81 GHz to 86 GHz
E-Band I/Q Downconverter
Data Sheet
HMC7587
Rev. A Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©2016 Analog Devices, Inc. All rights reserved.
Technical Support www.analog.com
FEATURES
Conversion gain: 10 dB typical
Image rejection: 30 dBc typical
Noise figure: 6 dB typical
Input power for 1 dB compression (P1dB): −10 dBm typical
Input third-order intercept (IP3): −2 dBm typical
Input second-order intercept (IP2): 25 dBm typical
6× LO leakage at RFIN: −40 dBm typical
Radio frequency (RF) return loss: 10 dB typical
Local oscillator (LO) return loss: 20 dB typical
Die size: 3.599 mm × 2.199 mm × 0.05 mm
APPLICATIONS
E-band communication systems
High capacity wireless backhauls
Test and measurement
GENERAL DESCRIPTION
The HMC7587 is an integrated, E-band gallium arsenide (GaAs),
monolithic microwave integrated circuit (MMIC), in-phase/
quadrature (I/Q) downconverter chip that operates from 81 GHz
to 86 GHz. The HMC7587 provides a small signal conversion
gain of 10 dB with 30 dBc of image rejection across the frequency
band. The device uses a low noise amplifier followed by an image
rejection mixer that is driven by a 6× multiplier.
The image rejection mixer eliminates the need for a filter following
the low noise amplifier. Differential I and Q mixer outputs are
provided for direct conversion applications. Alternatively, the
outputs can be combined using an external 90° hybrid and two
external 180° hybrids to allow for single-sideband applications. All
data includes the effect of a 3 mil wide ribbon wedge bond on the
RF port, and a 1 mil gold wire wedge bond on the intermediate
frequency (IF) ports.
FUNCTIONAL BLOCK DIAGRAM
IFIP
V
GMIX
V
DAMP2
V
GAMP
V
DAMP1
V
DMULT
V
GX3
V
GX2
LOIN
IFIN
IFQN
IFQP
5
4
3
2
1
678910 11 12 13 14 15 16 17 18 19 20 21
×6
HMC7587
22
23
24
40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25
RFIN
V
GLNA1
V
DLNA1
V
GLNA2
V
DLNA2
V
GLNA3
V
DLNA3
V
GLNA4
V
DLNA4
13141-001
Figure 1.
HMC7587 Data Sheet
Rev. A | Page 2 of 55
TABLE OF CONTENTS
Features .............................................................................................. 1
Applications ....................................................................................... 1
General Description ......................................................................... 1
Functional Block Diagram .............................................................. 1
Revision History ............................................................................... 2
Specifications ..................................................................................... 3
Absolute Maximum Ratings ............................................................ 4
Thermal Resistance ...................................................................... 4
ESD Caution .................................................................................. 4
Pin Configuration and Function Descriptions ............................. 5
Interface Schematics..................................................................... 6
Typical Performance Characteristics ............................................. 7
Upper Sideband Selected, IF = 500 MHz .................................. 7
Upper Sideband Selected, IF = 1000 MHz .............................. 13
Upper Sideband Selected, IF = 2000 MHz .............................. 18
Noise Figure Performance with Upper Sideband Selected ... 23
Amplitude Balance Performance with Upper Sideband
Selected ........................................................................................ 24
Phase Balance Performance with Upper Sideband Selected 25
Lower Sideband Selected, IF = 500 MHz ................................ 26
Lower Sideband Selected, IF = 1000 MHz .............................. 31
Lower Sideband Selected, IF = 2000 MHz .............................. 36
Noise Figure Performance with Lower Sideband Selected ... 41
Amplitude Balance Performance with Lower Sideband
Selected ........................................................................................ 42
Phase Balance Performance with Lower Sideband Selected . 43
Spurious Performance with Upper Sideband Selected, IF =
500 MHz ...................................................................................... 44
Spurious Performance with Upper Sideband Selected, IF =
1000 MHz .................................................................................... 45
Spurious Performance with Upper Sideband Selected, IF =
2000 MHz .................................................................................... 46
Spurious Performance with Lower Sideband Selected, IF =
500 MHz ...................................................................................... 47
Spurious Performance with Lower Sideband Selected, IF =
1000 MHz .................................................................................... 48
Spurious Performance with Lower Sideband Selected, IF =
2000 MHz .................................................................................... 49
Theory of Operation ...................................................................... 50
Applications Information .............................................................. 51
Biasing Sequence ........................................................................ 51
Image Rejection Downconversion ........................................... 51
Zero IF Direct Conversion ........................................................ 52
Assembly Diagram ..................................................................... 53
Mounting and Bonding Techniques for Millimeterwave GaAs
MMICs ............................................................................................. 54
Handling Precautions ................................................................ 54
Mounting ..................................................................................... 54
Wire Bonding .............................................................................. 54
Outline Dimensions ....................................................................... 55
Ordering Guide .......................................................................... 55
REVISION HISTORY
3/16—Revision A: Initial Version
Data Sheet HMC7587
Rev. A | Page 3 of 55
SPECIFICATIONS
TA = 25°C, IF = 500 MHz, VGMIX = 1 V, VDAMPx = 4 V, VDMULT = 1 . 5 V, voltage on the VDLNAx pins (VDLNA) = 3 V, LO = 2 dBm, upper sideband
selected. Measurements performed as a downconverter with external 90° and 180° hybrids at the IF ports, unless otherwise noted.
Table 1.
Parameter Test Conditions/Comments Min Typ Max Unit
OPERATING CONDITIONS
RF Frequency Range 81 86 GHz
LO Frequency Range 11.83 14.33 GHz
IF Frequency Range 0 10 GHz
LO Drive Range 2 8 dBm
PERFORMANCE
Conversion Gain 8 10 dB
Image Rejection 20 30 dBc
Input Third-Order Intercept (IP3)
dBm
Input Second-Order Intercept (IP2) 25 dBm
Input Power for 1 dB Compression (P1dB) −10 dBm
LO Leakage at RF Input (RFIN) −40 dBm
LO Leakage at IF Output (IFOUT) −50 dBm
Amplitude Balance1 −0.5 dB
Phase Balance
1
Degrees
Noise Figure 6 dB
RF Return Loss LO = 2 dBm at 12 GHz 10 dB
LO Return Loss 20 dB
IF Return Loss1 25 dB
POWER SUPPLY
Supply Current
IDAMP2 175 mA
I
DM U LT
3
Under LO drive
mA
IDLNA4 50 mA
1 These measurements were performed without external hybrids at the IF ports.
2 Adjust VGAMP between −2 V and 0 V to achieve the total quiescent current, IDAMP = IDAMP1 + IDAMP2 = 175 mA.
3 Adjust VGX2 and VGX3 between −2 V and 0 V to the achieve the quiescent current, IDMULT = 1 mA to 2 mA. See the Applications Information section for more information.
4 Adjust VGLNAx between −2 V and 0 V to achieve the quiescent current, IDLNA1 + IDLNA2 + IDLNA3 + IDLNA4 = 50 mA.
HMC7587 Data Sheet
Rev. A | Page 4 of 55
ABSOLUTE MAXIMUM RATINGS
Table 2.
Parameter Rating
Drain Bias Voltage
VDAMP1, VDAMP2 4.5 V
VDMULT 3 V
VDLNA1, VDLNA2, VDLNA3, VDLNA4 4.5 V
Gate Bias Voltage
VGAMP −3 V to 0 V
VGX2, VGX3 −3 V to 0 V
V
GLNA1
, V
GLNA2
, V
GLNA3
, V
GLNA4
−3 V to 0 V
VGMIX −3 V to 0 V
LO Input Power 10 dBm
Maximum Junction Temperature (to
Maintain 1 Million Hours Mean Time to
Failure (MTTF))
175°C
Storage Temperature Range
−65°C to +150°C
Operating Temperature Range −55°C to +85°C
Stresses at or above those listed under Absolute Maximum
Ratings may cause permanent damage to the product. This is a
stress rating only; functional operation of the product at these
or any other conditions above those indicated in the operational
section of this specification is not implied. Operation beyond
the maximum operating conditions for extended periods may
affect product reliability.
THERMAL RESISTANCE
Table 3. Thermal Resistance
Package Type θJC1 Unit
40-Pad Bare Die [CHIP] 61.7 °C/W
1 Based on ABLEBOND® 84-1LMIT as die attach epoxy with thermal
conductivity of 3.6 W/mK.
ESD CAUTION
Data Sheet HMC7587
Rev. A | Page 5 of 55
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
HMC7587
IFIP
VGMIX
VDAMP2
GND
GND
GND
GND
GND
GND
GND
GND
VGAMP
VDAMP1
VDMULT
VGX3
VGX2
LOIN
IFIN
IFQN
IFQP
5
4
3
2
1
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
22
23
24
40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25
RFIN
GND
GND
VGLNA1
GND
GND
GND
GND
GND
GND
GND
GND
VDLNA1
VGLNA2
VDLNA2
VGLNA3
VDLNA3
VGLNA4
VDLNA4
GND
13141-002
Figure 2. Pad Configuration
Table 4. Pad Function Descriptions
Pad No. Mnemonic Description
1, 7, 9, 11, 13, 15, 17,
19, 21, 22, 24, 25, 27,
29, 31, 33, 35, 37, 39
GND Ground Connect (See Figure 3).
2, 3 IFQP, IFQN Positive and Negative IF Q Inputs. These pads are dc-coupled. When operation to dc is not
required, block these pads externally using a series capacitor with a value chosen to pass the
necessary frequency range. For operation to dc, these pads must not source or sink more than
3 mA of current or die malfunction and possible die failure may result (see Figure 4).
4, 5 IFIN, IFIP Negative and Positive IF I Inputs. These pads are dc-coupled. When operation to dc is not
required, block these pads externally using a series capacitor with a value chosen to pass the
necessary frequency range. For operation to dc, these pads must not source or sink more than
3 mA of current or die malfunction and possible die failure may result (see Figure 4).
6 VGMIX Gate Voltage for the FET Mixer (See Figure 5). External bypass capacitors of 120 pF, 0.01 µF, and
4.7 µF are recommended (see Figure 211).
8, 12 VDAMP2, VDAMP1 Power Supply Voltage for the First and the Second Stage LO Amplifier (See Figure 5). External
bypass capacitors of 120 pF, 0.01 µF, and 4.7 µF are recommended (see Figure 211).
10
V
GAMP
Gate Voltage for the First and the Second Stage LO Amplifier (See Figure 5). External bypass capacitors
of 120 pF, 0.01 µF, and 4.7 µF are recommended (see Figure 211).
14 VDMULT Power Supply Voltage for the LO Multiplier (See Figure 5). External bypass capacitors of 120 pF,
0.01 µF, and 4.7 µF are recommended (see Figure 211).
16, 18 VGX3, VGX2 Gate Voltage for the LO Multiplier (See Figure 5). External bypass capacitors of 120 pF, 0.01 µF, and
4.7 µF are recommended (see Figure 211).
20
LOIN
Local Oscillator Input. This pad is dc-coupled and matched to 50 Ω (see Figure 6).
23 RFIN RF Input. This pad is ac-coupled and matched to 50 Ω (see Figure 7).
26, 30, 34, 38 VGLNA1, VGLNA2,
VGLNA3, VGLNA4
Gate Voltage for the Low Noise Amplifier (See Figure 8). External bypass capacitors of 120 pF,
0.01 µF, and 4.7 µF are recommended (see Figure 211).
28, 32, 36, 40 VDLNA1, VDLNA2,
VDLNA3, VDLNA4
Power Supply Voltage for the Low Noise Amplifier (See Figure 8). External bypass capacitors of
120 pF, 0.01 µF, and 4.7 µF are recommended (see Figure 211).
Die Bottom GND Ground. The die bottom must be connected to RF/dc ground (see Figure 3).
HMC7587 Data Sheet
Rev. A | Page 6 of 55
INTERFACE SCHEMATICS
GND
13141-003
Figure 3. GND Interface
IFIN, IFIP,
IFQN, IFQP
200
13141-004
Figure 4. IFIN, IFIP, IFQN, and IFQP Interface
V
DAMP1
,
V
DAMP2
,
V
DMULT
V
GMIX
, V
GAMP
,
V
GX2
, V
GX3
100
13141-005
Figure 5. VGMIX, VDAMP1, VDAMP2, VDMULT, VGAMP, VGX2, and VGX3 Interface
LOIN
13141-006
Figure 6. LOIN Interface
RFIN
13141-00
7
Figure 7. RFIN Interface
V
DLNA1
,
V
DLNA2
,
V
DLNA3
, V
DLNA4
V
GLNA1
, V
GLNA2
,
V
GLNA3
, V
GLNA4
100
13141-008
Figure 8. VDLNA1, VDLNA2, VDLNA3, VDLNA4, VGLNA1, VGLNA2, VGLNA3, and VGLNA4 Interface
Data Sheet HMC7587
Rev. A | Page 7 of 55
TYPICAL PERFORMANCE CHARACTERISTICS
UPPER SIDEBAND SELECTED, IF = 500 MHz
16
14
12
10
8
6
4
2
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
CONVERSION GAIN (dB)
RF FREQUENCY (GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55°C
13141-009
Figure 9. Conversion Gain vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, Voltage on the VDLNAx Pins
(VDLNA) = 4 V
16
14
12
10
8
6
4
2
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
CONVERSION GAIN (dB)
RF FREQUENCY (GHz)
LO = –4dBm
LO = –2dBm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-010
Figure 10. Conversion Gain vs. RF Frequency at Various LO Powers,
RFIN = −20 dBm, IF = 500 MHz, VDLNA = 4 V
20
16
12
8
4
0
–8
–16
–4
–12
–20
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
CONVERSION GAIN (dB)
RF FREQUENCY (GHz)
I
DLNA
= 5mA
I
DLNA
= 10mA
I
DLNA
= 15mA
I
DLNA
= 20mA
I
DLNA
= 25mA
I
DLNA
= 30mA
I
DLNA
= 35mA
I
DLNA
= 40mA
I
DLNA
= 45mA
I
DLNA
= 50mA
13141-011
Figure 11. Conversion Gain vs. RF Frequency at Various IDLNA Values,
RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 4 V
16
14
12
10
8
6
4
2
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
CONVERSION GAIN (dB)
RF FREQUENCY (GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55°C
13141-012
Figure 12. Conversion Gain vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 3 V
16
14
12
10
8
6
4
2
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
CONVERSION GAIN (dB)
RF FREQUENCY (GHz)
LO = –4dBm
LO = –2dBm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-013
Figure 13. Conversion Gain vs. RF Frequency at Various LO Powers,
RFIN = −20 dBm, IF = 500 MHz, VDLNA = 3 V
20
16
12
8
4
0
–8
–16
–4
–12
–20
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
CONVERSION GAIN (dB)
RF FREQUENCY (GHz)
I
DLNA
= 5mA
I
DLNA
= 10mA
I
DLNA
= 15mA
I
DLNA
= 20mA
I
DLNA
= 25mA
I
DLNA
= 30mA
I
DLNA
= 35mA
I
DLNA
= 40mA
I
DLNA
= 45mA
I
DLNA
= 50mA
13141-014
Figure 14. Conversion Gain vs. RF Frequency at Various IDLNA Values,
RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 3 V
HMC7587 Data Sheet
Rev. A | Page 8 of 55
0
–5
–10
–15
–20
–25
–30
–40
–45
–35
–50
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IM AG E RE JE CTI ON (dBc)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-015
Figure 15. Image Rejection vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 4 V
0
–5
–10
–15
–20
–25
–30
–40
–45
–35
–50
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IM AG E RE JE CTI ON (dBc)
RF FREQ UE NCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-016
Figure 16. Image Rejection vs. RF Frequency at Various LO Powers,
RFIN = −20 dBm, IF = 500 MHz, VDLNA = 4 V
0
–50
–45
–40
–35
–30
–25
–20
–15
–10
–5
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IM AG E RE JE CTI ON (dBc)
RF FREQ UE NCY ( GHz)
I
DLNA
= 5mA
I
DLNA
= 10mA
I
DLNA
= 15mA
I
DLNA
= 20mA
I
DLNA
= 25mA
I
DLNA
= 30mA
I
DLNA
= 35mA
I
DLNA
= 40mA
I
DLNA
= 45mA
I
DLNA
= 50mA
13141-017
Figure 17. Image Rejection vs. RF Frequency at Various IDLNA Values,
RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 4 V
0
–5
–10
–15
–20
–25
–30
–40
–45
–35
–50
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IM AG E RE JE CTI ON (dBc)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-018
Figure 18. Image Rejection vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 3 V
0
–5
–10
–15
–20
–25
–30
–40
–45
–35
–50
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IM AG E RE JE CTI ON (dBc)
RF FREQ UE NCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-019
Figure 19. Image Rejection vs. RF Frequency at Various LO Powers,
RFIN = −20 dBm, IF = 500 MHz, VDLNA = 3 V
0
–5
–10
–15
–20
–25
–30
–40
–45
–35
–50
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IM AG E RE JE CTI ON (dBc)
RF FREQ UE NCY ( GHz)
I
DLNA
= 5mA
I
DLNA
= 10mA
I
DLNA
= 15mA
I
DLNA
= 20mA
I
DLNA
= 25mA
I
DLNA
= 30mA
I
DLNA
= 35mA
I
DLNA
= 40mA
I
DLNA
= 45mA
I
DLNA
= 50mA
13141-020
Figure 20. Image Rejection vs. RF Frequency at Various IDLNA Values,
RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 3 V
Data Sheet HMC7587
Rev. A | Page 9 of 55
10
8
6
4
2
0
–2
–6
–8
–4
–10
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP3 ( dBm)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-021
Figure 21. Input IP3 vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 4 V
10
8
6
4
2
0
–2
–6
–8
–4
–10
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP3 ( dBm)
RF FREQ UE NCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-022
Figure 22. Input IP3 vs. RF Frequency at Various LO Powers,
RFIN = −20 dBm, IF = 500 MHz, VDLNA = 4 V
10
8
6
4
2
0
–2
–6
–8
–4
–10
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP3 ( dBm)
RF FREQ UE NCY ( GHz)
I
DLNA
= 5mA
I
DLNA
= 10mA
I
DLNA
= 15mA
I
DLNA
= 20mA
I
DLNA
= 25mA
I
DLNA
= 30mA
I
DLNA
= 35mA
I
DLNA
= 40mA
I
DLNA
= 45mA
I
DLNA
= 50mA
13141-023
Figure 23. Input IP3 vs. RF Frequency at Various IDLNA Values,
RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 4 V
10
8
6
4
2
0
–2
–6
–8
–4
–10
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP3 ( dBm)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-024
Figure 24. Input IP3 vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 3 V
10
8
6
4
2
0
–2
–6
–8
–4
–10
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP3 ( dBm)
RF FREQ UE NCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-025
Figure 25. Input IP3 vs. RF Frequency at Various LO Powers,
RFIN = −20 dBm, IF = 500 MHz, VDLNA = 3 V
10
8
6
4
2
0
–2
–6
–8
–4
–10
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP3 ( dBm)
RF FREQ UE NCY ( GHz)
I
DLNA
= 5mA
I
DLNA
= 10mA
I
DLNA
= 15mA
I
DLNA
= 20mA
I
DLNA
= 25mA
I
DLNA
= 30mA
I
DLNA
= 35mA
I
DLNA
= 40mA
I
DLNA
= 45mA
I
DLNA
= 50mA
13141-026
Figure 26. Input IP3 vs. RF Frequency at Various IDLNA Values,
RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 3 V
HMC7587 Data Sheet
Rev. A | Page 10 of 55
50
45
40
35
30
25
20
10
5
15
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP2 (dBm)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-027
Figure 27. Input IP2 vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 4 V
50
45
40
35
30
25
20
10
5
15
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP2 (dBm)
RF FREQ UE NCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-028
Figure 28. Input IP2 vs. RF Frequency at Various LO Powers,
RFIN = −20 dBm, IF = 500 MHz, VDLNA = 4 V
50
45
40
35
30
25
20
10
5
15
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP2 (dBm)
RF FREQ UE NCY ( GHz)
I
DLNA
= 5mA
I
DLNA
= 10mA
I
DLNA
= 15mA
I
DLNA
= 20mA
I
DLNA
= 25mA
I
DLNA
= 30mA
I
DLNA
= 35mA
I
DLNA
= 40mA
I
DLNA
= 45mA
I
DLNA
= 50mA
13141-029
Figure 29. Input IP2 vs. RF Frequency at Various IDLNA Values,
RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 4 V
50
45
40
35
30
25
20
10
5
15
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP2 ( dBm)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-030
Figure 30. Input IP2 vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 3 V
50
45
40
35
30
25
20
10
5
15
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP2 ( dBm)
RF FREQ UE NCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-031
Figure 31. Input IP2 vs. RF Frequency at Various LO Powers,
RFIN = −20 dBm, IF = 500 MHz, VDLNA = 3 V
50
45
40
35
30
25
20
10
5
15
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP2 ( dBm)
RF FREQ UE NCY ( GHz)
I
DLNA
= 5mA
I
DLNA
= 10mA
I
DLNA
= 15mA
I
DLNA
= 20mA
I
DLNA
= 25mA
I
DLNA
= 30mA
I
DLNA
= 35mA
I
DLNA
= 40mA
I
DLNA
= 45mA
I
DLNA
= 50mA
13141-032
Figure 32. Input IP2 vs. RF Frequency at Various IDLNA Values,
RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 3 V
Data Sheet HMC7587
Rev. A | Page 11 of 55
0
–2
–4
–6
–10
–12
–8
–14
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
P1d B ( dBm)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-033
Figure 33. Input P1dB vs. RF Frequency at Various Temperatures,
LO = 2 dBm, IF = 500 MHz, VDLNA = 4 V
–30
–70
–55
–40
–50
–65
–35
–60
–45
12.9
13.0
13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9
14.0
14.1
14.2
14.3
14.4
LE AKAG E ( dBm)
1× LO F RE QUENCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-034
Figure 34. 1× LO Leakage at IFOUT vs. LO Frequency
at Various Temperatures, LO = 2 dBm, VDLNA = 3 V
–30
–70
–55
–40
–50
–65
–35
–60
–45
12.9
13.0
13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9
14.0
14.1
14.2
14.3
14.4
LE AKAG E ( dBm)
1× LO F RE QUENCY ( GHz)
LO = 2dBm
LO = 4dBm
LO = 6dBm
LO = 8dBm
13141-035
Figure 35. 1× LO Leakage at IFOUT vs. LO Frequency
at Various LO Powers, VDLNA = 3 V
0
–14
–10
–4
–8
–2
–12
–6
P1d B ( dBm)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
RF FREQ UE NCY ( GHz)
13141-036
Figure 36. Input P1dB vs. RF Frequency at Various Temperatures,
LO = 2 dBm, IF = 500 MHz, VDLNA = 3 V
–30
–60
–50
–35
–45
–55
–40
LEAKAGE ( dBm)
TA = +85°C
TA = +25°C
TA = –55° C
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
6× LO F RE QUENCY ( GHz)
13141-037
Figure 37. 6× LO Leakage at RFIN vs. 6× LO Frequency
at Various Temperatures, LO = 2 dBm, VDLNA = 3 V
–30
–60
–50
–35
–45
–55
–40
LEAKAGE ( dBm)
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
6× LO F RE QUENCY ( GHz)
LO = 0dBm
LO = 2dBm
LO = 4dBm
LO = 6dBm
LO = 8dBm
13141-038
Figure 38. 6× LO Leakage at RFIN vs. LO Frequency
at Various LO Powers, VDLNA = 3 V
HMC7587 Data Sheet
Rev. A | Page 12 of 55
0
–2
–4
–6
–12
–16
–8
–14
–18
–10
–20
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
RET URN LOS S ( dB)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-039
Figure 39. RF Return Loss vs. RF Frequency at Various Temperatures,
LO = 2 dBm, LO = 12 GHz, VDLNA = 4 V
0
–40
–20
–5
–15
–30
–25
–35
–10
RET URN LOS S ( dB)
11.8 12.2 12.6 13.0 13.4 13.8 14.2 14.6
LO F REQUENCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-040
Figure 40. LO Return Loss vs. LO Frequency at Various Temperatures,
LO = 2 dBm, VDLNA = 3 V
0
–40
–20
–5
–15
–30
–25
–35
–10
RET URN LOS S ( dB)
0.1 1.1 2.1 3.1 4.1 6.1 8.15.1 7.1 9.1 10.1
IF F REQUENCY ( GHz)
IFQP
IFIP
IFQN
IFQP
13141-041
Figure 41. IF Return Loss vs. IF Frequency,
LO = 2 dBm at 12 GHz, VDLNA = 3 V
0
–2
–4
–6
–12
–16
–8
–14
–18
–10
–20
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
RET URN LOS S ( dB)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-042
Figure 42. RF Return Loss vs. RF Frequency at Various Temperatures,
LO = 2 dBm, LO = 12 GHz, VDLNA = 3 V
0
–40
–20
–5
–15
–25
–30
–35
–10
RET URN LOS S ( dB)
11.8 12.2 12.6 13.0 13.4 13.8 14.2 14.6
LO F REQUENCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-043
Figure 43. LO Return Loss vs. LO Frequency at Various LO Powers,
VDLNA = 3 V
Data Sheet HMC7587
Rev. A | Page 13 of 55
UPPER SIDEBAND SELECTED, IF = 1000 MHz
16
14
12
10
8
6
4
2
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
CONVE RS IO N GAI N ( dB)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-044
Figure 44. Conversion Gain vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 4 V
16
14
12
10
8
6
4
2
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
CONVE RS IO N GAI N ( dB)
RF FREQ UE NCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-045
Figure 45. Conversion Gain vs. RF Frequency at Various LO Powers,
RFIN = −20 dBm, IF = 1000 MHz, VDLNA = 4 V
20
16
12
8
4
0
–8
–16
–4
–12
–20
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
CONVE RS IO N GAI N ( dB)
RF FREQ UE NCY ( GHz)
I
DLNA
= 5mA
I
DLNA
= 10mA
I
DLNA
= 15mA
I
DLNA
= 20mA
I
DLNA
= 25mA
I
DLNA
= 30mA
I
DLNA
= 35mA
I
DLNA
= 40mA
I
DLNA
= 45mA
I
DLNA
= 50mA
13141-046
Figure 46. Conversion Gain vs. RF Frequency at Various IDLNA Values,
RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 4 V
16
14
12
10
8
6
4
2
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
CONVE RS IO N GAI N ( dB)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-047
Figure 47. Conversion Gain vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 3 V
16
14
12
10
8
6
4
2
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
CONVE RS IO N GAI N ( dB)
RF FREQ UE NCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-048
Figure 48. Conversion Gain vs. RF Frequency at Various LO Powers,
RFIN = −20 dBm, IF = 1000 MHz, VDLNA = 3 V
20
16
12
8
4
0
–8
–16
–4
–12
–20
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
CONVE RS IO N GAI N ( dB)
RF FREQ UE NCY ( GHz)
I
DLNA
= 5mA
I
DLNA
= 10mA
I
DLNA
= 15mA
I
DLNA
= 20mA
I
DLNA
= 25mA
I
DLNA
= 30mA
I
DLNA
= 35mA
I
DLNA
= 40mA
I
DLNA
= 45mA
I
DLNA
= 50mA
13141-049
Figure 49. Conversion Gain vs. RF Frequency at Various IDLNA Values,
RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 3 V
HMC7587 Data Sheet
Rev. A | Page 14 of 55
0
–4
–8
–12
–16
–20
–24
–32
–36
–28
–40
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IM AG E RE JE CTI ON (dBc)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-050
Figure 50. Image Rejection vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 4 V
0
–4
–8
–12
–16
–20
–24
–32
–36
–28
–40
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IM AGE REJE CTI ON (dBc)
RF FREQ UE NCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-051
Figure 51. Image Rejection vs. RF Frequency at Various LO Powers,
RFIN = −20 dBm, IF = 1000 MHz, VDLNA = 4 V
0
–4
–8
–12
–16
–20
–24
–28
–36
–32
–40
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IM AGE REJE CTI ON (dBc)
RF FREQ UE NCY ( GHz)
I
DLNA
= 5mA
I
DLNA
= 10mA
I
DLNA
= 15mA
I
DLNA
= 20mA
I
DLNA
= 25mA
I
DLNA
= 30mA
I
DLNA
= 35mA
I
DLNA
= 40mA
I
DLNA
= 45mA
I
DLNA
= 50mA
13141-052
Figure 52. Image Rejection vs. RF Frequency at Various IDLNA Values,
RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 4 V
0
–4
–8
–12
–16
–20
–24
–32
–36
–28
–40
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IM AG E RE JE CTI ON (dBc)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-053
Figure 53. Image Rejection vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 3 V
0
–4
–8
–12
–16
–20
–24
–32
–36
–28
–40
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IM AGE REJE CTI ON (dBc)
RF FREQ UE NCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-054
Figure 54. Image Rejection vs. RF Frequency at Various LO Powers,
RFIN = −20 dBm, IF = 1000 MHz, VDLNA = 3 V
0
–4
–8
–12
–16
–20
–24
–28
–36
–32
–40
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IM AGE REJE CTI ON (dBc)
RF FREQ UE NCY ( GHz)
I
DLNA
= 5mA
I
DLNA
= 10mA
I
DLNA
= 15mA
I
DLNA
= 20mA
I
DLNA
= 25mA
I
DLNA
= 30mA
I
DLNA
= 35mA
I
DLNA
= 40mA
I
DLNA
= 45mA
I
DLNA
= 50mA
13141-055
Figure 55. Image Rejection vs. RF Frequency at Various IDLNA Values,
RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 3 V
Data Sheet HMC7587
Rev. A | Page 15 of 55
10
8
6
4
2
0
–2
–6
–8
–4
–10
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP3 (dBm)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-056
Figure 56. Input IP3 vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 4 V
10
8
6
4
2
0
–2
–6
–8
–4
–10
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP3 (dBm)
RF FREQ UE NCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-057
Figure 57. Input IP3 vs. RF Frequency at Various LO Powers,
RFIN = −20 dBm, IF = 1000 MHz, VDLNA = 4 V
10
8
6
4
2
0
–2
–6
–8
–4
–10
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP3 (dBm)
RF FREQ UE NCY ( GHz)
I
DLNA
= 5mA
I
DLNA
= 10mA
I
DLNA
= 15mA
I
DLNA
= 20mA
I
DLNA
= 25mA
I
DLNA
= 30mA
I
DLNA
= 35mA
I
DLNA
= 40mA
I
DLNA
= 45mA
I
DLNA
= 50mA
13141-058
Figure 58. Input IP3 vs. RF Frequency at Various IDLNA Values,
RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 4 V
10
8
6
4
2
0
–2
–6
–8
–4
–10
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP3 (dBm)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-059
Figure 59. Input IP3 vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 3 V
10
8
6
4
2
0
–2
–6
–8
–4
–10
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP3 (dBm)
RF FREQ UE NCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-060
Figure 60. Input IP3 vs. RF Frequency at Various LO Powers,
RFIN = −20 dBm, IF = 1000 MHz, VDLNA = 3 V
10
8
6
4
2
0
–2
–6
–8
–4
–10
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP3 (dBm)
RF FREQ UE NCY ( GHz)
I
DLNA
= 5mA
I
DLNA
= 10mA
I
DLNA
= 15mA
I
DLNA
= 20mA
I
DLNA
= 25mA
I
DLNA
= 30mA
I
DLNA
= 35mA
I
DLNA
= 40mA
I
DLNA
= 45mA
I
DLNA
= 50mA
13141-061
Figure 61. Input IP3 vs. RF Frequency at Various IDLNA Values,
RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 3 V
HMC7587 Data Sheet
Rev. A | Page 16 of 55
50
45
40
35
30
25
20
10
5
15
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP2 (dBm)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-062
Figure 62. Input IP2 vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 4 V
50
45
40
35
30
25
20
10
5
15
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP2 (dBm)
RF FREQ UE NCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-063
Figure 63. Input IP2 vs. RF Frequency at Various LO Powers,
RFIN = −20 dBm, IF = 1000 MHz, VDLNA = 4 V
50
45
40
35
30
25
20
10
5
15
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP2 (dBm)
RF FREQ UE NCY ( GHz)
I
DLNA
= 5mA
I
DLNA
= 10mA
I
DLNA
= 15mA
I
DLNA
= 20mA
I
DLNA
= 25mA
I
DLNA
= 30mA
I
DLNA
= 35mA
I
DLNA
= 40mA
I
DLNA
= 45mA
I
DLNA
= 50mA
13141-064
Figure 64. Input IP2 vs. RF Frequency at Various IDLNA Values,
RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 4 V
50
45
40
35
30
25
20
10
5
15
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP2 (dBm)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-065
Figure 65. Input IP2 vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 3 V
50
45
40
35
30
25
20
10
5
15
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP2 (dBm)
RF FREQ UE NCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-066
Figure 66. Input IP2 vs. RF Frequency at Various LO Powers,
RFIN = −20 dBm, IF = 1000 MHz, VDLNA = 3 V
50
45
40
35
30
25
20
10
5
15
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP2 (dBm)
RF FREQ UE NCY ( GHz)
I
DLNA
= 5mA
I
DLNA
= 10mA
I
DLNA
= 15mA
I
DLNA
= 20mA
I
DLNA
= 25mA
I
DLNA
= 30mA
I
DLNA
= 35mA
I
DLNA
= 40mA
I
DLNA
= 45mA
I
DLNA
= 50mA
13141-067
Figure 67. Input IP2 vs. RF Frequency at Various IDLNA Values,
RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 3 V
Data Sheet HMC7587
Rev. A | Page 17 of 55
0
–2
–4
–6
–10
–12
–8
–16
–14
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
P1d B ( dBm)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-068
Figure 68. Input P1dB vs. RF Frequency at Various Temperatures,
LO = 2 dBm, IF = 1000 MHz, VDLNA = 4 V
0
–2
–4
–6
–10
–12
–8
–16
–14
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
P1d B ( dBm)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-071
Figure 69. Input P1dB vs. RF Frequency at Various Temperatures,
LO = 2 dBm, IF = 1000 MHz, VDLNA = 3 V
HMC7587 Data Sheet
Rev. A | Page 18 of 55
UPPER SIDEBAND SELECTED, IF = 2000 MHz
16
14
12
10
8
6
4
2
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
CONVE RS IO N GAI N ( dB)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-074
Figure 70. Conversion Gain vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 4 V
16
14
12
10
8
6
4
2
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
CONVE RS IO N GAI N ( dB)
RF FREQ UE NCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-075
Figure 71. Conversion Gain vs. RF Frequency at Various LO Powers,
RFIN = −20 dBm, IF = 2000 MHz, VDLNA = 4 V
20
16
12
8
4
0
–8
–16
–4
–12
–20
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
CONVE RS IO N GAI N ( dB)
RF FREQ UE NCY ( GHz)
I
DLNA
= 5mA
I
DLNA
= 10mA
I
DLNA
= 15mA
I
DLNA
= 20mA
I
DLNA
= 25mA
I
DLNA
= 30mA
I
DLNA
= 35mA
I
DLNA
= 40mA
I
DLNA
= 45mA
I
DLNA
= 50mA
13141-076
Figure 72. Conversion Gain vs. RF Frequency at Various IDLNA Values,
RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 4 V
16
14
12
10
8
6
4
2
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
CONVE RS IO N GAI N ( dB)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-077
Figure 73. Conversion Gain vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 3 V
16
14
12
10
8
6
4
2
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
CONVE RS IO N GAI N ( dB)
RF FREQ UE NCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-078
Figure 74. Conversion Gain vs. RF Frequency at Various LO Powers,
RFIN = −20 dBm, IF = 2000 MHz, VDLNA = 3 V
20
16
12
8
4
0
–8
–16
–4
–12
–20
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
CONVE RS IO N GAI N ( dB)
RF FREQ UE NCY ( GHz)
I
DLNA
= 5mA
I
DLNA
= 10mA
I
DLNA
= 15mA
I
DLNA
= 20mA
I
DLNA
= 25mA
I
DLNA
= 30mA
I
DLNA
= 35mA
I
DLNA
= 40mA
I
DLNA
= 45mA
I
DLNA
= 50mA
13141-079
Figure 75. Conversion Gain vs. RF Frequency at Various IDLNA Values,
RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 3 V
Data Sheet HMC7587
Rev. A | Page 19 of 55
0
–4
–8
–12
–16
–20
–24
–32
–36
–28
–40
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IM AG E RE JE CTI ON (dBc)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-080
Figure 76. Image Rejection vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 4 V
0
–4
–8
–12
–16
–20
–24
–32
–36
–28
–40
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IM AGE REJE CTI ON (dBc)
RF FREQ UE NCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-081
Figure 77. Image Rejection vs. RF Frequency at Various LO Powers,
RFIN = −20 dBm, IF = 2000 MHz, VDLNA = 4 V
0
–4
–8
–12
–16
–20
–24
–28
–36
–32
–40
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IM AGE REJE CTI ON (dBc)
RF FREQ UE NCY ( GHz)
I
DLNA
= 5mA
I
DLNA
= 10mA
I
DLNA
= 15mA
I
DLNA
= 20mA
I
DLNA
= 25mA
I
DLNA
= 30mA
I
DLNA
= 35mA
I
DLNA
= 40mA
I
DLNA
= 45mA
I
DLNA
= 50mA
13141-082
Figure 78. Image Rejection vs. RF Frequency at Various IDLNA Values,
RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 4 V
0
–4
–8
–12
–16
–20
–24
–32
–36
–28
–40
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IM AG E RE JE CTI ON (dBc)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-083
Figure 79. Image Rejection vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 3 V
0
–4
–8
–12
–16
–20
–24
–32
–36
–28
–40
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IM AGE REJE CTI ON (dBc)
RF FREQ UE NCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-084
Figure 80. Image Rejection vs. RF Frequency at Various LO Powers,
RFIN = −20 dBm, IF = 2000 MHz, VDLNA = 3 V
0
–4
–8
–12
–16
–20
–24
–28
–36
–32
–40
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IM AGE REJE CTI ON (dBc)
RF FREQ UE NCY ( GHz)
I
DLNA
= 5mA
I
DLNA
= 10mA
I
DLNA
= 15mA
I
DLNA
= 20mA
I
DLNA
= 25mA
I
DLNA
= 30mA
I
DLNA
= 35mA
I
DLNA
= 40mA
I
DLNA
= 45mA
I
DLNA
= 50mA
13141-085
Figure 81. Image Rejection vs. RF Frequency at Various IDLNA Values,
RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 3 V
HMC7587 Data Sheet
Rev. A | Page 20 of 55
10
8
6
4
2
0
–2
–6
–8
–4
–10
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP3 (dBm)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-086
Figure 82. Input IP3 vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 4 V
10
8
6
4
2
0
–2
–6
–8
–4
–10
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP3 (dBm)
RF FREQ UE NCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-087
Figure 83. Input IP3 vs. RF Frequency at Various LO Powers,
RFIN = −20 dBm, IF = 2000 MHz, VDLNA = 4 V
10
8
6
4
2
0
–2
–6
–8
–4
–10
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP3 (dBm)
RF FREQ UE NCY ( GHz)
I
DLNA
= 5mA
I
DLNA
= 10mA
I
DLNA
= 15mA
I
DLNA
= 20mA
I
DLNA
= 25mA
I
DLNA
= 30mA
I
DLNA
= 35mA
I
DLNA
= 40mA
I
DLNA
= 45mA
I
DLNA
= 50mA
13141-088
Figure 84. Input IP3 vs. RF Frequency at Various IDLNA Values,
RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 4 V
10
8
6
4
2
0
–2
–6
–8
–4
–10
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP3 (dBm)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-089
Figure 85. Input IP3 vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 3 V
10
8
6
4
2
0
–2
–6
–8
–4
–10
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP3 (dBm)
RF FREQ UE NCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-090
Figure 86. Input IP3 vs. RF Frequency at Various LO Powers,
RFIN = −20 dBm, IF = 2000 MHz, VDLNA = 3 V
10
8
6
4
2
0
–2
–6
–8
–4
–10
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP3 (dBm)
RF FREQ UE NCY ( GHz)
I
DLNA
= 5mA
I
DLNA
= 10mA
I
DLNA
= 15mA
I
DLNA
= 20mA
I
DLNA
= 25mA
I
DLNA
= 30mA
I
DLNA
= 35mA
I
DLNA
= 40mA
I
DLNA
= 45mA
I
DLNA
= 50mA
13141-091
Figure 87. Input IP3 vs. RF Frequency at Various IDLNA Values,
RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 3 V
Data Sheet HMC7587
Rev. A | Page 21 of 55
50
45
40
35
30
25
20
10
5
15
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP2 (dBm)
RF FREQUENCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-092
Figure 88. Input IP2 vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 4 V
50
45
40
35
30
25
20
10
5
15
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP2 (dBm)
RF FREQUENCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-093
Figure 89. Input IP2 vs. RF Frequency at Various LO Powers,
RFIN = −20 dBm, IF = 2000 MHz, VDLNA = 4 V
50
45
40
35
30
25
20
10
5
15
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP2 (dBm)
RF FREQ UE NCY ( GHz)
I
DLNA
= 5mA
I
DLNA
= 10mA
I
DLNA
= 15mA
I
DLNA
= 20mA
I
DLNA
= 25mA
I
DLNA
= 30mA
I
DLNA
= 35mA
I
DLNA
= 40mA
I
DLNA
= 45mA
I
DLNA
= 50mA
13141-094
Figure 90. Input IP2 vs. RF Frequency at Various IDLNA Values,
RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 4 V
50
45
40
35
30
25
20
10
5
15
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP2 (dBm)
RF FREQUENCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-095
Figure 91. Input IP2 vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 3 V
50
45
40
35
30
25
20
10
5
15
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP2 (dBm)
RF FREQUENCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-096
Figure 92. Input IP2 vs. RF Frequency at Various LO Powers,
RFIN = −20 dBm, IF = 2000 MHz, VDLNA = 3 V
50
45
40
35
30
25
20
10
5
15
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP2 (dBm)
RF FREQ UE NCY ( GHz)
I
DLNA
= 5mA
I
DLNA
= 10mA
I
DLNA
= 15mA
I
DLNA
= 20mA
I
DLNA
= 25mA
I
DLNA
= 30mA
I
DLNA
= 35mA
I
DLNA
= 40mA
I
DLNA
= 45mA
I
DLNA
= 50mA
13141-097
Figure 93. Input IP2 vs. RF Frequency at Various IDLNA Values,
RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 3 V
HMC7587 Data Sheet
Rev. A | Page 22 of 55
0
–2
–4
–6
–10
–12
–8
–16
–14
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
P1d B ( dBm)
RF FREQUENCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-098
Figure 94. Input P1dB vs. RF Frequency at Various Temperatures,
LO = 2 dBm, IF = 2000 MHz, VDLNA = 4 V
0
–2
–4
–6
–10
–12
–8
–16
–14
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
P1d B ( dBm)
RF FREQUENCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-101
Figure 95. Input P1dB vs. RF Frequency at Various Temperatures,
LO = 2 dBm, IF = 2000 MHz, VDLNA = 3 V
Data Sheet HMC7587
Rev. A | Page 23 of 55
NOISE FIGURE PERFORMANCE WITH UPPER SIDEBAND SELECTED
10
0
4
9
6
2
8
3
5
1
7
NOISE FIGURE (dB)
TA = +85°C
TA = +25°C
TA = –55° C
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
RF FREQUENCY ( GHz)
13141-104
Figure 96. Noise Figure vs. RF Frequency at Various Temperatures,
LO = 2 dBm, IF = 500 MHz, VDLNA = 3 V
10
9
8
7
6
5
4
3
2
1
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
NOISE FIGURE (dB)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-105
Figure 97. Noise Figure vs. RF Frequency at Various Temperatures,
LO = 2 dBm, IF = 1000 MHz, VDLNA = 3 V
10
9
8
7
6
5
4
3
2
1
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
NOISE FIGURE (dB)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-106
Figure 98. Noise Figure vs. RF Frequency at Various Temperatures,
LO = 2 dBm, IF = 2000 MHz, VDLNA = 3 V
10
0
4
9
6
2
8
3
5
1
7
NOISE FIGURE (dB)
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
RF FREQUENCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-107
Figure 99. Noise Figure vs. RF Frequency at Various LO Powers,
IF = 500 MHz, VDLNA = 3 V
10
9
8
7
6
5
4
3
2
1
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
NOISE FIGURE (dB)
RF FREQ UE NCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-108
Figure 100. Noise Figure vs. RF Frequency at Various LO Powers,
IF = 1000 MHz, VDLNA = 3 V
10
9
8
7
6
5
4
3
2
1
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
NOISE FIGURE (dB)
RF FREQ UE NCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-109
Figure 101. Noise Figure vs. RF Frequency at Various LO Powers,
IF = 2000 MHz, VDLNA = 3 V
HMC7587 Data Sheet
Rev. A | Page 24 of 55
AMPLITUDE BALANCE PERFORMANCE WITH UPPER SIDEBAND SELECTED
1.0
–2.0
–1.5
–1.0
–0.5
0
0.5
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
AMPLITUDE BALANCE ( dB)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-110
Figure 102. Amplitude Balance vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 4 V
1.0
0.5
–0.5
–2.0
–1.5
0
–1.0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
AMPLITUDE BALANCE ( dB)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-111
Figure 103. Amplitude Balance vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 4 V
1.0
0.5
–0.5
–2.0
–1.5
0
–1.0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
AMPLITUDE BALANCE ( dB)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-112
Figure 104. Amplitude Balance vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 4 V
1.0
0.5
–0.5
–2.0
–1.5
0
–1.0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
AMPLITUDE BALANCE ( dB)
RF FREQUENCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-113
Figure 105. Amplitude Balance vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 3 V
1.0
0.5
–0.5
–2.0
–1.5
0
–1.0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
AMPLITUDE BALANCE ( dB)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-114
Figure 106. Amplitude Balance vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 3 V
1.0
0.5
–0.5
–2.0
–1.5
0
–1.0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
AMPLITUDE BALANCE ( dB)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-115
Figure 107. Amplitude Balance vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 3 V
Data Sheet HMC7587
Rev. A | Page 25 of 55
PHASE BALANCE PERFORMANCE WITH UPPER SIDEBAND SELECTED
10
8
4
–10
–8
0
6
–4
–6
–2
2
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
PHASE BALANCE ( Degrees)
RF FREQUENCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-116
Figure 108. Phase Balance vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 4 V
10
–10
2
–6
–2
6
–8
4
–4
0
8
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
PHASE BALANCE ( Degrees)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-117
Figure 109. Phase Balance vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 4 V
10
8
4
–10
–8
0
6
–4
–6
–2
2
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
PHASE BALANCE ( Degrees)
RF FREQUENCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-118
Figure 110. Phase Balance vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 4 V
10
8
4
–10
–8
0
6
–4
–6
–2
2
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
PHASE BALANCE ( Degrees)
RF FREQUENCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-119
Figure 111. Phase Balance vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 3 V
10
8
4
–10
–8
0
6
–4
–6
–2
2
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
PHASE BALANCE ( Degrees)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-120
Figure 112. Phase Balance vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 3 V
10
8
4
–10
–8
0
6
–4
–6
–2
2
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
PHASE BALANCE ( Degrees)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-121
Figure 113. Phase Balance vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 3 V
HMC7587 Data Sheet
Rev. A | Page 26 of 55
LOWER SIDEBAND SELECTED, IF = 500 MHz
16
14
12
10
8
6
4
2
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
CONVERSION GAIN (dB)
RF FREQUENCY (GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55°C
13141-122
Figure 114. Conversion Gain vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 4 V
16
14
12
10
8
6
4
2
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
CONVERSION GAIN (dB)
RF FREQUENCY (GHz)
LO = –4dBm
LO = –2dBm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-123
Figure 115. Conversion Gain vs. RF Frequency at Various LO Powers,
RFIN = −20 dBm, IF = 500 MHz, VDLNA = 4 V
20
16
12
8
4
0
–8
–16
–4
–12
–20
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
CONVERSION GAIN (dB)
RF FREQUENCY (GHz)
I
DLNA
= 5mA
I
DLNA
= 10mA
I
DLNA
= 15mA
I
DLNA
= 20mA
I
DLNA
= 25mA
I
DLNA
= 30mA
I
DLNA
= 35mA
I
DLNA
= 40mA
I
DLNA
= 45mA
I
DLNA
= 50mA
13141-124
Figure 116. Conversion Gain vs. RF Frequency at Various IDLNA
RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 4 V
16
14
12
10
8
6
4
2
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
CONVERSION GAIN (dB)
RF FREQUENCY (GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55°C
13141-125
Figure 117. Conversion Gain vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 3 V
16
14
12
10
8
6
4
2
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
CONVERSION GAIN (dB)
RF FREQUENCY (GHz)
LO = –4dBm
LO = –2dBm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-126
Figure 118. Conversion Gain vs. RF Frequency at Various LO Powers,
RFIN = −20 dBm, IF = 500 MHz, VDLNA = 3 V
20
16
12
8
4
0
–8
–16
–4
–12
–20
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
CONVERSION GAIN (dB)
RF FREQUENCY (GHz)
I
DLNA
= 5mA
I
DLNA
= 10mA
I
DLNA
= 15mA
I
DLNA
= 20mA
I
DLNA
= 25mA
I
DLNA
= 30mA
I
DLNA
= 35mA
I
DLNA
= 40mA
I
DLNA
= 45mA
I
DLNA
= 50mA
13141-127
Figure 119. Conversion Gain vs. RF Frequency at Various IDLNA Values,
RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 3 V
Data Sheet HMC7587
Rev. A | Page 27 of 55
0
–4
–8
–12
–16
–20
–24
–32
–36
–28
–40
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IM AG E RE JE CTI ON (dBc)
RF F RE QUENCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-128
Figure 120. Image Rejection vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 4 V
0
–4
–8
–12
–16
–20
–24
–32
–36
–28
–40
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IM AG E RE JE CTI ON (dBc)
RF F RE QUENCY ( GHz)
LO = –4dBm
LO = –2dBm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-129
Figure 121. Image Rejection vs. RF Frequency at Various LO Powers,
RFIN = −20 dBm, IF = 500 MHz, VDLNA = 4 V
0
–4
–8
–12
–16
–20
–24
–28
–36
–32
–40
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IM AG E RE JE CTI ON (dBc)
RF F RE QUENCY ( GHz)
I
DLNA
= 5mA
I
DLNA
= 10mA
I
DLNA
= 15mA
I
DLNA
= 20mA
I
DLNA
= 25mA
I
DLNA
= 30mA
I
DLNA
= 35mA
I
DLNA
= 40mA
I
DLNA
= 45mA
I
DLNA
= 50mA
13141-130
Figure 122. Image Rejection vs. RF Frequency at Various IDLNA Values,
RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 4 V
0
–4
–8
–12
–16
–20
–24
–32
–36
–28
–40
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IM AG E RE JE CTI ON (dBc)
RF F RE QUENCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-131
Figure 123. Image Rejection vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 3 V
–1
–5
–9
–13
–17
–21
–25
–33
–37
–41
–29
–45
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IM AG E RE JE CTI ON (dBc)
RF F RE QUENCY ( GHz)
LO = –4dBm
LO = –2dBm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-132
Figure 124. Image Rejection vs. RF Frequency at Various LO Powers,
RFIN = −20 dBm, IF = 500 MHz, VDLNA = 3 V
0
–4
–8
–12
–16
–20
–24
–28
–36
–32
–40
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IM AG E RE JE CTI ON (dBc)
RF F RE QUENCY ( GHz)
I
DLNA
= 5mA
I
DLNA
= 10mA
I
DLNA
= 15mA
I
DLNA
= 20mA
I
DLNA
= 25mA
I
DLNA
= 30mA
I
DLNA
= 35mA
I
DLNA
= 40mA
I
DLNA
= 45mA
I
DLNA
= 50mA
13141-133
Figure 125. Image Rejection vs. RF Frequency at Various IDLNA Values,
RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 3 V
HMC7587 Data Sheet
Rev. A | Page 28 of 55
10
8
6
4
2
0
–2
–6
–8
–4
–10
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP3 (dBm)
RF FREQUENCY (GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55°C
13141-134
Figure 126. Input IP3 vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 4 V
10
8
6
4
2
0
–2
–6
–8
–4
–10
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP3 (dBm)
RF FREQUENCY (GHz)
LO = –4dBm
LO = –2dBm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-135
Figure 127. Input IP3 vs. RF Frequency at Various LO Powers,
RFIN = −20 dBm, IF = 500 MHz, VDLNA = 4 V
10
8
6
4
2
0
–2
–6
–8
–4
–10
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP3 (dBm)
RF FREQUENCY (GHz)
I
DLNA
= 5mA
I
DLNA
= 10mA
I
DLNA
= 15mA
I
DLNA
= 20mA
I
DLNA
= 25mA
I
DLNA
= 30mA
I
DLNA
= 35mA
I
DLNA
= 40mA
I
DLNA
= 45mA
I
DLNA
= 50mA
13141-136
Figure 128. Input IP3 vs. RF Frequency at Various IDLNA Values,
RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 4 V
10
8
6
4
2
0
–2
–6
–8
–4
–10
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP3 (dBm)
RF FREQUENCY (GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55°C
13141-137
Figure 129. Input IP3 vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 3 V
10
8
6
4
2
0
–2
–6
–8
–4
–10
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP3 (dBm)
RF FREQUENCY (GHz)
LO = –4dBm
LO = –2dBm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-138
Figure 130. Input IP3 vs. RF Frequency at Various LO Powers,
RFIN = −20 dBm, IF = 500 MHz, VDLNA = 3 V
10
8
6
4
2
0
–2
–6
–8
–4
–10
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP3 (dBm)
RF FREQUENCY (GHz)
I
DLNA
= 5mA
I
DLNA
= 10mA
I
DLNA
= 15mA
I
DLNA
= 20mA
I
DLNA
= 25mA
I
DLNA
= 30mA
I
DLNA
= 35mA
I
DLNA
= 40mA
I
DLNA
= 45mA
I
DLNA
= 50mA
13141-139
Figure 131. Input IP3 vs. RF Frequency at Various IDLNA
RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 3 V
Data Sheet HMC7587
Rev. A | Page 29 of 55
50
45
40
35
30
25
20
10
5
15
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP2 (dBm)
RF FREQUENCY (GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55°C
13141-140
Figure 132. Input IP2 vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 4 V
50
45
40
35
30
25
20
10
5
15
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP2 (dBm)
RF FREQUENCY (GHz)
LO = –4dBm
LO = –2dBm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-141
Figure 133. Input IP2 vs. RF Frequency at Various LO Powers,
RFIN = −20 dBm, IF = 500 MHz, VDLNA = 4 V
50
45
40
35
30
25
20
10
5
15
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP2 (dBm)
RF FREQUENCY (GHz)
I
DLNA
= 5mA
I
DLNA
= 10mA
I
DLNA
= 15mA
I
DLNA
= 20mA
I
DLNA
= 25mA
I
DLNA
= 30mA
I
DLNA
= 35mA
I
DLNA
= 40mA
I
DLNA
= 45mA
I
DLNA
= 50mA
13141-142
Figure 134. Input IP2 vs. RF Frequency at Various IDLNA Values,
RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 4 V
50
45
40
35
30
25
20
10
5
15
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP2 (dBm)
RF FREQUENCY (GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55°C
13141-143
Figure 135. Input IP2 vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 3 V
50
45
40
35
30
25
20
10
5
15
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP2 (dBm)
RF FREQUENCY (GHz)
LO = –4dBm
LO = –2dBm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-144
Figure 136. Input IP2 vs. RF Frequency at Various LO Powers,
RFIN = −20 dBm, IF = 500 MHz, VDLNA = 3 V
50
45
40
35
30
25
20
10
5
15
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP2 (dBm)
RF FREQUENCY (GHz)
I
DLNA
= 5mA
I
DLNA
= 10mA
I
DLNA
= 15mA
I
DLNA
= 20mA
I
DLNA
= 25mA
I
DLNA
= 30mA
I
DLNA
= 35mA
I
DLNA
= 40mA
I
DLNA
= 45mA
I
DLNA
= 50mA
13141-145
Figure 137. Input IP2 vs. RF Frequency at Various IDLNA Values,
RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 3 V
HMC7587 Data Sheet
Rev. A | Page 30 of 55
0
–2
–4
–6
–10
–12
–8
–16
–14
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
P1dB (dBm)
RF FREQUENCY (GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55°C
13141-146
Figure 138. Input P1dB vs. RF Frequency at Various Temperatures,
LO = 2 dBm, IF = 500 MHz, VDLNA = 4 V
0
–2
–4
–6
–10
–12
–8
–16
–14
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
P1dB (dBm)
RF FREQUENCY (GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55°C
13141-149
Figure 139. Input P1dB vs. RF Frequency at Various Temperatures,
LO = 2 dBm, IF = 500 MHz, VDLNA = 3 V
Data Sheet HMC7587
Rev. A | Page 31 of 55
LOWER SIDEBAND SELECTED, IF = 1000 MHz
16
14
12
10
8
6
4
2
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
CONVERSION GAIN (dB)
RF FREQUENCY (GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55°C
13141-152
Figure 140. Conversion Gain vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 4 V
16
14
12
10
8
6
4
2
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
CONVERSION GAIN (dB)
RF FREQUENCY (GHz)
LO = –4dBm
LO = –2dBm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-153
Figure 141. Conversion Gain vs. RF Frequency at Various LO Powers,
RFIN = −20 dBm, IF = 1000 MHz, VDLNA = 4 V
20
16
12
8
4
0
–8
–16
–4
–12
–20
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
CONVERSION GAIN (dB)
RF FREQUENCY (GHz)
I
DLNA
= 5mA
I
DLNA
= 10mA
I
DLNA
= 15mA
I
DLNA
= 20mA
I
DLNA
= 25mA
I
DLNA
= 30mA
I
DLNA
= 35mA
I
DLNA
= 40mA
I
DLNA
= 45mA
I
DLNA
= 50mA
13141-154
Figure 142. Conversion Gain vs. RF Frequency at Various IDLNA Values,
RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 4 V
16
14
12
10
8
6
4
2
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
CONVERSION GAIN (dB)
RF FREQUENCY (GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55°C
13141-155
Figure 143. Conversion Gain vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 3 V
16
14
12
10
8
6
4
2
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
CONVERSION GAIN (dB)
RF FREQUENCY (GHz)
LO = –4dBm
LO = –2dBm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-156
Figure 144. Conversion Gain vs. RF Frequency at Various LO Powers,
RFIN = −20 dBm, IF = 1000 MHz, VDLNA = 3 V
20
16
12
8
4
0
–8
–16
–4
–12
–20
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
CONVERSION GAIN (dB)
RF FREQUENCY (GHz)
I
DLNA
= 5mA
I
DLNA
= 10mA
I
DLNA
= 15mA
I
DLNA
= 20mA
I
DLNA
= 25mA
I
DLNA
= 30mA
I
DLNA
= 35mA
I
DLNA
= 40mA
I
DLNA
= 45mA
I
DLNA
= 50mA
13141-157
Figure 145. Conversion Gain vs. RF Frequency at Various IDLNA Values,
RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 3 V
HMC7587 Data Sheet
Rev. A | Page 32 of 55
0
–4
–8
–12
–16
–20
–24
–32
–36
–28
–40
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IMAGE REJECTION (dBc)
RF FREQUENCY (GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55°C
13141-158
Figure 146. Image Rejection vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 4 V
0
–4
–8
–12
–16
–20
–24
–32
–36
–28
–40
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IMAGE REJECTION (dBc)
RF FREQUENCY (GHz)
LO = –4dBm
LO = –2dBm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-159
Figure 147. Image Rejection vs. RF Frequency at Various LO Powers,
RFIN = −20 dBm, IF = 1000 MHz, VDLNA = 4 V
0
–4
–8
–12
–16
–20
–24
–28
–36
–32
–40
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IMAGE REJECTION (dBc)
RF FREQUENCY (GHz)
I
DLNA
= 5mA
I
DLNA
= 10mA
I
DLNA
= 15mA
I
DLNA
= 20mA
I
DLNA
= 25mA
I
DLNA
= 30mA
I
DLNA
= 35mA
I
DLNA
= 40mA
I
DLNA
= 45mA
I
DLNA
= 50mA
13141-160
Figure 148. Image Rejection vs. RF Frequency at Various IDLNA Values,
RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 4 V
0
–4
–8
–12
–16
–20
–24
–32
–36
–28
–40
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IMAGE REJECTION (dBc)
RF FREQUENCY (GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55°C
13141-161
Figure 149. Image Rejection vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 3 V
0
–4
–8
–12
–16
–20
–24
–32
–36
–28
–40
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IMAGE REJECTION (dBc)
RF FREQUENCY (GHz)
LO = –4dBm
LO = –2dBm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-162
Figure 150. Image Rejection vs. RF Frequency at Various LO Powers,
RFIN = −20 dBm, IF = 1000 MHz, VDLNA = 3 V
0
–4
–8
–12
–16
–20
–24
–28
–36
–32
–40
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IMAGE REJECTION (dBc)
RF FREQUENCY (GHz)
I
DLNA
= 5mA
I
DLNA
= 10mA
I
DLNA
= 15mA
I
DLNA
= 20mA
I
DLNA
= 25mA
I
DLNA
= 30mA
I
DLNA
= 35mA
I
DLNA
= 40mA
I
DLNA
= 45mA
I
DLNA
= 50mA
13141-163
Figure 151. Image Rejection vs. RF Frequency at Various IDLNA Values,
RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 3 V
Data Sheet HMC7587
Rev. A | Page 33 of 55
10
8
6
4
2
0
–2
–6
–8
–4
–10
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP3 (dBm)
RF FREQUENCY (GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55°C
13141-164
Figure 152. Input IP3 vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 4 V
10
8
6
4
2
0
–2
–6
–8
–4
–10
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP3 (dBm)
RF FREQUENCY (GHz)
LO = –4dBm
LO = –2dBm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-165
Figure 153. Input IP3 vs. RF Frequency at Various LO Powers,
RFIN = −20 dBm, IF = 1000 MHz, VDLNA = 4 V
10
8
6
4
2
0
–2
–6
–8
–4
–10
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP3 (dBm)
RF FREQUENCY (GHz)
I
DLNA
= 5mA
I
DLNA
= 10mA
I
DLNA
= 15mA
I
DLNA
= 20mA
I
DLNA
= 25mA
I
DLNA
= 30mA
I
DLNA
= 35mA
I
DLNA
= 40mA
I
DLNA
= 45mA
I
DLNA
= 50mA
13141-166
Figure 154. Input IP3 vs. RF Frequency at Various IDLNA Values,
RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 4 V
10
8
6
4
2
0
–2
–6
–8
–4
–10
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP3 (dBm)
RF FREQUENCY (GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55°C
13141-167
Figure 155. Input IP3 vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 3 V
10
8
6
4
2
0
–2
–6
–8
–4
–10
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP3 (dBm)
RF FREQUENCY (GHz)
LO = –4dBm
LO = –2dBm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-168
Figure 156. Input IP3 vs. RF Frequency at Various LO Powers,
RFIN = −20 dBm, IF = 1000 MHz, VDLNA = 3 V
10
8
6
4
2
0
–2
–6
–8
–4
–10
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP3 (dBm)
RF FREQUENCY (GHz)
I
DLNA
= 5mA
I
DLNA
= 10mA
I
DLNA
= 15mA
I
DLNA
= 20mA
I
DLNA
= 25mA
I
DLNA
= 30mA
I
DLNA
= 35mA
I
DLNA
= 40mA
I
DLNA
= 45mA
I
DLNA
= 50mA
13141-169
Figure 157. Input IP3 vs. RF Frequency at Various IDLNA Values,
RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 3 V
HMC7587 Data Sheet
Rev. A | Page 34 of 55
50
45
40
35
30
25
20
10
5
15
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP2 ( dBm)
RF F RE QUENCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-170
Figure 158. Input IP2 vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 4 V
50
45
40
35
30
25
20
10
5
15
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP2 ( dBm)
RF F RE QUENCY ( GHz)
LO = –4dBm
LO = –2dBm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-171
Figure 159. Input IP2 vs. RF Frequency at Various LO Powers,
RFIN = −20 dBm, IF = 1000 MHz, VDLNA = 4 V
50
45
40
35
30
25
20
10
5
15
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP2 ( dBm)
RF F RE QUENCY ( GHz)
I
DLNA
= 5mA
I
DLNA
= 10mA
I
DLNA
= 15mA
I
DLNA
= 20mA
I
DLNA
= 25mA
I
DLNA
= 30mA
I
DLNA
= 35mA
I
DLNA
= 40mA
I
DLNA
= 45mA
I
DLNA
= 50mA
13141-172
Figure 160. Input IP2 vs. RF Frequency at Various IDLNA Values,
RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 4 V
50
45
40
35
30
25
20
10
5
15
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP2 ( dBm)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-173
Figure 161. Input IP2 vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 3 V
50
45
40
35
30
25
20
10
5
15
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP2 ( dBm)
RF FREQ UE NCY ( GHz)
LO = –4dBm
LO = –2dBm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-174
Figure 162. Input IP2 vs. RF Frequency at Various LO Powers,
RFIN = −20 dBm, IF = 1000 MHz, VDLNA = 3 V
50
45
40
35
30
25
20
10
5
15
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP2 ( dBm)
RF FREQ UE NCY ( GHz)
I
DLNA
= 5mA
I
DLNA
= 10mA
I
DLNA
= 15mA
I
DLNA
= 20mA
I
DLNA
= 25mA
I
DLNA
= 30mA
I
DLNA
= 35mA
I
DLNA
= 40mA
I
DLNA
= 45mA
I
DLNA
= 50mA
13141-175
Figure 163. Input IP2 vs. RF Frequency at Various IDLNA Values,
RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 3 V
Data Sheet HMC7587
Rev. A | Page 35 of 55
0
–2
–4
–6
–10
–12
–8
–16
–14
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
P1dB (dBm)
RF F RE QUENCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-176
Figure 164. Input P1dB vs. RF Frequency at Various Temperatures,
LO = 2 dBm, IF = 1000 MHz, VDLNA = 4 V
0
–2
–4
–6
–10
–12
–8
–16
–14
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
P1dB (dBm)
RF F RE QUENCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-179
Figure 165. Input P1dB vs. RF Frequency at Various Temperatures,
LO = 2 dBm, IF = 1000 MHz, VDLNA = 3 V
HMC7587 Data Sheet
Rev. A | Page 36 of 55
LOWER SIDEBAND SELECTED, IF = 2000 MHz
16
14
12
10
8
6
4
2
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
CONVE RS IO N GAI N ( dB)
RF F RE QUENCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-182
Figure 166. Conversion Gain vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 4 V
16
14
12
10
8
6
4
2
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
CONVE RS IO N GAI N ( dB)
RF F RE QUENCY ( GHz)
LO = –4dBm
LO = –2dBm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-183
Figure 167. Conversion Gain vs. RF Frequency at Various LO Powers,
RFIN = −20 dBm, IF = 2000 MHz, VDLNA = 4 V
20
16
12
8
4
0
–8
–16
–4
–12
–20
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
CONVE RS IO N GAI N ( dB)
RF F RE QUENCY ( GHz)
I
DLNA
= 5mA
I
DLNA
= 10mA
I
DLNA
= 15mA
I
DLNA
= 20mA
I
DLNA
= 25mA
I
DLNA
= 30mA
I
DLNA
= 35mA
I
DLNA
= 40mA
I
DLNA
= 45mA
I
DLNA
= 50mA
13141-184
Figure 168. Conversion Gain vs. RF Frequency at Various IDLNA Values,
RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 4 V
16
14
12
10
8
6
4
2
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
CONVE RS IO N GAI N ( dB)
RF F RE QUENCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-185
Figure 169. Conversion Gain vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 3 V
16
14
12
10
8
6
4
2
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
CONVE RS IO N GAI N ( dB)
RF F RE QUENCY ( GHz)
LO = –4dBm
LO = –2dBm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-186
Figure 170. Conversion Gain vs. RF Frequency at Various LO Powers,
RFIN = −20 dBm, IF = 2000 MHz, VDLNA = 3 V
20
16
12
8
4
0
–8
–16
–4
–12
–20
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
CONVE RS IO N GAI N ( dB)
RF F RE QUENCY ( GHz)
I
DLNA
= 5mA
I
DLNA
= 10mA
I
DLNA
= 15mA
I
DLNA
= 20mA
I
DLNA
= 25mA
I
DLNA
= 30mA
I
DLNA
= 35mA
I
DLNA
= 40mA
I
DLNA
= 45mA
I
DLNA
= 50mA
13141-187
Figure 171. Conversion Gain vs. RF Frequency at Various IDLNA Values,
RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 3 V
Data Sheet HMC7587
Rev. A | Page 37 of 55
0
–4
–8
–12
–16
–20
–24
–32
–36
–28
–40
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IM AG E RE JE CTI ON (dBc)
RF F RE QUENCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-188
Figure 172. Image Rejection vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 4 V
0
–4
–8
–12
–16
–20
–24
–32
–36
–28
–40
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IM AG E RE JE CTI ON (dBc)
RF F RE QUENCY ( GHz)
LO = –4dBm
LO = –2dBm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-189
Figure 173. Image Rejection vs. RF Frequency at Various LO Powers,
RFIN = −20 dBm, IF = 2000 MHz, VDLNA = 4 V
0
–4
–8
–12
–16
–20
–24
–28
–36
–32
–40
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IM AG E RE JE CTI ON (dBc)
RF F RE QUENCY ( GHz)
I
DLNA
= 5mA
I
DLNA
= 10mA
I
DLNA
= 15mA
I
DLNA
= 20mA
I
DLNA
= 25mA
I
DLNA
= 30mA
I
DLNA
= 35mA
I
DLNA
= 40mA
I
DLNA
= 45mA
I
DLNA
= 50mA
13141-190
Figure 174. Image Rejection vs. RF Frequency at Various IDLNA Values,
RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 4 V
0
–4
–8
–12
–16
–20
–24
–32
–36
–28
–40
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IM AG E RE JE CTI ON (dBc)
RF F RE QUENCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-191
Figure 175. Image Rejection vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 3 V
0
–4
–8
–12
–16
–20
–24
–32
–36
–28
–40
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IM AG E RE JE CTI ON (dBc)
RF F RE QUENCY ( GHz)
LO = –4dBm
LO = –2dBm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-192
Figure 176. Image Rejection vs. RF Frequency at Various LO Powers,
RFIN = −20 dBm, IF = 2000 MHz, VDLNA = 3 V
0
–4
–8
–12
–16
–20
–24
–28
–36
–32
–40
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IM AG E RE JE CTI ON (dBc)
RF F RE QUENCY ( GHz)
I
DLNA
= 5mA
I
DLNA
= 10mA
I
DLNA
= 15mA
I
DLNA
= 20mA
I
DLNA
= 25mA
I
DLNA
= 30mA
I
DLNA
= 35mA
I
DLNA
= 40mA
I
DLNA
= 45mA
I
DLNA
= 50mA
13141-193
Figure 177. Image Rejection vs. RF Frequency at Various IDLNA Values,
RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 3 V
HMC7587 Data Sheet
Rev. A | Page 38 of 55
10
8
6
4
2
0
–2
–6
–8
–4
–10
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP3 ( dBm)
RF F RE QUENCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-194
Figure 178. Input IP3 vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 4 V
10
8
6
4
2
0
–2
–6
–8
–4
–10
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP3 ( dBm)
RF F RE QUENCY ( GHz)
LO = –4dBm
LO = –2dBm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-195
Figure 179. Input IP3 vs. RF Frequency at Various LO Powers,
RFIN = −20 dBm, IF = 2000 MHz, VDLNA = 4 V
10
8
6
4
2
0
–2
–6
–8
–4
–10
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP3 ( dBm)
RF F RE QUENCY ( GHz)
I
DLNA
= 5mA
I
DLNA
= 10mA
I
DLNA
= 15mA
I
DLNA
= 20mA
I
DLNA
= 25mA
I
DLNA
= 30mA
I
DLNA
= 35mA
I
DLNA
= 40mA
I
DLNA
= 45mA
I
DLNA
= 50mA
13141-196
Figure 180. Input IP3 vs. RF Frequency at Various IDLNA Values,
RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 4 V
10
8
6
4
2
0
–2
–6
–8
–4
–10
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP3 ( dBm)
RF F RE QUENCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-197
Figure 181. Input IP3 vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 3 V
10
8
6
4
2
0
–2
–6
–8
–4
–10
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP3 ( dBm)
RF F RE QUENCY ( GHz)
LO = –4dBm
LO = –2dBm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-198
Figure 182. Input IP3 vs. RF Frequency at Various LO Powers,
RFIN = −20 dBm, IF = 2000 MHz, VDLNA = 3 V
10
8
6
4
2
0
–2
–6
–8
–4
–10
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP3 ( dBm)
RF F RE QUENCY ( GHz)
I
DLNA
= 5mA
I
DLNA
= 10mA
I
DLNA
= 15mA
I
DLNA
= 20mA
I
DLNA
= 25mA
I
DLNA
= 30mA
I
DLNA
= 35mA
I
DLNA
= 40mA
I
DLNA
= 45mA
I
DLNA
= 50mA
13141-199
Figure 183. Input IP3 vs. RF Frequency at Various IDLNA Values,
RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 3 V
Data Sheet HMC7587
Rev. A | Page 39 of 55
50
45
40
35
30
25
20
10
5
15
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP2 ( dBm)
RF F RE QUENCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-200
Figure 184. Input IP2 vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 4 V
50
45
40
35
30
25
20
10
5
15
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP2 ( dBm)
RF F RE QUENCY ( GHz)
LO = –4dBm
LO = –2dBm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-201
Figure 185. Input IP2 vs. RF Frequency at Various LO Powers,
RFIN = −20 dBm, IF = 2000 MHz, VDLNA = 4 V
50
45
40
35
30
25
20
10
5
15
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP2 ( dBm)
RF F RE QUENCY ( GHz)
I
DLNA
= 5mA
I
DLNA
= 10mA
I
DLNA
= 15mA
I
DLNA
= 20mA
I
DLNA
= 25mA
I
DLNA
= 30mA
I
DLNA
= 35mA
I
DLNA
= 40mA
I
DLNA
= 45mA
I
DLNA
= 50mA
13141-202
Figure 186. Input IP2 vs. RF Frequency at Various IDLNA Values,
RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 4 V
50
45
40
35
30
25
20
10
5
15
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP2 ( dBm)
RF F RE QUENCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-203
Figure 187. Input IP2 vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 3 V
50
45
40
35
30
25
20
10
5
15
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP2 ( dBm)
RF F RE QUENCY ( GHz)
LO = –4dBm
LO = –2dBm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-204
Figure 188. Input IP2 vs. RF Frequency at Various LO Powers,
RFIN = −20 dBm, IF = 2000 MHz, VDLNA = 3 V
50
45
40
35
30
25
20
10
5
15
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP2 ( dBm)
RF F RE QUENCY ( GHz)
I
DLNA
= 5mA
I
DLNA
= 10mA
I
DLNA
= 15mA
I
DLNA
= 20mA
I
DLNA
= 25mA
I
DLNA
= 30mA
I
DLNA
= 35mA
I
DLNA
= 40mA
I
DLNA
= 45mA
I
DLNA
= 50mA
13141-205
Figure 189. Input IP2 vs. RF Frequency at Various IDLNA Values,
RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 3 V
HMC7587 Data Sheet
Rev. A | Page 40 of 55
0
–2
–4
–6
–10
–12
–8
–16
–14
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
P1dB (dBm)
RF F RE QUENCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-206
Figure 190. Input P1dB vs. RF Frequency at Various Temperatures,
LO = 2 dBm, IF = 2000 MHz, VDLNA = 4 V
0
–2
–4
–6
–10
–12
–8
–16
–14
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
P1dB (dBm)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-209
Figure 191. Input P1dB vs. RF Frequency at Various Temperatures,
LO = 2 dBm, IF = 2000 MHz, VDLNA = 3 V
Data Sheet HMC7587
Rev. A | Page 41 of 55
NOISE FIGURE PERFORMANCE WITH LOWER SIDEBAND SELECTED
10
9
8
7
6
5
4
3
2
1
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
NOISE FIGURE (dB)
RF F RE QUENCY ( GHz)
+85°C
+25°C
–55°C
13141-212
Figure 192. Noise Figure vs. RF Frequency at Various Temperatures,
LO = 2 dBm, IF = 500 MHz, VDLNA = 3 V
10
9
8
7
6
5
4
3
2
1
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
NOISE FIGURE (dB)
RF F RE QUENCY ( GHz)
+85°C
+25°C
–55°C
13141-213
Figure 193. Noise Figure vs. RF Frequency at Various Temperatures,
LO = 2 dBm, IF = 1000 MHz, VDLNA = 3 V
10
9
8
7
6
5
4
3
2
1
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
NOISE FIGURE (dB)
RF FREQ UE NCY ( GHz)
+85°C
+25°C
–55°C
13141-214
Figure 194. Noise Figure vs. RF Frequency at Various Temperatures,
LO = 2 dBm, IF = 2000 MHz, VDLNA = 3 V
10
9
8
7
6
5
4
3
2
1
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
NOISE FIGURE (dB)
RF F RE QUENCY ( GHz)
LO = –4dBm
LO = –2dBm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-215
Figure 195. Noise Figure vs. RF Frequency at Various LO Powers,
IF = 500 MHz, VDLNA = 3 V
10
9
8
7
6
5
4
3
2
1
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
NOISE FIGURE (dB)
RF F RE QUENCY ( GHz)
LO = –4dBm
LO = –2dBm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-216
Figure 196. Noise Figure vs. RF Frequency at Various LO Powers,
RFIN = −20 dBm, IF = 500 MHz, VDLNA = 3 V
10
9
8
7
6
5
4
3
2
1
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
NOISE FIGURE (dB)
RF F RE QUENCY ( GHz)
LO = –4dBm
LO = –2dBm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13141-217
Figure 197. Noise Figure vs. RF Frequency at Various LO Powers,
IF = 2000 MHz, VDLNA = 3 V
HMC7587 Data Sheet
Rev. A | Page 42 of 55
AMPLITUDE BALANCE PERFORMANCE WITH LOWER SIDEBAND SELECTED
1.0
0.5
–0.5
–2.0
–1.5
0
–1.0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
AMPLITUDE BALANCE ( dB)
RF F RE QUENCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-218
Figure 198. Amplitude Balance vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 4 V
1.0
0.5
–0.5
–2.0
–1.5
0
–1.0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
AMPLITUDE BALANCE ( dB)
RF F RE QUENCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-219
Figure 199. Amplitude Balance vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 4 V
1.0
0.5
–0.5
–2.0
–1.5
0
–1.0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
AMPLITUDE BALANCE ( dB)
RF F RE QUENCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-220
Figure 200. Amplitude Balance vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 4 V
1.0
0.5
–0.5
–2.0
–1.5
0
–1.0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
AMPLITUDE BALANCE ( dB)
RF F RE QUENCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-221
Figure 201. Amplitude Balance vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 3 V
1.0
0.5
–0.5
–2.0
–1.5
0
–1.0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
AMPLITUDE BALANCE ( dB)
RF F RE QUENCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-222
Figure 202. Amplitude Balance vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 3 V
1.0
0.5
–0.5
–2.0
–1.5
0
–1.0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
AMPLITUDE BALANCE ( dB)
RF F RE QUENCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-223
Figure 203. Amplitude Balance vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 3 V
Data Sheet HMC7587
Rev. A | Page 43 of 55
PHASE BALANCE PERFORMANCE WITH LOWER SIDEBAND SELECTED
10
8
4
–10
–8
0
6
–4
–6
–2
2
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
PHASE BALANCE ( Degrees)
RF F RE QUENCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-224
Figure 204. Phase Balance vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 4 V
10
–10
–8
0
–4
–6
–2
2
6
8
4
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
PHASE BALANCE ( Degrees)
RF F RE QUENCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-225
Figure 205. Phase Balance vs. RF Frequency at Various Temperatures
RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 4 V
10
8
4
–10
–8
0
6
–4
–6
–2
2
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
PHASE BALANCE ( Degrees)
RF F RE QUENCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-226
Figure 206. Phase Balance vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 4 V
10
8
4
–10
–8
0
6
–4
–6
–2
2
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
PHASE BALANCE ( Degrees)
RF F RE QUENCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-227
Figure 207. Phase Balance vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 3 V
10
8
4
–10
–8
0
6
–4
–6
–2
2
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
PHASE BALANCE ( Degrees)
RF F RE QUENCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-228
Figure 208. Phase Balance vs. RF Frequency at Various Temperatures
RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 3 V
10
8
4
–10
–8
0
6
–4
–6
–2
2
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
PHASE BALANCE ( Degrees)
RF F RE QUENCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –55° C
13141-229
Figure 209. Phase Balance vs. RF Frequency at Various Temperatures,
RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 3 V
HMC7587 Data Sheet
Rev. A | Page 44 of 55
SPURIOUS PERFORMANCE WITH UPPER
SIDEBAND SELECTED, IF = 500 MHz
TA = 25°C, VGMIX = −1 V, VDAMPx = 4 V, VDMULT = 1.5 V,
LOIN = 2 dBm.
Mixer spurious products are measured in dBc from the IF output
power level. Spur values are (M × RF) − (N × LO). N/A means not
applicable.
M × N Spurious Outputs, VDLNA = 4 V
RF = 81 GHz at RFIN = −10 dBm, LO frequency = 13.416 GHz
at LOIN = 2 dBm.
N × LO
0 1 2 3 4 5 6
M × RF
0 N/A N/A N/A N/A N/A N/A N/A
1 N/A N/A N/A N/A N/A N/A N/A
2 N/A N/A 29.2 N/A N/A N/A N/A
3 N/A N/A N/A 39 N/A N/A N/A
4 N/A N/A N/A N/A 57 N/A N/A
5 N/A N/A N/A N/A N/A 59.7 N/A
RF = 83 GHz at RFIN = −10 dBm, LO frequency = 13.75 GHz
at LOIN = 2 dBm.
N × LO
0 1 2 3 4 5 6
M × RF
0
N/A
N/A
N/A
N/A
N/A
N/A
N/A
1 N/A N/A N/A N/A N/A N/A N/A
2 N/A N/A 25 N/A N/A N/A N/A
3 N/A N/A N/A 36.6 N/A N/A N/A
4 N/A N/A N/A N/A 49.3 N/A N/A
5 N/A N/A N/A N/A N/A 53.9 N/A
RF = 86 GHz at RFIN = −10 dBm, LO frequency = 14.25 GHz
at LOIN = 2 dBm.
N × LO
0 1 2 3 4 5 6
M × RF
0 N/A N/A N/A N/A N/A N/A N/A
1 N/A N/A N/A N/A N/A N/A N/A
2 N/A N/A 29.6 N/A N/A N/A N/A
3
N/A
N/A
N/A
43.1
N/A
N/A
N/A
4 N/A N/A N/A N/A 61.2 N/A N/A
5 N/A N/A N/A N/A N/A 63.5 N/A
M × N Spurious Outputs, VDLNA = 3 V
RF = 81 GHz at RFIN = −10 dBm, LO frequency = 13.416 GHz
at LOIN = 2 dBm.
N × LO
0 1 2 3 4 5 6
M × RF
0 N/A N/A N/A N/A N/A N/A N/A
1 N/A N/A N/A N/A N/A N/A N/A
2 N/A N/A 30.3 N/A N/A N/A N/A
3 N/A N/A N/A 41.5 N/A N/A N/A
4
N/A
N/A
N/A
N/A
59.4
N/A
N/A
5 N/A N/A N/A N/A N/A 64 N/A
RF = 83 GHz at RFIN = −10 dBm, LO frequency = 13.75 MHz
at LOIN = 2 dBm.
N × LO
0 1 2 3 4 5 6
M × RF
0 N/A N/A N/A N/A N/A N/A N/A
1
N/A
N/A
N/A
N/A
N/A
N/A
N/A
2 N/A N/A 26 N/A N/A N/A N/A
3 N/A N/A N/A 38.7 N/A N/A N/A
4 N/A N/A N/A N/A 52.1 N/A N/A
5 N/A N/A N/A N/A N/A 57.2 N/A
RF = 86 GHz at RFIN = −10 dBm, LO frequency = 14.25 GHz
at LOIN = 2 dBm.
N × LO
0 1 2 3 4 5 6
M × RF
0 N/A N/A N/A N/A N/A N/A N/A
1 N/A N/A N/A N/A N/A N/A N/A
2 N/A N/A 30.1 N/A N/A N/A N/A
3 N/A N/A N/A 45.4 N/A N/A N/A
4 N/A N/A N/A N/A 62.9 N/A N/A
5 N/A N/A N/A N/A N/A 67.3 N/A
Data Sheet HMC7587
Rev. A | Page 45 of 55
SPURIOUS PERFORMANCE WITH UPPER
SIDEBAND SELECTED, IF = 1000 MHz
TA = 25°C, VGMIX = −1 V, VDAMPx = 4 V, VDMULT = 1.5 V, LOIN =
2 dBm.
Mixer spurious products are measured in dBc from the IF output
power level. Spur values are (M × RF) − (N × LO). N/A means not
applicable.
M × N Spurious Outputs, VDLNA = 4 V
RF = 81 GHz at RFIN = −10 dBm, LO frequency = 13.333 GHz
at LOIN = 2 dBm.
N × LO
0 1 2 3 4 5 6
M × RF
0 N/A N/A N/A N/A N/A N/A N/A
1 N/A N/A N/A N/A N/A N/A N/A
2 N/A N/A 28.4 N/A N/A N/A N/A
3 N/A N/A N/A 38.9 N/A N/A N/A
4 N/A N/A N/A N/A 56.5 N/A N/A
5 N/A N/A N/A N/A N/A 59.3 N/A
RF = 83 GHz at RFIN = −10 dBm, LO frequency = 13.666 MHz
at LOIN = 2 dBm.
N × LO
0 1 2 3 4 5 6
M × RF
0
N/A
N/A
N/A
N/A
N/A
N/A
N/A
1 N/A N/A N/A N/A N/A N/A N/A
2 N/A N/A 26.5 N/A N/A N/A N/A
3 N/A N/A N/A 37.1 N/A N/A N/A
4 N/A N/A N/A N/A 52.8 N/A N/A
5 N/A N/A N/A N/A N/A 56.7 N/A
RF = 86 GHz at RFIN = −10 dBm, LO frequency = 14.166 GHz
at LOIN = 2 dBm.
N × LO
0 1 2 3 4 5 6
M × RF
0 N/A N/A N/A N/A N/A N/A N/A
1 N/A N/A N/A N/A N/A N/A N/A
2 N/A N/A 27.9 N/A N/A N/A N/A
3
N/A
N/A
N/A
42
N/A
N/A
N/A
4 N/A N/A N/A N/A 60.2 N/A N/A
5 N/A N/A N/A N/A N/A 62.7 N/A
M × N Spurious Outputs, VDLNA = 3 V
RF = 81 GHz at RFIN = −10 dBm, LO frequency = 13.333 GHz
at LOIN = 2 dBm.
N × LO
0 1 2 3 4 5 6
M × RF
0 N/A N/A N/A N/A N/A N/A N/A
1 N/A N/A N/A N/A N/A N/A N/A
2 N/A N/A 29.7 N/A N/A N/A N/A
3 N/A N/A N/A 41.7 N/A N/A N/A
4
N/A
N/A
N/A
N/A
58.7
N/A
N/A
5 N/A N/A N/A N/A N/A 63.4 N/A
RF = 83 GHz at RFIN = −10 dBm, LO frequency = 13.666 MHz
at LOIN = 2 dBm.
N × LO
0 1 2 3 4 5 6
M × RF
0 N/A N/A N/A N/A N/A N/A N/A
1
N/A
N/A
N/A
N/A
N/A
N/A
N/A
2 N/A N/A 27.5 N/A N/A N/A N/A
3 N/A N/A N/A 39.3 N/A N/A N/A
4 N/A N/A N/A N/A 55.1 N/A N/A
5 N/A N/A N/A N/A N/A 60.4 N/A
RF = 86 GHz at RFIN = −10 dBm, LO frequency = 14.166 GHz
at LOIN = 2 dBm.
N × LO
0 1 2 3 4 5 6
M × RF
0 N/A N/A N/A N/A N/A N/A N/A
1 N/A N/A N/A N/A N/A N/A N/A
2 N/A N/A 28.8 N/A N/A N/A N/A
3 N/A N/A N/A 44.2 N/A N/A N/A
4 N/A N/A N/A N/A 62.1 N/A N/A
5 N/A N/A N/A N/A N/A 66.6 N/A
HMC7587 Data Sheet
Rev. A | Page 46 of 55
SPURIOUS PERFORMANCE WITH UPPER
SIDEBAND SELECTED, IF = 2000 MHz
TA = 25°C, VGMIX = −1 V, VDAMPx = 4 V, VDMULT = 1.5 V, LOIN =
2 dBm.
Mixer spurious products are measured in dBc from the IF output
power level. Spur values are (M × RF) − (N × LO). N/A means not
applicable.
M × N Spurious Outputs, VDLNA = 4 V
RF = 81 GHz at RFIN = −10 dBm, LO frequency = 13.166 GHz
at LOIN = 2 dBm.
N × LO
0 1 2 3 4 5 6
M × RF
0 N/A N/A N/A N/A N/A N/A N/A
1 N/A N/A N/A N/A N/A N/A N/A
2 N/A N/A 28.1 N/A N/A N/A N/A
3 N/A N/A N/A 42 N/A N/A N/A
4 N/A N/A N/A N/A 56.3 N/A N/A
5 N/A N/A N/A N/A N/A 61.1 N/A
RF = 83 GHz at RFIN = −10 dBm, LO frequency = 13.5 MHz
at LOIN = 2 dBm.
N × LO
0 1 2 3 4 5 6
M × RF
0
N/A
N/A
N/A
N/A
N/A
N/A
N/A
1 N/A N/A N/A N/A N/A N/A N/A
2 N/A N/A 27.8 N/A N/A N/A N/A
3 N/A N/A N/A 38.5 N/A N/A N/A
4 N/A N/A N/A N/A 55.6 N/A N/A
5 N/A N/A N/A N/A N/A 60.8 N/A
RF = 86 GHz at RFIN = −10 dBm, LO frequency = 14 GHz
at LOIN = 2 dBm
N × LO
0 1 2 3 4 5 6
M × RF
0 N/A N/A N/A N/A N/A N/A N/A
1 N/A N/A N/A N/A N/A N/A N/A
2 N/A N/A 25.1 N/A N/A N/A N/A
3
N/A
N/A
N/A
38.5
N/A
N/A
N/A
4 N/A N/A N/A N/A 52.9 N/A N/A
5 N/A N/A N/A N/A N/A 52.3 N/A
M × N Spurious Outputs, VDLNA = 3 V
RF = 81 GHz at RFIN = −10 dBm, LO frequency = 13.166 GHz
at LOIN = 2 dBm.
N × LO
0 1 2 3 4 5 6
M × RF
0 N/A N/A N/A N/A N/A N/A N/A
1 N/A N/A N/A N/A N/A N/A N/A
2 N/A N/A 29.6 N/A N/A N/A N/A
3 N/A N/A N/A 45.1 N/A N/A N/A
4
N/A
N/A
N/A
N/A
58.7
N/A
N/A
5 N/A N/A N/A N/A N/A 65.5 N/A
RF = 83 GHz at RFIN = −10 dBm, LO frequency = 13.5 MHz
at LOIN = 2 dBm.
N × LO
0 1 2 3 4 5 6
M × RF
0 N/A N/A N/A N/A N/A N/A N/A
1
N/A
N/A
N/A
N/A
N/A
N/A
N/A
2 N/A N/A 28.8 N/A N/A N/A N/A
3 N/A N/A N/A 41 N/A N/A N/A
4 N/A N/A N/A N/A 58.6 N/A N/A
5 N/A N/A N/A N/A N/A 64.7 N/A
RF = 86 GHz at RFIN = −10 dBm, LO frequency = 14 GHz
at LOIN = 2 dBm
N × LO
0 1 2 3 4 5 6
M × RF
0 N/A N/A N/A N/A N/A N/A N/A
1 N/A N/A N/A N/A N/A N/A N/A
2 N/A N/A 26 N/A N/A N/A N/A
3 N/A N/A N/A 40.7 N/A N/A N/A
4 N/A N/A N/A N/A 56.5 N/A N/A
5 N/A N/A N/A N/A N/A 54.2 N/A
Data Sheet HMC7587
Rev. A | Page 47 of 55
SPURIOUS PERFORMANCE WITH LOWER
SIDEBAND SELECTED, IF = 500 MHz
TA = 25°C, VGMIX = −1 V, VDAMPx = 4 V, VDMULT = 1.5 V, L O IN =
2 dBm.
Mixer spurious products are measured in dBc from the IF output
power level. Spur values are (M × RF) (N × LO). N/A means not
applicable.
M × N Spurious Outputs, VDLNA = 4 V
RF = 81 GHz at RFIN = −10 dBm, LO frequency = 13.583 GHz
at LOIN = 2 dBm.
N × LO
0 1 2 3 4 5 6
M × RF
0 N/A N/A N/A N/A N/A N/A N/A
1 N/A N/A N/A N/A N/A N/A N/A
2 N/A N/A 27.6 N/A N/A N/A N/A
3 N/A N/A N/A 38.5 N/A N/A N/A
4 N/A N/A N/A N/A 52.8 N/A N/A
5 N/A N/A N/A N/A N/A 55.9 N/A
RF = 83 GHz at RFIN = −10 dBm, LO frequency = 13.916 GHz
at LOIN = 2 dBm.
N × LO
0 1 2 3 4 5 6
M × RF
0
N/A
N/A
N/A
N/A
N/A
N/A
N/A
1 N/A N/A N/A N/A N/A N/A N/A
2 N/A N/A 25.4 N/A N/A N/A N/A
3 N/A N/A N/A 38.3 N/A N/A N/A
4 N/A N/A N/A N/A 49.2 N/A N/A
5 N/A N/A N/A N/A N/A 55.1 N/A
RF = 86 GHz at RFIN = −10 dBm, LO frequency = 14.416 GHz
at LOIN = 2 dBm.
N × LO
0 1 2 3 4 5 6
M × RF
0 N/A N/A N/A N/A N/A N/A N/A
1 N/A N/A N/A N/A N/A N/A N/A
2 N/A N/A 28.9 N/A N/A N/A N/A
3
N/A
N/A
N/A
44.8
N/A
N/A
N/A
4 N/A N/A N/A N/A 59.1 N/A N/A
5 N/A N/A N/A N/A N/A 64.8 N/A
M × N Spurious Outputs, VDLNA = 3 V
RF = 81 GHz at RFIN = −10 dBm, LO frequency = 13.583 GHz
at LOIN = 2 dBm.
N × LO
0 1 2 3 4 5 6
M × RF
0 N/A N/A N/A N/A N/A N/A N/A
1 N/A N/A N/A N/A N/A N/A N/A
2 N/A N/A 28.5 N/A N/A N/A N/A
3 N/A N/A N/A 40.6 N/A N/A N/A
4
N/A
N/A
N/A
N/A
55.6
N/A
N/A
5 N/A N/A N/A N/A N/A 59.8 N/A
RF = 83 GHz at RFIN = −10 dBm, LO frequency = 13.916 MHz
at LOIN = 2 dBm.
N × LO
0 1 2 3 4 5 6
M × RF
0 N/A N/A N/A N/A N/A N/A N/A
1
N/A
N/A
N/A
N/A
N/A
N/A
N/A
2 N/A N/A 26.3 N/A N/A N/A N/A
3 N/A N/A N/A 40 N/A N/A N/A
4 N/A N/A N/A N/A 52.1 N/A N/A
5 N/A N/A N/A N/A N/A 58.3 N/A
RF = 86 GHz at RFIN = −10 dBm, LO frequency = 14.416 GHz
at LOIN = 2 dBm.
N × LO
0 1 2 3 4 5 6
M × RF
0 N/A N/A N/A N/A N/A N/A N/A
1 N/A N/A N/A N/A N/A N/A N/A
2 N/A N/A 28.8 N/A N/A N/A N/A
3 N/A N/A N/A 46.5 N/A N/A N/A
4 N/A N/A N/A N/A 61.6 N/A N/A
5 N/A N/A N/A N/A N/A 68.5 N/A
HMC7587 Data Sheet
Rev. A | Page 48 of 55
SPURIOUS PERFORMANCE WITH LOWER
SIDEBAND SELECTED, IF = 1000 MHz
TA = 25°C, VGMIX = −1 V, VDAMPx = 4 V, VDMULT = 1.5 V, LOIN =
2 dBm.
Mixer spurious products are measured in dBc from the IF output
power level. Spur values are (M × RF) (N × LO). N/A means not
applicable.
M × N Spurious Outputs, VDLNA = 4 V
RF = 81 GHz at RFIN = −10 dBm, LO frequency = 13.666 GHz
at LOIN = 2 dBm.
N × LO
0 1 2 3 4 5 6
M × RF
0 N/A N/A N/A N/A N/A N/A N/A
1 N/A N/A N/A N/A N/A N/A N/A
2 N/A N/A 26.5 N/A N/A N/A N/A
3 N/A N/A N/A 37.1 N/A N/A N/A
4 N/A N/A N/A N/A 51 N/A N/A
5 N/A N/A N/A N/A N/A 55.6 N/A
RF = 83 GHz at RFIN = −10 dBm, LO frequency = 14 GHz
at LOIN = 2 dBm.
N × LO
0 1 2 3 4 5 6
M × RF
0
N/A
N/A
N/A
N/A
N/A
N/A
N/A
1 N/A N/A N/A N/A N/A N/A N/A
2 N/A N/A 26.5 N/A N/A N/A N/A
3 N/A N/A N/A 40 N/A N/A N/A
4 N/A N/A N/A N/A 50.8 N/A N/A
5 N/A N/A N/A N/A N/A 59.4 N/A
RF = 86 GHz at RFIN = −10 dBm, LO frequency = 14.5 GHz
at LOIN = 2 dBm.
N × LO
0 1 2 3 4 5 6
M × RF
0 N/A N/A N/A N/A N/A N/A N/A
1 N/A N/A N/A N/A N/A N/A N/A
2 N/A N/A 27.7 N/A N/A N/A N/A
3
N/A
N/A
N/A
42.8
N/A
N/A
N/A
4 N/A N/A N/A N/A 56.9 N/A N/A
5 N/A N/A N/A N/A N/A 68.1 N/A
M × N Spurious Outputs, VDLNA = 3 V
RF = 81 GHz at RFIN = −10 dBm, LO frequency = 13.666 GHz
at LOIN = 2 dBm.
N × LO
0 1 2 3 4 5 6
M × RF
0 N/A N/A N/A N/A N/A N/A N/A
1 N/A N/A N/A N/A N/A N/A N/A
2 N/A N/A 27.6 N/A N/A N/A N/A
3 N/A N/A N/A 39.2 N/A N/A N/A
4
N/A
N/A
N/A
N/A
53.4
N/A
N/A
5 N/A N/A N/A N/A N/A 59.1 N/A
RF = 83 GHz at RFIN = −10 dBm, LO frequency = 14 GHz
at LOIN = 2 dBm.
N × LO
0 1 2 3 4 5 6
M × RF
0 N/A N/A N/A N/A N/A N/A N/A
1
N/A
N/A
N/A
N/A
N/A
N/A
N/A
2 N/A N/A 27.4 N/A N/A N/A N/A
3 N/A N/A N/A 41.8 N/A N/A N/A
4 N/A N/A N/A N/A 54.9 N/A N/A
5 N/A N/A N/A N/A N/A 62.9 N/A
RF = 86 GHz at RFIN = −10 dBm, LO frequency = 14.5 GHz
at LOIN = 2 dBm.
N × LO
0 1 2 3 4 5 6
M × RF
0 N/A N/A N/A N/A N/A N/A N/A
1 N/A N/A N/A N/A N/A N/A N/A
2 N/A N/A 28.1 N/A N/A N/A N/A
3 N/A N/A N/A 45.2 N/A N/A N/A
4 N/A N/A N/A N/A 60.3 N/A N/A
5 N/A N/A N/A N/A N/A 73.2 N/A
Data Sheet HMC7587
Rev. A | Page 49 of 55
SPURIOUS PERFORMANCE WITH LOWER
SIDEBAND SELECTED, IF = 2000 MHz
TA = 25°C, VGMIX = −1 V, VDAMPx = 4 V, VDMULT = 1.5 V, L O IN =
2 dBm.
Mixer spurious products are measured in dBc from the IF output
power level. Spur values are (M × RF) (N × LO). N/A means not
applicable.
M × N Spurious Outputs, VDLNA = 4 V
RF = 81 GHz at RFIN = −10 dBm, LO frequency = 13.833 GHz
at LOIN = 2 dBm.
N × LO
0 1 2 3 4 5 6
M × RF
0 N/A N/A N/A N/A N/A N/A N/A
1 N/A N/A N/A N/A N/A N/A N/A
2 N/A N/A 25.1 N/A N/A N/A N/A
3 N/A N/A N/A 38.3 N/A N/A N/A
4 N/A N/A N/A N/A 48 N/A N/A
5 N/A N/A N/A N/A N/A 56.5 N/A
RF = 83 GHz at RFIN = −10 dBm, LO frequency = 14.166 GHz
at LOIN = 2 dBm.
N × LO
0 1 2 3 4 5 6
M × RF
0
N/A
N/A
N/A
N/A
N/A
N/A
N/A
1 N/A N/A N/A N/A N/A N/A N/A
2 N/A N/A 27.9 N/A N/A N/A N/A
3 N/A N/A N/A 43.2 N/A N/A N/A
4 N/A N/A N/A N/A 56.2 N/A N/A
5 N/A N/A N/A N/A N/A 65.4 N/A
RF = 86 GHz at RFIN = −10 dBm, LO frequency = 14.666 GHz
at LOIN = 2 dBm.
N × LO
0 1 2 3 4 5 6
M × RF
0 N/A N/A N/A N/A N/A N/A N/A
1 N/A N/A N/A N/A N/A N/A N/A
2 N/A N/A 22.3 N/A N/A N/A N/A
3
N/A
N/A
N/A
40.1
N/A
N/A
N/A
4 N/A N/A N/A N/A 48.1 N/A N/A
5 N/A N/A N/A N/A N/A 63 N/A
M × N Spurious Outputs, VDLNA = 3 V
RF = 81 GHz at RFIN = −10 dBm, LO frequency = 13.833 GHz
at LOIN = 2 dBm.
N × LO
0 1 2 3 4 5 6
M × RF
0 N/A N/A N/A N/A N/A N/A N/A
1 N/A N/A N/A N/A N/A N/A N/A
2 N/A N/A 25.9 N/A N/A N/A N/A
3 N/A N/A N/A 39.5 N/A N/A N/A
4
N/A
N/A
N/A
N/A
51.8
N/A
N/A
5 N/A N/A N/A N/A N/A 59.5 N/A
RF = 83 GHz at RFIN = −10 dBm, LO frequency = 14.166 GHz
at LOIN = 2 dBm.
N × LO
0 1 2 3 4 5 6
M × RF
0 N/A N/A N/A N/A N/A N/A N/A
1
N/A
N/A
N/A
N/A
N/A
N/A
N/A
2 N/A N/A 28.9 N/A N/A N/A N/A
3 N/A N/A N/A 45.6 N/A N/A N/A
4 N/A N/A N/A N/A 60 N/A N/A
5 N/A N/A N/A N/A N/A 63.9 N/A
RF = 86 GHz at RFIN = −10 dBm, LO frequency = 14.666 GHz
at LOIN = 2 dBm.
N × LO
0 1 2 3 4 5 6
M × RF
0 N/A N/A N/A N/A N/A N/A N/A
1 N/A N/A N/A N/A N/A N/A N/A
2 N/A N/A 23.2 N/A N/A N/A N/A
3 N/A N/A N/A 42.3 N/A N/A N/A
4 N/A N/A N/A N/A 51 N/A N/A
5 N/A N/A N/A N/A N/A 67 N/A
HMC7587 Data Sheet
Rev. A | Page 50 of 55
THEORY OF OPERATION
The HMC7587 is a GaAs low noise I/Q downconverter with an
integrated LO buffer and a 6× multiplier. See Figure 210 for a
functional block diagram of the downconverter circuit architecture.
The RF input is internally ac-coupled and matched to 50 Ω. The
input passes through four stages of low noise amplification. The
preamplified RF input signal then splits and drives two singly
balanced passive mixers.
Quadrature LO signals drive the two I and Q mixer cores. The
LO path provides a 6× multiplier that allows the use of a lower
frequency range LO input signal, typically between 11.83 GHz
and 14.33 GHz. The 6× multiplier is implemented using a cascade
of 3× and 2× multipliers. The LO buffer amplifiers are included
on-chip to allow a typical LO drive level of only 2 dBm for full
performance.
V
DAMP2
V
GAMP
V
DAMP1
V
GX3
V
DMULT LOIN
V
GX2
×2 ×3
AC COUPLING,
MATCHING ELEMENTS,
AND GND BOND PADS NOT ILLUSTRATED.
IFIP IFIN
IFQN IFQP
VGMIX
RFIN
VDLNA4 VGLNA4 VDLNA3 VGLNA3 VDLNA2 VGLNA2 VDLNA1 VGLNA1
13141-230
Figure 210. Downconverter Circuit Architecture
Data Sheet HMC7587
Rev. A | Page 51 of 55
APPLICATIONS INFORMATION
BIASING SEQUENCE
The HMC7587 uses several amplifier and multiplier stages. The
active stages all use depletion mode pseudomorphic high electron
mobility transistors (pHEMTs). To ensure transistor damage does
not occur, use the following power-up bias sequence:
1. Apply a2 V bias to VGAMP, VGLNA1, VGLNA2, VGLNA3, VGLNA4,
VGX2, and VGX3.
2. Apply a1 V bias to VGMIX.
3. Apply 4 V to VDAMP1, VDAMP2, VDLNA1, VDLNA2, VDLNA3, and
VDLNA4, and apply 1.5 V to VDMULT.
4. Adjust VGAMP between −2 V and 0 V to achieve a total
amplifier drain current (IDAMP1 + IDAMP2) of 175 mA.
5. Adjust VGLNA1, VGLNA2, VGLNA3, and VGLNA4 to achieve a total
LNA drain current (IDLNA1 + IDLNA2 + IDLNA3 + IDLNA4) of 50 mA.
6. Apply the LO input signal with a power level of 2 dBm and
adjust VGX2 and VGX3 between 2 V and 0 V to achieve
80 mA of drain current on VDMULT.
To power down the HMC7587, follow the procedure in reverse.
For additional guidance on general bias sequencing, see the
MMIC Amplifier Biasing Procedure application note.
IMAGE REJECTION DOWNCONVERSION
A typical image rejection downconversion application circuit is
shown in Figure 211. For image rejection downconversions,
external 180°and 90° hybrid couplers are typically used. The 180°
hybrids or baluns convert the differential I and Q output signals to
unbalanced waveforms. The 90° hybrid then combines the outputs
in quadrature to form a classic Hartley image rejection receiver
with a typical image rejection of 30 dBc.
IFIP
V
GMIX
V
DAMP2
V
GAMP
V
DAMP1
V
DMULT
V
GX3
V
GX2
LOIN
IFIN
IFQN
IFQP
5
4
3
2
1
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
×6
HMC7587
22
23
24
40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25
RFIN
V
GLNA1
V
DLNA1
V
GLNA2
V
DLNA2
V
GLNA3
V
DLNA3
V
GLNA4
V
DLNA4
LOIN
180°
HYBRID
180°
HYBRID
90°
HYBRID
IF
OUTPUT
V
GAMP
120pF 0.01µF 4.7µF
V
DMULT
120pF 0.01µF 4.7µF
V
GX2
, V
GX3
120pF 0.01µF 4.7µF
V
GLNA1
, V
GLNA2
120pF 0.01µF 4.7µF
V
DLNA1
, V
DLNA2
120pF 0.01µF 4.7µF
V
DAMP1
, V
DAMP2
4.7µF 0.01µF 120pF
V
GMIX
4.7µF 0.01µF 120pF
RF
INPUT
V
DLNA3
, V
DLNA4
4.7µF 0.01µF 120pF
V
GLNA3
, V
GLNA4
4.7µF 0.01µF 120pF
13141-231
Figure 211. Typical Image Rejection Downconversion Application Circuit
HMC7587 Data Sheet
Rev. A | Page 52 of 55
ZERO IF DIRECT CONVERSION
A typical zero IF direct conversion application circuit is shown
in Figure 212. It is important to ac couple the IFIP, IFIN, IFQP,
and IFQN pads to the ADC inputs. Most ADCs are designed to
operate with a common-mode voltage that is above ground.
The HMC7587 I/Q outputs are ground referenced and dc coupling
to a differential signal source with a common-mode output voltage
other than 0 V can cause degraded RF performance and possible
device damage due to electrical overstress.
IFIP
V
GMIX
V
DAMP2
V
GAMP
V
DAMP1
V
DMULT
V
GX3
V
GX2
LOIN
IFIN
IFQN
IFQP
5
4
3
2
1
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
×6
HMC7587
22
23
24
40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25
RFIN
V
GLNA1
V
DLNA1
V
GLNA2
V
DLNA2
V
GLNA3
V
DLNA3
V
GLNA4
V
DLNA4
LOIN
V
GAMP
120pF 0.01µF 4.F
V
DMULT
120pF 0.01µF 4.F
V
GX2
, V
GX3
120pF 0.01µF 4.F
V
GLNA1
, V
GLNA2
120pF 0.01µF 4.7µF
V
DLNA1
, V
DLNA2
120pF 0.01µF 4.7µF
V
DAMP1
, V
DAMP2
4.7µF 0.01µF 120pF
V
GMIX
4.7µF 0.01µF 120pF
RF
INPUT
V
DLNA3
, V
DLNA4
4.7µF 0.01µF 120pF
V
GLNA3
, V
GLNA4
4.7µF 0.01µF 120pF
I ADC
Q ADC
13141-232
Figure 212. Typical Zero IF Direct Conversion Application Circuit
Data Sheet HMC7587
Rev. A | Page 53 of 55
ASSEMBLY DIAGRAM
0.01µF
120pF
0.01µF
120pF
1mil
GOLD WIRE
(WEDGE BOND)
3mil WIDE
GOLD RIBBON
(WEDGE BOND)
1mil
GOLD WIRE
(WEDGE BOND)
50
TRANSMISSION
LINE
3mil
NOMINAL GAP
V
GMIX
4.7µF
V
DLNA4
4.7µF
V
GLNA4
4.7µF
V
DLNA1
, V
DLNA2
,
V
DLNA3
4.7µF
V
GLNA1
, V
GLNA2
,
V
GLNA3
4.7µF
V
DAMP1
,
V
DAMP2
4.7µF
V
GAMP
4.7µF
V
DMULT
4.7µF
V
GX2
,
V
GX3
4.7µF
13141-234
LOIN
IFIP
IFIN
IFQN
IFQP
RFIN
Figure 213. Assembly Diagram
HMC7587 Data Sheet
Rev. A | Page 54 of 55
MOUNTING AND BONDING TECHNIQUES FOR MILLIMETERWAVE GaAs MMICS
Attach the die directly to the ground plane eutectically or with
conductive epoxy.
To bring RF to and from the chip, use 50 Ω microstrip trans-
mission lines on 0.127 mm (5 mil) thick alumina thin film
substrates (see Figure 214).
13141-235
RF G ROUND PLANE
0.05mm ( 0. 002") THI CK GaAs MM IC
WIRE BO ND
0.127mm ( 0. 005") THI CK ALUMINA
THIN FILM SUBSTRATE
0.076mm
(0.003")
Figure 214. Routing RF Signals
To minimize bond wire length, place microstrip substrates as
close to the die as possible. Typical die to substrate spacing is
0.076 mm to 0.152 mm (3 mil to 6 mil).
HANDLING PRECAUTIONS
To avoid permanent damage, adhere to the following precautions.
Storage
All bare die ship in either waffle or gel-based ESD protective
containers, sealed in an ESD protective bag. After opening the
sealed ESD protective bag, all die must be stored in a dry
nitrogen environment.
Cleanliness
Handle the chips in a clean environment. Never use liquid
cleaning systems to clean the chip.
Static Sensitivity
Follow ESD precautions to protect against ESD strikes.
Transients
Suppress instrument and bias supply transients while bias is
applied. To minimize inductive pickup, use shielded signal and
bias cables.
General Handling
Handle the chip on the edges only using a vacuum collet or with
a sharp pair of bent tweezers. Because the surface of the chip has
fragile air bridges, never touch the surface of the chip with a
vacuum collet, tweezers, or fingers.
MOUNTING
The chip is back metallized and can be die mounted with gold/
tin (AuSn) eutectic preforms or with electrically conductive epoxy.
The mounting surface must be clean and flat.
Eutectic Die Attach
It is best to use an 80%/20% gold/tin preform with a work surface
temperature of 255°C and a tool temperature of 265°C. When
hot 90%/10% nitrogen/hydrogen gas is applied, maintain the tool
tip temperature at 290°C. Do not expose the chip to a temperature
greater than 320°C for more than 20 sec. No more than 3 sec of
scrubbing is required for attachment.
Epoxy Die Attach
ABLEBOND 84-1LMIT is recommended for die attachment.
Apply a minimum amount of epoxy to the mounting surface so
that upon placing it into position, a thin epoxy fillet is observed
around the perimeter of the chip. Cure epoxy per the schedule
provided by the manufacturer.
WIRE BONDING
RF bonds made with (3 mil (0.0762 mm) × 0.5 mil (0.0127 mm)
gold ribbon are recommended for the RF ports and wedge bonds
with 1 mil (0.0254 mm) diameter gold wire are recommended for
the IF and LO ports. These bonds must be thermosonically bonded
with a force of 40 g to 60 g. DC bonds of 1 mil (0.0254 mm)
diameter, thermosonically bonded, are recommended. Create ball
bonds with a force of 40 g to 50 g and wedge bonds at 18 g to 22 g.
Create all bonds with a nominal stage temperature of 150°C.
Apply a minimum amount of ultrasonic energy to achieve reliable
bonds. Keep all bonds as possible, less than 12 mils (0.31 mm).
Data Sheet HMC7587
Rev. A | Page 55 of 55
OUTLINE DIMENSIONS
2.199
3.599
1.055
04-10-2015-A
TOP VIEW
(CIRCUIT SIDE)
1
2
3
4
56 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
22
23
24
25
262728293031323334353637383940
0.15
0.15 0.15 0.15 0.150.15 0.150.15 0.15 0.15 0.150.15 0.150.15 0.15
0.151
0.162
0.15 0.15
0.15 0.15 0.15 0.15 0. 15 0.15 0.150.15 0.15 0.15 0.15
0.15
0.274
0.130
0.130
0.307
0.058
0.290 0.510
0.307
0.648
0.500
0.085 0.318
0
.210
0.095
0.114
0.474
Figure 215. 40-Pad Bare Die [CHIP]
(C-40-1)
Dimensions shown in millimeters
ORDERING GUIDE
Model1 Temperature Range Package Description Package Option2
HMC7587 −55°C to +85°C 40-Pad Bare Die [CHIP] C-40-1
HMC7587-SX −55°C to +85°C 40-Pad Bare Die [CHIP] C-40-1
1 The HMC7587-SX consists of two pairs of the die in a gel pack for sample orders.
2 This is a waffle pack option; contact Analog Devices, Inc., for additional packaging options.
©2016 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D13141-0-3/16(A)