 10.
EBI_AD11
0: PA2
1: PC4
2: PG11 External Bus Interface (EBI) address and data input / output pin 11.
EBI_AD12
0: PA3
1: PC5
2: PG12 External Bus Interface (EBI) address and data input / output pin 12.
EBI_AD13
0: PA4
1: PA7
2: PG13 External Bus Interface (EBI) address and data input / output pin 13.
EBI_AD14
0: PA5
1: PA8
2: PG14 External Bus Interface (EBI) address and data input / output pin 14.
EBI_AD15
0: PA6
1: PA9
2: PG15 External Bus Interface (EBI) address and data input / output pin 15.
EBI_ALE
0: PF3
1: PB9
2: PC4
3: PB5
4: PC11
5: PC11 External Bus Interface (EBI) Address Latch Enable output.
EBI_ARDY
0: PF2
1: PD13
2: PB15
3: PB4
4: PC13
5: PF10 External Bus Interface (EBI) Hardware Ready Control input.
EBI_BL0
0: PF6
1: PF8
2: PB10
3: PC1
4: PF6
5: PF6 External Bus Interface (EBI) Byte Lane/Enable pin 0.
EBI_BL1
0: PF7
1: PF9
2: PB11
3: PC3
4: PF7
5: PF7 External Bus Interface (EBI) Byte Lane/Enable pin 1.
EBI_CS0
0: PD9
1: PA10
2: PC0
3: PB0
4: PE8
External Bus Interface (EBI) Chip Select output 0.
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 183
Alternate LOCATION
Functionality 0 - 3 4 - 7 Description
EBI_CS1
0: PD10
1: PA11
2: PC1
3: PB1
4: PE9
External Bus Interface (EBI) Chip Select output 1.
EBI_CS2
0: PD11
1: PA12
2: PC2
3: PB2
4: PE10
External Bus Interface (EBI) Chip Select output 2.
EBI_CS3
0: PD12
1: PB15
2: PC3
3: PB3
4: PE11
External Bus Interface (EBI) Chip Select output 3.
EBI_CSTFT
0: PA7
1: PF6
2: PB12
3: PA0
External Bus Interface (EBI) Chip Select output TFT.
EBI_DCLK
0: PA8
1: PF7
2: PH0
3: PA1
External Bus Interface (EBI) TFT Dot Clock pin.
EBI_DTEN
0: PA9
1: PD9
2: PH1
3: PA2
External Bus Interface (EBI) TFT Data Enable pin.
EBI_HSNC
0: PA11
1: PD11
2: PH3
3: PA4
External Bus Interface (EBI) TFT Horizontal Synchronization pin.
EBI_NANDREn
0: PC3
1: PD15
2: PB9
3: PC4
4: PC15
5: PF12 External Bus Interface (EBI) NAND Read Enable output.
EBI_NANDWEn
0: PC5
1: PD14
2: PA13
3: PC2
4: PC14
5: PF11 External Bus Interface (EBI) NAND Write Enable output.
EBI_REn
0: PF5
1: PA14
2: PA12
3: PC0
4: PF9
5: PF5 External Bus Interface (EBI) Read Enable output.
EBI_VSNC
0: PA10
1: PD10
2: PH2
3: PA3
External Bus Interface (EBI) TFT Vertical Synchronization pin.
EBI_WEn
0: PF4
1: PA13
2: PC5
3: PB6
4: PF8
5: PF4 External Bus Interface (EBI) Write Enable output.
ETH_MDC
0: PB4
1: PD14
2: PC1
3: PA6
Ethernet Management Data Clock.
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 184
Alternate LOCATION
Functionality 0 - 3 4 - 7 Description
ETH_MDIO
0: PB3
1: PD13
2: PC0
3: PA15
Ethernet Management Data I/O.
ETH_MIICOL
0: PB2
1: PG15
2: PB4 Ethernet MII Collision Detect.
ETH_MIICRS
0: PB1
1: PG14
2: PB3 Ethernet MII Carrier Sense.
ETH_MIIRXCLK
0: PA15
1: PG7
2: PD12 Ethernet MII Receive Clock.
ETH_MIIRXD0
0: PE12
1: PG11
2: PF9 Ethernet MII Receive Data Bit 0.
ETH_MIIRXD1
0: PE13
1: PG10
2: PD9 Ethernet MII Receive Data Bit 1.
ETH_MIIRXD2
0: PE14
1: PG9
2: PD10 Ethernet MII Receive Data Bit 2.
ETH_MIIRXD3
0: PE15
1: PG8
2: PD11 Ethernet MII Receive Data Bit 3.
ETH_MIIRXDV
0: PE11
1: PG12
2: PF8 Ethernet MII Receive Data Valid.
ETH_MIIRXER
0: PE10
1: PG13
2: PF7 Ethernet MII Receive Error.
ETH_MIITXCLK
0: PA0
1: PG0 Ethernet MII Transmit Clock.
ETH_MIITXD0
0: PA4
1: PG4 Ethernet MII Transmit Data Bit 0.
ETH_MIITXD1
0: PA3
1: PG3 Ethernet MII Transmit Data Bit 1.
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 185
Alternate LOCATION
Functionality 0 - 3 4 - 7 Description
ETH_MIITXD2
0: PA2
1: PG2 Ethernet MII Transmit Data Bit 2.
ETH_MIITXD3
0: PA1
1: PG1 Ethernet MII Transmit Data Bit 3.
ETH_MIITXEN
0: PA5
1: PG5 Ethernet MII Transmit Enable.
ETH_MIITXER
0: PA6
1: PG6 Ethernet MII Transmit Error.
ETH_RMIICRSDV
0: PA4
1: PD11 Ethernet RMII Carrier Sense / Data Valid.
ETH_RMIIREFCLK
0: PA3
1: PD10 Ethernet RMII Reference Clock.
ETH_RMIIRXD0
0: PA2
1: PD9 Ethernet RMII Receive Data Bit 0.
ETH_RMIIRXD1
0: PA1
1: PF9 Ethernet RMII Receive Data Bit 1.
ETH_RMIIRXER
0: PA5
1: PD12 Ethernet RMII Receive Error.
ETH_RMIITXD0
0: PE15
1: PF7 Ethernet RMII Transmit Data Bit 0.
ETH_RMIITXD1
0: PE14
1: PF6 Ethernet RMII Transmit Data Bit 1.
ETH_RMIITXEN
0: PA0
1: PF8 Ethernet RMII Transmit Enable.
ETH_TSUEXTCLK
0: PB5
1: PD15
2: PC2
3: PF8
Ethernet IEEE1588 External Reference Clock.
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 186
Alternate LOCATION
Functionality 0 - 3 4 - 7 Description
ETH_TSUTMR-
TOG
0: PB6
1: PB15
2: PC3
3: PF9
Ethernet IEEE1588 Timer Toggle.
ETM_TCLK
0: PD7
1: PF8
2: PC6
3: PA6
4: PE11
5: PG15 Embedded Trace Module ETM clock .
ETM_TD0
0: PD6
1: PF9
2: PC7
3: PA2
4: PE12
5: PG14 Embedded Trace Module ETM data 0.
ETM_TD1
0: PD3
1: PD13
2: PD3
3: PA3
4: PE13
5: PG13 Embedded Trace Module ETM data 1.
ETM_TD2
0: PD4
1: PB15
2: PD4
3: PA4
4: PE14
5: PG12 Embedded Trace Module ETM data 2.
ETM_TD3
0: PD5
1: PF3
2: PD5
3: PA5
4: PE15
5: PG11 Embedded Trace Module ETM data 3.
GPIO_EM4WU0
0: PA0
Pin can be used to wake the system up from EM4
GPIO_EM4WU1
0: PA6
Pin can be used to wake the system up from EM4
GPIO_EM4WU2
0: PC9
Pin can be used to wake the system up from EM4
GPIO_EM4WU3
0: PF1
Pin can be used to wake the system up from EM4
GPIO_EM4WU4
0: PF2
Pin can be used to wake the system up from EM4
GPIO_EM4WU5
0: PE13
Pin can be used to wake the system up from EM4
GPIO_EM4WU6
0: PC4
Pin can be used to wake the system up from EM4
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 187
Alternate LOCATION
Functionality 0 - 3 4 - 7 Description
GPIO_EM4WU7
0: PB11
Pin can be used to wake the system up from EM4
GPIO_EM4WU8
0: PF8
Pin can be used to wake the system up from EM4
GPIO_EM4WU9
0: PE10
Pin can be used to wake the system up from EM4
HFXTAL_N
0: PB14
High Frequency Crystal negative pin. Also used as external optional clock input pin.
HFXTAL_P
0: PB13
High Frequency Crystal positive pin.
I2C0_SCL
0: PA1
1: PD7
2: PC7
3: PD15
4: PC1
5: PF1
6: PE13
7: PE5
I2C0 Serial Clock Line input / output.
I2C0_SDA
0: PA0
1: PD6
2: PC6
3: PD14
4: PC0
5: PF0
6: PE12
7: PE4
I2C0 Serial Data input / output.
I2C1_SCL
0: PC5
1: PB12
2: PE1
3: PD5
4: PF2
5: PH12
6: PH14
7: PI3
I2C1 Serial Clock Line input / output.
I2C1_SDA
0: PC4
1: PB11
2: PE0
3: PD4
4: PC11
5: PH11
6: PH13
7: PI2
I2C1 Serial Data input / output.
I2C2_SCL
0: PF5
1: PC15
2: PF11
3: PF12
4: PF14
5: PF3
6: PC13
7: PI5
I2C2 Serial Clock Line input / output.
I2C2_SDA
0: PE8
1: PC14
2: PF10
3: PF4
4: PF13
5: PF15
6: PC12
7: PI4
I2C2 Serial Data input / output.
IDAC0_OUT
0: PB11
IDAC0 output.
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 188
Alternate LOCATION
Functionality 0 - 3 4 - 7 Description
LCD_BEXT
0: PA14 LCD external supply bypass in step down or charge pump mode. If using the LCD in
step-down or charge pump mode, a 1 uF (minimum) capacitor between this pin and
VSS is required.
To reduce supply ripple, a larger capcitor of approximately 1000 times the total LCD
segment capacitance may be used.
If using the LCD with the internal supply source, this pin may be left unconnected or
used as a GPIO.
LCD_COM0
0: PE4
LCD driver common line number 0.
LCD_COM1
0: PE5
LCD driver common line number 1.
LCD_COM2
0: PE6
LCD driver common line number 2.
LCD_COM3
0: PE7
LCD driver common line number 3.
LCD_SEG0
0: PF2
LCD segment line 0.
LCD_SEG1
0: PF3
LCD segment line 1.
LCD_SEG2
0: PF4
LCD segment line 2.
LCD_SEG3
0: PF5
LCD segment line 3.
LCD_SEG4
0: PE8
LCD segment line 4.
LCD_SEG5
0: PE9
LCD segment line 5.
LCD_SEG6
0: PE10
LCD segment line 6.
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 189
Alternate LOCATION
Functionality 0 - 3 4 - 7 Description
LCD_SEG7
0: PE11
LCD segment line 7.
LCD_SEG8
0: PE12
LCD segment line 8.
LCD_SEG9
0: PE13
LCD segment line 9.
LCD_SEG10
0: PE14
LCD segment line 10.
LCD_SEG11
0: PE15
LCD segment line 11.
LCD_SEG12
0: PA15
LCD segment line 12.
LCD_SEG13
0: PA0
LCD segment line 13.
LCD_SEG14
0: PA1
LCD segment line 14.
LCD_SEG15
0: PA2
LCD segment line 15.
LCD_SEG16
0: PA3
LCD segment line 16.
LCD_SEG17
0: PA4
LCD segment line 17.
LCD_SEG18
0: PA5
LCD segment line 18.
LCD_SEG19
0: PA6
LCD segment line 19.
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 190
Alternate LOCATION
Functionality 0 - 3 4 - 7 Description
LCD_SEG20 /
LCD_COM4
0: PB3
LCD segment line 20. This pin may also be used as LCD COM line 4
LCD_SEG21 /
LCD_COM5
0: PB4
LCD segment line 21. This pin may also be used as LCD COM line 5
LCD_SEG22 /
LCD_COM6
0: PB5
LCD segment line 22. This pin may also be used as LCD COM line 6
LCD_SEG23 /
LCD_COM7
0: PB6
LCD segment line 23. This pin may also be used as LCD COM line 7
LCD_SEG24
0: PF6
LCD segment line 24.
LCD_SEG25
0: PF7
LCD segment line 25.
LCD_SEG26
0: PF8
LCD segment line 26.
LCD_SEG27
0: PF9
LCD segment line 27.
LCD_SEG28
0: PD9
LCD segment line 28.
LCD_SEG29
0: PD10
LCD segment line 29.
LCD_SEG30
0: PD11
LCD segment line 30.
LCD_SEG31
0: PD12
LCD segment line 31.
LCD_SEG32
0: PB0
LCD segment line 32.
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 191
Alternate LOCATION
Functionality 0 - 3 4 - 7 Description
LCD_SEG33
0: PB1
LCD segment line 33.
LCD_SEG34
0: PB2
LCD segment line 34.
LCD_SEG35
0: PA7
LCD segment line 35.
LCD_SEG36
0: PA8
LCD segment line 36.
LCD_SEG37
0: PA9
LCD segment line 37.
LCD_SEG38
0: PA10
LCD segment line 38.
LCD_SEG39
0: PA11
LCD segment line 39.
LES_ALTEX0
0: PD6
LESENSE alternate excite output 0.
LES_ALTEX1
0: PD7
LESENSE alternate excite output 1.
LES_ALTEX2
0: PA3
LESENSE alternate excite output 2.
LES_ALTEX3
0: PA4
LESENSE alternate excite output 3.
LES_ALTEX4
0: PA5
LESENSE alternate excite output 4.
LES_ALTEX5
0: PE11
LESENSE alternate excite output 5.
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 192
Alternate LOCATION
Functionality 0 - 3 4 - 7 Description
LES_ALTEX6
0: PE12
LESENSE alternate excite output 6.
LES_ALTEX7
0: PE13
LESENSE alternate excite output 7.
LES_CH0
0: PC0
LESENSE channel 0.
LES_CH1
0: PC1
LESENSE channel 1.
LES_CH2
0: PC2
LESENSE channel 2.
LES_CH3
0: PC3
LESENSE channel 3.
LES_CH4
0: PC4
LESENSE channel 4.
LES_CH5
0: PC5
LESENSE channel 5.
LES_CH6
0: PC6
LESENSE channel 6.
LES_CH7
0: PC7
LESENSE channel 7.
LES_CH8
0: PC8
LESENSE channel 8.
LES_CH9
0: PC9
LESENSE channel 9.
LES_CH10
0: PC10
LESENSE channel 10.
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 193
Alternate LOCATION
Functionality 0 - 3 4 - 7 Description
LES_CH11
0: PC11
LESENSE channel 11.
LES_CH12
0: PC12
LESENSE channel 12.
LES_CH13
0: PC13
LESENSE channel 13.
LES_CH14
0: PC14
LESENSE channel 14.
LES_CH15
0: PC15
LESENSE channel 15.
LETIM0_OUT0
0: PD6
1: PB11
2: PF0
3: PC4
4: PE12
5: PC14
6: PA8
7: PB9
Low Energy Timer LETIM0, output channel 0.
LETIM0_OUT1
0: PD7
1: PB12
2: PF1
3: PC5
4: PE13
5: PC15
6: PA9
7: PB10
Low Energy Timer LETIM0, output channel 1.
LETIM1_OUT0
0: PA7
1: PA11
2: PA12
3: PC2
4: PB5
5: PB2
6: PG0
7: PG2
Low Energy Timer LETIM1, output channel 0.
LETIM1_OUT1
0: PA6
1: PA13
2: PA14
3: PC3
4: PB6
5: PB1
6: PG1
7: PG3
Low Energy Timer LETIM1, output channel 1.
LEU0_RX
0: PD5
1: PB14
2: PE15
3: PF1
4: PA0
5: PC15 LEUART0 Receive input.
LEU0_TX
0: PD4
1: PB13
2: PE14
3: PF0
4: PF2
5: PC14 LEUART0 Transmit output. Also used as receive input in half duplex communication.
LEU1_RX
0: PC7
1: PA6
2: PD3
3: PB1
4: PB5
5: PH1 LEUART1 Receive input.
LEU1_TX
0: PC6
1: PA5
2: PD2
3: PB0
4: PB4
5: PH0 LEUART1 Transmit output. Also used as receive input in half duplex communication.
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 194
Alternate LOCATION
Functionality 0 - 3 4 - 7 Description
LFXTAL_N
0: PB8
Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional ex-
ternal clock input pin.
LFXTAL_P
0: PB7
Low Frequency Crystal (typically 32.768 kHz) positive pin.
OPA0_N
0: PC5
Operational Amplifier 0 external negative input.
OPA0_P
0: PC4
Operational Amplifier 0 external positive input.
OPA1_N
0: PD7
Operational Amplifier 1 external negative input.
OPA1_P
0: PD6
Operational Amplifier 1 external positive input.
OPA2_N
0: PD3
Operational Amplifier 2 external negative input.
OPA2_OUT
0: PD5
Operational Amplifier 2 output.
OPA2_OUTALT
0: PD0
Operational Amplifier 2 alternative output.
OPA2_P
0: PD4
Operational Amplifier 2 external positive input.
OPA3_N
0: PC7
Operational Amplifier 3 external negative input.
OPA3_OUT
0: PD1
Operational Amplifier 3 output.
OPA3_P
0: PC6
Operational Amplifier 3 external positive input.
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 195
Alternate LOCATION
Functionality 0 - 3 4 - 7 Description
PCNT0_S0IN
0: PC13
1: PE0
2: PC0
3: PD6
4: PA0
5: PB0
6: PB5
7: PB12
Pulse Counter PCNT0 input number 0.
PCNT0_S1IN
0: PC14
1: PE1
2: PC1
3: PD7
4: PA1
5: PB1
6: PB6
7: PB11
Pulse Counter PCNT0 input number 1.
PCNT1_S0IN
0: PA5
1: PB3
2: PD15
3: PC4
4: PA7
5: PA12
6: PB11
7: PG14
Pulse Counter PCNT1 input number 0.
PCNT1_S1IN
0: PA6
1: PB4
2: PB0
3: PC5
4: PA8
5: PA13
6: PB12
7: PG15
Pulse Counter PCNT1 input number 1.
PCNT2_S0IN
0: PD0
1: PE8
2: PB13
3: PF10
4: PC12
5: PI2
6: PI0
7: PH14
Pulse Counter PCNT2 input number 0.
PCNT2_S1IN
0: PD1
1: PE9
2: PB14
3: PF11
4: PC13
5: PI1
6: PH15
7: PH13
Pulse Counter PCNT2 input number 1.
PRS_CH0
0: PA0
1: PF3
2: PC14
3: PF2
Peripheral Reflex System PRS, channel 0.
PRS_CH1
0: PA1
1: PF4
2: PC15
3: PE12
Peripheral Reflex System PRS, channel 1.
PRS_CH2
0: PC0
1: PF5
2: PE10
3: PE13
Peripheral Reflex System PRS, channel 2.
PRS_CH3
0: PC1
1: PE8
2: PE11
3: PA0
Peripheral Reflex System PRS, channel 3.
PRS_CH4
0: PC8
1: PB0
2: PF1 Peripheral Reflex System PRS, channel 4.
PRS_CH5
0: PC9
1: PB1
2: PD6 Peripheral Reflex System PRS, channel 5.
PRS_CH6
0: PA6
1: PB14
2: PE6 Peripheral Reflex System PRS, channel 6.
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 196
Alternate LOCATION
Functionality 0 - 3 4 - 7 Description
PRS_CH7
0: PB13
1: PA7
2: PE7 Peripheral Reflex System PRS, channel 7.
PRS_CH8
0: PA8
1: PA2
2: PE9 Peripheral Reflex System PRS, channel 8.
PRS_CH9
0: PA9
1: PA3
2: PB10 Peripheral Reflex System PRS, channel 9.
PRS_CH10
0: PA10
1: PC2
2: PD4 Peripheral Reflex System PRS, channel 10.
PRS_CH11
0: PA11
1: PC3
2: PD5 Peripheral Reflex System PRS, channel 11.
PRS_CH12
0: PA12
1: PB6
2: PD8 Peripheral Reflex System PRS, channel 12.
PRS_CH13
0: PA13
1: PB9
2: PE14 Peripheral Reflex System PRS, channel 13.
PRS_CH14
0: PA14
1: PC6
2: PE15 Peripheral Reflex System PRS, channel 14.
PRS_CH15
0: PA15
1: PC7
2: PF0 Peripheral Reflex System PRS, channel 15.
PRS_CH16
0: PA4
1: PB12
2: PE4 Peripheral Reflex System PRS, channel 16.
PRS_CH17
0: PA5
1: PB15
2: PE5 Peripheral Reflex System PRS, channel 17.
PRS_CH18
0: PB2
1: PC10
2: PC4 Peripheral Reflex System PRS, channel 18.
PRS_CH19
0: PB3
1: PC11
2: PC5 Peripheral Reflex System PRS, channel 19.
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 197
Alternate LOCATION
Functionality 0 - 3 4 - 7 Description
PRS_CH20
0: PB4
1: PC12
2: PE2 Peripheral Reflex System PRS, channel 20.
PRS_CH21
0: PB5
1: PC13
2: PB11 Peripheral Reflex System PRS, channel 21.
PRS_CH22
0: PB7
1: PE0
2: PF6 Peripheral Reflex System PRS, channel 22.
PRS_CH23
0: PB8
1: PE1
2: PF7 Peripheral Reflex System PRS, channel 23.
QSPI0_CS0
0: PF7
1: PA0
2: PG9 Quad SPI 0 Chip Select 0.
QSPI0_CS1
0: PF8
1: PA1
2: PG10 Quad SPI 0 Chip Select 1.
QSPI0_DQ0
0: PD9
1: PA2
2: PG1 Quad SPI 0 Data 0.
QSPI0_DQ1
0: PD10
1: PA3
2: PG2 Quad SPI 0 Data 1.
QSPI0_DQ2
0: PD11
1: PA4
2: PG3 Quad SPI 0 Data 2.
QSPI0_DQ3
0: PD12
1: PA5
2: PG4 Quad SPI 0 Data 3.
QSPI0_DQ4
0: PE8
1: PB3
2: PG5 Quad SPI 0 Data 4.
QSPI0_DQ5
0: PE9
1: PB4
2: PG6 Quad SPI 0 Data 5.
QSPI0_DQ6
0: PE10
1: PB5
2: PG7 Quad SPI 0 Data 6.
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 198
Alternate LOCATION
Functionality 0 - 3 4 - 7 Description
QSPI0_DQ7
0: PE11
1: PB6
2: PG8 Quad SPI 0 Data 7.
QSPI0_DQS
0: PF9
1: PE15
2: PG11 Quad SPI 0 Data S.
QSPI0_SCLK
0: PF6
1: PE14
2: PG0 Quad SPI 0 Serial Clock.
SDIO_CD
0: PF8
1: PC4
2: PA6
3: PB10
SDIO Card Detect.
SDIO_CLK
0: PE13
1: PE14 SDIO Serial Clock.
SDIO_CMD
0: PE12
1: PE15 SDIO Command.
SDIO_DAT0
0: PE11
1: PA0 SDIO Data 0.
SDIO_DAT1
0: PE10
1: PA1 SDIO Data 1.
SDIO_DAT2
0: PE9
1: PA2 SDIO Data 2.
SDIO_DAT3
0: PE8
1: PA3 SDIO Data 3.
SDIO_DAT4
0: PD12
1: PA4 SDIO Data 4.
SDIO_DAT5
0: PD11
1: PA5 SDIO Data 5.
SDIO_DAT6
0: PD10
1: PB3 SDIO Data 6.
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 199
Alternate LOCATION
Functionality 0 - 3 4 - 7 Description
SDIO_DAT7
0: PD9
1: PB4 SDIO Data 7.
SDIO_WP
0: PF9
1: PC5
2: PB15
3: PB9
SDIO Write Protect.
TIM0_CC0
0: PA0
1: PF6
2: PD1
3: PB6
4: PF0
5: PC4
6: PA8
7: PA1
Timer 0 Capture Compare input / output channel 0.
TIM0_CC1
0: PA1
1: PF7
2: PD2
3: PC0
4: PF1
5: PC5
6: PA9
7: PA0
Timer 0 Capture Compare input / output channel 1.
TIM0_CC2
0: PA2
1: PF8
2: PD3
3: PC1
4: PF2
5: PA7
6: PA10
7: PA13
Timer 0 Capture Compare input / output channel 2.
TIM0_CDTI0
0: PA3
1: PC13
2: PF3
3: PC2
4: PB7
Timer 0 Complimentary Dead Time Insertion channel 0.
TIM0_CDTI1
0: PA4
1: PC14
2: PF4
3: PC3
4: PB8
Timer 0 Complimentary Dead Time Insertion channel 1.
TIM0_CDTI2
0: PA5
1: PC15
2: PF5
3: PC4
4: PB11
Timer 0 Complimentary Dead Time Insertion channel 2.
TIM1_CC0
0: PC13
1: PE10
2: PB0
3: PB7
4: PD6
5: PF2
6: PF13
7: PI6
Timer 1 Capture Compare input / output channel 0.
TIM1_CC1
0: PC14
1: PE11
2: PB1
3: PB8
4: PD7
5: PF3
6: PF14
7: PI7
Timer 1 Capture Compare input / output channel 1.
TIM1_CC2
0: PC15
1: PE12
2: PB2
3: PB11
4: PC13
5: PF4
6: PF15
7: PI8
Timer 1 Capture Compare input / output channel 2.
TIM1_CC3
0: PC12
1: PE13
2: PB3
3: PB12
4: PC14
5: PF12
6: PF5
7: PI9
Timer 1 Capture Compare input / output channel 3.
TIM2_CC0
0: PA8
1: PA12
2: PC8
3: PF2
4: PB6
5: PC2
6: PG8
7: PG5
Timer 2 Capture Compare input / output channel 0.
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 200
Alternate LOCATION
Functionality 0 - 3 4 - 7 Description
TIM2_CC1
0: PA9
1: PA13
2: PC9
3: PE12
4: PC0
5: PC3
6: PG9
7: PG6
Timer 2 Capture Compare input / output channel 1.
TIM2_CC2
0: PA10
1: PA14
2: PC10
3: PE13
4: PC1
5: PC4
6: PG10
7: PG7
Timer 2 Capture Compare input / output channel 2.
TIM2_CDTI0
0: PB0
1: PD13
2: PE8
3: PG0
Timer 2 Complimentary Dead Time Insertion channel 0.
TIM2_CDTI1
0: PB1
1: PD14
2: PE14
3: PG1
Timer 2 Complimentary Dead Time Insertion channel 1.
TIM2_CDTI2
0: PB2
1: PD15
2: PE15
3: PG2
Timer 2 Complimentary Dead Time Insertion channel 2.
TIM3_CC0
0: PE14
1: PE0
2: PE3
3: PE5
4: PA0
5: PA3
6: PA6
7: PD15
Timer 3 Capture Compare input / output channel 0.
TIM3_CC1
0: PE15
1: PE1
2: PE4
3: PE6
4: PA1
5: PA4
6: PD13
7: PB15
Timer 3 Capture Compare input / output channel 1.
TIM3_CC2
0: PA15
1: PE2
2: PE5
3: PE7
4: PA2
5: PA5
6: PD14
7: PB0
Timer 3 Capture Compare input / output channel 2.
TIM4_CC0
0: PF3
1: PF13
2: PF5
3: PI8
4: PF6
5: PF9
6: PD11
7: PE9
Timer 4 Capture Compare input / output channel 0.
TIM4_CC1
0: PF4
1: PF14
2: PI6
3: PI9
4: PF7
5: PD9
6: PD12
7: PE10
Timer 4 Capture Compare input / output channel 1.
TIM4_CC2
0: PF12
1: PF15
2: PI7
3: PI10
4: PF8
5: PD10
6: PE8
7: PE11
Timer 4 Capture Compare input / output channel 2.
TIM4_CDTI0
0: PD0
Timer 4 Complimentary Dead Time Insertion channel 0.
TIM4_CDTI1
0: PD1
Timer 4 Complimentary Dead Time Insertion channel 1.
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 201
Alternate LOCATION
Functionality 0 - 3 4 - 7 Description
TIM4_CDTI2
0: PD3
Timer 4 Complimentary Dead Time Insertion channel 2.
TIM5_CC0
0: PE4
1: PE7
2: PH13
3: PI0
4: PC8
5: PC11
6: PC14
7: PF12
Timer 5 Capture Compare input / output channel 0.
TIM5_CC1
0: PE5
1: PH11
2: PH14
3: PI1
4: PC9
5: PC12
6: PF10
7: PF13
Timer 5 Capture Compare input / output channel 1.
TIM5_CC2
0: PE6
1: PH12
2: PH15
3: PI2
4: PC10
5: PC13
6: PF11
7: PF14
Timer 5 Capture Compare input / output channel 2.
TIM6_CC0
0: PG0
1: PG6
2: PG12
3: PH2
4: PH8
5: PB13
6: PD1
7: PD4
Timer 6 Capture Compare input / output channel 0.
TIM6_CC1
0: PG1
1: PG7
2: PG13
3: PH3
4: PH9
5: PB14
6: PD2
7: PD5
Timer 6 Capture Compare input / output channel 1.
TIM6_CC2
0: PG2
1: PG8
2: PG14
3: PH4
4: PH10
5: PD0
6: PD3
7: PD6
Timer 6 Capture Compare input / output channel 2.
TIM6_CDTI0
0: PG3
1: PG9
2: PE4
3: PH5
Timer 6 Complimentary Dead Time Insertion channel 0.
TIM6_CDTI1
0: PG4
1: PG10
2: PE5
3: PH6
Timer 6 Complimentary Dead Time Insertion channel 1.
TIM6_CDTI2
0: PG5
1: PG11
2: PE6
3: PH7
Timer 6 Complimentary Dead Time Insertion channel 2.
U0_CTS
0: PF8
1: PE2
2: PA5
3: PC13
4: PB7
5: PD5 UART0 Clear To Send hardware flow control input.
U0_RTS
0: PF9
1: PE3
2: PA6
3: PC12
4: PB8
5: PD6 UART0 Request To Send hardware flow control output.
U0_RX
0: PF7
1: PE1
2: PA4
3: PC15
4: PC5
5: PF2
6: PE4 UART0 Receive input.
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 202
Alternate LOCATION
Functionality 0 - 3 4 - 7 Description
U0_TX
0: PF6
1: PE0
2: PA3
3: PC14
4: PC4
5: PF1
6: PD7 UART0 Transmit output. Also used as receive input in half duplex communication.
U1_CTS
0: PC14
1: PF9
2: PB11
3: PE4
4: PC4
5: PH13 UART1 Clear To Send hardware flow control input.
U1_RTS
0: PC15
1: PF8
2: PB12
3: PE5
4: PC5
5: PH14 UART1 Request To Send hardware flow control output.
U1_RX
0: PC13
1: PF11
2: PB10
3: PE3
4: PE13
5: PH12 UART1 Receive input.
U1_TX
0: PC12
1: PF10
2: PB9
3: PE2
4: PE12
5: PH11 UART1 Transmit output. Also used as receive input in half duplex communication.
US0_CLK
0: PE12
1: PE5
2: PC9
3: PC15
4: PB13
5: PA12
6: PG14 USART0 clock input / output.
US0_CS
0: PE13
1: PE4
2: PC8
3: PC14
4: PB14
5: PA13
6: PG15 USART0 chip select input / output.
US0_CTS
0: PE14
1: PE3
2: PC7
3: PC13
4: PB6
5: PB11
6: PH0 USART0 Clear To Send hardware flow control input.
US0_RTS
0: PE15
1: PE2
2: PC6
3: PC12
4: PB5
5: PD6
6: PH1 USART0 Request To Send hardware flow control output.
US0_RX
0: PE11
1: PE6
2: PC10
3: PE12
4: PB8
5: PC1
6: PG13
USART0 Asynchronous Receive.
USART0 Synchronous mode Master Input / Slave Output (MISO).
US0_TX
0: PE10
1: PE7
2: PC11
3: PE13
4: PB7
5: PC0
6: PG12
USART0 Asynchronous Transmit. Also used as receive input in half duplex communica-
tion.
USART0 Synchronous mode Master Output / Slave Input (MOSI).
US1_CLK
0: PB7
1: PD2
2: PF0
3: PC15
4: PC3
5: PB11
6: PE5 USART1 clock input / output.
US1_CS
0: PB8
1: PD3
2: PF1
3: PC14
4: PC0
5: PE4
6: PB2 USART1 chip select input / output.
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 203
Alternate LOCATION
Functionality 0 - 3 4 - 7 Description
US1_CTS
0: PB9
1: PD4
2: PF3
3: PC6
4: PC12
5: PB13
6: PH2 USART1 Clear To Send hardware flow control input.
US1_RTS
0: PB10
1: PD5
2: PF4
3: PC7
4: PC13
5: PB14
6: PH3 USART1 Request To Send hardware flow control output.
US1_RX
0: PC1
1: PD1
2: PD6
3: PF7
4: PC2
5: PA0
6: PA2
USART1 Asynchronous Receive.
USART1 Synchronous mode Master Input / Slave Output (MISO).
US1_TX
0: PC0
1: PD0
2: PD7
3: PF6
4: PC1
5: PF2
6: PA14
USART1 Asynchronous Transmit. Also used as receive input in half duplex communica-
tion.
USART1 Synchronous mode Master Output / Slave Input (MOSI).
US2_CLK
0: PC4
1: PB5
2: PA9
3: PA15
4: PF8
5: PF2 USART2 clock input / output.
US2_CS
0: PC5
1: PB6
2: PA10
3: PB11
4: PF9
5: PF5 USART2 chip select input / output.
US2_CTS
0: PC1
1: PB12
2: PA11
3: PB10
4: PC12
5: PD6 USART2 Clear To Send hardware flow control input.
US2_RTS
0: PC0
1: PB15
2: PA12
3: PC14
4: PC13
5: PD8 USART2 Request To Send hardware flow control output.
US2_RX
0: PC3
1: PB4
2: PA8
3: PA14
4: PF7
5: PF1 USART2 Asynchronous Receive.
USART2 Synchronous mode Master Input / Slave Output (MISO).
US2_TX
0: PC2
1: PB3
2: PA7
3: PA13
4: PF6
5: PF0
USART2 Asynchronous Transmit. Also used as receive input in half duplex communica-
tion.
USART2 Synchronous mode Master Output / Slave Input (MOSI).
US3_CLK
0: PA2
1: PD7
2: PD4
3: PG8
4: PG2
5: PI14 USART3 clock input / output.
US3_CS
0: PA3
1: PE4
2: PC14
3: PC0
4: PG3
5: PI15 USART3 chip select input / output.
US3_CTS
0: PA4
1: PE5
2: PD6
3: PG10
4: PG4
5: PG9 USART3 Clear To Send hardware flow control input.
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 204
Alternate LOCATION
Functionality 0 - 3 4 - 7 Description
US3_RTS
0: PA5
1: PC1
2: PA14
3: PC15
4: PG5
5: PG11 USART3 Request To Send hardware flow control output.
US3_RX
0: PA1
1: PE7
2: PB7
3: PG7
4: PG1
5: PI13 USART3 Asynchronous Receive.
USART3 Synchronous mode Master Input / Slave Output (MISO).
US3_TX
0: PA0
1: PE6
2: PB3
3: PG6
4: PG0
5: PI12
USART3 Asynchronous Transmit. Also used as receive input in half duplex communica-
tion.
USART3 Synchronous mode Master Output / Slave Input (MOSI).
US4_CLK
0: PC4
1: PD11
2: PI2
3: PI8
4: PH6
USART4 clock input / output.
US4_CS
0: PC5
1: PD12
2: PI3
3: PI9
4: PH7
USART4 chip select input / output.
US4_CTS
0: PA7
1: PD13
2: PI4
3: PI10
4: PH8
USART4 Clear To Send hardware flow control input.
US4_RTS
0: PA8
1: PD14
2: PI5
3: PI11
4: PH9
USART4 Request To Send hardware flow control output.
US4_RX
0: PB8
1: PD10
2: PI1
3: PI7
4: PH5 USART4 Asynchronous Receive.
USART4 Synchronous mode Master Input / Slave Output (MISO).
US4_TX
0: PB7
1: PD9
2: PI0
3: PI6
4: PH4 USART4 Asynchronous Transmit. Also used as receive input in half duplex communica-
tion.
USART4 Synchronous mode Master Output / Slave Input (MOSI).
US5_CLK
0: PB11
1: PD13
2: PF13
3: PH12
USART5 clock input / output.
US5_CS
0: PB13
1: PD14
2: PF12
3: PH13
USART5 chip select input / output.
US5_CTS
0: PB14
1: PD15
2: PF11
3: PH14
USART5 Clear To Send hardware flow control input.
US5_RTS
0: PB12
1: PB15
2: PF10
3: PH15
USART5 Request To Send hardware flow control output.
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 205
Alternate LOCATION
Functionality 0 - 3 4 - 7 Description
US5_RX
0: PE9
1: PA7
2: PB1
3: PH11
USART5 Asynchronous Receive.
USART5 Synchronous mode Master Input / Slave Output (MISO).
US5_TX
0: PE8
1: PA6
2: PF15
3: PH10
USART5 Asynchronous Transmit. Also used as receive input in half duplex communica-
tion.
USART5 Synchronous mode Master Output / Slave Input (MOSI).
USB_DM
0: PF10
USB D- pin.
USB_DP
0: PF11
USB D+ pin.
USB_ID
0: PF12
USB ID pin.
USB_VBUSEN
0: PF5
USB 5 V VBUS enable.
VDAC0_EXT
0: PD6
Digital to analog converter VDAC0 external reference input pin.
VDAC0_OUT0 /
OPA0_OUT
0: PB11
Digital to Analog Converter DAC0 output channel number 0.
VDAC0_OUT0ALT
/ OPA0_OUTALT
0: PC0
1: PC1
2: PC2
3: PC3
4: PD0
Digital to Analog Converter DAC0 alternative output for channel 0.
VDAC0_OUT1 /
OPA1_OUT
0: PB12
Digital to Analog Converter DAC0 output channel number 1.
VDAC0_OUT1ALT
/ OPA1_OUTALT
0: PC12
1: PC13
2: PC14
3: PC15
4: PD1
Digital to Analog Converter DAC0 alternative output for channel 1.
WTIM0_CC0
0: PE4
1: PA6
2: PG2
3: PG8
4: PC15
5: PB0
6: PB3
7: PC1
Wide timer 0 Capture Compare input / output channel 0.
WTIM0_CC1
0: PE5
1: PD13
2: PG3
3: PG9
4: PF0
5: PB1
6: PB4
7: PC2
Wide timer 0 Capture Compare input / output channel 1.
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 206
Alternate LOCATION
Functionality 0 - 3 4 - 7 Description
WTIM0_CC2
0: PE6
1: PD14
2: PG4
3: PG10
4: PF1
5: PB2
6: PB5
7: PC3
Wide timer 0 Capture Compare input / output channel 2.
WTIM0_CDTI0
0: PE10
1: PD15
2: PA12
3: PG11
4: PD4
Wide timer 0 Complimentary Dead Time Insertion channel 0.
WTIM0_CDTI1
0: PE11
1: PG0
2: PA13
3: PG12
4: PD5
Wide timer 0 Complimentary Dead Time Insertion channel 1.
WTIM0_CDTI2
0: PE12
1: PG1
2: PA14
3: PG13
4: PD6
Wide timer 0 Complimentary Dead Time Insertion channel 2.
WTIM1_CC0
0: PB13
1: PD2
2: PD6
3: PC7
4: PE3
5: PE7
6: PH8
7: PH12
Wide timer 1 Capture Compare input / output channel 0.
WTIM1_CC1
0: PB14
1: PD3
2: PD7
3: PE0
4: PE4
5: PI0
6: PH9
7: PH13
Wide timer 1 Capture Compare input / output channel 1.
WTIM1_CC2
0: PD0
1: PD4
2: PD8
3: PE1
4: PE5
5: PI1
6: PH10
7: PH14
Wide timer 1 Capture Compare input / output channel 2.
WTIM1_CC3
0: PD1
1: PD5
2: PC6
3: PE2
4: PE6
5: PI2
6: PH11
7: PH15
Wide timer 1 Capture Compare input / output channel 3.
WTIM2_CC0
0: PA9
1: PA12
2: PB9
3: PB12
4: PG14
5: PD3
6: PH4
7: PH7
Wide timer 2 Capture Compare input / output channel 0.
WTIM2_CC1
0: PA10
1: PA13
2: PB10
3: PG12
4: PG15
5: PD4
6: PH5
7: PH8
Wide timer 2 Capture Compare input / output channel 1.
WTIM2_CC2
0: PA11
1: PA14
2: PB11
3: PG13
4: PH0
5: PD5
6: PH6
7: PH9
Wide timer 2 Capture Compare input / output channel 2.
WTIM3_CC0
0: PD9
1: PC8
2: PC11
3: PC14
4: PI3
5: PI6
6: PB6
7: PF13
Wide timer 3 Capture Compare input / output channel 0.
WTIM3_CC1
0: PD10
1: PC9
2: PC12
3: PF10
4: PI4
5: PI7
6: PF4
7: PF14
Wide timer 3 Capture Compare input / output channel 1.
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 207
Alternate LOCATION
Functionality 0 - 3 4 - 7 Description
WTIM3_CC2
0: PD11
1: PC10
2: PC13
3: PF11
4: PI5
5: PF6
6: PF12
7: PF15
Wide timer 3 Capture Compare input / output channel 2.
Certain alternate function locations may have non-interference priority. These locations will take precedence over any other functions
selected on that pin (i.e. another alternate function enabled to the same pin inadvertently).
Some alternate functions may also have high speed priority on certain locations. These locations ensure the fastest possible paths to
the pins for timing-critical signals.
The following table lists the alternate functions and locations with special priority.
Table 5.22. Alternate Functionality Priority
Alternate Functionality Location Priority
CMU_CLK2 1: PA3
5: PD10
High Speed
High Speed
CMU_CLKI0 1: PA3
5: PD10
High Speed
High Speed
ETH_RMIICRSDV 0: PA4
1: PD11
High Speed
High Speed
ETH_RMIIREFCLK 0: PA3
1: PD10
High Speed
High Speed
ETH_RMIIRXD0 0: PA2
1: PD9
High Speed
High Speed
ETH_RMIIRXD1 0: PA1
1: PF9
High Speed
High Speed
ETH_RMIIRXER 0: PA5
1: PD12
High Speed
High Speed
ETH_RMIITXD0 0: PE15
1: PF7
High Speed
High Speed
ETH_RMIITXD1 0: PE14
1: PF6
High Speed
High Speed
ETH_RMIITXEN 0: PA0
1: PF8
High Speed
High Speed
QSPI0_CS0 0: PF7 High Speed
QSPI0_CS1 0: PF8 High Speed
QSPI0_DQ0 0: PD9 High Speed
QSPI0_DQ1 0: PD10 High Speed
QSPI0_DQ2 0: PD11 High Speed
QSPI0_DQ3 0: PD12 High Speed
QSPI0_DQ4 0: PE8 High Speed
QSPI0_DQ5 0: PE9 High Speed
QSPI0_DQ6 0: PE10 High Speed
QSPI0_DQ7 0: PE11 High Speed
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 208
Alternate Functionality Location Priority
QSPI0_DQS 0: PF9 High Speed
QSPI0_SCLK 0: PF6 High Speed
SDIO_CLK 0: PE13 High Speed
SDIO_CMD 0: PE12 High Speed
SDIO_DAT0 0: PE11 High Speed
SDIO_DAT1 0: PE10 High Speed
SDIO_DAT2 0: PE9 High Speed
SDIO_DAT3 0: PE8 High Speed
SDIO_DAT4 0: PD12 High Speed
SDIO_DAT5 0: PD11 High Speed
SDIO_DAT6 0: PD10 High Speed
SDIO_DAT7 0: PD9 High Speed
TIM0_CC0 3: PB6 Non-interference
TIM0_CC1 3: PC0 Non-interference
TIM0_CC2 3: PC1 Non-interference
TIM0_CDTI0 1: PC13 Non-interference
TIM0_CDTI1 1: PC14 Non-interference
TIM0_CDTI2 1: PC15 Non-interference
TIM2_CC0 0: PA8 Non-interference
TIM2_CC1 0: PA9 Non-interference
TIM2_CC2 0: PA10 Non-interference
TIM2_CDTI0 0: PB0 Non-interference
TIM2_CDTI1 0: PB1 Non-interference
TIM2_CDTI2 0: PB2 Non-interference
TIM4_CC0 0: PF3 Non-interference
TIM4_CC1 0: PF4 Non-interference
TIM4_CC2 0: PF12 Non-interference
TIM4_CDTI0 0: PD0 Non-interference
TIM4_CDTI1 0: PD1 Non-interference
TIM4_CDTI2 0: PD3 Non-interference
TIM6_CC0 0: PG0 Non-interference
TIM6_CC1 0: PG1 Non-interference
TIM6_CC2 0: PG2 Non-interference
TIM6_CDTI0 0: PG3 Non-interference
TIM6_CDTI1 0: PG4 Non-interference
TIM6_CDTI2 0: PG5 Non-interference
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 209
Alternate Functionality Location Priority
US2_CLK 4: PF8
5: PF2
High Speed
High Speed
US2_CS 4: PF9
5: PF5
High Speed
High Speed
US2_RX 4: PF7
5: PF1
High Speed
High Speed
US2_TX 4: PF6
5: PF0
High Speed
High Speed
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 210
5.22 Analog Port (APORT) Client Maps
The Analog Port (APORT) is an infrastructure used to connect chip pins with on-chip analog clients such as analog comparators, ADCs,
DACs, etc. The APORT consists of a set of shared buses, switches, and control logic needed to configurably implement the signal rout-
ing. Figure 5.20 APORT Connection Diagram on page 211 shows the APORT routing for this device family (note that available features
may vary by part number). A complete description of APORT functionality can be found in the Reference Manual.
POS
NEG
ACMP2
POS
NEG
ACMP0
POS
NEG
ADC0
IDAC0
1X
1Y
2X
3X
4X
1Y
2Y
3Y
4Y
1X
2X
3X
4X
1Y
2Y
3Y
4Y
1X
2X
3X
4X
1Y
2Y
3Y
4Y
PA15
1X
0X
0Y
0X
0Y
0X
0Y
IDAC0_OUTPAD
POS
NEG
OPA0
1X
2X
3X
4X
1Y
2Y
3Y
4Y
1X
OPA0_P
OPA0_N
EXTP
EXTN
OUT0
OUT0ALT
OUT1
OUT2
OUT3
OUT4
OUT
CEXT
1X
1Y
3X
3Y
CSEN
CEXT_SENSE
2X
2Y
4X
4Y
PA0
PA1
PA2
PA3
PA4
PA5
PA6
PG0
PG1
PG2
PG3
PG4
PG5
PG6
PG7
PB0
PB1
PB2
PB3
PB4
PB5
PB6
PC0
PC1
PC2
PC3
PC4
PC5
PA7
PA8
PA9
PA10
PA11
PA12
PA13
PA14
PB9
PB10
PB11
PB12
PH0
PH1
PH2
PH3
PH4
PH5
PH6
PH7
PH8
PH9
PH10
PH11
PH12
PH13
PH14
PH15
PB13
PB14
PD0
PD1
PD2
PD3
PD4
PE0
PC7
PC6
PD7
PD6
PD5
PE1
PE7
PE6
PE5
PE4
PC8
PC9
PC13
PC12
PC11
PC10
PC15
PF11
PF10
PC14
PF4
PF3
PF2
PF1
PF0
PF5
PF15
PF14
PF13
PF12
PF9
PF8
PF7
PF6
PE9
PE8
PE10
PE15
PE14
PE13
PE12
PE11
IOVDD_1
IOVDD_2
POS
NEG
OPA1
OUT
POS
NEG
OPA2
OUT
POS
NEG
OPA3
OUT
POS
NEG
ACMP1
POS
NEG
ACMP3
1X
2X
3X
4X
1Y
2Y
3Y
4Y
1X
2X
3X
4X
1Y
2Y
3Y
4Y
0X
0Y
0X
0Y
POS
NEG ADC1
EXTP
EXTN
AX
AY
BX
BY
ACMP2X
ACMP2Y
ACMP0X
ACMP0Y
ACMP1X
ACMP1Y
CX
CY
DX
DY
ACMP3X
ACMP3Y
AX
AY
BX
BY
CX
CY
DX
DY
ADC0X
ADC0Y
ADC1X
ADC1Y
ADC0X
ADC0Y
AX
AY
BX
BY
CX
CY
DX
DY
ADC1X
ADC1Y
1X
2X
3X
4X
1Y
2Y
3Y
4Y
1X
OPA1_P
OPA1_N
OUT1
OUT1ALT
OUT1
OUT2
OUT3
OUT4
1X
2X
3X
4X
1Y
2Y
3Y
4Y
1X
OPA2_P
OPA2_N
OUT2
OUT2ALT
OUT1
OUT2
OUT3
OUT4
1X
2X
3X
4X
1Y
2Y
3Y
4Y
1X
OPA3_P
OPA3_N
OUT3
OUT3ALT
OUT1
OUT2
OUT3
OUT4
1X
2X
3X
4X
1Y
2Y
3Y
4Y
0X
0Y
IOVDD_0
IOVDD_0
OUT0ALT
OUT0ALT
OUT2ALT
VDAC0_OUT2ALT
OUT0ALT
VDAC0_OUT1ALT
VDAC0_OUT1ALT
OUT1ALT
VDAC0_OUT1ALT
OUT1ALT
VDAC0_OUT1ALT
OUT1ALT
OUT2
OUT3
OUT1
OUT0
OPA1_N
ADC_EXTN
OPA1_P
ADC_EXTP
OPA2_N
OPA2_P
OPA0_N
OPA0_P
OPA3_N
OPA3_P
IDAC0_OUTPAD
VDAC0_OUT0ALT
OUT1ALT
VDAC0_OUT0ALT
VDAC0_OU0ALTT
OUT0ALT
VDAC0_OUT0ALT
OUT0ALT
VDAC0_OUT0ALT
OUT1ALT VDAC0_OUT1ALT
nX, nY APORTnX, APORTnY
AX, BY, … BUSAX, BUSBY, ...
ADC0X,
ADC1Y, …
BUSADC0X,
BUSADC1Y, …
ACMP0X,
ACMP3Y, …
BUSACMP0X,
BUSACMP3Y, ...
NEXT1
NEXT3
NEXT0
NEXT2
NEXT3
NEXT3
NEXT2
NEXT2
NEXT1
NEXT1
NEXT0
NEXT0
NEXT1
NEXT0
NEXT1
NEXT0
NEXT1
NEXT0
NEXT1
NEXT0
NEXT1
NEXT0
NEXT1
NEXT0
NEXT1
NEXT0
NEXT1
NEXT0
Figure 5.20. APORT Connection Diagram
Client maps for each analog circuit using the APORT are shown in the following tables. The maps are organized by bus, and show the
peripheral's port connection, the shared bus, and the connection from specific bus channel numbers to GPIO pins.
In general, enumerations for the pin selection field in an analog peripheral's register can be determined by finding the desired pin con-
nection in the table and then combining the value in the Port column (APORT__), and the channel identifier (CH__). For example, if pin
PF7 is available on port APORT2X as CH23, the register field enumeration to connect to PF7 would be APORT2XCH23. The shared
bus used by this connection is indicated in the Bus column.
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 211
Table 5.23. ACMP0 Bus and Pin Mapping
Port
Bus
CH31
CH30
CH29
CH28
CH27
CH26
CH25
CH24
CH23
CH22
CH21
CH20
CH19
CH18
CH17
CH16
CH15
CH14
CH13
CH12
CH11
CH10
CH9
CH8
CH7
CH6
CH5
CH4
CH3
CH2
CH1
CH0
APORT0X
BUSACMP0X
PC7
PC6
PC5
PC4
PC3
PC2
PC1
PC0
APORT0Y
BUSACMP0Y
PC7
PC6
PC5
PC4
PC3
PC2
PC1
PC0
APORT1X
BUSAX
PB14
PB12
PB10
PB6
PB4
PB2
PB0
PA14
PA12
PA10
PA8
PA6
PA4
PA2
PA0
APORT1Y
BUSAY
PB15
PB13
PB11
PB9
PB5
PB3
PB1
PA15
PA13
PA11
PA9
PA7
PA5
PA3
PA1
APORT2X
BUSBX
PB15
PB13
PB11
PB9
PB5
PB3
PB1
PA15
PA13
PA11
PA9
PA7
PA5
PA3
PA1
APORT2Y
BUSBY
PB14
PB12
PB10
PB6
PB4
PB2
PB0
PA14
PA12
PA10
PA8
PA6
PA4
PA2
PA0
APORT3X
BUSCX
PF14
PF12
PF10
PF8
PF6
PF4
PF2
PF0
PE14
PE12
PE10
PE8
PE6
PE4
PE0
APORT3Y
BUSCY
PF15
PF13
PF11
PF9
PF7
PF5
PF3
PF1
PE15
PE13
PE11
PE9
PE7
PE5
PE1
APORT4X
BUSDX
PF15
PF13
PF11
PF9
PF7
PF5
PF3
PF1
PE15
PE13
PE11
PE9
PE7
PE5
PE1
APORT4Y
BUSDY
PF14
PF12
PF10
PF8
PF6
PF4
PF2
PF0
PE14
PE12
PE10
PE8
PE6
PE4
PE0
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 212
Table 5.24. ACMP1 Bus and Pin Mapping
Port
Bus
CH31
CH30
CH29
CH28
CH27
CH26
CH25
CH24
CH23
CH22
CH21
CH20
CH19
CH18
CH17
CH16
CH15
CH14
CH13
CH12
CH11
CH10
CH9
CH8
CH7
CH6
CH5
CH4
CH3
CH2
CH1
CH0
APORT0X
BUSACMP1X
PC15
PC14
PC13
PC12
PC11
PC10
PC9
PC8
APORT0Y
BUSACMP1Y
PC15
PC14
PC13
PC12
PC11
PC10
PC9
PC8
APORT1X
BUSAX
PB14
PB12
PB10
PB6
PB4
PB2
PB0
PA14
PA12
PA10
PA8
PA6
PA4
PA2
PA0
APORT1Y
BUSAY
PB15
PB13
PB11
PB9
PB5
PB3
PB1
PA15
PA13
PA11
PA9
PA7
PA5
PA3
PA1
APORT2X
BUSBX
PB15
PB13
PB11
PB9
PB5
PB3
PB1
PA15
PA13
PA11
PA9
PA7
PA5
PA3
PA1
APORT2Y
BUSBY
PB14
PB12
PB10
PB6
PB4
PB2
PB0
PA14
PA12
PA10
PA8
PA6
PA4
PA2
PA0
APORT3X
BUSCX
PF14
PF12
PF10
PF8
PF6
PF4
PF2
PF0
PE14
PE12
PE10
PE8
PE6
PE4
PE0
APORT3Y
BUSCY
PF15
PF13
PF11
PF9
PF7
PF5
PF3
PF1
PE15
PE13
PE11
PE9
PE7
PE5
PE1
APORT4X
BUSDX
PF15
PF13
PF11
PF9
PF7
PF5
PF3
PF1
PE15
PE13
PE11
PE9
PE7
PE5
PE1
APORT4Y
BUSDY
PF14
PF12
PF10
PF8
PF6
PF4
PF2
PF0
PE14
PE12
PE10
PE8
PE6
PE4
PE0
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 213
Table 5.25. ACMP2 Bus and Pin Mapping
Port
Bus
CH31
CH30
CH29
CH28
CH27
CH26
CH25
CH24
CH23
CH22
CH21
CH20
CH19
CH18
CH17
CH16
CH15
CH14
CH13
CH12
CH11
CH10
CH9
CH8
CH7
CH6
CH5
CH4
CH3
CH2
CH1
CH0
APORT0X
BUSACMP2X
PG7
PG6
PG5
PG4
PG3
PG2
PG1
PG0
APORT0Y
BUSACMP2Y
PG7
PG6
PG5
PG4
PG3
PG2
PG1
PG0
APORT1X
BUSAX
PB14
PB12
PB10
PB6
PB4
PB2
PB0
PA14
PA12
PA10
PA8
PA6
PA4
PA2
PA0
APORT1Y
BUSAY
PB15
PB13
PB11
PB9
PB5
PB3
PB1
PA15
PA13
PA11
PA9
PA7
PA5
PA3
PA1
APORT2X
BUSBX
PB15
PB13
PB11
PB9
PB5
PB3
PB1
PA15
PA13
PA11
PA9
PA7
PA5
PA3
PA1
APORT2Y
BUSBY
PB14
PB12
PB10
PB6
PB4
PB2
PB0
PA14
PA12
PA10
PA8
PA6
PA4
PA2
PA0
APORT3X
BUSCX
PF14
PF12
PF10
PF8
PF6
PF4
PF2
PF0
PE14
PE12
PE10
PE8
PE6
PE4
PE0
APORT3Y
BUSCY
PF15
PF13
PF11
PF9
PF7
PF5
PF3
PF1
PE15
PE13
PE11
PE9
PE7
PE5
PE1
APORT4X
BUSDX
PF15
PF13
PF11
PF9
PF7
PF5
PF3
PF1
PE15
PE13
PE11
PE9
PE7
PE5
PE1
APORT4Y
BUSDY
PF14
PF12
PF10
PF8
PF6
PF4
PF2
PF0
PE14
PE12
PE10
PE8
PE6
PE4
PE0
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 214
Table 5.26. ACMP3 Bus and Pin Mapping
Port
Bus
CH31
CH30
CH29
CH28
CH27
CH26
CH25
CH24
CH23
CH22
CH21
CH20
CH19
CH18
CH17
CH16
CH15
CH14
CH13
CH12
CH11
CH10
CH9
CH8
CH7
CH6
CH5
CH4
CH3
CH2
CH1
CH0
APORT0X
BUSACMP3X
PH15
PH14
PH13
PH12
PH11
PH10
PH9
PH8
APORT0Y
BUSACMP3Y
PH15
PH14
PH13
PH12
PH11
PH10
PH9
PH8
APORT1X
BUSAX
PB14
PB12
PB10
PB6
PB4
PB2
PB0
PA14
PA12
PA10
PA8
PA6
PA4
PA2
PA0
APORT1Y
BUSAY
PB15
PB13
PB11
PB9
PB5
PB3
PB1
PA15
PA13
PA11
PA9
PA7
PA5
PA3
PA1
APORT2X
BUSBX
PB15
PB13
PB11
PB9
PB5
PB3
PB1
PA15
PA13
PA11
PA9
PA7
PA5
PA3
PA1
APORT2Y
BUSBY
PB14
PB12
PB10
PB6
PB4
PB2
PB0
PA14
PA12
PA10
PA8
PA6
PA4
PA2
PA0
APORT3X
BUSCX
PF14
PF12
PF10
PF8
PF6
PF4
PF2
PF0
PE14
PE12
PE10
PE8
PE6
PE4
PE0
APORT3Y
BUSCY
PF15
PF13
PF11
PF9
PF7
PF5
PF3
PF1
PE15
PE13
PE11
PE9
PE7
PE5
PE1
APORT4X
BUSDX
PF15
PF13
PF11
PF9
PF7
PF5
PF3
PF1
PE15
PE13
PE11
PE9
PE7
PE5
PE1
APORT4Y
BUSDY
PF14
PF12
PF10
PF8
PF6
PF4
PF2
PF0
PE14
PE12
PE10
PE8
PE6
PE4
PE0
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 215
Table 5.27. ADC0 Bus and Pin Mapping
Port
Bus
CH31
CH30
CH29
CH28
CH27
CH26
CH25
CH24
CH23
CH22
CH21
CH20
CH19
CH18
CH17
CH16
CH15
CH14
CH13
CH12
CH11
CH10
CH9
CH8
CH7
CH6
CH5
CH4
CH3
CH2
CH1
CH0
APORT0X
BUSADC0X
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
APORT0Y
BUSADC0Y
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
APORT1X
BUSAX
PB14
PB12
PB10
PB6
PB4
PB2
PB0
PA14
PA12
PA10
PA8
PA6
PA4
PA2
PA0
APORT1Y
BUSAY
PB15
PB13
PB11
PB9
PB5
PB3
PB1
PA15
PA13
PA11
PA9
PA7
PA5
PA3
PA1
APORT2X
BUSBX
PB15
PB13
PB11
PB9
PB5
PB3
PB1
PA15
PA13
PA11
PA9
PA7
PA5
PA3
PA1
APORT2Y
BUSBY
PB14
PB12
PB10
PB6
PB4
PB2
PB0
PA14
PA12
PA10
PA8
PA6
PA4
PA2
PA0
APORT3X
BUSCX
PF14
PF12
PF10
PF8
PF6
PF4
PF2
PF0
PE14
PE12
PE10
PE8
PE6
PE4
PE0
APORT3Y
BUSCY
PF15
PF13
PF11
PF9
PF7
PF5
PF3
PF1
PE15
PE13
PE11
PE9
PE7
PE5
PE1
APORT4X
BUSDX
PF15
PF13
PF11
PF9
PF7
PF5
PF3
PF1
PE15
PE13
PE11
PE9
PE7
PE5
PE1
APORT4Y
BUSDY
PF14
PF12
PF10
PF8
PF6
PF4
PF2
PF0
PE14
PE12
PE10
PE8
PE6
PE4
PE0
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 216
Table 5.28. ADC1 Bus and Pin Mapping
Port
Bus
CH31
CH30
CH29
CH28
CH27
CH26
CH25
CH24
CH23
CH22
CH21
CH20
CH19
CH18
CH17
CH16
CH15
CH14
CH13
CH12
CH11
CH10
CH9
CH8
CH7
CH6
CH5
CH4
CH3
CH2
CH1
CH0
APORT0X
BUSADC1X
PH7
PH6
PH5
PH4
PH3
PH2
PH1
PH0
APORT0Y
BUSADC1Y
PH7
PH6
PH5
PH4
PH3
PH2
PH1
PH0
APORT1X
BUSAX
PB14
PB12
PB10
PB6
PB4
PB2
PB0
PA14
PA12
PA10
PA8
PA6
PA4
PA2
PA0
APORT1Y
BUSAY
PB15
PB13
PB11
PB9
PB5
PB3
PB1
PA15
PA13
PA11
PA9
PA7
PA5
PA3
PA1
APORT2X
BUSBX
PB15
PB13
PB11
PB9
PB5
PB3
PB1
PA15
PA13
PA11
PA9
PA7
PA5
PA3
PA1
APORT2Y
BUSBY
PB14
PB12
PB10
PB6
PB4
PB2
PB0
PA14
PA12
PA10
PA8
PA6
PA4
PA2
PA0
APORT3X
BUSCX
PF14
PF12
PF10
PF8
PF6
PF4
PF2
PF0
PE14
PE12
PE10
PE8
PE6
PE4
PE0
APORT3Y
BUSCY
PF15
PF13
PF11
PF9
PF7
PF5
PF3
PF1
PE15
PE13
PE11
PE9
PE7
PE5
PE1
APORT4X
BUSDX
PF15
PF13
PF11
PF9
PF7
PF5
PF3
PF1
PE15
PE13
PE11
PE9
PE7
PE5
PE1
APORT4Y
BUSDY
PF14
PF12
PF10
PF8
PF6
PF4
PF2
PF0
PE14
PE12
PE10
PE8
PE6
PE4
PE0
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 217
Table 5.29. CSEN Bus and Pin Mapping
Port
Bus
CH31
CH30
CH29
CH28
CH27
CH26
CH25
CH24
CH23
CH22
CH21
CH20
CH19
CH18
CH17
CH16
CH15
CH14
CH13
CH12
CH11
CH10
CH9
CH8
CH7
CH6
CH5
CH4
CH3
CH2
CH1
CH0
CEXT
APORT1X
BUSAX
PB14
PB12
PB10
PB6
PB4
PB2
PB0
PA14
PA12
PA10
PA8
PA6
PA4
PA2
PA0
APORT1Y
BUSAY
PB15
PB13
PB11
PB9
PB5
PB3
PB1
PA15
PA13
PA11
PA9
PA7
PA5
PA3
PA1
APORT3X
BUSCX
PF14
PF12
PF10
PF8
PF6
PF4
PF2
PF0
PE14
PE12
PE10
PE8
PE6
PE4
PE0
APORT3Y
BUSCY
PF15
PF13
PF11
PF9
PF7
PF5
PF3
PF1
PE15
PE13
PE11
PE9
PE7
PE5
PE1
CEXT_SENSE
APORT2X
BUSBX
PB15
PB13
PB11
PB9
PB5
PB3
PB1
PA15
PA13
PA11
PA9
PA7
PA5
PA3
PA1
APORT2Y
BUSBY
PB14
PB12
PB10
PB6
PB4
PB2
PB0
PA14
PA12
PA10
PA8
PA6
PA4
PA2
PA0
APORT4X
BUSDX
PF15
PF13
PF11
PF9
PF7
PF5
PF3
PF1
PE15
PE13
PE11
PE9
PE7
PE5
PE1
APORT4Y
BUSDY
PF14
PF12
PF10
PF8
PF6
PF4
PF2
PF0
PE14
PE12
PE10
PE8
PE6
PE4
PE0
Table 5.30. IDAC0 Bus and Pin Mapping
Port
Bus
CH31
CH30
CH29
CH28
CH27
CH26
CH25
CH24
CH23
CH22
CH21
CH20
CH19
CH18
CH17
CH16
CH15
CH14
CH13
CH12
CH11
CH10
CH9
CH8
CH7
CH6
CH5
CH4
CH3
CH2
CH1
CH0
APORT1X
BUSCX
PF14
PF12
PF10
PF8
PF6
PF4
PF2
PF0
PE14
PE12
PE10
PE8
PE6
PE4
PE0
APORT1Y
BUSCY
PF15
PF13
PF11
PF9
PF7
PF5
PF3
PF1
PE15
PE13
PE11
PE9
PE7
PE5
PE1
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 218
Table 5.31. VDAC0 / OPA Bus and Pin Mapping
Port
Bus
CH31
CH30
CH29
CH28
CH27
CH26
CH25
CH24
CH23
CH22
CH21
CH20
CH19
CH18
CH17
CH16
CH15
CH14
CH13
CH12
CH11
CH10
CH9
CH8
CH7
CH6
CH5
CH4
CH3
CH2
CH1
CH0
OPA0_N
APORT1Y
BUSAY
PB15
PB13
PB11
PB9
PB5
PB3
PB1
PA15
PA13
PA11
PA9
PA7
PA5
PA3
PA1
APORT2Y
BUSBY
PB14
PB12
PB10
PB6
PB4
PB2
PB0
PA14
PA12
PA10
PA8
PA6
PA4
PA2
PA0
APORT3Y
BUSCY
PF15
PF13
PF11
PF9
PF7
PF5
PF3
PF1
PE15
PE13
PE11
PE9
PE7
PE5
PE1
APORT4Y
BUSDY
PF14
PF12
PF10
PF8
PF6
PF4
PF2
PF0
PE14
PE12
PE10
PE8
PE6
PE4
PE0
OPA0_P
APORT1X
BUSAX
PB14
PB12
PB10
PB6
PB4
PB2
PB0
PA14
PA12
PA10
PA8
PA6
PA4
PA2
PA0
APORT2X
BUSBX
PB15
PB13
PB11
PB9
PB5
PB3
PB1
PA15
PA13
PA11
PA9
PA7
PA5
PA3
PA1
APORT3X
BUSCX
PF14
PF12
PF10
PF8
PF6
PF4
PF2
PF0
PE14
PE12
PE10
PE8
PE6
PE4
PE0
APORT4X
BUSDX
PF15
PF13
PF11
PF9
PF7
PF5
PF3
PF1
PE15
PE13
PE11
PE9
PE7
PE5
PE1
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 219
Port
Bus
CH31
CH30
CH29
CH28
CH27
CH26
CH25
CH24
CH23
CH22
CH21
CH20
CH19
CH18
CH17
CH16
CH15
CH14
CH13
CH12
CH11
CH10
CH9
CH8
CH7
CH6
CH5
CH4
CH3
CH2
CH1
CH0
OPA1_N
APORT1Y
BUSAY
PB15
PB13
PB11
PB9
PB5
PB3
PB1
PA15
PA13
PA11
PA9
PA7
PA5
PA3
PA1
APORT2Y
BUSBY
PB14
PB12
PB10
PB6
PB4
PB2
PB0
PA14
PA12
PA10
PA8
PA6
PA4
PA2
PA0
APORT3Y
BUSCY
PF15
PF13
PF11
PF9
PF7
PF5
PF3
PF1
PE15
PE13
PE11
PE9
PE7
PE5
PE1
APORT4Y
BUSDY
PF14
PF12
PF10
PF8
PF6
PF4
PF2
PF0
PE14
PE12
PE10
PE8
PE6
PE4
PE0
OPA1_P
APORT1X
BUSAX
PB14
PB12
PB10
PB6
PB4
PB2
PB0
PA14
PA12
PA10
PA8
PA6
PA4
PA2
PA0
APORT2X
BUSBX
PB15
PB13
PB11
PB9
PB5
PB3
PB1
PA15
PA13
PA11
PA9
PA7
PA5
PA3
PA1
APORT3X
BUSCX
PF14
PF12
PF10
PF8
PF6
PF4
PF2
PF0
PE14
PE12
PE10
PE8
PE6
PE4
PE0
APORT4X
BUSDX
PF15
PF13
PF11
PF9
PF7
PF5
PF3
PF1
PE15
PE13
PE11
PE9
PE7
PE5
PE1
OPA2_N
APORT1Y
BUSAY
PB15
PB13
PB11
PB9
PB5
PB3
PB1
PA15
PA13
PA11
PA9
PA7
PA5
PA3
PA1
APORT2Y
BUSBY
PB14
PB12
PB10
PB6
PB4
PB2
PB0
PA14
PA12
PA10
PA8
PA6
PA4
PA2
PA0
APORT3Y
BUSCY
PF15
PF13
PF11
PF9
PF7
PF5
PF3
PF1
PE15
PE13
PE11
PE9
PE7
PE5
PE1
APORT4Y
BUSDY
PF14
PF12
PF10
PF8
PF6
PF4
PF2
PF0
PE14
PE12
PE10
PE8
PE6
PE4
PE0
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 220
Port
Bus
CH31
CH30
CH29
CH28
CH27
CH26
CH25
CH24
CH23
CH22
CH21
CH20
CH19
CH18
CH17
CH16
CH15
CH14
CH13
CH12
CH11
CH10
CH9
CH8
CH7
CH6
CH5
CH4
CH3
CH2
CH1
CH0
OPA2_OUT
APORT1Y
BUSAY
PB15
PB13
PB11
PB9
PB5
PB3
PB1
PA15
PA13
PA11
PA9
PA7
PA5
PA3
PA1
APORT2Y
BUSBY
PB14
PB12
PB10
PB6
PB4
PB2
PB0
PA14
PA12
PA10
PA8
PA6
PA4
PA2
PA0
APORT3Y
BUSCY
PF15
PF13
PF11
PF9
PF7
PF5
PF3
PF1
PE15
PE13
PE11
PE9
PE7
PE5
PE1
APORT4Y
BUSDY
PF14
PF12
PF10
PF8
PF6
PF4
PF2
PF0
PE14
PE12
PE10
PE8
PE6
PE4
PE0
OPA2_P
APORT1X
BUSAX
PB14
PB12
PB10
PB6
PB4
PB2
PB0
PA14
PA12
PA10
PA8
PA6
PA4
PA2
PA0
APORT2X
BUSBX
PB15
PB13
PB11
PB9
PB5
PB3
PB1
PA15
PA13
PA11
PA9
PA7
PA5
PA3
PA1
APORT3X
BUSCX
PF14
PF12
PF10
PF8
PF6
PF4
PF2
PF0
PE14
PE12
PE10
PE8
PE6
PE4
PE0
APORT4X
BUSDX
PF15
PF13
PF11
PF9
PF7
PF5
PF3
PF1
PE15
PE13
PE11
PE9
PE7
PE5
PE1
OPA3_N
APORT1Y
BUSAY
PB15
PB13
PB11
PB9
PB5
PB3
PB1
PA15
PA13
PA11
PA9
PA7
PA5
PA3
PA1
APORT2Y
BUSBY
PB14
PB12
PB10
PB6
PB4
PB2
PB0
PA14
PA12
PA10
PA8
PA6
PA4
PA2
PA0
APORT3Y
BUSCY
PF15
PF13
PF11
PF9
PF7
PF5
PF3
PF1
PE15
PE13
PE11
PE9
PE7
PE5
PE1
APORT4Y
BUSDY
PF14
PF12
PF10
PF8
PF6
PF4
PF2
PF0
PE14
PE12
PE10
PE8
PE6
PE4
PE0
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 221
Port
Bus
CH31
CH30
CH29
CH28
CH27
CH26
CH25
CH24
CH23
CH22
CH21
CH20
CH19
CH18
CH17
CH16
CH15
CH14
CH13
CH12
CH11
CH10
CH9
CH8
CH7
CH6
CH5
CH4
CH3
CH2
CH1
CH0
OPA3_OUT
APORT1Y
BUSAY
PB15
PB13
PB11
PB9
PB5
PB3
PB1
PA15
PA13
PA11
PA9
PA7
PA5
PA3
PA1
APORT2Y
BUSBY
PB14
PB12
PB10
PB6
PB4
PB2
PB0
PA14
PA12
PA10
PA8
PA6
PA4
PA2
PA0
APORT3Y
BUSCY
PF15
PF13
PF11
PF9
PF7
PF5
PF3
PF1
PE15
PE13
PE11
PE9
PE7
PE5
PE1
APORT4Y
BUSDY
PF14
PF12
PF10
PF8
PF6
PF4
PF2
PF0
PE14
PE12
PE10
PE8
PE6
PE4
PE0
OPA3_P
APORT1X
BUSAX
PB14
PB12
PB10
PB6
PB4
PB2
PB0
PA14
PA12
PA10
PA8
PA6
PA4
PA2
PA0
APORT2X
BUSBX
PB15
PB13
PB11
PB9
PB5
PB3
PB1
PA15
PA13
PA11
PA9
PA7
PA5
PA3
PA1
APORT3X
BUSCX
PF14
PF12
PF10
PF8
PF6
PF4
PF2
PF0
PE14
PE12
PE10
PE8
PE6
PE4
PE0
APORT4X
BUSDX
PF15
PF13
PF11
PF9
PF7
PF5
PF3
PF1
PE15
PE13
PE11
PE9
PE7
PE5
PE1
VDAC0_OUT0 / OPA0_OUT
APORT1Y
BUSAY
PB15
PB13
PB11
PB9
PB5
PB3
PB1
PA15
PA13
PA11
PA9
PA7
PA5
PA3
PA1
APORT2Y
BUSBY
PB14
PB12
PB10
PB6
PB4
PB2
PB0
PA14
PA12
PA10
PA8
PA6
PA4
PA2
PA0
APORT3Y
BUSCY
PF15
PF13
PF11
PF9
PF7
PF5
PF3
PF1
PE15
PE13
PE11
PE9
PE7
PE5
PE1
APORT4Y
BUSDY
PF14
PF12
PF10
PF8
PF6
PF4
PF2
PF0
PE14
PE12
PE10
PE8
PE6
PE4
PE0
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 222
Port
Bus
CH31
CH30
CH29
CH28
CH27
CH26
CH25
CH24
CH23
CH22
CH21
CH20
CH19
CH18
CH17
CH16
CH15
CH14
CH13
CH12
CH11
CH10
CH9
CH8
CH7
CH6
CH5
CH4
CH3
CH2
CH1
CH0
VDAC0_OUT1 / OPA1_OUT
APORT1Y
BUSAY
PB15
PB13
PB11
PB9
PB5
PB3
PB1
PA15
PA13
PA11
PA9
PA7
PA5
PA3
PA1
APORT2Y
BUSBY
PB14
PB12
PB10
PB6
PB4
PB2
PB0
PA14
PA12
PA10
PA8
PA6
PA4
PA2
PA0
APORT3Y
BUSCY
PF15
PF13
PF11
PF9
PF7
PF5
PF3
PF1
PE15
PE13
PE11
PE9
PE7
PE5
PE1
APORT4Y
BUSDY
PF14
PF12
PF10
PF8
PF6
PF4
PF2
PF0
PE14
PE12
PE10
PE8
PE6
PE4
PE0
EFM32GG11 Family Data Sheet
Pin Definitions
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 223
6. BGA192 Package Specifications
6.1 BGA192 Package Dimensions
Figure 6.1. BGA192 Package Drawing
EFM32GG11 Family Data Sheet
BGA192 Package Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 224
Table 6.1. BGA192 Package Dimensions
Dimension Min Typ Max
A 0.77 0.83 0.89
A1 0.13 0.18 0.23
A3 0.16 0.20 0.24
A2 0.45 REF
D 7.00 BSC
e 0.40 BSC
E 7.00 BSC
D1 6.00 BSC
E1 6.00 BSC
b 0.20 0.25 0.30
aaa 0.10
bbb 0.10
ddd 0.08
eee 0.15
fff 0.05
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
EFM32GG11 Family Data Sheet
BGA192 Package Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 225
6.2 BGA192 PCB Land Pattern
Figure 6.2. BGA192 PCB Land Pattern Drawing
EFM32GG11 Family Data Sheet
BGA192 Package Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 226
Table 6.2. BGA192 PCB Land Pattern Dimensions
Dimension Min Nom Max
X 0.20
C1 6.00
C2 6.00
E1 0.4
E2 0.4
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.
3. This Land Pattern Design is based on the IPC-7351 guidelines.
4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm
minimum, all the way around the pad.
5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
6. The stencil thickness should be 0.125 mm (5 mils).
7. The ratio of stencil aperture to land pad size should be 1:1.
8. A No-Clean, Type-3 solder paste is recommended.
9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.
EFM32GG11 Family Data Sheet
BGA192 Package Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 227
6.3 BGA192 Package Marking
PPPPPPPPPP
TTTTTT
YYWW
EFM32
Figure 6.3. BGA192 Package Marking
The package marking consists of:
PPPPPPPPPP – The part number designation.
TTTTTT – A trace or manufacturing code. The first letter is the device revision.
YY – The last 2 digits of the assembly year.
WW – The 2-digit workweek when the device was assembled.
EFM32GG11 Family Data Sheet
BGA192 Package Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 228
7. BGA152 Package Specifications
7.1 BGA152 Package Dimensions
G
F
E
D
C
B
A
12345678
H
91011121314
P
N
M
L
K
J
E
D
A
aaa C B
B
aaa C A
TOP VIEW
DETAIL K
SIDE VIEW
BOTTOM VIEW
D1
e
E1
(0.75)
(0.75)
A1 BALL CORNER
(2X)
(2X)
152X b
eee C A B
fff C
2
A1 BALL CORNER
e/2
e/2
e
A
A3
bbb C
4
?
ddd C
A1
CSEATING PLANE 3
DETAIL K
ROTATED 90¡Æ CW
Figure 7.1. BGA152 Package Drawing
EFM32GG11 Family Data Sheet
BGA152 Package Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 229
Table 7.1. BGA152 Package Dimensions
Dimension Min Typ Max
A 0.78 0.84 0.90
A1 0.13 0.18 0.23
A3 0.16 0.20 0.24
A2 0.45 REF
D 8.00 BSC
e 0.50 BSC
E 8.00 BSC
D1 6.50 BSC
E1 6.50 BSC
b 0.20 0.25 0.30
aaa 0.10
bbb 0.10
ddd 0.08
eee 0.15
fff 0.05
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
EFM32GG11 Family Data Sheet
BGA152 Package Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 230
7.2 BGA152 PCB Land Pattern
Figure 7.2. BGA152 PCB Land Pattern Drawing
EFM32GG11 Family Data Sheet
BGA152 Package Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 231
Table 7.2. BGA152 PCB Land Pattern Dimensions
Dimension Min Nom Max
X 0.20
C1 6.50
C2 6.50
E1 0.5
E2 0.5
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.
3. This Land Pattern Design is based on the IPC-7351 guidelines.
4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm
minimum, all the way around the pad.
5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
6. The stencil thickness should be 0.125 mm (5 mils).
7. The ratio of stencil aperture to land pad size should be 1:1.
8. A No-Clean, Type-3 solder paste is recommended.
9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.
EFM32GG11 Family Data Sheet
BGA152 Package Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 232
7.3 BGA152 Package Marking
PPPPPPPPPP
TTTTTT
YYWW
EFM32
Figure 7.3. BGA152 Package Marking
The package marking consists of:
PPPPPPPPPP – The part number designation.
TTTTTT – A trace or manufacturing code. The first letter is the device revision.
YY – The last 2 digits of the assembly year.
WW – The 2-digit workweek when the device was assembled.
EFM32GG11 Family Data Sheet
BGA152 Package Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 233
8. BGA120 Package Specifications
8.1 BGA120 Package Dimensions
Figure 8.1. BGA120 Package Drawing
EFM32GG11 Family Data Sheet
BGA120 Package Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 234
Table 8.1. BGA120 Package Dimensions
Dimension Min Typ Max
A 0.78 0.84 0.90
A1 0.13 0.18 0.23
A3 0.17 0.21 0.25
A2 0.45 REF
D 7.00 BSC
e 0.50 BSC
E 7.00 BSC
D1 6.00 BSC
E1 6.00 BSC
b 0.20 0.25 0.30
aaa 0.10
bbb 0.10
ddd 0.08
eee 0.15
fff 0.05
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
EFM32GG11 Family Data Sheet
BGA120 Package Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 235
8.2 BGA120 PCB Land Pattern
Figure 8.2. BGA120 PCB Land Pattern Drawing
EFM32GG11 Family Data Sheet
BGA120 Package Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 236
Table 8.2. BGA120 PCB Land Pattern Dimensions
Dimension Min Nom Max
X 0.20
C1 6.00
C2 6.00
E1 0.5
E2 0.5
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.
3. This Land Pattern Design is based on the IPC-7351 guidelines.
4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm
minimum, all the way around the pad.
5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
6. The stencil thickness should be 0.125 mm (5 mils).
7. The ratio of stencil aperture to land pad size should be 1:1.
8. A No-Clean, Type-3 solder paste is recommended.
9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.
EFM32GG11 Family Data Sheet
BGA120 Package Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 237
8.3 BGA120 Package Marking
PPPPPPPPPP
TTTTTT
YYWW
EFM32
Figure 8.3. BGA120 Package Marking
The package marking consists of:
PPPPPPPPPP – The part number designation.
TTTTTT – A trace or manufacturing code. The first letter is the device revision.
YY – The last 2 digits of the assembly year.
WW – The 2-digit workweek when the device was assembled.
EFM32GG11 Family Data Sheet
BGA120 Package Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 238
9. BGA112 Package Specifications
9.1 BGA112 Package Dimensions
Figure 9.1. BGA112 Package Drawing
EFM32GG11 Family Data Sheet
BGA112 Package Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 239
Table 9.1. BGA112 Package Dimensions
Dimension Min Typ Max
A - - 1.30
A1 0.55 0.60 0.65
A2 0.21 BSC
A3 0.30 0.35 0.40
d 0.43 0.48 0.53
D 10.00 BSC
D1 8.00 BSC
E 10.00 BSC
E1 8.00 BSC
e1 0.80 BSC
e2 0.80 BSC
L1 1.00 REF
L2 1.00 REF
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
EFM32GG11 Family Data Sheet
BGA112 Package Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 240
9.2 BGA112 PCB Land Pattern
Figure 9.2. BGA112 PCB Land Pattern Drawing
EFM32GG11 Family Data Sheet
BGA112 Package Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 241
Table 9.2. BGA112 PCB Land Pattern Dimensions
Dimension Min Nom Max
X 0.45
C1 8.00
C2 8.00
E1 0.8
E2 0.8
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.
3. This Land Pattern Design is based on the IPC-7351 guidelines.
4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm
minimum, all the way around the pad.
5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
6. The stencil thickness should be 0.125 mm (5 mils).
7. The ratio of stencil aperture to land pad size should be 1:1.
8. A No-Clean, Type-3 solder paste is recommended.
9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.
EFM32GG11 Family Data Sheet
BGA112 Package Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 242
9.3 BGA112 Package Marking
PPPPPPPPPP
TTTTTT
YYWW
EFM32
Figure 9.3. BGA112 Package Marking
The package marking consists of:
PPPPPPPPPP – The part number designation.
TTTTTT – A trace or manufacturing code. The first letter is the device revision.
YY – The last 2 digits of the assembly year.
WW – The 2-digit workweek when the device was assembled.
EFM32GG11 Family Data Sheet
BGA112 Package Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 243
10. TQFP100 Package Specifications
10.1 TQFP100 Package Dimensions
Figure 10.1. TQFP100 Package Drawing
EFM32GG11 Family Data Sheet
TQFP100 Package Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 244
Table 10.1. TQFP100 Package Dimensions
Dimension Min Typ Max
A - - 1.20
A1 0.05 - 0.15
A2 0.95 1.00 1.05
b 0.17 0.22 0.27
b1 0.17 0.20 0.23
c 0.09 - 0.20
c1 0.09 - 0.16
D 16.0 BSC
E 16.0 BSC
D1 14.0 BSC
E1 14.0 BSC
e 0.50 BSC
L1 1 REF
L 0.45 0.60 0.75
ϴ 0 3.5 7
ϴ1 0 - -
ϴ2 11 12 13
ϴ3 11 12 13
R1 0.08 - -
R2 0.08 - 0.2
S 0.2 - -
aaa 0.2
bbb 0.2
ccc 0.08
ddd 0.08
eee 0.05
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
EFM32GG11 Family Data Sheet
TQFP100 Package Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 245
10.2 TQFP100 PCB Land Pattern
Figure 10.2. TQFP100 PCB Land Pattern Drawing
EFM32GG11 Family Data Sheet
TQFP100 Package Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 246
Table 10.2. TQFP100 PCB Land Pattern Dimensions
Dimension Min Nom Max
C1 15.4
C2 15.4
E 0.50 BSC
X 0.30
Y 1.50
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. This Land Pattern Design is based on the IPC-7351 guidelines.
3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm
minimum, all the way around the pad.
4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
5. The stencil thickness should be 0.125 mm (5 mils).
6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.
7. A No-Clean, Type-3 solder paste is recommended.
8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.
10.3 TQFP100 Package Marking
PPPPPPPPPP
TTTTTT
YYWW
EFM32
Figure 10.3. TQFP100 Package Marking
The package marking consists of:
PPPPPPPPPP – The part number designation.
TTTTTT – A trace or manufacturing code. The first letter is the device revision.
YY – The last 2 digits of the assembly year.
WW – The 2-digit workweek when the device was assembled.
EFM32GG11 Family Data Sheet
TQFP100 Package Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 247
11. TQFP64 Package Specifications
11.1 TQFP64 Package Dimensions
Figure 11.1. TQFP64 Package Drawing
EFM32GG11 Family Data Sheet
TQFP64 Package Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 248
Table 11.1. TQFP64 Package Dimensions
Dimension Min Typ Max
A 1.15 1.20
A1 0.05 0.15
A2 0.95 1.00 1.05
b 0.17 0.22 0.27
b1 0.17 0.20 0.23
c 0.09 0.20
c1 0.09 0.16
D 12.00 BSC
D1 10.00 BSC
e 0.50 BSC
E 12.00 BSC
E1 10.00 BSC
L 0.45 0.60 0.75
L1 1.00 REF
R1 0.08
R2 0.08 0.20
S 0.20
θ 0 3.5 7
ϴ1 0 0.10
ϴ2 11 12 13
ϴ3 11 12 13
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
EFM32GG11 Family Data Sheet
TQFP64 Package Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 249
11.2 TQFP64 PCB Land Pattern
Figure 11.2. TQFP64 PCB Land Pattern Drawing
EFM32GG11 Family Data Sheet
TQFP64 Package Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 250
Table 11.2. TQFP64 PCB Land Pattern Dimensions
Dimension Min Max
C1 11.30 11.40
C2 11.30 11.40
E 0.50 BSC
X 0.20 0.30
Y 1.40 1.50
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. This Land Pattern Design is based on the IPC-7351 guidelines.
3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm
minimum, all the way around the pad.
4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
5. The stencil thickness should be 0.125 mm (5 mils).
6. The ratio of stencil aperture to land pad size can be 1:1 for all pads.
7. A No-Clean, Type-3 solder paste is recommended.
8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
11.3 TQFP64 Package Marking
PPPPPPPPPP
TTTTTT
YYWW
EFM32
Figure 11.3. TQFP64 Package Marking
The package marking consists of:
PPPPPPPPPP – The part number designation.
TTTTTT – A trace or manufacturing code. The first letter is the device revision.
YY – The last 2 digits of the assembly year.
WW – The 2-digit workweek when the device was assembled.
EFM32GG11 Family Data Sheet
TQFP64 Package Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 251
12. QFN64 Package Specifications
12.1 QFN64 Package Dimensions
Figure 12.1. QFN64 Package Drawing
EFM32GG11 Family Data Sheet
QFN64 Package Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 252
Table 12.1. QFN64 Package Dimensions
Dimension Min Typ Max
A 0.70 0.75 0.80
A1 0.00 0.05
b 0.20 0.25 0.30
A3 0.203 REF
D 9.00 BSC
e 0.50 BSC
E 9.00 BSC
D2 7.10 7.20 7.30
E2 7.10 7.20 7.30
L 0.40 0.45 0.50
L1 0.00 0.10
aaa 0.10
bbb 0.10
ccc 0.10
ddd 0.05
eee 0.08
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
EFM32GG11 Family Data Sheet
QFN64 Package Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 253
12.2 QFN64 PCB Land Pattern
Figure 12.2. QFN64 PCB Land Pattern Drawing
EFM32GG11 Family Data Sheet
QFN64 Package Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 254
Table 12.2. QFN64 PCB Land Pattern Dimensions
Dimension Typ
C1 8.90
C2 8.90
E 0.50
X1 0.30
Y1 0.85
X2 7.30
Y2 7.30
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. This Land Pattern Design is based on the IPC-7351 guidelines.
3. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabri-
cation Allowance of 0.05mm.
4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm
minimum, all the way around the pad.
5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
6. The stencil thickness should be 0.125 mm (5 mils).
7. The ratio of stencil aperture to land pad size can be 1:1 for all pads.
8. A 3x3 array of 1.45 mm square openings on a 2.00 mm pitch can be used for the center ground pad.
9. A No-Clean, Type-3 solder paste is recommended.
10. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
EFM32GG11 Family Data Sheet
QFN64 Package Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 255
12.3 QFN64 Package Marking
PPPPPPPPPP
TTTTTT
YYWW
EFM32
Figure 12.3. QFN64 Package Marking
The package marking consists of:
PPPPPPPPPP – The part number designation.
TTTTTT – A trace or manufacturing code. The first letter is the device revision.
YY – The last 2 digits of the assembly year.
WW – The 2-digit workweek when the device was assembled.
EFM32GG11 Family Data Sheet
QFN64 Package Specifications
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 256
13. Revision History
Revision 0.6
March, 2018
Removed "Confindential" watermark.
Updated 4.1 Electrical Characteristics and 4.2 Typical Performance Curves with latest characterization data.
Revision 0.2
October, 2017
Updated memory maps to latest formatting and to include all peripherals.
Updated all electrical specifications tables with latest characterization results.
Absolute Maximum Ratings Table:
Removed redundant IVSSMAX line.
Added footnote to clarify VDIGPIN specification for 5V tolerant GPIO.
General Operating Conditions Table:
Removed dVDD specification and redundant footnote about shorting VREGVDD and AVDD together.
Added footnote about IOVDD voltage restriction when CSEN peripheral is used with chopping enabled.
Flash Memory Characteristics Table: Added timing measurement clarification for Device Erase and Mass Erase.
Analog to Digital Converter (ADC) Table:
Added header text for general specification conditions.
Added footnote for clarification of input voltage limits.
Minor typographical corrections, including capitalization, mis-spellings and punctuation marks, throughout document.
Minor formatting and styling updates, including table formats, TOC location, and boilerplate information throughout document.
Revision 0.1
April 27th, 2017
Initial release.
EFM32GG11 Family Data Sheet
Revision History
silabs.com | Building a more connected world. Preliminary Rev. 0.6 | 257
http://www.silabs.com
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA
Simplicity Studio
One-click access to MCU and
wireless tools, documentation,
software, source code libraries &
more. Available for Windows,
Mac and Linux!
IoT Portfolio
www.silabs.com/IoT
SW/HW
www.silabs.com/simplicity
Quality
www.silabs.com/quality
Support and Community
community.silabs.com
Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes
without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included
information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted
hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of
Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal
injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass
destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.
Trademark Information
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,
EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, ISOmodem®, Micrium, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri, and others are trademarks or registered
trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All
other products or brand names mentioned herein are trademarks of their respective holders.