VDS Fault Delay = VTIMERH x CTIMER
ITIMERH
21
LM5060
www.ti.com
SNVS628H –OCTOBER 2009–REVISED DECEMBER 2019
Product Folder Links: LM5060
Submit Documentation FeedbackCopyright © 2009–2019, Texas Instruments Incorporated
Should a subsequent load current surge trip the VDS Fault Comparator, the timer capacitor discharge transistor
turns OFF and the 11 μA (typical) current source begins linearly charging the timer capacitor. If the surge current,
with the detected excessive VDS voltage, lasts long enough for the timer capacitor to charge to the timing
comparator threshold (VTMRH) of typically 2 V, the LM5060 will immediately discharge the MOSFET gate and
latch the MOSFET off. The VDS fault delay time during an Over-Current event is calculated from:
where
• ITMRH is typically 11 μA
• VTMRH is typically 2 V (7)
If the CTIMER value is 68 nF(0.068 μF) the VDS Over-Current fault delay time would typically be:
VDS Fault Delay = ((2 V x 0.068 μF) / 11 μA) = 12 ms (8)
Since a single capacitor is used to set the delay time for multiple fault conditions, it is likely that some
compromise will need to be made between a desired delay time and a practical delay time.
8.2.1.2.4 MOSFET Selection
The external MOSFET (Q1) selection should be based on the following criteria:
• The BVDSS rating must be greater than the maximum system voltage (VIN), plus ringing and transients which
can occur at VIN when the circuit is powered on or off.
• The maximum transient current rating should be based on the maximum worst case VDS fault current level.
• MOSFETs with low threshold voltages offer the advantage that during turn on they are more likely to remain
within their safe operating area (SOA) because the MOSFET reaches the ohmic region sooner for a given
gate capacitance.
• The safe operating area (SOA) of the MOSFET device and the thermal properties should be considered
relative to the maximum power dissipation possible during startup or shutdown.
• RDS(ON) should be sufficiently low that the power dissipation at maximum load current ((IL(MAX))2x RDS(ON))
does not increase the junction temperature above the manufacturer’s recommendation.
• If the device chosen for Q1 has a maximum VGS rating less than 16 V, an external zener diode must be
added from gate to source to limit the applied gate voltage. The external zener diode forward current rating
should be at least 80 mA to conduct the full gate pull-down current during fault conditions.
8.2.1.2.5 Input and Output Capacitors
Input and output capacitors are not necessary in all applications. Any current that the external MOSFET conducts
in the on-state will decrease very quickly as the MOSFET turns off. All trace inductances in the design including
wires and printed circuit board traces will cause inductive voltage kicks during the fast termination of a
conducting current. On the input side of the LM5060 circuit this inductive kick can cause large positive voltage
spikes, while on the output side, negative voltage spikes are generated. To limit such voltage spikes, local
capacitance or clamp circuits can be used. The necessary capacitor value depends on the steady state input
voltage level, the level of current running through the MOSFET, the inductance of circuit board traces as well as
the transition speed of the MOSFET.
Since the exact amount of trace inductance is hard to predict, careful evaluation of the circuit board is the best
method to optimize the input or output capacitance or clamp circuits.
8.2.1.2.6 UVLO, OVP
The UVLO and OVP thresholds are programmed to enable the external MOSFET (Q1) when the input supply
voltage is within the desired operating range. If the supply voltage is low enough that the voltage at the UVLO pin
is below the UVLO threshold, Q1 is switched off by a 2.2 mA (typical) current sink at the GATE pin, denying
power to the load. The UVLO threshold has approximately 180 mV of hysteresis.
If the supply voltage is high enough that the voltage at the OVP pin is above the OVP threshold, the GATE pin is
pulled low with a 80 mA current sink. Hysteresis is provided for each threshold. The OVP threshold has
approximately 240 mV of hysteresis.
Option A: The configuration shown in Figure 29 requires three resistors (R1, R2, and R3) to set the thresholds.