©2003 Fairchild Semiconductor Corporation HUF76129P3, HUF76129S3S Rev. B1
HUF76129P3 , HUF76129S3S
56A, 30V, 0.016 Ohm, N-Channel, Logic
Level UltraFET Power MOSFETs
These N-Chann el power MOSFETs
are manufactured using the
innovative Ul traFET™ pr ocess.
This advanced process technology
achie ves the lo west pos sible on-resi stance per sil icon area,
resultin g in outstanding performanc e. This dev ice is capable
of wit hstanding hi gh energ y in the avalanche mode and the
diode e xhibits v ery lo w revers e recovery time and stored
charge. It w as designed for use in applica ti ons where po wer
efficiency is important, such as switching regulators,
switching converters , motor drivers , relay drivers, low-
voltage bus s w itches, and power management in portab le
and battery-operated products.
Formerly deve lopmental type TA76129.
Features
Logic Level Gate Driv e
56A, 30V
Ultr a Low On-Resi stance, rDS(ON) = 0.016
Tem peratur e Com pensating PSPI CE® Model
Tem peratur e Com pensating SABER© Model
Thermal Impedanc e SPICE Model
Thermal Impedanc e SABER Model
Peak Current vs Pulse Widt h Curve
UIS Rating Curve
Related Literature
- TB334, “G uidelines for Soldering Surface Mount
Components to PC Boards”
Symbol
Packaging
Ordering Information
PART NUMBER PACKAGE BRAND
HUF76129P3 TO-220AB 76129P
HUF76129S3S TO-263AB 76129S
NOTE: When ordering, use the entire part number. Add the suffix T to
obtain the TO-263AB variant in tape and reel, e.g., HUF76129S3ST.
D
G
S
JEDEC TO-220AB JEDEC TO-263AB
DRAIN
SOURCE
GATE
DRAIN
(FLANGE) GATE
SOURCE
DRAIN
(FLANGE)
Data Sheet Januar y 2003
©2003 Fairchild Semiconductor Corporation HUF76129P3, HUF76129S3S Rev. B1
Absolute Maximum Rat ings TC = 25oC, Unless Otherwise Specif ied UNITS
Drain to Source V o ltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VDSS 30 V
Drain to Gate Voltage (RGS = 20k ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR 30 V
Gate to Source Vo ltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VGS ±20 V
Drain Current
Continuous (TC = 25oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Continuous (TC = 100oC, VGS = 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Continuous (TC = 100oC, VGS = 4.5V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM
56
35
34
Figu re 4
A
A
A
Pulsed Avalanche Rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .EAS Figures 6, 17, 1 8
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .PD
Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
0.83 W
W/oC
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TJ, TSTG -40 to 1 5 0 oC
Maximu m Temperature for S oldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL
Package Body f or 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg 300
260
oC
oC
CAUT ION: St ress es above those list ed in “Abs olute Maximum Rati ngs” may cause per mane nt damage to the device. This is a str ess only rating and operati on of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. TJ = 25oC to 150oC.
Electrical Speci fications TA = 25oC, Unless Otherwise Specified
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
OFF STATE SPECIFICATIONS
Dr ain t o Sou rce Breakdown Voltag e BVDSS ID = 250µA, VGS = 0V (Figure 12) 30 - - V
Z ero Gat e V ol tag e D rain C urr e nt IDSS VDS = 25V, VGS = 0V - - 1 µA
VDS = 25V, VGS = 0V, TC = 1 5 0oC--250µA
Ga te t o Sour c e Le ak ag e C urr e nt IGSS VGS = ±20V - - ±100 nA
ON STATE SPECIFICATIONS
Gate to Source Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA (Figure 11) 1 - 3 V
Drain t o Source On Resistance rDS(ON) ID = 56A, VGS = 10V (Figure 9, 10) - 0.014 0.016
ID = 35A, VGS = 5V (Figure 9) - 0.0175 0.021
ID = 34A, VGS = 4.5V - 0.0195 0.023
THERMAL SPECIFICATIONS
T her m al Res ista nc e Ju ncti on to Case RθJC (Figu re 3) - - 1.20 oC/W
Thermal Resistance Junction to Ambient RθJA TO-220 and TO-263 - - 62 oC/W
SWITCHING SPECIFICATIONS (VGS = 4.5V)
Turn -On Time tON VDD = 15V , ID 34A,
RL = 0.441, V GS = 4.5V,
RGS = 6.8
(Figures 15, 21, 22)
--160ns
Turn-O n Delay Time td(ON) -14-ns
Rise Time tr-90-ns
Turn-O ff Delay Time td(OFF) -28-ns
Fa ll Time tf-32-ns
Turn -Off Time tOFF --90ns
HUF76129P3, HUF76129S3S
©2003 Fairchild Semiconductor Corporation HUF76129P3, HUF76129S3S Rev. B1
SWITCHING SPECIFICATIONS (VGS = 10V)
Turn -On Time tON VDD = 15V , ID 56A,
RL = 0.268, V GS = 10V,
RGS = 8.2
(Figures 16, 21, 22)
--62ns
Turn-O n Delay Time td(ON) -11-ns
Rise Time tr-30-ns
Turn-O ff Delay Time td(OFF) -68-ns
Fa ll Time tf-35 -ns
Turn -Off Time tOFF --155ns
GATE CHARGE SPECIFICATIONS
T otal G ate Charg e Qg(TOT) VGS = 0V to 10V VDD = 15V,
ID 35A,
RL = 0 .429
Ig(REF) = 1.0mA
(F ig ur e s 14 , 19, 20)
-3745nC
Gat e Charg e at 5V Qg(5) VGS = 0V to 5V - 19 23 nC
T hresh old G ate Ch arge Qg(TH) VGS = 0V to 1V - 1.4 1.7 nC
Ga te to Sourc e Gate Charg e Qgs -4.50- nC
Ga te t o Drai n “M iller ” C ha rge Qgd - 10.30 - nC
CAPACITANCE SPECIFICATIONS
Input Capacitance CISS VDS = 25V, VGS = 0V,
f = 1MHz
(Figure 13)
- 1350 - pF
Output Capacitance COSS -700- pF
Reverse Transfer Capacitance CRSS -160- pF
Electrical Speci fications TA = 25oC, Unless Otherwise Specified
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Source to Drain Diode Specific ations
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Source to Drain Diode Volta ge VSD ISD = 35A - - 1.25 V
Reverse Recovery Time trr ISD = 35A, dISD/dt = 100A/µs--60ns
Reverse Recovered Charge QRR ISD = 35A, dISD/dt = 100A/µs - - 105 nC
Typical Performance Curves
FIGURE 1. NORMALIZED PO WER DISSIPATI ON vs CASE
TEMPERATURE FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPER ATURE
TC, CASE TEMPERATURE (oC)
POWER DISSIPATION MULTIPLIER
00255075100 150
0.2
0.4
0.6
0.8
1.0
1.2
125
30
025 50 75 100 125
ID, DRAIN CURRENT (A)
TC, CASE TEMPERATURE (oC)
60
150
10
40 VGS = 4.5V
VGS = 10V
50
20
HUF76129P3, HUF76129S3S
©2003 Fairchild Semiconductor Corporation HUF76129P3, HUF76129S3S Rev. B1
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
FIGURE 4. PEAK CURRENT CAPABILITY
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA NOTE: Refer to Fairchild Application Not es AN9321 and AN9322.
FIGURE 6. UNCL AMPED INDUCTIVE SWITCHING
CAPABILITY
Typical Performance Curves (Continued)
t, RECTANGULAR PULSE DURATION (s)
10-5 10-1 100
2
0.1
1
10-2
ZθJC, NORMALIZED
THERMAL IMPEDANCE
0.01 10-4 10-3
SINGLE PULSE NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC x RθJC + TC
PDM
t1t2
101
DUTY CYCLE - DESCENDING ORDER
0.5
0.2
0.1
0.05
0.01
0.02
TC = 25oC
I = I25 150 - TC
125
FOR TEMPERATURES
ABOVE 25oC DERATE PEAK
CURRENT AS FOLLOWS:
VGS = 10V
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
IDM, PEAK CURRENT (A)
2000
50
10-5 10-4 10-3 10-2 10-1 100101
t, PULSE WIDTH (s)
100
VGS = 5 V
1000
TJ = MAX RATED
TC = 25oC
100µs
10ms
1ms
BVDSS MAX = 30V
LIMITED BY rDS(ON)
AREA MAY BE
OPERATION IN THIS
1001VDS, DRAIN TO SOURCE VOLTAGE (V)
1
100
1000
10
ID, DRAIN CURRENT (A)
10 1 10 100
100
0.01
1000
1
IAS, AVALANCHE CURRENT (A)
tAV, TIME IN AVALANCHE (ms)
STARTING TJ = 25oC
STARTING TJ = 150oC
0.1
10
0.001
tAV = (L)(IAS)/(1. 3*RATED BVDSS - VDD)
If R = 0
If R 0
tAV = (L/R)l n[(IAS*R)/(1.3*RA TED BVDSS - VDD) +1]
HUF76129P3, HUF76129S3S
©2003 Fairchild Semiconductor Corporation HUF76129P3, HUF76129S3S Rev. B1
FIGURE 7. TRANSFER CHARACTERISTICS FIGURE 8. SATURATION CHARACTERISTICS
FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE
VOLTAGE AND DRAIN CURRENT FIGURE 10. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
FIGURE 11. NORMALIZED GATE THRESHOLD V OLTAGE vs
JUNCTION TEMPERATURE FIGURE 12. NORMALIZED DRAIN T O S OURCE BREAKDOW N
VOLTAGE vs JUNCTION TEMPERATURE
Typical Performance Curves (Continued)
023451
0
20
40
60
ID, DRAIN CURRENT (A)
VGS, GATE TO SOURCE VOLTAGE (V)
150oC
-40oC
25oC
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VDD = 15V
80
VGS = 3.5V
0
20
40
012345
60
ID, DRAIN CURRENT (A)
VDS, DRAIN TO SOURCE VOLTAGE (V)
VGS = 3V
80 PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VGS = 4V
VGS = 5V
VGS = 10V
VGS = 4.5V
15
20
30
10 4
VGS, GATE TO SOURCE VOLTAGE (V)
26108
ID = 56A
ID = 35A
ID = 20A
rDS(ON), DRAIN TO SOURCE
ON RESISTANCE (m)
25
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
0.8
1.0
1.2
1.6
NORMALIZED DRAIN TO SOURCE
TJ, JUNCTION TEMPERATURE (oC)
ON RESISTANCE
1.4
-60 -0 60 120 180
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VGS = 10V, ID = 56A
-60 0 60 120
0.6
0.7
1.1
1.2
NORMALIZED GATE
TJ, JUNCTION TEMPERATURE (oC)
THRESHOLD VOLTAGE
VGS = VDS, ID = 250µA
180
0.9
0.8
1.0
1.15
1.10
1.00
0.95
0.90
-60 0 60 160
TJ, JUNCTION TEMPERATURE (oC)
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
ID = 250µA
180
1.05
HUF76129P3, HUF76129S3S
©2003 Fairchild Semiconductor Corporation HUF76129P3, HUF76129S3S Rev. B1
FIGURE 13. CAPACITANCE vs DRAIN T O SOURCE VOLTAGE
NOTE: Refer to Fairchild Application Notes 7254 and 7260.
FIGURE 14. GATE CHARGE WAVEFORMS FOR CONSTANT
GATE CURRENT
FIGURE 15. SWITCHING TIME vs GATE RESISTANCE FIGURE 16. SWITCHING TIME vs GATE RESISTANCE
Test Circuits and Waveforms
FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 18. UNCLAMPED ENERGY WAVEFORMS
Typical Performance Curves (Continued)
COSS
2000
1200
00 5 15 25
C, CAPACITANCE (pF)
1600
VDS, DRAIN TO SOURCE VOLTAGE (V)
800
30
400
CISS
CRSS
10 20
VGS = 0V, f = 1MHz
CISS = CGS + CGD
CRSS = CGD
COSS CDS + CGD
10
8
6
4
0
VGS, GATE TO SOURCE VOLTAGE (V)
VDD = 15V
2
30 400
Q
g
, GATE CHARGE (nC)
10
ID = 56A
ID = 35A
ID = 20A
WAVEFORMS IN
DESCENDING ORDER:
20
100
20 30 40 500
400
300
200
010
SWITCHING TIME (ns)
RGS, GATE TO SOURCE RESISTANCE ()
td(OFF)
td(ON)
tr
tf
VGS = 4.5V, VDD = 15V, ID = 34A, RL = 0.441
0
150
20 30 40 50
300
250
200
010
SWITCHING TIME (ns)
RGS, GATE TO SOURCE RESISTANCE ()
td(OFF)
td(ON)
tr
tf
VGS = 10V, VDD = 15V, ID = 56A, RL = 0.268
50
100
tP
VGS
0.01
L
IAS
+
-
VDS
VDD
RG
DUT
VARY tP TO OBTAIN
REQUIRED PEAK IAS
0V
VDD
VDS
BVDSS
tP
IAS
tAV
0
HUF76129P3, HUF76129S3S
©2003 Fairchild Semiconductor Corporation HUF76129P3, HUF76129S3S Rev. B1
FIGURE 19. GATE CHARGE TEST CIRCUIT FIGURE 20. GATE CHARGE WAVEFORMS
FIGURE 21. SWI TCHING TIME TEST CIRCUIT FIGURE 22. SWITCHIN G TIME WAVEFORM
Test Circuits and Waveforms (Continued)
RL
VGS +
-
VDS
VDD
DUT
Ig(REF)
VDD
Qg(TH)
VGS = 1V
Qg(5)
VGS = 5V
Qg(TOT)
VGS = 10
VDS
VGS
Ig(REF)
0
0
VGS
RL
RGS DUT
+
-VDD
VDS
VGS
tON
td(ON)
tr
90%
10%
VDS 90%
10%
tf
td(OFF)
tOFF
90%
50%
50%
10% PULSE WIDTH
VGS
0
0
HUF76129P3, HUF76129S3S
©2003 Fairchild Semiconductor Corporation HUF76129P3, HUF76129S3S Rev. B1
PSPICE Electrical Model
SUBCKT HUF76129 2 1 3 ; REV August 1998
C A 12 8 1. 95e -9
CB 15 14 2.06e -9
CIN 6 8 1.18e-9
D BODY 7 5 DBODYM O D
DBREAK 5 11 DBREAKMOD
DPLCAP 10 5 DPLCAPMOD
EBREAK 11 7 17 18 33.5
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 6 8 1
EVTH RES 6 21 19 8 1
EVTEM P 20 6 18 22 1
IT 8 1 7 1
LDRAIN 2 5 1e-9
LGATE 1 9 4.02e- 9
LSOU RCE 3 7 3.45e-9
MMED 16 6 8 8 M M EDMOD
MSTR O 16 6 8 8 M S T ROM O D
MWEAK 16 21 8 8 M WE AKMOD
RBREAK 17 18 RBREAKMOD 1
RDRAIN 50 16 RDRAINMOD 1.3e-3
RG ATE 9 20 3.5
RL DRAIN 2 5 10
RLGATE 1 9 40 .2
RLSOURCE 3 7 34.5
RSLC1 5 51 R SL CM OD 1e-6
RSLC2 5 50 1e 3
RSOURCE 8 7 RSOURCEMOD 8e-3
RVT HRE S 2 2 8 RVTHRESM OD 1
RVTEMP 18 19 RVTEMPMOD 1
S1A 6 12 13 8 S1A M OD
S1B 13 12 13 8 S1BMO D
S2A 6 15 14 13 S2AMO D
S2B 13 15 14 13 S2BMOD
VBAT 22 19 DC 1
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*1000),3.5))}
.MO DE L DB ODY M OD D (IS = 1e-12 IKF = 10 R S = 5. 6e-3 TRS1 = 5e-4 TRS 2 = 1e-6 CJ O = 2.23e -9 TT = 2e-7 M = 4e-1 N = 9.9e -1 XTI =4 .7 5 )
.MODEL DBREAKMOD D (RS = 1.5e-1 IS = 1e-14 TRS1 = 9e-4 TRS2 = -2e-5 IKF = 1e-1)
.MODEL DPLCAPMOD D (CJO = 1.12e-9 IS = 1e-30 N = 10 M = 6.7e-1 VJ = 1.45)
.MODE L M M EDMOD NM OS (VTO = 2 KP = 5. 75 IS = 1e-30 N = 10 TO X = 1 L = 1u W = 1u RG = 3. 6)
.MODE L M STROMOD NMOS (V T O = 2.3 KP = 80 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MODEL MWEAKMOD NMOS (VTO = 1.62 KP =2e-2 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 36)
.MO DE L RBR EAK MOD RE S (TC1 = 9.8e-4 TC2 = -1e-10)
.MO DEL RDRAINMOD RE S (TC1 = 2e-2 T C2 = 1e-7)
.MO DE L RS LCMO D RES (TC1 = 1e- 6 T C2 = 1.05e-6)
.MODEL RSOURCEMOD RES (TC1 = 5e-4 TC2 = 1e-5)
.MODEL RVTHRESMOD RES (TC1 = -2e-3 TC2 = -1.1e-5)
.MO DE L RVTE M P MOD R ES (T C1 = -1. 65e-3 TC2 = 1.4 5e-6)
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -4.3 VOFF = -2.0)
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.0 VOFF = -4.3)
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -0.8 VOFF = 0.5)
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.5 VOFF = -0.8)
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperat ure O ptions; IEEE Power Electronics Specialist Conf e rence Records, 1991, written by William J. Hepp and C. Frank Wheatley.
18
22
+-
6
8
+
-
5
51
+
-
19
8
+-
17
18
6
8
+
-
5
8+
-
RBREAK
RVTEMP
VBAT
RVTHRES
IT
17 18
19
22
12
13
15
S1A
S1B
S2A
S2B
CA CB
EGS EDS
14
8
13
814
13
MWEAK
EBREAK DBODY
RSOURCE
SOURCE
11
73
LSOURCE
RLSOURCE
CIN
RDRAIN
EVTHRES 16
21
8
MMED
MSTRO
DRAIN
2
LDRAIN
RLDRAIN
DBREAK
DPLCAP
ESLC
RSLC1
10
5
51
50
RSLC2
1
GATE RGATE EVTEMP
9
ESG
LGATE
RLGATE 20
+
-
+
-
+
-
6
HUF76129P3, HUF76129S3S
©2003 Fairchild Semiconductor Corporation HUF76129P3, HUF76129S3S Rev. B1
Saber Electrical Model
nom tem p=25 deg c 30v LL Ultrafet
REV A ugust 1998
templ ate hu f76129 n2,n1,n3
electrical n2,n1,n3
{
var i iscl
d..model dbody m od = (i s=1. e-12, xti=4.75, cjo=2.23e-9, tt=20e-8, m= 4e-1, n=9.9e- 1)
d..model dbreakmod = (is=1e-14)
d..model dplcapmod = (cjo=1.12e-9, i s=1e-30,n=10, m = 6. 7e-1, vj=1.4 5,)
m..model mmedmod = (type=_n,vto=2,kp=5.75,is=1e-30, tox=1)
m..model mstrongmod = (type=_n,vto=2.3,kp=80,is=1e-30, tox=1)
m..model mweakmod = (type=_n,vto=1.62,kp=2e-2,is=1e-30, tox=1)
sw_v cs p.. mo del s 1amo d = (ron=1e-5,roff= 0. 1,vo n=-4.3,voff = -2)
sw_v cs p.. mo del s 1bmo d = (ron=1e-5,roff= 0. 1,vo n=-2,vof f=-4.3)
sw_v cs p..mo del s2amod = (ron=1e- 5,roff=0. 1, von=- 0.8,vof f=0. 5)
sw_v cs p..mo del s2bmod = (ron=1e- 5,roff=0. 1, von=0.5,v off=-0.8)
c.ca n12 n8 = 1.95e-9
c.c b n15 n14 = 2. 06e-9
c.cin n6 n8 = 1.18 e-9
d.dbody n7 n71 = model=dbodymod
d.dbreak n72 n11 = m odel=dbreakmod
d.dplcap n10 n5 = m odel =dplcapmod
i.it n8 n17 = 1
l.ldrain n2 n5 = 1e-9
l.lg ate n1 n9 = 4.02e-9
l.lsource n3 n7 = 3.45e-9
m.mmed n16 n6 n8 n8 = model=m m edm od, l= 1u, w=1 u
m.ms t rong n16 n6 n8 n8 = model=m strongmo d, l= 1u, w=1 u
m.mw eak n16 n21 n8 n8 = model =m weakmod , l=1u, w =1u
res. rbreak n17 n18 = 1, tc1=9. 8e-4, tc 2=-1e-9
res. rdbody n71 n5 =5.6e- 3, tc 1=5e-4, tc 2=1e-6
res. rdbreak n7 2 n5 =1.5e -1, tc 1=9e-4, tc2=-2 e-5
res. rdrain n50 n16 = 1.3e- 3, tc 1=2e-2, tc2 =1e-7
r e s .rg ate n9 n2 0 = 3. 5
res. rl drain n2 n5 = 10
res. rl gate n1 n9 = 40.2
res. rl sour ce n3 n7 = 34. 5
res. rslc1 n5 n51 = 1e- 6, tc1=1e-6, tc2 =-1.05 e-6
res. rslc2 n5 n50 = 1e 3
res.rsource n8 n7 = 8e-3, tc1=5e-4,tc2=1e-5
res.rvtemp n18 n19 = 1, tc1=-1.65e-3,tc2=1.45e-9
res. rvth res n22 n8 = 1, tc1=-2e-3,tc 2=-1. 1e-5
spe. ebreak n11 n7 n17 n18 = 33. 5
spe. eds n14 n8 n5 n8 = 1
spe. egs n13 n8 n6 n8 = 1
spe. esg n6 n10 n6 n8 = 1
spe. evtemp n20 n6 n18 n22 = 1
spe.evthres n6 n21 n19 n8 = 1
sw_v cs p.s1a n6 n12 n13 n8 = model =s1a m od
sw_v cs p.s1 b n13 n12 n13 n8 = model=s1bmod
sw_v cs p.s2 a n6 n15 n14 n13 = model=s2amod
sw_v cs p.s2 b n13 n15 n14 n13 = mod el =s2bmod
v.vbat n22 n19 = dc=1
equations {
i (n51->n50) +=iscl
iscl : v (n51, n50) = ((v (n5,n51) / (1e-9+abs (v(n5,n51))))*(( abs(v (n5,n 51)*1e6/ 1000))** 3.5 ))
}
}
18
22
+-
6
8
+
-
19
8
+-
17
18
6
8
+
-
5
8+
-
RBREAK
RVTEMP
VBAT
RVTHRES
IT
17 18
19
22
12
13
15
S1A
S1B
S2A
S2B
CA CB
EGS EDS
14
8
13
814
13
MWEAK
EBREAK DBODY
RSOURCE
SOURCE
11
73
LSOURCE
RLSOURCE
CIN
RDRAIN
EVTHRES 16
21
8
MMED
MSTRO
DRAIN
2
LDRAIN
RLDRAIN
DBREAK
DPLCAP
ISCL
RSLC1
10
5
51
50
RSLC2
1
GATE RGATE EVTEMP
9
ESG
LGATE
RLGATE 20
+
-
+
-
+
-
6
RDBODY
RDBREAK
72
71
HUF76129P3, HUF76129S3S
©2003 Fairchild Semiconductor Corporation HUF76129P3, HUF76129S3S Rev. B1
SPICE Th ermal Model
REV August 1998
HUF76129
CTHERM1 th 6 1.10e-5
CTHERM2 6 5 2.70e-2
CTHERM3 5 4 3.90e-2
CTHERM4 4 3 1.00e-2
CTHERM5 3 2 2.30e-2
CTHERM6 2 tl 1.80
RTHERM1 th 6 1.00e-4
RTHERM2 6 5 5.00e-4
RTHERM3 5 4 2.90e-2
RTHERM4 4 3 4.80e-1
RTHERM5 3 2 2.80e-1
RTHERM6 2 tl 1.00e-1
Saber Thermal Model
Saber thermal model HUF76129
template thermal_model th tl
thermal_c th, tl
{
ctherm.ctherm1 th c2 =1.10e-5
ctherm.ctherm2 c2 c3 =2.70e-2
ctherm.ctherm3 c3 c4 =3.90e-2
ctherm.ctherm4 c4 c5 =1.00e-2
ctherm.ctherm5 c5 c6 =2.30e-2
ctherm.ctherm6 c6 tl=1.80
rtherm.rtherm1 th c2 =1.00e-4
rtherm.rtherm2 c2 c3 =5.00e-4
rtherm.rtherm3 c3 c4 =2.90e-2
rtherm.rtherm4 c4 c5 =4.80e-1
rtherm.rtherm5 c5 c6 =2.80e-1
rtherm.rtherm6 c6 tl=1.00e- 1
}
RTHERM4
RTHERM6
RTHERM5
RTHERM3
RTHERM2
RTHERM1
CTHERM4
CTHERM6
CTHERM5
CTHERM3
CTHERM2
CTHERM1
tl
2
3
4
5
6
th JUNCTION
CASE
HUF76129P3, HUF76129S3S
Rev. I2
TRADEMARKS
The following are registe red and unregistered tradem arks Fairchild Semicond ucto r owns or is author ized to use and is not
intended to be an exhaustive list of all such trademarks.
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY
LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN;
NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR
CORPORATION.
As used h ere in:
1. Life support devices or systems are devices or systems
wh ich, (a) ar e int ende d fo r s urgic al i mpla nt into the body ,
or (b) support or sustain life, or (c) whose failure to perform
when properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to
result in significant injury to the user.
2. A c r it ic al c om pon ent is an y c om pone n t o f a life s u pp or t
device or system whose failure to perform can be
reasonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness.
PRODUCT STATUS DEFINITIONS
Defini ti on of Terms
ACEx™
ActiveArray™
Bottomless™
CoolFET™
CROSSVOLT™
DOME™
EcoSPARK™
E2CMOS™
EnSigna™
FACT™
FACT Quiet Series™
FAST®
FASTr™
FRFET™
GlobalOptoisolator™
GTO™
HiSeC™
I2C™
ImpliedDisconnect™
ISOPLANAR™
LittleFET™
MicroFET™
MicroPak™
MICROWIRE™
MSX™
MSXPro™
OCX™
OCXPro™
OPTOLOGIC®
OPTOPLANAR™
PACMAN™
POP™
Power247™
PowerTrench®
QFET™
QS
QT Optoelectronics™
Quiet Serie s
RapidConfigure
RapidConnect™
SILENT SWITCHER®
SMART START™
SPM™
Stealth™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SyncFET™
TinyLogic®
TruTranslation
UHC™
UltraFET®
VCX™
A cross the board. Around the world.™
T he Power Franchi se™
P rogramma ble Acti ve Droop™
Datasheet Identification Product Status Definition
Advance Information Formati ve or In
Design This datasheet contains the design specificat ions for
product development. Specifications may change in
any manner without notice.
Preliminary First Production This dat asheet cont ains preli m inary data, and
supplementary data will be published at a later date.
Fairchild Semiconductor reserves the right to make
changes at any t ime without notice in order to impr ove
design.
No Identification Needed Full Production This datasheet contains final specifications. Fairchild
Semiconductor reserves the right to make chan ges at
any time without notice in order to improve design.
Obsolete Not In P rod uction This datasheet contains specifications on a product
that has been discontinu ed by Fairchild s emico nductor.
The datasheet is printed for reference information only.