DESCRIPTION The uPC1228, a silicon monolithic integrated circuit, is a low noise dual preamplifier designed for car stereo applications. The device consists of two separate amplification channels, and its major features are low noise, low distortion, high gain, LOW NOISE DUAL PREAMPLIFIER BIPOLAR ANALOG INTEGRATED CIRCUIT uPC1228 large dynamic range and wide supply voltage range. FEATURES @ High open loop gain @ Low noise Low distortion @ Large dynamic range @ Wide supply voltage range High output current Low impedance load driving capability @ Small feedback capacitance capability ORDERING INFORMATION > Ayo = 100 dB TYP. > Vain = 1.1 uv TYP. : THD=0.05 % TYP. > Vom =2.0 V TYP. >Vec =6 to 16V > Lopc= 1 mA MAX. >RL=1kQ MIN. PART NUMBER PACKAGE QUALITY GRADE uPC1228HA 8 PIN PLASTIC SLIM SIP Standard Please refer to Quality grade on NEC Semiconductor Devices (Document number IEI-1209}) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications. Document No. IC1511B (0.D.No. IC--6200A) Date Published October 1991 Printed in Japan NEC Corporation 1983CONNECTION DIAGRAM << : | 1 [2] 3 4 5 6 7 8 ABSOLUTE MAXIMUM RATINGS (T3=25 C) Supply Voltage Package Dissipation Operating Temperature Storage Temperature Vec 18 Pp 270* Topt 30 to +75 Tstg 40 to +125 * Ta=75 C RECOMMENDED OPERATING CONDITIONS (Tg=25 C) Operating Supply Voltage Supply Voltage Range Operating Ambient Tamperature Load impedance Vcc 13.2 Vec 6 to 16 Ta 30 to +75 Re 10 ELECTRICAL CHARACTERISTICS (Tg =25 C, Vec = 10 V, f = 1 kHz, Ry = 10 k&) Pin No. Electrical connection 1 Input 1 2 Negative feed back 1 3 Output 1 4 Power supply: +Vcc 5 Ground 6 Output 2 7 Negative feed back 2 8 Input 2 Vv mW C C Vv V C kQ2 CHARACTERISTIC SYMBOL MIN, TYP, MAX. UNIT | TEST CIRCUIT TEST CONDITIONS Quiescent Current lec 2.5 3.3 48 mA (1) Vin= Open Loop Voitage Gain Avo 90 100 dB : (1) V0 =0.3 V, f=100 Hz Voltage Gain Ay 40 dB (2) Vo=0.3 V, NAB Maximum Output Voltage Vom 1.0 2.0 Vv (2) THD =1%, NAB Total Harmonic Distortion THD 0.05 0.3 % (2) Vo=0.3 V, NAB Input Impedance a fi 50 100 kQ (2) Equivalent Input Noise Voltage Vain. 1.1 1.7 pv (3) Rg = 2.2 k&, NAB Cross Talk cT -50 | -65 dB (4) OC one ome oO mre Channel Balance Ch. B 0.3 0 +0.3 dB (4) Vg=03VTEST CIRCUITS (1) lec, Ayo test circuit (2) Ay, Vom, THD, Ziptest circuit (for Ch. 1) o Vcc=10 V (3) Vyin test circuit (for Ch. 1) Vegs RL=10 ke Voe2 RL=10 k@ NOTE: Vpjin is calculated by V, and amp. gain (A, +40 dB). NOTE 1: External components of the IC are the same as the test circuit (2). 2: Cross talk procedure ' Switch position SW.1 > 2, SW.2 >1, 20 log Vg9/Vo4 Switch position SW.1 > 1, SW.2 > 2, 20log Vo1/Vo2 3: Channel balance Switch position SW.1 > 2, SW.2 > 2, 20 log Vg1/Vo2 EQUIVALENT CIRCUIT Rioi @ Rioz Reog R202 & Reor Qe13 Quoi ~L . Qeo2 | O201 A L & Ha SH Deoa ar oO acu Y aA & O105 o Qzi0 8, R Qzo Rio4d Ly ] Quooky & 204 5 LX [] Deas {D203 (" Qe06 ot @ @ Qios 112 Qe12 Qeo8 SRior Ror S WZ D201 Rios Rios & Rito Reto SRaoe se Rzos R206 L AAA (@}_ qTYPICAL CHARACTERISTICS (Ta =25 C) THD Total Harmonic Distortion % Yo Output Voltage V OUTPUT VOLTAGE vs. INPUT VOLTAGE 10 Vec=10 V f=1 kHz o wo So io o = S 2 oi 0.02 0.01 O1 0.2 0.5 1 2 5 10 20 50 100 Vj input Voltage mV TOTAL HARMONIC DISTORTION vs. OUTPUT VOLTAGE Test Circuit(2 f=1 kHz oS an go nN Voc=6 V 10 V, 13.2 2S Hn 2S ao a ad o np Q Qo er} 0.005, 0.002 0.001 0.01 0.02 . 0.2 0.5 1 VoQ Output Voltage V MAXIMUM OUTPUT VOLTAGE vs. LOAD RESISTANCE Test Circuit(2) Vec=10 V THD=1 % Yom Maximum Output Voltage V 0 5 10 15 R, Load Resistance kQ Avo Open Loop Voltage Gain dB 140 100 80L. 60 a 2S Nm o Vom Maximum Output Voltage V Ay Closed Loop Voltage Gain dB Avo-- Open Loop Voltage Gain dB Ay Closed Loop Voltage Gain dB THD Total Harmonic Distortion % 3r 0.002 0.001 0.01 0.02 ee 2 on So i m 2 Q a 2S 2 m Qo o = 0.005 TOTAL HARMONIC DISTORTION vs. OUTPUT VOLTAGE est 0.05 O01 02 0.5 1 2 10 Vg Output Voltage V VOLTAGE GAIN vs. FREQUENCY Test Circuit(1),(2) Vec=l0 Vv (NAR) 100 1k 10 k 100 k f Frequency Hz CIRCUIT CURRENT, MAXIMUM OUTPUT VOLTAGE, VOLTAGE GAIN vs. SUPPLY VOLTAGE Iee Circuit Current mA 15 e a on Test Circuit(1), (2) VYoc=10 V Ay f=1 Vom (f=1 kHz, THD=1 %) Ayo (f=1 kHz) 10 15 20 Voc Supply Voltage VAyo Open Loop Voltage Gain dB 140 120 100} 80 60 40 20 fF Vom Maximum Output Voltage V MAXIMUM OUTPUT VOLTAGE vs. FEEDBACK RESISTANCE Test Circuit(2) Vec=10V Vom Maximum Output Voltage V Vec=6 V 0 500 k 1M R3 Feedback Resistance 2 15M VOLTAGE GAIN vs. FREQUENCY | Test Circuit( Vec=10 V Ay Closed Loop Voltage Gain dB 100 1k 10k 100 k f Frequency Hz QUIESCENT CURRENT, MAXIMUM OUTPUT VOLTAGE, VOLTAGE GAIN vs. AMBIENT TEMPERATURE | Test Circuit(1), (2) ? Vec=10 V 6b I ex Avo(f=1 kHz) si fe g 475 4 Oo s 372 3 Oo r | 28 = Vom (f=1 kHz, THD=1 9%) ib ol 50 0 50 100 Tg Ambient Temperature C Yom Maximum Output Voltage V AyClosed Loop Voltage Gain dB Vom Maximum Output Voltage V MAXIMUM OUTPUT VOLTAGE vs. SUPPLY VOLTAGE Test Circuit(2) f=1 kHz ~Rs=680 kQ 470 k2 330 kQ 220 ka 100 kQ 2 4 6 8 10 12 Voc Supply VoltageV 14 16 VOLTAGE GAIN vs. FREQUENCY Test Circuit(2) || f= 1 kHz 1 R:=100 @ R= 180 2 Ri =330 Q' 100 1k 10 k 100 k f Frequency Hz MAXIMUM OUTPUT VOLTAGE vs. AMBIENT TEMPERATURE Test Circuit(2) f=1 kHz Vec=132 V Vomif=1 kHz, THD =1 50 0 50 Tg Ambient Temperature C 100APPLICATION 1 (NAB EQ, Veg =8 to 17 V, Voy =2 V) C3 Ri 9.1k2 330 k2 R7 470 Q P.H. ot PC1228 < * 100 uF VOC & 6.2kQ 220 ko uPC1228 * When supply voltage of pin@) is down to 6 V, please use TYPICAL APPLICATION 2.C4 2 200 pF RL=47 k2 OUTPUT 1 MM ie uPC1228 . I MM QUTPUT 2 330 kQ 33 kG 1.8 kQ RL=47 k 0.01 uF 2200 pF 680 2SR5 Gg, Cio + 22 uF ECs TYPICAL PRINTED CIRCUIT BOARD PATTERN Copper foil side NEC uPC1228HA8 PIN PLASTIC SLIM SIP A N = o 1 8 | | | | TL ~ ' | | | > H=- C Vv on zZ> HI] J U lee 6G & P8HA-254B NOTE . ITEM MILLIMETERS INCHES Each lead centerline is located within 0.25 mm (0.01 inch) of its true position (T.P.) at maxi- | 20.32 MAX. 08 MAX. mum material condition. Cc 1.1. MIN. 0.043 MIN. F 0.57" 0.02 6808 G 0.25 0.01 H 2.54 0.1 J 1.27 MAX. 0.05 MAX. K 0.51 MIN. 0.02 MIN. M 5.08 MAX. 0.2 MAX. N 2.897 0.11 8888 a 5.75 MAX. 0.227 MAX. U 1.5 MAX. 0.059 MAX. Vv 0.25 828 0.01 8885 Y 3.2'5 0.12670 Zz 1.1 MIN. 0.043 MIN.[MEMO] No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document. NEC Corporation does not assume any liability for infringernent of patents, copyrights or other intellectual pro- perty rights of third parties by or arising from use of a device described herein or any other liability arising fram use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others. The devices listed in this document are not suitable for use in the field where very high reliability is required including, but not limited to, aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or othose intend to use Standard quality grade NEC devices for the application not intended by NEC, please contact our sales people in advance. Application examples recommended by NEC Corporation Standard: Data processing and office equipment, Communication equipment (terminal, mobile), Test and Measurement equipment, Audio and Video equipment, Other consumer products, Industrial robots, etc. Special: Automotive and Transportation equipment, Communication equioment (trunk line), Train and Traffic control devices, Burning control systems, antidisaster systems, anticrime systems etc.