File No. 288 URAL Solid State Division RF Power Transistors 2N5179 RCA-2N5179* is a double-diffused epitaxial planar transistor of the silicon n-p-n type. It is extremely useful in low-noise tuned-amplifier and converter applications at UHF frequencies, and as an oscillator up to 500 MHz. The 2N5179 utilizes a hermetically sealed four- lead JEDEC TO-72 package. All active elements of the transistor are insulated from the case, which may be grounded by means of the fourth lead in applications requiring minimum feedback capaci- tance, shielding of the device, or both. * Formerly Dev. No. TA7319, Meximum Ratings, Absolute-Maximum Valves: COLLECTOR-TO-BASE VOLTAGE, Vcso 20 max. Vv COLLECTOR-TO-EMITTER VOLTAGE, Vcreo 12 max. Vv EMITTER-TO-BASE VOLTAGE, VEso .. 2.5 max. Vv COLLECTOR CURRENT, Ic 50 max. mA TRANSISTOR DISSIPATION, Pr: For operation with heat sink: 300 m At case up to 25C .. above 25C ... For operation at ambient mw temperatures** Derate vat 1.71mW/C temperatures: At ambient up to 25C ... 200 max. temperatures above 25C ... Derate at 1. i4mW/* % TEMPERATURE RANGE: Storage and Operating (Junction) 65 to +200 C LEAD TEMPERATURE (During Soldering) : At distances 21/32 from seating surface for 10 seconds max. 265 max. C ** Measured at center of seating surface. SILICON N-P-N EPITAXIAL PLANAR TRANSISTOR For VHF Applications in Military, JEDEC TO-72 Communications, and Industrial Equipment * high gain-bandwidth product 1OOOMHz min. * hermetically sealed TO-72 four-lead metal package * low leakage current high power gain as neutralized amplifier G,. = 15dB min. at 200MHz * high power output as UHF oscillator 20mW typ. at 500MHz * low noise figure NF = 4.5dB max. at 200MHz low collector-to-base time constant nC. = 14ps max, high reliability production lots of RCA-2N5179 are subjected to and meet the minimum mechanical, environmental, and life-test requirements of the basic MILITARY speci- fication MIL-S-19500. See page 5 for a descrip- tion of the Group A and Group B Tests. Tr COMMON: EMITTER CIRCUIT, BASE INPUT; t fe $4 OUTPUT SHORT-CIRCUITE pre py { t | t FREQUENCY (f) = (OOMHe AMBIENT TEMPERATURE (Ta)=25 C COLLECTOR-TO-EMITTER VOLTS (Vc_)=6 cope aot fel) t f 1 oer TIT t t { ct + + i aT: 4 Ny o a TT it 4 3 MAGNITUDE OF SMALL-SIGNAL. FORWARD CURRENT-TRANSFER RATIO (Ih: A poet tit: cet ote Oo 5 10 IS 20 25 30 35 COLLECTOR MILLIAMPERES (Ic) 9208-14169 Fig. 1 Small-Signal Beta Characteristic for Type 2N5179 124 8-67File No. 288 FROM 50 0.02 source HF 92CS 14783 EXTERNAL SHIELD + Veco 2N5179 ELECTRICAL CHARACTERISTICS TEST CONDITIONS LIMITS pc pc oc oc oc pc vgs Ambient Collector- | Collector | Emitter- Emitter CoNector Base Type Characteristics Symbols Temp. Frequency! to-Base | to-Emitter | to-Base Current Current Current 2N5179 Units Voltage Voltage | Voltage ~ Ta f Ves CE Ves le le le C MHz v v v mA mA mA Min. | Typ. |Max. Collector-Cutoff Current IcBo 3 4 7] oo 0.08 uh Collector-to-Base . Breakdown Voltage V(BR) CBO 25 0 0.001 20 : -|V Collector-to-Emitter Sustaining Voltage V ceolsus) 25 3 0 12 | Emitter-to-Base Breakdown Voltage V(BR)EBO 25 0.01 0 25 - -|V Collector-to-Emitter Saturation Voltage Vcx(sat) 25 10 1 0.4] V Base-to-Emitter . Saturation Voltage Vese(sat) 25 10 1 1] Vv Static Forward Current- . Transfer Ratio hee: 2s 1 3 25 | 70 | 250 Magnitude of Small-Signal 25 100 6 5 9/141] 20 Forward Current-Transfer | hee | 1 kHz 6 2 25 | 90 | 300 Ratio Collector-to-Base Feedback Capacitanceb Cop 25 O.1 tol 10 0 07 1) pF Common-Base Input . . Capacitancec Cy 25 0.1 tol 0.5 0 2 | pF Collector-to-Base , Time Constanta nyo, 25 31.9 6 2 3] 7} 14] ps Small-Signal Power Gain in Neutralized Common- Emitter Amplifier Circuita G6 25 200 12 5 15 )21 dB (See Fig. 2) Power Output in Common- Emitter Oscilator Cir- Py 25 >500 10 -12 20 - |mW cuit (See Fig. 3) Noise Figure@ NF 25 200 6 15 - | 3 45 | GB a Lead No.4(case) grounded; Rg = 1250 c Lead No. 4 (case) floating. > Three-terminal measurement of the collector-to-base capacitance with the case and emitter leads connected to the guard terminal. DC COMMON ws 7 71 1200 NOTE: (Neutralization Procedure): (a) Connect a 50-Q rf voltmeter to es nies ngras bs To the output of a 200-MHz signal generator (Rj = 509), anc adjust the - 20 502. generator output to 5mV. (b} Connect the generator to the input and =I the rf voltmeter to the output of the amplifier, as shown above. (c) Apply Vee and Vcc, and adjust the generator output to provide an amplifier output of SmV. (d) Tune Co, Cg, and C7 for maximum amplifier output, readjusting the generator output, as required, to maintain an output of 5mV from the amplifier. (e) Interchange the connections to the signal generator and the rf voltmeter. (f) With sufficient signal applied to the output terminals of the amplifier, adjust Cy for a minimum indication at the amplifier input. (g) Repeat steps (a), (b), (c), and (d) to determine if retuning is necessary. Q = Type 2N5179 Fig. 2Neutralized Amplifier Circuit Used to Measure Power Gain and Noise Figure at 200MHz for Type 2N51792N5179 File No. 288 Nove 2 Note 1 Coaxial-Line output network consisting of: = 2 General Radio Type 874 TEE or equivalent , 1 General Radio Type 874-D20 Adjustable Stub or equivalent Q 75 pF OUTPUT 1 General Radio Type 874-LA Adjustable Line or equivalent nore, OM SEE NOTE 7 1 General Radio Type 874-WN3 Short-circuit termination or equivalent RFC uy Note 2 RFC = 0.2uH Ohmite #2-460 or equivalent ade Note 3~- Lead Number 4 (case) floating nl --_ L; 2 turns #16AWG wire, % inch OD, 1% inch tong Note 2 [ Q = 2N5179 OHM 1" Ree 7'9R Vee vec encs-12849Re Fig. 3 ~ Circuit Used to Measure 500MHz Oscillator Power Output for Type 2N5179 TWO-PORT ADMITTANCE (y) PARAMETERS AS FUNCTIONS OF COLLECTOR CURRENT (1.) FOR RCA TYPE 2N5179 COMMON-EMITTER CIRCUIT, BASE INPUT; OUTPUT SHORT-CIRCUITED. FREQUENCY (f)=200 MHz AMBIENT TEMPERATURE (Ta)=25C COMMON-EMITTER CIRCUIT; INPUT SHORT-CIRCUITED. FREQUENCY (f)=200 MHz AMBIENT TEMPERATURE (Ta)=25C \26 Cc -TO- C EMITTER VOLTS (VoEel=6 Soul a OUTPUT CONDUCTANCE INPUT CONDUCTANCE SUSCEPTANCE SUSCEPTANCE Soe 5 15 20 5 10 15 COLLECTOR MILLIAMPERES (Ic} COLLECTOR MILLIAMPERES (Ic) 92CS 14732 9208-14733 Fig. 4 Input Admittance (ye) Fig. 5 Output Admittance (ye) 1S NEGLIGIBLE AT THIS FREQUENCY (200 INPUT ~ CIRCUITED. FREQUENCY (f}=200 MHz AMBIENT TEMPERAT! Tj COMMON-EMITTER CIRCUIT, BASE INPUT; e p pre f esc OUTPUT SHORT- CIRCUITED. FREQUENCY (f)* 200 MHz e. AMBIENT TEMPERATURE (Tg)=25C CTOR-TO Vt EMITTER VOLTS \VcE) 23 bre 1 3 w og a - a uw 9 a 5 no > R OR Yours )=6 o 5 10 (5 20 COLLECTOR MILLIAMPERES (Ic) 5 ite} COLLECTOR MILLIAMPERES. 92CS-14735 92CS 14734 Fig. 6 Forward Transadmittance ({y;e) Fig. 7 Reverse Transadmittance (y,.) 126File No, 288 2N5179 TWO-PORT ADMITTANCE {y) PARAMETERS AS FUNCTIONS OF FREQUENCY (f) FOR RCA TYPE 2N5179 INPUT; INPUT COLLECTOR-TO-EMITTER VOLTS (Wop) =4 MILLIAMPERES (Ic) =1.5 AMBIENT TEMPERATURE (Ta) 2 25C COLLECTORTOEMITTER. VOLTS CTOR MILLIAMPERES (Ic)=1.5 AMBIENT TEMPERATURE (Ta) = 25C CONDUCTANCE INPUT CONDUCTANCE lgje} OR a SUSCEPTANCE (bie) MILLIMHOS > a =z = J i $ 2 w g 2 < a Ww 9 a 2 no kb > a e > 6 lo too 1000 FREQUENCY (f) - MHz FREQUENCY (f) MH2 92cS-14731 9208-14730 Fig. 8 Input Admittance (yj ) Fig. 9 Output Admittance (yoe) MON . COMMONEMITTER CIRCUIT: INPUT SHORTCIRCUITEO.|1] 7] COMMON FORT CEIRCUITED meus COLLECTORTOEMITTER VOLTS (Vc_) * 4 & COLLECTOR-TO-EMITTER VOLTS (cg) = 4 COLLECTOR MILLIAMPERES (T)=1.5. S COLLECTOR MILLIAMPERES (Tc) =1.5 AMBIENT TEMPERATURE (Ta) = 25C 3 AMBIENT TEMPERATURE (Ta) 25C ~ NOTE: gre IS NEGLIGIBLE AT FREQUENCIES UP TO 500 MHz w8 8 = Pre BS $ er z = Ps az ws 83 z2 NN 2 ae | m. = a2 -1 SS 3: 34 N 83 $ z gs N\ 2 oe 2) Ss 8 ow Z2@ o aa Wi oY -3 3 ws an g o YS 55-4 rc 8 10 100 1000 FREQUENCY (f) MHz FREQUENCY (f-MHz 92CS 14728 9208-14729 Fig. 10 Forward Transadmittance (y;) Fig. 11 Reverse Transadmittance (y,) 1272N5179 File No. 288 GROUP A AND GROUP B QUALITY SAMPLING TESTS 100% PRODUCTION QUALITY Lot _ FACTORY SAMPLING CUSTOMER TESTS ITE TEST DESCRIPTION LTPD GROUP A _TESTS Subgroup 1. Visual and Mechanical Examination ..........:cccceeseeeseeeneeeees 5% Subgroup 2. Electrical ii. ecscneceeessseeeeeseanececseneeesvnaeseesessnaeeserenaeess 10% GROUP B TESTS Subgroup 1. Physical Dimensions 2000.00.00. cc cceccccnneeecseneeeseesneeseeseteeerens 20% Subgroup 2. Solderability, Temperature Cycling, Thermal. Shock, Moisture Resistance .......cccccccccccccesseecssssseeeeecs 20% Subgroup 3. Shock, Vibration Fatigue, Vibration Variable Frequency, Constant Acceleration ...........cccccceesseeee 20% Subgroup 4. Terminal Strength 0.0.0... cccecceeeeeeneeeeneeeresecensssessaeneneese 20% Subgroup 5. Salt Atmosphere .......0:..ccccceesseeceesteeeeseraeeeeseneeeeesssneeeeeens 20% Subgroup 6. High-Temperature Life, Non-Operating (Ty = 200C) occ ceccccceeeesesccsscereeseseeeeneccesevsesestesesentenss A = 10% Subgroup 7. Steady-State-Operation Life (Py = 300mW, Ta = 25C) A = 10% 128File No. 288 2N5179 DIMENSIONAL OUTLINE JEDEC TO-72 .230/5.84 209\5.3! 4+ DIA- | 195/4.95 * 178\4.52 p01 1.210 (5.33 a 8G : SEATING i ? PLANE -800(127) MIN _*, - | | baso (6.35) MIN, i | NOTE 2 4 LEADS _ 050 {127) MAX. 019 O16 NOTE 2 ~-100 (254) TP 7.080(127) TP ] NOTE 3 + tr 45 TR INSULATION 046/117 $38(514) 2. 048/122 ~ oas\7n / NOTE 4 92cs -11941R2 Dimensions in inches ond millimeters Note 1: Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Note 2: The specified lead diameter applies in the zone be- tween 0,050" (1.27 mm) and 0.250" (6.35 mm) from the seating plane. From 0 250" (6.35 mm) to the end of the lead a maxi- mum diameter of 0.021" (0.533 mm) is held. Outside of these zones, the lead diameter is not controlled. Note 3: Leods having amaximum diameter of 0,019"(0,482 mm} at a gauging plane of 0.054" (1.372 mm) + 0.001" (0.025 mm) - 0,000" (0.000 mm) below seating plane shail be within 0.007" (0.177 mm) of their true position (location) relative to a maximum width of tab. Note 4: Measured from actual maximum diameter. TERMINAL DIAGRAM Bottom View LEAD 1 EMITTER LEAD 2 BASE LEAD 3 - COLLECTOR LEAD 4 ~ CONNECTED TO CASE 129