1. General description
The LPC436x are ARM Cortex-M4 based microcontrollers for embedded applications,
which include an ARM Cortex-M0 coprocessor and an ARM Cortex-M0 subsystem for
managing peripherals, up to 1 MB of flash and 154 kB of on-chip SRAM, 16 kB of
EEPROM memory, a quad SPI Flash Interface (SPIFI), advanced configurable
peripherals such as the SCTimer/PWM and the Serial General Purpose I/O (SGPIO)
interface, two High-speed USB controllers, Ethernet, LCD, an external memory controller,
and multiple digital and analog peripherals. The LPC436x operate at CPU frequencies of
up to 204 MHz.
The ARM Cortex-M4 is a 32-bit core that offers system enhancements such as low power
consumption, enhanced debug features, and a high level of support block integration. The
ARM Cortex-M4 CPU incorporates a 3-stage pipeline, uses a Harvard architecture with
separate local instruction and data buses as well as a third bus for peripherals, and
includes an internal prefetch unit that supports speculative branching. The ARM
Cortex-M4 supports single-cycle digital signal processing and SIMD instructions. A
hardware floating-point processor is integrated into the core.
The LPC436x include an application ARM Cortex-M0 coprocessor and a second ARM
Cortex-M0 subsystem for managing the SGPIO and SPI peripherals.The ARM Cortex-M0
coprocessor is an energy-efficient and easy-to-use 32-bit core which is upward code- and
tool-compatible with the Cortex-M4 core. The Cortex-M0 coprocessor, designed as a
replacement for existing 8/16-bit microcontrollers, offers up to 204 MHz performance with
a simple instruction set and reduced code size. In LPC436x, the Cortex-M0 coprocessor
hardware multiply is implemented as a 32-cycle iterative multiplier.
For additional documentation related to the LPC43xx parts, see Section 17.
2. Features and benefits
Cortex-M4 Processor core
ARM Cortex-M4 processor (version r0p1), running at frequencies of up to
204 MHz.
Built-in Memory Protection Unit (MPU) supporting eight regions.
Built-in Nested Vectored Interrupt Controller (NVIC).
Hardware floating-point unit.
Non-maskable Interrupt (NMI) input.
JTAG and Serial Wire Debug (SWD), serial trace, eight breakpoints, and four
watch points.
Enhanced Trace Module (ETM) and Enhanced Trace Buffer (ETB) support.
LPC436x
32-bit ARM Cortex-M4/M0 MCU; up to 1 MB flash and 154 kB
SRAM; Ethernet, two High-speed USB, LCD, EMC
Rev. 1.3 — 10 January 2020 Product data sheet
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 2 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
System tick timer.
Cortex-M0 Processor core
ARM Cortex-M0 co-processor (version r0p0) capable of off-loading the main ARM
Cortex-M4 application processor.
Running at frequencies of up to 204 MHz.
JTAG
Built-in NVIC.
Cortex-M0 subsystem
ARM Cortex-M0 coprocessor controlling the SPI and SGPIO residing on a
separate AHB multilayer matrix. Includes 2 kB + 16 kB of SRAM.
Running at frequencies of up to 204 MHz.
Connected via a core-to-core bridge to the main AHB multilayer matrix and the
main ARM Cortex-M4 processor.
JTAG and built-in NVIC.
On-chip memory
Up to 1 MB on-chip dual bank flash memory with flash accelerator.
16 kB on-chip EEPROM data memory.
154 kB SRAM for code and data use.
Multiple SRAM blocks with separate bus access. Two SRAM blocks can be
powered down individually.
64 kB ROM containing boot code and on-chip software drivers.
64 bit+ 256 bit of One-Time Programmable (OTP) memory for general-purpose
use.
Configurable digital peripherals
Serial GPIO (SGPIO) interface.
SCTimer/PWM subsystem on AHB.
Global Input Multiplexer Array (GIMA) allows to cross-connect multiple inputs and
outputs to event driven peripherals like the timers, SCTimer/PWM, and ADC0/1.
Serial interfaces
Quad SPI Flash Interface (SPIFI) with four lanes and up to 52 MB per second.
10/100T Ethernet MAC with RMII and MII interfaces and DMA support for high
throughput at low CPU load. Support for IEEE 1588 time stamping/advanced time
stamping (IEEE 1588-2008 v2).
One High-speed USB 2.0 Host/Device/OTG interface with DMA support and
on-chip high-speed PHY.
One High-speed USB 2.0 Host/Device interface with DMA support, on-chip
full-speed PHY and ULPI interface to external high-speed PHY.
USB interface electrical test software included in ROM USB stack.
One 550 UART with DMA support and full modem interface.
Three 550 USARTs with DMA and synchronous mode support and a smart card
interface conforming to ISO7816 specification. One USART with IrDA interface.
Up to two C_CAN 2.0B controllers with one channel each.
Two SSP controllers with FIFO and multi-protocol support. Both SSPs with DMA
support.
One SPI controller.
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 3 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
One Fast-mode Plus I2C-bus interface with monitor mode and with open-drain I/O
pins conforming to the full I2C-bus specification. Supports data rates of up to
1 Mbit/s.
One standard I2C-bus interface with monitor mode and with standard I/O pins.
Two I2S interfaces, each with DMA support and with one input and one output.
Digital peripherals
External Memory Controller (EMC) supporting external SRAM, ROM, NOR flash,
and SDRAM devices.
LCD controller with DMA support and a programmable display resolution of up to
1024 H 768 V. Supports monochrome and color STN panels and TFT color
panels; supports 1/2/4/8 bpp Color Look-Up Table (CLUT) and 16/24-bit direct
pixel mapping. Available on parts LPC4357/53 only.
Secure Digital Input Output (SD/MMC) card interface.
Eight-channel General-Purpose DMA controller can access all memories on the
AHB and all DMA-capable AHB slaves.
Up to 164 General-Purpose Input/Output (GPIO) pins with configurable
pull-up/pull-down resistors.
GPIO registers are located on the AHB for fast access. GPIO ports have DMA
support.
Up to eight GPIO pins can be selected from all GPIO pins as edge and level
sensitive interrupt sources.
Two GPIO group interrupt modules enable an interrupt based on a programmable
pattern of input states of a group of GPIO pins.
Four general-purpose timer/counters with capture and match capabilities.
One motor control Pulse Width Modulator (PWM) for three-phase motor control.
One Quadrature Encoder Interface (QEI).
Repetitive Interrupt timer (RI timer).
Windowed watchdog timer (WWDT).
Ultra-low power Real-Time Clock (RTC) on separate power domain with 256 bytes
of battery powered backup registers.
Alarm timer; can be battery powered.
Analog peripherals
One 10-bit DAC with DMA support and a data conversion rate of 400 kSamples/s.
Two 10-bit ADCs with DMA support and a data conversion rate of 400 kSamples/s.
Up to eight input channels per ADC.
Unique ID for each device.
Clock generation unit
Crystal oscillator with an operating range of 1 MHz to 25 MHz.
12 MHz internal RC oscillator trimmed to 3 % accuracy over temperature and
voltage (1.5 % accuracy for Tamb = 0 °C to 85 °C).
Ultra-low power Real-Time Clock (RTC) crystal oscillator.
Three PLLs allow CPU operation up to the maximum CPU rate without the need for
a high-frequency crystal. The second PLL can be used with the High-speed USB,
the third PLL can be used as audio PLL.
Clock output.
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 4 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
Power
Single 3.3 V (2.4 V to 3.6 V) power supply with on-chip DC-to-DC converter for the
core supply and the RTC power domain.
RTC power domain can be powered separately by a 3 V battery supply.
Four reduced power modes: Sleep, Deep-sleep, Power-down, and Deep
power-down.
Processor wake-up from Sleep mode via wake-up interrupts from various
peripherals.
Wake-up from Deep-sleep, Power-down, and Deep power-down modes via
external interrupts and interrupts generated by battery powered blocks in the RTC
power domain.
Brownout detect with four separate thresholds for interrupt and forced reset.
Power-On Reset (POR).
Available as LQFP208, LBGA256, or TFBGA100 packages.
3. Applications
Industrial HMI Communication hubs
Secure IoT Gateways Embedded audio applications
Industrial automation Automotive aftermarket
Industrial control White goods
Consumer health devices
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 5 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
4. Ordering information
4.1 Ordering options
[1] J = -40 °C to +105 °C; F = -40 °C to +85 °C.
Table 1. Ordering information
Type number Package
Name Description Version
LPC4367JET256 LBGA256 Plastic low profile ball grid array package; 256 balls; body 17 17 1 mm SOT740-2
LPC4367JBD208 LQFP208 Plastic low profile quad flat package; 208 leads; body 28 28 1.4 mm SOT459-1
LPC4367JET100 TFBGA100 Plastic thin fine-pitch ball grid array package; 100 balls; body 9 9 0.7 mm SOT926-1
Table 2. Ordering options
Type number
Flash total
Flash bank A
Flash bank B
Total SRAM
LCD
Ethernet
USB0 (Host, Device, OTG)
USB1 (Host, Device)/
ULPI interface
PWM
QEI
ADC channels
Temperature range[1]
GPIO
LPC4367JET256 1 MB 512 kB 512 kB 154 kB yes yes yes yes/yes yes yes 8 J 164
LPC4367JBD208 1 MB 512 kB 512 kB 154 kB yes yes yes yes/yes yes yes 8 J 142
LPC4367JET100 1 MB 512 kB 512 kB 154 kB no yes yes yes/no yes yes 4 J 49
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 6 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
5. Block diagram
Fig 1. LPC436x Block diagram
ARM
CORTEX-M4
TEST/DEBUG
INTERFACE
I-code bus
D-code bus
system bus
system bus
GPDMA LCD SD/
MMC
ETHERNET
10/100
MAC
IEEE 1588
HIGH-SPEED
USB0
HOST/
DEVICE/OTG
HIGH-SPEED
USB1
HOST/DEVICE
EMC
HIGH-SPEED PHY
CORE-CORE
BRIDGE
SPIFI
HS GPIO
SPI
SGPIO
SCT
I2C0
I2S0
I2S1
C_CAN1
MOTOR
CONTROL
PWM
TIMER3
TIMER2
USART2
USART3
SSP1
RI TIMER
QEI
GIMA
BRIDGE 0 BRIDGE 1 BRIDGE 2 BRIDGE 3 BRIDGE
MAIN AHB MULTILAYER MATRIX
SUBSYSTEM AHB MULTILAYER MATRIX
LPC436x
10-bit ADC0
10-bit ADC1
C_CAN0
I2C1
10-bit DAC
BRIDGE
RGU
CCU2
CGU
CCU1
ALARM TIMER
CONFIGURATION
REGISTERS
OTP MEMORY
EVENT ROUTER
POWER MODE CONTROL
12 MHz IRC
RTC POWER DOMAIN
BACKUP REGISTERS
RTC OSC
RTC
aaa-018614
slaves
slaves
masters
masters
ARM
CORTEX-M0
APPLICATION
TEST/DEBUG
INTERFACE
ARM
CORTEX-M0
SUBSYSTEM
TEST/DEBUG
INTERFACE
= connected to GPDMA
GPIO
INTERRUPTS
GPIO GROUP0
INTERRUPT
GPIO GROUP1
INTERRUPT
WWDT
USART0
UART1
SSP0
TIMER0
TIMER1
SCU
32 kB AHB SRAM
16 kB +
16 kB AHB SRAM
64 kB ROM
32 kB LOCAL SRAM
40 kB LOCAL SRAM
slaves
2 kB LOCAL SRAM
16 kB LOCAL SRAM
512 kB FLASH A
512 kB FLASH B
16 kB EEPROM
system
bus
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 7 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
6. Pinning information
6.1 Pinning
Fig 2. Pin configuration LBGA256 package Fig 3. Pin configuration TFBGA100 package
aaa-018950
LPC436xJET256
Transparent top view
T
R
P
N
M
L
J
G
K
H
F
E
D
C
B
A
2 4 6 8 10 12
13
14
15
16
1357911
ball A1
index area
aaa-018951
LPC436xJET100
Transparent top view
J
G
K
H
F
E
D
C
B
A
24681013579
ball A1
index area
Fig 4. Pin configuration LQFP208 package
LPC436xJBD208
104
1
52
156
105
53
157
208
aaa-018952
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 8 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
6.2 Pin description
On the LPC436x, digital pins are grouped into 16 ports, named P0 to P9 and PA to PF,
with up to 20 pins used per port. Each digital pin can support up to eight different digital
functions, including General Purpose I/O (GPIO), selectable through the System
Configuration Unit (SCU) registers. The pin name is not indicative of the GPIO port
assigned to it.
The parts contain two 10-bit ADCs (ADC0 and ADC1). The input channels of ADC0 and
ADC1 on dedicated pins and multiplexed pins are combined in such a way that all channel
0 inputs (named ADC0_0 and ADC1_0) are tied together and connected to both, channel
0 on ADC0 and channel 0 on ADC1, channel 1 inputs (named ADC0_1 and ADC1_1) are
tied together and connected to channel 1 on ADC0 and ADC1, and so forth. There are
eight ADC channels total for the two ADCs.
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 9 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
Table 3. Pin description
Pin name
LBGA256
TFBGA100
LQFP208
Reset state
[1]
Type
Description
Multiplexed digital pins
P0_0 L3 G2 47 [2] N;
PU
I/O GPIO0[0] — General purpose digital input/output pin.
I/O SSP1_MISO — Master In Slave Out for SSP1.
IENET_RXD1 — Ethernet receive data 1 (RMII/MII interface).
I/O SGPIO0 — General purpose digital input/output pin.
-R — Function reserved.
-R — Function reserved.
I/O I2S0_TX_WS — Transmit Word Select. It is driven by the
master and received by the slave. Corresponds to the signal
WS in the I2S-bus specification.
I/O I2S1_TX_WS — Transmit Word Select. It is driven by the
master and received by the slave. Corresponds to the signal
WS in the I2S-bus specification.
P0_1 M2 G1 50 [2] N;
PU
I/O GPIO0[1] — General purpose digital input/output pin.
I/O SSP1_MOSI — Master Out Slave in for SSP1.
IENET_COL — Ethernet Collision detect (MII interface).
I/O SGPIO1 — General purpose digital input/output pin.
-R — Function reserved.
-R — Function reserved.
ENET_TX_EN — Ethernet transmit enable (RMII/MII
interface).
I/O I2S1_TX_SDA — I2S1 transmit data. It is driven by the
transmitter and read by the receiver. Corresponds to the signal
SD in the I2S-bus specification.
P1_0 P2 H1 54 [2] N;
PU
I/O GPIO0[4] — General purpose digital input/output pin.
ICTIN_3 — SCT input 3. Capture input 1 of timer 1.
I/O EMC_A5 — External memory address line 5.
-R — Function reserved.
-R — Function reserved.
I/O SSP0_SSEL — Slave Select for SSP0.
I/O SGPIO7 — General purpose digital input/output pin.
I/O EMC_D12 — External memory data line 12.
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 10 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
P1_1 R2 K2 58 [2] N;
PU
I/O GPIO0[8] — General purpose digital input/output pin. Boot pin
(see Table 5).
OCTOUT_7 — SCT output 7. Match output 3 of timer 1.
I/O EMC_A6 — External memory address line 6.
I/O SGPIO8 — General purpose digital input/output pin.
-R — Function reserved.
I/O SSP0_MISO — Master In Slave Out for SSP0.
-R — Function reserved.
I/O EMC_D13 — External memory data line 13.
P1_2 R3 K1 60 [2] N;
PU
I/O GPIO0[9] — General purpose digital input/output pin. Boot pin
(see Table 5).
OCTOUT_6 — SCT output 6. Match output 2 of timer 1.
I/O EMC_A7 — External memory address line 7.
I/O SGPIO9 — General purpose digital input/output pin.
-R — Function reserved.
I/O SSP0_MOSI — Master Out Slave in for SSP0.
-R — Function reserved.
I/O EMC_D14 — External memory data line 14.
P1_3 P5 J1 61 [2] N;
PU
I/O GPIO0[10] — General purpose digital input/output pin.
OCTOUT_8 — SCT output 8. Match output 0 of timer 2.
I/O SGPIO10 — General purpose digital input/output pin.
OEMC_OE — LOW active Output Enable signal.
OUSB0_IND1 — USB0 port indicator LED control
output 1.
I/O SSP1_MISO — Master In Slave Out for SSP1.
-R — Function reserved.
OSD_RST — SD/MMC reset signal for MMC4.4 card.
P1_4 T3 J2 64 [2] N;
PU
I/O GPIO0[11] — General purpose digital input/output pin.
OCTOUT_9 — SCT output 9. Match output 3 of timer 3.
I/O SGPIO11 — General purpose digital input/output pin.
OEMC_BLS0 — LOW active Byte Lane select signal 0.
OUSB0_IND0 — USB0 port indicator LED control output 0.
I/O SSP1_MOSI — Master Out Slave in for SSP1.
I/O EMC_D15 — External memory data line 15.
OSD_VOLT1 — SD/MMC bus voltage select output 1.
Table 3. Pin description …continued
Pin name
LBGA256
TFBGA100
LQFP208
Reset state
[1]
Type
Description
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 11 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
P1_5 R5 J4 65 [2] N;
PU
I/O GPIO1[8] — General purpose digital input/output pin.
OCTOUT_10 — SCT output 10. Match output 3 of timer 3.
-R — Function reserved.
OEMC_CS0 — LOW active Chip Select 0 signal.
IUSB0_PWR_FAULT — Port power fault signal indicating
overcurrent condition; this signal monitors over-current on the
USB bus (external circuitry required to detect over-current
condition).
I/O SSP1_SSEL — Slave Select for SSP1.
I/O SGPIO15 — General purpose digital input/output pin.
OSD_POW — SD/MMC power monitor output.
P1_6 T4 K4 67 [2] N;
PU
I/O GPIO1[9] — General purpose digital input/output pin.
ICTIN_5 — SCT input 5. Capture input 2 of timer 2.
-R — Function reserved.
OEMC_WE — LOW active Write Enable signal.
-R — Function reserved.
OEMC_BLS0 — LOW active Byte Lane select signal 0.
I/O SGPIO14 — General purpose digital input/output pin.
I/O SD_CMD — SD/MMC command signal.
P1_7 T5 G4 69 [2] N;
PU
I/O GPIO1[0] — General purpose digital input/output pin.
IU1_DSR — Data Set Ready input for UART1.
OCTOUT_13 — SCT output 13. Match output 3 of timer 3.
I/O EMC_D0 — External memory data line 0.
OUSB0_PPWR — VBUS drive signal (towards external charge
pump or power management unit); indicates that VBUS must
be driven (active HIGH).
Add a pull-down resistor to disable the power switch at reset.
This signal has opposite polarity compared to the USB_PPWR
used on other NXP LPC parts.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
Table 3. Pin description …continued
Pin name
LBGA256
TFBGA100
LQFP208
Reset state
[1]
Type
Description
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 12 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
P1_8 R7 H5 71 [2] N;
PU
I/O GPIO1[1] — General purpose digital input/output pin.
OU1_DTR — Data Terminal Ready output for UART1.
OCTOUT_12 — SCT output 12. Match output 3 of
timer 3.
I/O EMC_D1 — External memory data line 1.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
OSD_VOLT0 — SD/MMC bus voltage select output 0.
P1_9 T7 J5 73 [2] N;
PU
I/O GPIO1[2] — General purpose digital input/output pin.
OU1_RTS — Request to Send output for UART1.
OCTOUT_11 — SCT output 11. Match output 3 of timer 2.
I/O EMC_D2 — External memory data line 2.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
I/O SD_DAT0 — SD/MMC data bus line 0.
P1_10 R8 H6 75 [2] N;
PU
I/O GPIO1[3] — General purpose digital input/output pin.
IU1_RI — Ring Indicator input for UART1.
OCTOUT_14 — SCT output 14. Match output 2 of timer 3.
I/O EMC_D3 — External memory data line 3.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
I/O SD_DAT1 — SD/MMC data bus line 1.
P1_11 T9 J7 77 [2] N;
PU
I/O GPIO1[4] — General purpose digital input/output pin.
IU1_CTS — Clear to Send input for UART1.
OCTOUT_15 — SCT output 15. Match output 3 of timer 3.
I/O EMC_D4 — External memory data line 4.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
I/O SD_DAT2 — SD/MMC data bus line 2.
Table 3. Pin description …continued
Pin name
LBGA256
TFBGA100
LQFP208
Reset state
[1]
Type
Description
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 13 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
P1_12 R9 K7 78 [2] N;
PU
I/O GPIO1[5] — General purpose digital input/output pin.
IU1_DCD — Data Carrier Detect input for UART1.
-R — Function reserved.
I/O EMC_D5 — External memory data line 5.
IT0_CAP1 — Capture input 1 of timer 0.
-R — Function reserved.
I/O SGPIO8 — General purpose digital input/output pin.
I/O SD_DAT3 — SD/MMC data bus line 3.
P1_13 R10 H8 83 [2] N;
PU
I/O GPIO1[6] — General purpose digital input/output pin.
OU1_TXD — Transmitter output for UART1.
-R — Function reserved.
I/O EMC_D6 — External memory data line 6.
IT0_CAP0 — Capture input 0 of timer 0.
-R — Function reserved.
I/O SGPIO9 — General purpose digital input/output pin.
ISD_CD — SD/MMC card detect input.
P1_14 R11 J8 85 [2] N;
PU
I/O GPIO1[7] — General purpose digital input/output pin.
IU1_RXD — Receiver input for UART1.
-R — Function reserved.
I/O EMC_D7 — External memory data line 7.
OT0_MAT2 — Match output 2 of timer 0.
-R — Function reserved.
I/O SGPIO10 — General purpose digital input/output pin.
-R — Function reserved.
P1_15 T12 K8 87 [2] N;
PU
I/O GPIO0[2] — General purpose digital input/output pin.
OU2_TXD — Transmitter output for USART2.
I/O SGPIO2 — General purpose digital input/output pin.
IENET_RXD0 — Ethernet receive data 0 (RMII/MII interface).
OT0_MAT1 — Match output 1 of timer 0.
-R — Function reserved.
I/O EMC_D8 — External memory data line 8.
-R — Function reserved.
Table 3. Pin description …continued
Pin name
LBGA256
TFBGA100
LQFP208
Reset state
[1]
Type
Description
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 14 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
P1_16 M7 H9 90 [2] N;
PU
I/O GPIO0[3] — General purpose digital input/output pin.
IU2_RXD — Receiver input for USART2.
I/O SGPIO3 — General purpose digital input/output pin.
IENET_CRS — Ethernet Carrier Sense (MII interface).
OT0_MAT0 — Match output 0 of timer 0.
-R — Function reserved.
I/O EMC_D9 — External memory data line 9.
IENET_RX_DV — Ethernet Receive Data Valid (RMII/MII
interface).
P1_17 M8 H10 93 [3] N;
PU
I/O GPIO0[12] — General purpose digital input/output pin.
I/O U2_UCLK — Serial clock input/output for USART2 in
synchronous mode.
-R — Function reserved.
I/O ENET_MDIO — Ethernet MIIM data input and output.
IT0_CAP3 — Capture input 3 of timer 0.
OCAN1_TD — CAN1 transmitter output.
I/O SGPIO11 — General purpose digital input/output pin.
-R — Function reserved.
P1_18 N12 J10 95 [2] N;
PU
I/O GPIO0[13] — General purpose digital input/output pin.
I/O U2_DIR — RS-485/EIA-485 output enable/direction control for
USART2.
-R — Function reserved.
OENET_TXD0 — Ethernet transmit data 0 (RMII/MII interface).
OT0_MAT3 — Match output 3 of timer 0.
ICAN1_RD — CAN1 receiver input.
I/O SGPIO12 — General purpose digital input/output pin.
I/O EMC_D10 — External memory data line 10.
P1_19 M11 K9 96 [2] N;
PU
IENET_TX_CLK (ENET_REF_CLK) — Ethernet Transmit
Clock (MII interface) or Ethernet Reference Clock (RMII
interface).
I/O SSP1_SCK — Serial clock for SSP1.
-R — Function reserved.
-R — Function reserved.
OCLKOUT — Clock output pin.
-R — Function reserved.
OI2S0_RX_MCLK — I2S receive master clock.
I/O I2S1_TX_SCK — Transmit Clock. It is driven by the master
and received by the slave. Corresponds to the signal SCK in
the I2S-bus specification.
Table 3. Pin description …continued
Pin name
LBGA256
TFBGA100
LQFP208
Reset state
[1]
Type
Description
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 15 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
P1_20 M10 K10 100 [2] N;
PU
I/O GPIO0[15] — General purpose digital input/output pin.
I/O SSP1_SSEL — Slave Select for SSP1.
-R — Function reserved.
OENET_TXD1 — Ethernet transmit data 1 (RMII/MII interface).
IT0_CAP2 — Capture input 2 of timer 0.
-R — Function reserved.
I/O SGPIO13 — General purpose digital input/output pin.
I/O EMC_D11 — External memory data line 11.
P2_0 T16 G10 108 [2] N;
PU
I/O SGPIO4 — General purpose digital input/output pin.
OU0_TXD — Transmitter output for USART0. See Table 4 for
ISP mode.
I/O EMC_A13 — External memory address line 13.
OUSB0_PPWR — VBUS drive signal (towards external charge
pump or power management unit); indicates that VBUS must
be driven (active HIGH).
Add a pull-down resistor to disable the power switch at reset.
This signal has opposite polarity compared to the USB_PPWR
used on other NXP LPC parts.
I/O GPIO5[0] — General purpose digital input/output pin.
-R — Function reserved.
IT3_CAP0 — Capture input 0 of timer 3.
OENET_MDC — Ethernet MIIM clock.
P2_1 N15 G7 116 [2] N;
PU
I/O SGPIO5 — General purpose digital input/output pin.
IU0_RXD — Receiver input for USART0. See Table 4 for ISP
mode.
I/O EMC_A12 — External memory address line 12.
IUSB0_PWR_FAULT — Port power fault signal indicating
overcurrent condition; this signal monitors over-current on the
USB bus (external circuitry required to detect over-current
condition).
I/O GPIO5[1] — General purpose digital input/output pin.
-R — Function reserved.
IT3_CAP1 — Capture input 1 of timer 3.
-R — Function reserved.
Table 3. Pin description …continued
Pin name
LBGA256
TFBGA100
LQFP208
Reset state
[1]
Type
Description
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 16 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
P2_2 M15 F5 121 [2] N;
PU
I/O SGPIO6 — General purpose digital input/output pin.
I/O U0_UCLK — Serial clock input/output for USART0 in
synchronous mode.
I/O EMC_A11 — External memory address line 11.
OUSB0_IND1 — USB0 port indicator LED control output 1.
I/O GPIO5[2] — General purpose digital input/output pin.
ICTIN_6 — SCT input 6. Capture input 1 of timer 3.
IT3_CAP2 — Capture input 2 of timer 3.
OEMC_CS1 — LOW active Chip Select 1 signal.
P2_3 J12 D8 127 [3] N;
PU
I/O SGPIO12 — General purpose digital input/output pin.
I/O I2C1_SDA — I2C1 data input/output (this pin does not use a
specialized I2C pad).
OU3_TXD — Transmitter output for USART3. See Table 4 for
ISP mode.
ICTIN_1 — SCT input 1. Capture input 1 of timer 0. Capture
input 1 of timer 2.
I/O GPIO5[3] — General purpose digital input/output pin.
-R — Function reserved.
OT3_MAT0 — Match output 0 of timer 3.
OUSB0_PPWR — VBUS drive signal (towards external charge
pump or power management unit); indicates that VBUS must
be driven (active HIGH).
Add a pull-down resistor to disable the power switch at reset.
This signal has opposite polarity compared to the USB_PPWR
used on other NXP LPC parts.
P2_4 K11 D9 128 [3] N;
PU
I/O SGPIO13 — General purpose digital input/output pin.
I/O I2C1_SCL — I2C1 clock input/output (this pin does not use a
specialized I2C pad).
IU3_RXD — Receiver input for USART3. See Table 4 for ISP
mode.
ICTIN_0 — SCT input 0. Capture input 0 of timer 0, 1, 2, 3.
I/O GPIO5[4] — General purpose digital input/output pin.
-R — Function reserved.
OT3_MAT1 — Match output 1 of timer 3.
IUSB0_PWR_FAULT — Port power fault signal indicating
overcurrent condition; this signal monitors over-current on the
USB bus (external circuitry required to detect over-current
condition).
Table 3. Pin description …continued
Pin name
LBGA256
TFBGA100
LQFP208
Reset state
[1]
Type
Description
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 17 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
P2_5 K14 D10 131 [3] N;
PU
I/O SGPIO14 — General purpose digital input/output pin.
ICTIN_2 — SCT input 2. Capture input 2 of timer 0.
IUSB1_VBUS — Monitors the presence of USB1 bus power.
Note: This signal must be HIGH for USB reset to occur.
IADCTRIG1 — ADC trigger input 1.
I/O GPIO5[5] — General purpose digital input/output pin.
-R — Function reserved.
OT3_MAT2 — Match output 2 of timer 3.
OUSB0_IND0 — USB0 port indicator LED control output 0.
P2_6 K16 G9 137 [2] N;
PU
I/O SGPIO7 — General purpose digital input/output pin.
I/O U0_DIR — RS-485/EIA-485 output enable/direction control for
USART0.
I/O EMC_A10 — External memory address line 10.
OUSB0_IND0 — USB0 port indicator LED control
output 0.
I/O GPIO5[6] — General purpose digital input/output pin.
ICTIN_7 — SCT input 7.
IT3_CAP3 — Capture input 3 of timer 3.
OEMC_BLS1 — LOW active Byte Lane select signal 1.
P2_7 H14 C10 138 [2] N;
PU
I/O GPIO0[7] — General purpose digital input/output pin. If this
pin is pulled LOW at reset, the part enters ISP mode or boots
from an external source (see Table 4 and Table 5).
OCTOUT_1 — SCT output 1. Match output 3 of timer 3.
I/O U3_UCLK — Serial clock input/output for USART3 in
synchronous mode.
I/O EMC_A9 — External memory address line 9.
-R — Function reserved.
-R — Function reserved.
OT3_MAT3 — Match output 3 of timer 3.
-R — Function reserved.
P2_8 J16 C6 140 [2] N;
PU
I/O SGPIO15 — General purpose digital input/output pin. Boot pin
(see Table 5).
OCTOUT_0 — SCT output 0. Match output 0 of timer 0.
I/O U3_DIR — RS-485/EIA-485 output enable/direction control for
USART3.
I/O EMC_A8 — External memory address line 8.
I/O GPIO5[7] — General purpose digital input/output pin.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
Table 3. Pin description …continued
Pin name
LBGA256
TFBGA100
LQFP208
Reset state
[1]
Type
Description
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 18 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
P2_9 H16 B10 144 [2] N;
PU
I/O GPIO1[10] — General purpose digital input/output pin. Boot
pin (see Table 5).
OCTOUT_3 — SCT output 3. Match output 3 of timer 0.
I/O U3_BAUD — Baud pin for USART3.
I/O EMC_A0 — External memory address line 0.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
P2_10 G16 E8 146 [2] N;
PU
I/O GPIO0[14] — General purpose digital input/output pin.
OCTOUT_2 — SCT output 2. Match output 2 of timer 0.
OU2_TXD — Transmitter output for USART2.
I/O EMC_A1 — External memory address line 1.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
P2_11 F16 A9 148 [2] N;
PU
I/O GPIO1[11] — General purpose digital input/output pin.
OCTOUT_5 — SCT output 5. Match output 3 of timer 3.
IU2_RXD — Receiver input for USART2.
I/O EMC_A2 — External memory address line 2.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
P2_12 E15 B9 153 [2] N;
PU
I/O GPIO1[12] — General purpose digital input/output pin.
OCTOUT_4 — SCT output 4. Match output 3 of timer 3.
-R — Function reserved.
I/O EMC_A3 — External memory address line 3.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
I/O U2_UCLK — Serial clock input/output for USART2 in
synchronous mode.
Table 3. Pin description …continued
Pin name
LBGA256
TFBGA100
LQFP208
Reset state
[1]
Type
Description
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 19 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
P2_13 C16 A10 156 [2] N;
PU
I/O GPIO1[13] — General purpose digital input/output pin.
ICTIN_4 — SCT input 4. Capture input 2 of timer 1.
-R — Function reserved.
I/O EMC_A4 — External memory address line 4.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
I/O U2_DIR — RS-485/EIA-485 output enable/direction control for
USART2.
P3_0 F13 A8 161 [2] N;
PU
I/O I2S0_RX_SCK — I2S receive clock. It is driven by the master
and received by the slave. Corresponds to the signal SCK in
the I2S-bus specification.
OI2S0_RX_MCLK — I2S receive master clock.
I/O I2S0_TX_SCK — Transmit Clock. It is driven by the master
and received by the slave. Corresponds to the signal SCK in
the I2S-bus specification.
OI2S0_TX_MCLK — I2S transmit master clock.
I/O SSP0_SCK — Serial clock for SSP0.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
P3_1 G11 F7 163 [2] N;
PU
I/O I2S0_TX_WS — Transmit Word Select. It is driven by the
master and received by the slave. Corresponds to the signal
WS in the I2S-bus specification.
I/O I2S0_RX_WS — Receive Word Select. It is driven by the
master and received by the slave. Corresponds to the signal
WS in the I2S-bus specification.
ICAN0_RD — CAN receiver input.
OUSB1_IND1 — USB1 Port indicator LED control output 1.
I/O GPIO5[8] — General purpose digital input/output pin.
-R — Function reserved.
OLCD_VD15 — LCD data.
-R — Function reserved.
Table 3. Pin description …continued
Pin name
LBGA256
TFBGA100
LQFP208
Reset state
[1]
Type
Description
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 20 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
P3_2 F11 G6 166 [2] OL;
PU
I/O I2S0_TX_SDA — I2S transmit data. It is driven by the
transmitter and read by the receiver. Corresponds to the signal
SD in the I2S-bus specification.
I/O I2S0_RX_SDA — I2S Receive data. It is driven by the
transmitter and read by the receiver. Corresponds to the signal
SD in the I2S-bus specification.
OCAN0_TD — CAN transmitter output.
OUSB1_IND0 — USB1 Port indicator LED control output 0.
I/O GPIO5[9] — General purpose digital input/output pin.
-R — Function reserved.
OLCD_VD14 — LCD data.
-R — Function reserved.
P3_3 B14 A7 169 [4] N;
PU
-R — Function reserved.
I/O SPI_SCK — Serial clock for SPI.
I/O SSP0_SCK — Serial clock for SSP0.
OSPIFI_SCK — Serial clock for SPIFI.
OCGU_OUT1 — CGU spare clock output 1.
-R — Function reserved.
OI2S0_TX_MCLK — I2S transmit master clock.
I/O I2S1_TX_SCK — Transmit Clock. It is driven by the master
and received by the slave. Corresponds to the signal SCK in
the I2S-bus specification.
P3_4 A15 B8 171 [2] N;
PU
I/O GPIO1[14] — General purpose digital input/output pin.
-R — Function reserved.
-R — Function reserved.
I/O SPIFI_SIO3 — I/O lane 3 for SPIFI.
OU1_TXD — Transmitter output for UART 1.
I/O I2S0_TX_WS — Transmit Word Select. It is driven by the
master and received by the slave. Corresponds to the signal
WS in the I2S-bus specification.
I/O I2S1_RX_SDA — I2S1 Receive data. It is driven by the
transmitter and read by the receiver. Corresponds to the signal
SD in the I2S-bus specification.
OLCD_VD13 — LCD data.
Table 3. Pin description …continued
Pin name
LBGA256
TFBGA100
LQFP208
Reset state
[1]
Type
Description
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 21 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
P3_5 C12 B7 173 [2] N;
PU
I/O GPIO1[15] — General purpose digital input/output pin.
-R — Function reserved.
-R — Function reserved.
I/O SPIFI_SIO2 — I/O lane 2 for SPIFI.
IU1_RXD — Receiver input for UART 1.
I/O I2S0_TX_SDA — I2S transmit data. It is driven by the
transmitter and read by the receiver. Corresponds to the signal
SD in the I2S-bus specification.
I/O I2S1_RX_WS — Receive Word Select. It is driven by the
master and received by the slave. Corresponds to the signal
WS in the I2S-bus specification.
OLCD_VD12 — LCD data.
P3_6 B13 C7 174 [2] N;
PU
I/O GPIO0[6] — General purpose digital input/output pin.
I/O SPI_MISO — Master In Slave Out for SPI.
I/O SSP0_SSEL — Slave Select for SSP0.
I/O SPIFI_MISO — Input 1 in SPIFI quad mode; SPIFI output IO1.
-R — Function reserved.
I/O SSP0_MISO — Master In Slave Out for SSP0.
-R — Function reserved.
-R — Function reserved.
P3_7 C11 D7 176 [2] N;
PU
-R — Function reserved.
I/O SPI_MOSI — Master Out Slave In for SPI.
I/O SSP0_MISO — Master In Slave Out for SSP0.
I/O SPIFI_MOSI — Input I0 in SPIFI quad mode; SPIFI output
IO0.
I/O GPIO5[10] — General purpose digital input/output pin.
I/O SSP0_MOSI — Master Out Slave in for SSP0.
-R — Function reserved.
-R — Function reserved.
P3_8 C10 E7 179 [2] N;
PU
-R — Function reserved.
ISPI_SSEL — Slave Select for SPI. Note that this pin in an
input pin only. The SPI in master mode cannot drive the CS
input on the slave. Any GPIO pin can be used for SPI chip
select in master mode.
I/O SSP0_MOSI — Master Out Slave in for SSP0.
I/O SPIFI_CS — SPIFI serial flash chip select.
I/O GPIO5[11] — General purpose digital input/output pin.
I/O SSP0_SSEL — Slave Select for SSP0.
-R — Function reserved.
-R — Function reserved.
Table 3. Pin description …continued
Pin name
LBGA256
TFBGA100
LQFP208
Reset state
[1]
Type
Description
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 22 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
P4_0 D5 - 1 [2] N;
PU
I/O GPIO2[0] — General purpose digital input/output pin.
OMCOA0 — Motor control PWM channel 0, output A.
INMI — External interrupt input to NMI.
-R — Function reserved.
-R — Function reserved.
OLCD_VD13 — LCD data.
I/O U3_UCLK — Serial clock input/output for USART3 in
synchronous mode.
-R — Function reserved.
P4_1 A1 - 3 [5] N;
PU
I/O GPIO2[1] — General purpose digital input/output pin.
OCTOUT_1 — SCT output 1. Match output 3 of timer 3.
OLCD_VD0 — LCD data.
-R — Function reserved.
-R — Function reserved.
OLCD_VD19 — LCD data.
OU3_TXD — Transmitter output for USART3.
IENET_COL — Ethernet Collision detect (MII interface).
AI ADC0_1 — ADC0 and ADC1, input channel 1. Configure the
pin as GPIO input and use the ADC function select register in
the SCU to select the ADC.
P4_2 D3 - 12 [2] N;
PU
I/O GPIO2[2] — General purpose digital input/output pin.
OCTOUT_0 — SCT output 0. Match output 0 of timer 0.
OLCD_VD3 — LCD data.
-R — Function reserved.
-R — Function reserved.
OLCD_VD12 — LCD data.
IU3_RXD — Receiver input for USART3.
I/O SGPIO8 — General purpose digital input/output pin.
P4_3 C2 - 10 [5] N;
PU
I/O GPIO2[3] — General purpose digital input/output pin.
OCTOUT_3 — SCT output 3. Match output 3 of timer 0.
OLCD_VD2 — LCD data.
-R — Function reserved.
-R — Function reserved.
OLCD_VD21 — LCD data.
I/O U3_BAUD — Baud pin for USART3.
I/O SGPIO9 — General purpose digital input/output pin.
AI ADC0_0 — DAC, ADC0 and ADC1, input channel 0.
Configure the pin as GPIO input and use the ADC function
select register in the SCU to select the ADC.
Table 3. Pin description …continued
Pin name
LBGA256
TFBGA100
LQFP208
Reset state
[1]
Type
Description
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 23 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
P4_4 B1 - 14 [5] N;
PU
I/O GPIO2[4] — General purpose digital input/output pin.
OCTOUT_2 — SCT output 2. Match output 2 of timer 0.
OLCD_VD1 — LCD data.
-R — Function reserved.
-R — Function reserved.
OLCD_VD20 — LCD data.
I/O U3_DIR — RS-485/EIA-485 output enable/direction control for
USART3.
I/O SGPIO10 — General purpose digital input/output pin.
ODAC — DAC output. Configure the pin as GPIO input and use
the analog function select register in the SCU to select the
DAC.
P4_5 D2 - 15 [2] N;
PU
I/O GPIO2[5] — General purpose digital input/output pin.
OCTOUT_5 — SCT output 5. Match output 3 of timer 3.
OLCD_FP — Frame pulse (STN). Vertical synchronization
pulse (TFT).
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
I/O SGPIO11 — General purpose digital input/output pin.
P4_6 C1 - 17 [2] N;
PU
I/O GPIO2[6] — General purpose digital input/output pin.
OCTOUT_4 — SCT output 4. Match output 3 of timer 3.
OLCD_ENAB/LCDM — STN AC bias drive or TFT data enable
input.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
I/O SGPIO12 — General purpose digital input/output pin.
Table 3. Pin description …continued
Pin name
LBGA256
TFBGA100
LQFP208
Reset state
[1]
Type
Description
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 24 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
P4_7 H4 - 21 [2] O;
PU
OLCD_DCLK — LCD panel clock.
IGP_CLKIN — General purpose clock input to the CGU.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
I/O I2S1_TX_SCK — Transmit Clock. It is driven by the master
and received by the slave. Corresponds to the signal SCK in
the I2S-bus specification.
I/O I2S0_TX_SCK — Transmit Clock. It is driven by the master
and received by the slave. Corresponds to the signal SCK in
the I2S-bus specification.
P4_8 E2 - 23 [2] N;
PU
-R — Function reserved.
ICTIN_5 — SCT input 5. Capture input 2 of timer 2.
OLCD_VD9 — LCD data.
-R — Function reserved.
I/O GPIO5[12] — General purpose digital input/output pin.
OLCD_VD22 — LCD data.
OCAN1_TD — CAN1 transmitter output.
I/O SGPIO13 — General purpose digital input/output pin.
P4_9 L2 - 48 [2] N;
PU
-R — Function reserved.
ICTIN_6 — SCT input 6. Capture input 1 of timer 3.
OLCD_VD11 — LCD data.
-R — Function reserved.
I/O GPIO5[13] — General purpose digital input/output pin.
OLCD_VD15 — LCD data.
ICAN1_RD — CAN1 receiver input.
I/O SGPIO14 — General purpose digital input/output pin.
P4_10 M3 - 51 [2] N;
PU
-R — Function reserved.
ICTIN_2 — SCT input 2. Capture input 2 of timer 0.
OLCD_VD10 — LCD data.
-R — Function reserved.
I/O GPIO5[14] — General purpose digital input/output pin.
OLCD_VD14 — LCD data.
-R — Function reserved.
I/O SGPIO15 — General purpose digital input/output pin.
Table 3. Pin description …continued
Pin name
LBGA256
TFBGA100
LQFP208
Reset state
[1]
Type
Description
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 25 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
P5_0 N3 - 53 [2] N;
PU
I/O GPIO2[9] — General purpose digital input/output pin.
OMCOB2 — Motor control PWM channel 2, output B.
I/O EMC_D12 — External memory data line 12.
-R — Function reserved.
IU1_DSR — Data Set Ready input for UART 1.
IT1_CAP0 — Capture input 0 of timer 1.
-R — Function reserved.
-R — Function reserved.
P5_1 P3 - 55 [2] N;
PU
I/O GPIO2[10] — General purpose digital input/output pin.
IMCI2 — Motor control PWM channel 2, input.
I/O EMC_D13 — External memory data line 13.
-R — Function reserved.
OU1_DTR — Data Terminal Ready output for UART 1. Can also
be configured to be an RS-485/EIA-485 output enable signal
for UART 1.
IT1_CAP1 — Capture input 1 of timer 1.
-R — Function reserved.
-R — Function reserved.
P5_2 R4 - 63 [2] N;
PU
I/O GPIO2[11] — General purpose digital input/output pin.
IMCI1 — Motor control PWM channel 1, input.
I/O EMC_D14 — External memory data line 14.
-R — Function reserved.
OU1_RTS — Request to Send output for UART 1. Can also be
configured to be an RS-485/EIA-485 output enable signal for
UART 1.
IT1_CAP2 — Capture input 2 of timer 1.
-R — Function reserved.
-R — Function reserved.
P5_3 T8 - 76 [2] N;
PU
I/O GPIO2[12] — General purpose digital input/output pin.
IMCI0 — Motor control PWM channel 0, input.
I/O EMC_D15 — External memory data line 15.
-R — Function reserved.
IU1_RI — Ring Indicator input for UART 1.
IT1_CAP3 — Capture input 3 of timer 1.
-R — Function reserved.
-R — Function reserved.
Table 3. Pin description …continued
Pin name
LBGA256
TFBGA100
LQFP208
Reset state
[1]
Type
Description
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 26 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
P5_4 P9 - 80 [2] N;
PU
I/O GPIO2[13] — General purpose digital input/output pin.
OMCOB0 — Motor control PWM channel 0, output B.
I/O EMC_D8 — External memory data line 8.
-R — Function reserved.
IU1_CTS — Clear to Send input for UART 1.
OT1_MAT0 — Match output 0 of timer 1.
-R — Function reserved.
-R — Function reserved.
P5_5 P10 - 81 [2] N;
PU
I/O GPIO2[14] — General purpose digital input/output pin.
OMCOA1 — Motor control PWM channel 1, output A.
I/O EMC_D9 — External memory data line 9.
-R — Function reserved.
IU1_DCD — Data Carrier Detect input for UART 1.
OT1_MAT1 — Match output 1 of timer 1.
-R — Function reserved.
-R — Function reserved.
P5_6 T13 - 89 [2] N;
PU
I/O GPIO2[15] — General purpose digital input/output pin.
OMCOB1 — Motor control PWM channel 1, output B.
I/O EMC_D10 — External memory data line 10.
-R — Function reserved.
OU1_TXD — Transmitter output for UART 1.
OT1_MAT2 — Match output 2 of timer 1.
-R — Function reserved.
-R — Function reserved.
P5_7 R12 - 91 [2] N;
PU
I/O GPIO2[7] — General purpose digital input/output pin.
OMCOA2 — Motor control PWM channel 2, output A.
I/O EMC_D11 — External memory data line 11.
-R — Function reserved.
IU1_RXD — Receiver input for UART 1.
OT1_MAT3 — Match output 3 of timer 1.
-R — Function reserved.
-R — Function reserved.
Table 3. Pin description …continued
Pin name
LBGA256
TFBGA100
LQFP208
Reset state
[1]
Type
Description
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 27 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
P6_0 M12 H7 105 [2] N;
PU
-R — Function reserved.
OI2S0_RX_MCLK — I2S receive master clock.
-R — Function reserved.
-R — Function reserved.
I/O I2S0_RX_SCK — Receive Clock. It is driven by the master
and received by the slave. Corresponds to the signal SCK in
the I2S-bus specification.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
P6_1 R15 G5 107 [2] N;
PU
I/O GPIO3[0] — General purpose digital input/output pin.
OEMC_DYCS1 — SDRAM chip select 1.
I/O U0_UCLK — Serial clock input/output for USART0 in
synchronous mode.
I/O I2S0_RX_WS — Receive Word Select. It is driven by the
master and received by the slave. Corresponds to the signal
WS in the I2S-bus specification.
-R — Function reserved.
IT2_CAP0 — Capture input 2 of timer 2.
-R — Function reserved.
-R — Function reserved.
P6_2 L13 J9 111 [2] N;
PU
I/O GPIO3[1] — General purpose digital input/output pin.
OEMC_CKEOUT1 — SDRAM clock enable 1.
I/O U0_DIR — RS-485/EIA-485 output enable/direction control for
USART0.
I/O I2S0_RX_SDA — I2S Receive data. It is driven by the
transmitter and read by the receiver. Corresponds to the signal
SD in the I2S-bus specification.
-R — Function reserved.
IT2_CAP1 — Capture input 1 of timer 2.
-R — Function reserved.
-R — Function reserved.
Table 3. Pin description …continued
Pin name
LBGA256
TFBGA100
LQFP208
Reset state
[1]
Type
Description
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 28 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
P6_3 P15 - 113 [2] N;
PU
I/O GPIO3[2] — General purpose digital input/output pin.
OUSB0_PPWR — VBUS drive signal (towards external charge
pump or power management unit); indicates that the VBUS
signal must be driven (active HIGH).
Add a pull-down resistor to disable the power switch at reset.
This signal has opposite polarity compared to the USB_PPWR
used on other NXP LPC parts.
I/O SGPIO4 — General purpose digital input/output pin.
OEMC_CS1 — LOW active Chip Select 1 signal.
-R — Function reserved.
IT2_CAP2 — Capture input 2 of timer 2.
-R — Function reserved.
-R — Function reserved.
P6_4 R16 F6 114 [2] N;
PU
I/O GPIO3[3] — General purpose digital input/output pin.
ICTIN_6 — SCT input 6. Capture input 1 of timer 3.
OU0_TXD — Transmitter output for USART0.
OEMC_CAS — LOW active SDRAM Column Address Strobe.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
P6_5 P16 F9 117 [2] N;
PU
I/O GPIO3[4] — General purpose digital input/output pin.
OCTOUT_6 — SCT output 6. Match output 2 of timer 1.
IU0_RXD — Receiver input for USART0.
OEMC_RAS — LOW active SDRAM Row Address Strobe.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
P6_6 L14 - 119 [2] N;
PU
I/O GPIO0[5] — General purpose digital input/output pin.
OEMC_BLS1 — LOW active Byte Lane select signal 1.
I/O SGPIO5 — General purpose digital input/output pin.
IUSB0_PWR_FAULT — Port power fault signal indicating
overcurrent condition; this signal monitors over-current on the
USB bus (external circuitry required to detect over-current
condition).
-R — Function reserved.
IT2_CAP3 — Capture input 3 of timer 2.
-R — Function reserved.
-R — Function reserved.
Table 3. Pin description …continued
Pin name
LBGA256
TFBGA100
LQFP208
Reset state
[1]
Type
Description
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 29 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
P6_7 J13 - 123 [2] N;
PU
-R — Function reserved.
I/O EMC_A15 — External memory address line 15.
I/O SGPIO6 — General purpose digital input/output pin.
OUSB0_IND1 — USB0 port indicator LED control output 1.
I/O GPIO5[15] — General purpose digital input/output pin.
OT2_MAT0 — Match output 0 of timer 2.
-R — Function reserved.
-R — Function reserved.
P6_8 H13 - 125 [2] N;
PU
-R — Function reserved.
I/O EMC_A14 — External memory address line 14.
I/O SGPIO7 — General purpose digital input/output pin.
OUSB0_IND0 — USB0 port indicator LED control output 0.
I/O GPIO5[16] — General purpose digital input/output pin.
OT2_MAT1 — Match output 1 of timer 2.
-R — Function reserved.
-R — Function reserved.
P6_9 J15 F8 139 [2] N;
PU
I/O GPIO3[5] — General purpose digital input/output pin.
-R — Function reserved.
-R — Function reserved.
OEMC_DYCS0 — SDRAM chip select 0.
-R — Function reserved.
OT2_MAT2 — Match output 2 of timer 2.
-R — Function reserved.
-R — Function reserved.
P6_10 H15 - 142 [2] N;
PU
I/O GPIO3[6] — General purpose digital input/output pin.
OMCABORT — Motor control PWM, LOW-active fast abort.
-R — Function reserved.
OEMC_DQMOUT1 — Data mask 1 used with SDRAM and
static devices.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
Table 3. Pin description …continued
Pin name
LBGA256
TFBGA100
LQFP208
Reset state
[1]
Type
Description
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 30 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
P6_11 H12 C9 143 [2] N;
PU
I/O GPIO3[7] — General purpose digital input/output pin.
-R — Function reserved.
-R — Function reserved.
OEMC_CKEOUT0 — SDRAM clock enable 0.
-R — Function reserved.
OT2_MAT3 — Match output 3 of timer 2.
-R — Function reserved.
-R — Function reserved.
P6_12 G15 - 145 [2] N;
PU
I/O GPIO2[8] — General purpose digital input/output pin.
OCTOUT_7 — SCT output 7. Match output 3 of timer 1.
-R — Function reserved.
OEMC_DQMOUT0 — Data mask 0 used with SDRAM and
static devices.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
P7_0 B16 - 158 [2] N;
PU
I/O GPIO3[8] — General purpose digital input/output pin.
OCTOUT_14 — SCT output 14. Match output 2 of timer 3.
-R — Function reserved.
OLCD_LE — Line end signal.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
I/O SGPIO4 — General purpose digital input/output pin.
P7_1 C14 - 162 [2] N;
PU
I/O GPIO3[9] — General purpose digital input/output pin.
OCTOUT_15 — SCT output 15. Match output 3 of timer 3.
I/O I2S0_TX_WS — Transmit Word Select. It is driven by the
master and received by the slave. Corresponds to the signal
WS in the I2S-bus specification.
OLCD_VD19 — LCD data.
OLCD_VD7 — LCD data.
-R — Function reserved.
OU2_TXD — Transmitter output for USART2.
I/O SGPIO5 — General purpose digital input/output pin.
Table 3. Pin description …continued
Pin name
LBGA256
TFBGA100
LQFP208
Reset state
[1]
Type
Description
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 31 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
P7_2 A16 - 165 [2] N;
PU
I/O GPIO3[10] — General purpose digital input/output pin.
ICTIN_4 — SCT input 4. Capture input 2 of timer 1.
I/O I2S0_TX_SDA — I2S transmit data. It is driven by the
transmitter and read by the receiver. Corresponds to the signal
SD in the I2S-bus specification.
OLCD_VD18 — LCD data.
OLCD_VD6 — LCD data.
-R — Function reserved.
IU2_RXD — Receiver input for USART2.
I/O SGPIO6 — General purpose digital input/output pin.
P7_3 C13 - 167 [2] N;
PU
I/O GPIO3[11] — General purpose digital input/output pin.
ICTIN_3 — SCT input 3. Capture input 1 of timer 1.
-R — Function reserved.
OLCD_VD17 — LCD data.
OLCD_VD5 — LCD data.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
P7_4 C8 - 189 [5] N;
PU
I/O GPIO3[12] — General purpose digital input/output pin.
OCTOUT_13 — SCT output 13. Match output 3 of timer 3.
-R — Function reserved.
OLCD_VD16 — LCD data.
OLCD_VD4 — LCD data.
OTRACEDATA[0] — Trace data, bit 0.
-R — Function reserved.
-R — Function reserved.
AI ADC0_4 — ADC0 and ADC1, input channel 4. Configure the
pin as GPIO input and use the ADC function select register in
the SCU to select the ADC.
P7_5 A7 - 191 [5] N;
PU
I/O GPIO3[13] — General purpose digital input/output pin.
OCTOUT_12 — SCT output 12. Match output 3 of timer 3.
-R — Function reserved.
OLCD_VD8 — LCD data.
OLCD_VD23 — LCD data.
OTRACEDATA[1] — Trace data, bit 1.
-R — Function reserved.
-R — Function reserved.
AI ADC0_3 — ADC0 and ADC1, input channel 3. Configure the
pin as GPIO input and use the ADC function select register in
the SCU to select the ADC.
Table 3. Pin description …continued
Pin name
LBGA256
TFBGA100
LQFP208
Reset state
[1]
Type
Description
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 32 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
P7_6 C7 - 194 [2] N;
PU
I/O GPIO3[14] — General purpose digital input/output pin.
OCTOUT_11 — SCT output 1. Match output 3 of timer 2.
-R — Function reserved.
OLCD_LP — Line synchronization pulse (STN). Horizontal
synchronization pulse (TFT).
-R — Function reserved.
OTRACEDATA[2] — Trace data, bit 2.
-R — Function reserved.
-R — Function reserved.
P7_7 B6 - 201 [5] N;
PU
I/O GPIO3[15] — General purpose digital input/output pin.
OCTOUT_8 — SCT output 8. Match output 0 of timer 2.
-R — Function reserved.
OLCD_PWR — LCD panel power enable.
-R — Function reserved.
OTRACEDATA[3] — Trace data, bit 3.
OENET_MDC — Ethernet MIIM clock.
I/O SGPIO7 — General purpose digital input/output pin.
AI ADC1_6 — ADC1 and ADC0, input channel 6. Configure the
pin as GPIO input and use the ADC function select register in
the SCU to select the ADC.
P8_0 E5 - 2 [3] N;
PU
I/O GPIO4[0] — General purpose digital input/output pin.
IUSB0_PWR_FAULT — Port power fault signal indicating
overcurrent condition; this signal monitors over-current on the
USB bus (external circuitry required to detect over-current
condition).
-R — Function reserved.
IMCI2 — Motor control PWM channel 2, input.
I/O SGPIO8 — General purpose digital input/output pin.
-R — Function reserved.
-R — Function reserved.
OT0_MAT0 — Match output 0 of timer 0.
P8_1 H5 - 34 [3] N;
PU
I/O GPIO4[1] — General purpose digital input/output pin.
OUSB0_IND1 — USB0 port indicator LED control output 1.
-R — Function reserved.
IMCI1 — Motor control PWM channel 1, input.
I/O SGPIO9 — General purpose digital input/output pin.
-R — Function reserved.
-R — Function reserved.
OT0_MAT1 — Match output 1 of timer 0.
Table 3. Pin description …continued
Pin name
LBGA256
TFBGA100
LQFP208
Reset state
[1]
Type
Description
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 33 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
P8_2 K4 - 36 [3] N;
PU
I/O GPIO4[2] — General purpose digital input/output pin.
OUSB0_IND0 — USB0 port indicator LED control output 0.
-R — Function reserved.
IMCI0 — Motor control PWM channel 0, input.
I/O SGPIO10 — General purpose digital input/output pin.
-R — Function reserved.
-R — Function reserved.
OT0_MAT2 — Match output 2 of timer 0.
P8_3 J3 - 37 [2] N;
PU
I/O GPIO4[3] — General purpose digital input/output pin.
I/O USB1_ULPI_D2 — ULPI link bidirectional data line 2.
-R — Function reserved.
OLCD_VD12 — LCD data.
OLCD_VD19 — LCD data.
-R — Function reserved.
-R — Function reserved.
OT0_MAT3 — Match output 3 of timer 0.
P8_4 J2 - 39 [2] N;
PU
I/O GPIO4[4] — General purpose digital input/output pin.
I/O USB1_ULPI_D1 — ULPI link bidirectional data line 1.
-R — Function reserved.
OLCD_VD7 — LCD data.
OLCD_VD16 — LCD data.
-R — Function reserved.
-R — Function reserved.
IT0_CAP0 — Capture input 0 of timer 0.
P8_5 J1 - 40 [2] N;
PU
I/O GPIO4[5] — General purpose digital input/output pin.
I/O USB1_ULPI_D0 — ULPI link bidirectional data line 0.
-R — Function reserved.
OLCD_VD6 — LCD data.
OLCD_VD8 — LCD data.
-R — Function reserved.
-R — Function reserved.
IT0_CAP1 — Capture input 1 of timer 0.
Table 3. Pin description …continued
Pin name
LBGA256
TFBGA100
LQFP208
Reset state
[1]
Type
Description
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 34 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
P8_6 K3 - 43 [2] N;
PU
I/O GPIO4[6] — General purpose digital input/output pin.
IUSB1_ULPI_NXT — ULPI link NXT signal. Data flow control
signal from the PHY.
-R — Function reserved.
OLCD_VD5 — LCD data.
OLCD_LP — Line synchronization pulse (STN). Horizontal
synchronization pulse (TFT).
-R — Function reserved.
-R — Function reserved.
IT0_CAP2 — Capture input 2 of timer 0.
P8_7 K1 - 45 [2] N;
PU
I/O GPIO4[7] — General purpose digital input/output pin.
OUSB1_ULPI_STP — ULPI link STP signal. Asserted to end or
interrupt transfers to the PHY.
-R — Function reserved.
OLCD_VD4 — LCD data.
OLCD_PWR — LCD panel power enable.
-R — Function reserved.
-R — Function reserved.
IT0_CAP3 — Capture input 3 of timer 0.
P8_8 L1 - 49 [2] N;
PU
-R — Function reserved.
IUSB1_ULPI_CLK — ULPI link CLK signal. 60 MHz clock
generated by the PHY.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
OCGU_OUT0 — CGU spare clock output 0.
OI2S1_TX_MCLK — I2S1 transmit master clock.
P9_0 T1 - 59 [2] N;
PU
I/O GPIO4[12] — General purpose digital input/output pin.
OMCABORT — Motor control PWM, LOW-active fast abort.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
IENET_CRS — Ethernet Carrier Sense (MII interface).
I/O SGPIO0 — General purpose digital input/output pin.
I/O SSP0_SSEL — Slave Select for SSP0.
Table 3. Pin description …continued
Pin name
LBGA256
TFBGA100
LQFP208
Reset state
[1]
Type
Description
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 35 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
P9_1 N6 - 66 [2] N;
PU
I/O GPIO4[13] — General purpose digital input/output pin.
OMCOA2 — Motor control PWM channel 2, output A.
-R — Function reserved.
-R — Function reserved.
I/O I2S0_TX_WS — Transmit Word Select. It is driven by the
master and received by the slave. Corresponds to the signal
WS in the I2S-bus specification.
IENET_RX_ER — Ethernet receive error (MII interface).
I/O SGPIO1 — General purpose digital input/output pin.
I/O SSP0_MISO — Master In Slave Out for SSP0.
P9_2 N8 - 70 [2] N;
PU
I/O GPIO4[14] — General purpose digital input/output pin.
OMCOB2 — Motor control PWM channel 2, output B.
-R — Function reserved.
-R — Function reserved.
I/O I2S0_TX_SDA — I2S transmit data. It is driven by the
transmitter and read by the receiver. Corresponds to the signal
SD in the I2S-bus specification.
IENET_RXD3 — Ethernet receive data 3 (MII interface).
I/O SGPIO2 — General purpose digital input/output pin.
I/O SSP0_MOSI — Master Out Slave in for SSP0.
P9_3 M6 - 79 [2] N;
PU
I/O GPIO4[15] — General purpose digital input/output pin.
OMCOA0 — Motor control PWM channel 0, output A.
OUSB1_IND1 — USB1 Port indicator LED control output 1.
-R — Function reserved.
-R — Function reserved.
IENET_RXD2 — Ethernet receive data 2 (MII interface).
I/O SGPIO9 — General purpose digital input/output pin.
OU3_TXD — Transmitter output for USART3.
P9_4 N10 - 92 [2] N;
PU
-R — Function reserved.
OMCOB0 — Motor control PWM channel 0, output B.
OUSB1_IND0 — USB1 Port indicator LED control output 0.
-R — Function reserved.
I/O GPIO5[17] — General purpose digital input/output pin.
OENET_TXD2 — Ethernet transmit data 2 (MII interface).
I/O SGPIO4 — General purpose digital input/output pin.
IU3_RXD — Receiver input for USART3.
Table 3. Pin description …continued
Pin name
LBGA256
TFBGA100
LQFP208
Reset state
[1]
Type
Description
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 36 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
P9_5 M9 - 98 [2] N;
PU
-R — Function reserved.
OMCOA1 — Motor control PWM channel 1, output A.
OUSB1_PPWR — VBUS drive signal (towards external charge
pump or power management unit); indicates that VBUS must
be driven (active high).
Add a pull-down resistor to disable the power switch at reset.
This signal has opposite polarity compared to the USB_PPWR
used on other NXP LPC parts.
-R — Function reserved.
I/O GPIO5[18] — General purpose digital input/output pin.
OENET_TXD3 — Ethernet transmit data 3 (MII interface).
I/O SGPIO3 — General purpose digital input/output pin.
OU0_TXD — Transmitter output for USART0.
P9_6 L11 - 103 [2] N;
PU
I/O GPIO4[11] — General purpose digital input/output pin.
OMCOB1 — Motor control PWM channel 1, output B.
IUSB1_PWR_FAULT — USB1 Port power fault signal
indicating over-current condition; this signal monitors
over-current on the USB1 bus (external circuitry required to
detect over-current condition).
-R — Function reserved.
-R — Function reserved.
IENET_COL — Ethernet Collision detect (MII interface).
I/O SGPIO8 — General purpose digital input/output pin.
IU0_RXD — Receiver input for USART0.
PA_0 L12 - 126 [2] N;
PU
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
OI2S1_RX_MCLK — I2S1 receive master clock.
OCGU_OUT1 — CGU spare clock output 1.
-R — Function reserved.
PA_1 J14 - 134 [3] N;
PU
I/O GPIO4[8] — General purpose digital input/output pin.
IQEI_IDX — Quadrature Encoder Interface INDEX input.
-R — Function reserved.
OU2_TXD — Transmitter output for USART2.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
Table 3. Pin description …continued
Pin name
LBGA256
TFBGA100
LQFP208
Reset state
[1]
Type
Description
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 37 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
PA_2 K15 - 136 [3] N;
PU
I/O GPIO4[9] — General purpose digital input/output pin.
IQEI_PHB — Quadrature Encoder Interface PHB input.
-R — Function reserved.
IU2_RXD — Receiver input for USART2.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
PA_3 H11 - 147 [3] N;
PU
I/O GPIO4[10] — General purpose digital input/output pin.
IQEI_PHA — Quadrature Encoder Interface PHA input.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
PA_4 G13 - 151 [2] N;
PU
-R — Function reserved.
OCTOUT_9 — SCT output 9. Match output 3 of timer 3.
-R — Function reserved.
I/O EMC_A23 — External memory address line 23.
I/O GPIO5[19] — General purpose digital input/output pin.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
PB_0 B15 - 164 [2] N;
PU
-R — Function reserved.
OCTOUT_10 — SCT output 10. Match output 3 of timer 3.
OLCD_VD23 — LCD data.
-R — Function reserved.
I/O GPIO5[20] — General purpose digital input/output pin.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
Table 3. Pin description …continued
Pin name
LBGA256
TFBGA100
LQFP208
Reset state
[1]
Type
Description
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 38 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
PB_1 A14 - 175 [2] N;
PU
-R — Function reserved.
IUSB1_ULPI_DIR — ULPI link DIR signal. Controls the ULP
data line direction.
OLCD_VD22 — LCD data.
-R — Function reserved.
I/O GPIO5[21] — General purpose digital input/output pin.
OCTOUT_6 — SCT output 6. Match output 2 of timer 1.
-R — Function reserved.
-R — Function reserved.
PB_2 B12 - 177 [2] N;
PU
-R — Function reserved.
I/O USB1_ULPI_D7 — ULPI link bidirectional data line 7.
OLCD_VD21 — LCD data.
-R — Function reserved.
I/O GPIO5[22] — General purpose digital input/output pin.
OCTOUT_7 — SCT output 7. Match output 3 of timer 1.
-R — Function reserved.
-R — Function reserved.
PB_3 A13 - 178 [2] N;
PU
-R — Function reserved.
I/O USB1_ULPI_D6 — ULPI link bidirectional data line 6.
OLCD_VD20 — LCD data.
-R — Function reserved.
I/O GPIO5[23] — General purpose digital input/output pin.
OCTOUT_8 — SCT output 8. Match output 0 of timer 2.
-R — Function reserved.
-R — Function reserved.
PB_4 B11 - 180 [2] N;
PU
-R — Function reserved.
I/O USB1_ULPI_D5 — ULPI link bidirectional data line 5.
OLCD_VD15 — LCD data.
-R — Function reserved.
I/O GPIO5[24] — General purpose digital input/output pin.
ICTIN_5 — SCT input 5. Capture input 2 of timer 2.
-R — Function reserved.
-R — Function reserved.
Table 3. Pin description …continued
Pin name
LBGA256
TFBGA100
LQFP208
Reset state
[1]
Type
Description
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 39 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
PB_5 A12 - 181 [2] N;
PU
-R — Function reserved.
I/O USB1_ULPI_D4 — ULPI link bidirectional data line 4.
OLCD_VD14 — LCD data.
-R — Function reserved.
I/O GPIO5[25] — General purpose digital input/output pin.
ICTIN_7 — SCT input 7.
OLCD_PWR — LCD panel power enable.
-R — Function reserved.
PB_6 A6 - - [5] N;
PU
-R — Function reserved.
I/O USB1_ULPI_D3 — ULPI link bidirectional data line 3.
OLCD_VD13 — LCD data.
-R — Function reserved.
I/O GPIO5[26] — General purpose digital input/output pin.
ICTIN_6 — SCT input 6. Capture input 1 of timer 3.
OLCD_VD19 — LCD data.
-R — Function reserved.
AI ADC0_6 — ADC0 and ADC1, input channel 6. Configure the
pin as GPIO input and use the ADC function select register in
the SCU to select the ADC.
PC_0 D4 - 7 [5] N;
PU
-R — Function reserved.
IUSB1_ULPI_CLK — ULPI link CLK signal. 60 MHz clock
generated by the PHY.
-R — Function reserved.
I/O ENET_RX_CLK — Ethernet Receive Clock (MII interface).
OLCD_DCLK — LCD panel clock.
-R — Function reserved.
-R — Function reserved.
I/O SD_CLK — SD/MMC card clock.
AI ADC1_1 — ADC1 and ADC0, input channel 1. Configure the
pin as input (USB_ULPI_CLK) and use the ADC function
select register in the SCU to select the ADC.
PC_1 E4 - 9 [2] N;
PU
I/O USB1_ULPI_D7 — ULPI link bidirectional data line 7.
-R — Function reserved.
IU1_RI — Ring Indicator input for UART 1.
OENET_MDC — Ethernet MIIM clock.
I/O GPIO6[0] — General purpose digital input/output pin.
-R — Function reserved.
IT3_CAP0 — Capture input 0 of timer 3.
OSD_VOLT0 — SD/MMC bus voltage select output 0.
Table 3. Pin description …continued
Pin name
LBGA256
TFBGA100
LQFP208
Reset state
[1]
Type
Description
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 40 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
PC_2 F6 - 13 [2] N;
PU
I/O USB1_ULPI_D6 — ULPI link bidirectional data line 6.
-R — Function reserved.
IU1_CTS — Clear to Send input for UART 1.
OENET_TXD2 — Ethernet transmit data 2 (MII interface).
I/O GPIO6[1] — General purpose digital input/output pin.
-R — Function reserved.
-R — Function reserved.
OSD_RST — SD/MMC reset signal for MMC4.4 card.
PC_3 F5 - 11 [5] N;
PU
I/O USB1_ULPI_D5 — ULPI link bidirectional data line 5.
-R — Function reserved.
OU1_RTS — Request to Send output for UART 1. Can also be
configured to be an RS-485/EIA-485 output enable signal for
UART 1.
OENET_TXD3 — Ethernet transmit data 3 (MII interface).
I/O GPIO6[2] — General purpose digital input/output pin.
-R — Function reserved.
-R — Function reserved.
OSD_VOLT1 — SD/MMC bus voltage select output 1.
AI ADC1_0 — DAC, ADC1 and ADC0, input channel 0.
Configure the pin as GPIO input and use the ADC function
select register in the SCU to select the ADC.
PC_4 F4 - 16 [2] N;
PU
-R — Function reserved.
I/O USB1_ULPI_D4 — ULPI link bidirectional data line 4.
-R — Function reserved.
ENET_TX_EN — Ethernet transmit enable (RMII/MII
interface).
I/O GPIO6[3] — General purpose digital input/output pin.
-R — Function reserved.
IT3_CAP1 — Capture input 1 of timer 3.
I/O SD_DAT0 — SD/MMC data bus line 0.
PC_5 G4 - 20 [2] N;
PU
-R — Function reserved.
I/O USB1_ULPI_D3 — ULPI link bidirectional data line 3.
-R — Function reserved.
OENET_TX_ER — Ethernet Transmit Error (MII interface).
I/O GPIO6[4] — General purpose digital input/output pin.
-R — Function reserved.
IT3_CAP2 — Capture input 2 of timer 3.
I/O SD_DAT1 — SD/MMC data bus line 1.
Table 3. Pin description …continued
Pin name
LBGA256
TFBGA100
LQFP208
Reset state
[1]
Type
Description
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 41 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
PC_6 H6 - 22 [2] N;
PU
-R — Function reserved.
I/O USB1_ULPI_D2 — ULPI link bidirectional data line 2.
-R — Function reserved.
IENET_RXD2 — Ethernet receive data 2 (MII interface).
I/O GPIO6[5] — General purpose digital input/output pin.
-R — Function reserved.
IT3_CAP3 — Capture input 3 of timer 3.
I/O SD_DAT2 — SD/MMC data bus line 2.
PC_7 G5 - - [2] N;
PU
-R — Function reserved.
I/O USB1_ULPI_D1 — ULPI link bidirectional data line 1.
-R — Function reserved.
IENET_RXD3 — Ethernet receive data 3 (MII interface).
I/O GPIO6[6] — General purpose digital input/output pin.
-R — Function reserved.
OT3_MAT0 — Match output 0 of timer 3.
I/O SD_DAT3 — SD/MMC data bus line 3.
PC_8 N4 - - [2] N;
PU
-R — Function reserved.
I/O USB1_ULPI_D0 — ULPI link bidirectional data line 0.
-R — Function reserved.
IENET_RX_DV — Ethernet Receive Data Valid (RMII/MII
interface).
I/O GPIO6[7] — General purpose digital input/output pin.
-R — Function reserved.
OT3_MAT1 — Match output 1 of timer 3.
ISD_CD — SD/MMC card detect input.
PC_9 K2 - - [2] N;
PU
-R — Function reserved.
IUSB1_ULPI_NXT — ULPI link NXT signal. Data flow control
signal from the PHY.
-R — Function reserved.
IENET_RX_ER — Ethernet receive error (MII interface).
I/O GPIO6[8] — General purpose digital input/output pin.
-R — Function reserved.
OT3_MAT2 — Match output 2 of timer 3.
OSD_POW — SD/MMC power monitor output.
Table 3. Pin description …continued
Pin name
LBGA256
TFBGA100
LQFP208
Reset state
[1]
Type
Description
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 42 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
PC_10 M5 - - [2] N;
PU
-R — Function reserved.
OUSB1_ULPI_STP — ULPI link STP signal. Asserted to end or
interrupt transfers to the PHY.
IU1_DSR — Data Set Ready input for UART 1.
-R — Function reserved.
I/O GPIO6[9] — General purpose digital input/output pin.
-R — Function reserved.
OT3_MAT3 — Match output 3 of timer 3.
I/O SD_CMD — SD/MMC command signal.
PC_11 L5 - - [2] N;
PU
-R — Function reserved.
IUSB1_ULPI_DIR — ULPI link DIR signal. Controls the ULPI
data line direction.
IU1_DCD — Data Carrier Detect input for UART 1.
-R — Function reserved.
I/O GPIO6[10] — General purpose digital input/output pin.
-R — Function reserved.
-R — Function reserved.
I/O SD_DAT4 — SD/MMC data bus line 4.
PC_12 L6 - - [2] N;
PU
-R — Function reserved.
-R — Function reserved.
OU1_DTR — Data Terminal Ready output for UART 1. Can also
be configured to be an RS-485/EIA-485 output enable signal
for UART 1.
-R — Function reserved.
I/O GPIO6[11] — General purpose digital input/output pin.
I/O SGPIO11 — General purpose digital input/output pin.
I/O I2S0_TX_SDA — I2S transmit data. It is driven by the
transmitter and read by the receiver. Corresponds to the signal
SD in the I2S-bus specification.
I/O SD_DAT5 — SD/MMC data bus line 5.
PC_13 M1 - - [2] N;
PU
-R — Function reserved.
-R — Function reserved.
OU1_TXD — Transmitter output for UART 1.
-R — Function reserved.
I/O GPIO6[12] — General purpose digital input/output pin.
I/O SGPIO12 — General purpose digital input/output pin.
I/O I2S0_TX_WS — Transmit Word Select. It is driven by the
master and received by the slave. Corresponds to the signal
WS in the I2S-bus specification.
I/O SD_DAT6 — SD/MMC data bus line 6.
Table 3. Pin description …continued
Pin name
LBGA256
TFBGA100
LQFP208
Reset state
[1]
Type
Description
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 43 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
PC_14 N1 - - [2] N;
PU
-R — Function reserved.
-R — Function reserved.
IU1_RXD — Receiver input for UART 1.
-R — Function reserved.
I/O GPIO6[13] — General purpose digital input/output pin.
I/O SGPIO13 — General purpose digital input/output pin.
OENET_TX_ER — Ethernet Transmit Error (MII interface).
I/O SD_DAT7 — SD/MMC data bus line 7.
PD_0 N2 - - [2] N;
PU
-R — Function reserved.
OCTOUT_15 — SCT output 15. Match output 3 of timer 3.
OEMC_DQMOUT2 — Data mask 2 used with SDRAM and
static devices.
-R — Function reserved.
I/O GPIO6[14] — General purpose digital input/output pin.
-R — Function reserved.
-R — Function reserved.
I/O SGPIO4 — General purpose digital input/output pin.
PD_1 P1 - - [2] N;
PU
-R — Function reserved.
-R — Function reserved.
OEMC_CKEOUT2 — SDRAM clock enable 2.
-R — Function reserved.
I/O GPIO6[15] — General purpose digital input/output pin.
OSD_POW — SD/MMC power monitor output.
-R — Function reserved.
I/O SGPIO5 — General purpose digital input/output pin.
PD_2 R1 - - [2] N;
PU
-R — Function reserved.
OCTOUT_7 — SCT output 7. Match output 3 of timer 1.
I/O EMC_D16 — External memory data line 16.
-R — Function reserved.
I/O GPIO6[16] — General purpose digital input/output pin.
-R — Function reserved.
-R — Function reserved.
I/O SGPIO6 — General purpose digital input/output pin.
Table 3. Pin description …continued
Pin name
LBGA256
TFBGA100
LQFP208
Reset state
[1]
Type
Description
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 44 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
PD_3 P4 - - [2] N;
PU
-R — Function reserved.
OCTOUT_6 — SCT output 7. Match output 2 of timer 1.
I/O EMC_D17 — External memory data line 17.
-R — Function reserved.
I/O GPIO6[17] — General purpose digital input/output pin.
-R — Function reserved.
-R — Function reserved.
I/O SGPIO7 — General purpose digital input/output pin.
PD_4 T2 - - [2] N;
PU
-R — Function reserved.
OCTOUT_8 — SCT output 8. Match output 0 of timer 2.
I/O EMC_D18 — External memory data line 18.
-R — Function reserved.
I/O GPIO6[18] — General purpose digital input/output pin.
-R — Function reserved.
-R — Function reserved.
I/O SGPIO8 — General purpose digital input/output pin.
PD_5 P6 - - [2] N;
PU
-R — Function reserved.
OCTOUT_9 — SCT output 9. Match output 3 of timer 3.
I/O EMC_D19 — External memory data line 19.
-R — Function reserved.
I/O GPIO6[19] — General purpose digital input/output pin.
-R — Function reserved.
-R — Function reserved.
I/O SGPIO9 — General purpose digital input/output pin.
PD_6 R6 - 68 [2] N;
PU
-R — Function reserved.
OCTOUT_10 — SCT output 10. Match output 3 of timer 3.
I/O EMC_D20 — External memory data line 20.
-R — Function reserved.
I/O GPIO6[20] — General purpose digital input/output pin.
-R — Function reserved.
-R — Function reserved.
I/O SGPIO10 — General purpose digital input/output pin.
Table 3. Pin description …continued
Pin name
LBGA256
TFBGA100
LQFP208
Reset state
[1]
Type
Description
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 45 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
PD_7 T6 - 72 [2] N;
PU
-R — Function reserved.
ICTIN_5 — SCT input 5. Capture input 2 of timer 2.
I/O EMC_D21 — External memory data line 21.
-R — Function reserved.
I/O GPIO6[21] — General purpose digital input/output pin.
-R — Function reserved.
-R — Function reserved.
I/O SGPIO11 — General purpose digital input/output pin.
PD_8 P8 - 74 [2] N;
PU
-R — Function reserved.
ICTIN_6 — SCT input 6. Capture input 1 of timer 3.
I/O EMC_D22 — External memory data line 22.
-R — Function reserved.
I/O GPIO6[22] — General purpose digital input/output pin.
-R — Function reserved.
-R — Function reserved.
I/O SGPIO12 — General purpose digital input/output pin.
PD_9 T11 - 84 [2] N;
PU
-R — Function reserved.
OCTOUT_13 — SCT output 13. Match output 3 of timer 3.
I/O EMC_D23 — External memory data line 23.
-R — Function reserved.
I/O GPIO6[23] — General purpose digital input/output pin.
-R — Function reserved.
-R — Function reserved.
I/O SGPIO13 — General purpose digital input/output pin.
PD_10 P11 - 86 [2] N;
PU
-R — Function reserved.
ICTIN_1 — SCT input 1. Capture input 1 of timer 0. Capture
input 1 of timer 2.
OEMC_BLS3 — LOW active Byte Lane select signal 3.
-R — Function reserved.
I/O GPIO6[24] — General purpose digital input/output pin.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
Table 3. Pin description …continued
Pin name
LBGA256
TFBGA100
LQFP208
Reset state
[1]
Type
Description
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 46 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
PD_11 N9 - 88 [2] N;
PU
-R — Function reserved.
-R — Function reserved.
OEMC_CS3 — LOW active Chip Select 3 signal.
-R — Function reserved.
I/O GPIO6[25] — General purpose digital input/output pin.
I/O USB1_ULPI_D0 — ULPI link bidirectional data line 0.
OCTOUT_14 — SCT output 14. Match output 2 of timer 3.
-R — Function reserved.
PD_12 N11 - 94 [2] N;
PU
-R — Function reserved.
-R — Function reserved.
OEMC_CS2 — LOW active Chip Select 2 signal.
-R — Function reserved.
I/O GPIO6[26] — General purpose digital input/output pin.
-R — Function reserved.
OCTOUT_10 — SCT output 10. Match output 3 of timer 3.
-R — Function reserved.
PD_13 T14 - 97 [2] N;
PU
-R — Function reserved.
ICTIN_0 — SCT input 0. Capture input 0 of timer 0, 1, 2, 3.
OEMC_BLS2 — LOW active Byte Lane select signal 2.
-R — Function reserved.
I/O GPIO6[27] — General purpose digital input/output pin.
-R — Function reserved.
OCTOUT_13 — SCT output 13. Match output 3 of timer 3.
-R — Function reserved.
PD_14 R13 - 99 [2] N;
PU
-R — Function reserved.
-R — Function reserved.
OEMC_DYCS2 — SDRAM chip select 2.
-R — Function reserved.
I/O GPIO6[28] — General purpose digital input/output pin.
-R — Function reserved.
OCTOUT_11 — SCT output 11. Match output 3 of timer 2.
-R — Function reserved.
Table 3. Pin description …continued
Pin name
LBGA256
TFBGA100
LQFP208
Reset state
[1]
Type
Description
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 47 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
PD_15 T15 - 101 [2] N;
PU
-R — Function reserved.
-R — Function reserved.
I/O EMC_A17 — External memory address line 17.
-R — Function reserved.
I/O GPIO6[29] — General purpose digital input/output pin.
ISD_WP — SD/MMC card write protect input.
OCTOUT_8 — SCT output 8. Match output 0 of timer 2.
-R — Function reserved.
PD_16 R14 - 104 [2] N;
PU
-R — Function reserved.
-R — Function reserved.
I/O EMC_A16 — External memory address line 16.
-R — Function reserved.
I/O GPIO6[30] — General purpose digital input/output pin.
OSD_VOLT2 — SD/MMC bus voltage select output 2.
OCTOUT_12 — SCT output 12. Match output 3 of timer 3.
-R — Function reserved.
PE_0 P14 - 106 [2] N;
PU
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
I/O EMC_A18 — External memory address line 18.
I/O GPIO7[0] — General purpose digital input/output pin.
OCAN1_TD — CAN1 transmitter output.
-R — Function reserved.
-R — Function reserved.
PE_1 N14 - 112 [2] N;
PU
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
I/O EMC_A19 — External memory address line 19.
I/O GPIO7[1] — General purpose digital input/output pin.
ICAN1_RD — CAN1 receiver input.
-R — Function reserved.
-R — Function reserved.
Table 3. Pin description …continued
Pin name
LBGA256
TFBGA100
LQFP208
Reset state
[1]
Type
Description
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 48 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
PE_2 M14 - 115 [2] N;
PU
IADCTRIG0 — ADC trigger input 0.
ICAN0_RD — CAN receiver input.
-R — Function reserved.
I/O EMC_A20 — External memory address line 20.
I/O GPIO7[2] — General purpose digital input/output pin.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
PE_3 K12 - 118 [2] N;
PU
-R — Function reserved.
OCAN0_TD — CAN transmitter output.
IADCTRIG1 — ADC trigger input 1.
I/O EMC_A21 — External memory address line 21.
I/O GPIO7[3] — General purpose digital input/output pin.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
PE_4 K13 - 120 [2] N;
PU
-R — Function reserved.
INMI — External interrupt input to NMI.
-R — Function reserved.
I/O EMC_A22 — External memory address line 22.
I/O GPIO7[4] — General purpose digital input/output pin.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
PE_5 N16 - 122 [2] N;
PU
-R — Function reserved.
OCTOUT_3 — SCT output 3. Match output 3 of timer 0.
OU1_RTS — Request to Send output for UART 1. Can also be
configured to be an RS-485/EIA-485 output enable signal for
UART 1.
I/O EMC_D24 — External memory data line 24.
I/O GPIO7[5] — General purpose digital input/output pin.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
Table 3. Pin description …continued
Pin name
LBGA256
TFBGA100
LQFP208
Reset state
[1]
Type
Description
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 49 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
PE_6 M16 - 124 [2] N;
PU
-R — Function reserved.
OCTOUT_2 — SCT output 2. Match output 2 of timer 0.
IU1_RI — Ring Indicator input for UART 1.
I/O EMC_D25 — External memory data line 25.
I/O GPIO7[6] — General purpose digital input/output pin.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
PE_7 F15 - 149 [2] N;
PU
-R — Function reserved.
OCTOUT_5 — SCT output 5. Match output 3 of timer 3.
IU1_CTS — Clear to Send input for UART1.
I/O EMC_D26 — External memory data line 26.
I/O GPIO7[7] — General purpose digital input/output pin.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
PE_8 F14 - 150 [2] N;
PU
-R — Function reserved.
OCTOUT_4 — SCT output 4. Match output 3 of timer 3.
IU1_DSR — Data Set Ready input for UART 1.
I/O EMC_D27 — External memory data line 27.
I/O GPIO7[8] — General purpose digital input/output pin.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
PE_9 E16 - 152 [2] N;
PU
-R — Function reserved.
ICTIN_4 — SCT input 4. Capture input 2 of timer 1.
IU1_DCD — Data Carrier Detect input for UART 1.
I/O EMC_D28 — External memory data line 28.
I/O GPIO7[9] — General purpose digital input/output pin.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
Table 3. Pin description …continued
Pin name
LBGA256
TFBGA100
LQFP208
Reset state
[1]
Type
Description
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 50 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
PE_10 E14 - 154 [2] N;
PU
-R — Function reserved.
ICTIN_3 — SCT input 3. Capture input 1 of timer 1.
OU1_DTR — Data Terminal Ready output for UART 1. Can also
be configured to be an RS-485/EIA-485 output enable signal
for UART 1.
I/O EMC_D29 — External memory data line 29.
I/O GPIO7[10] — General purpose digital input/output pin.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
PE_11 D16 - - [2] N;
PU
-R — Function reserved.
OCTOUT_12 — SCT output 12. Match output 3 of timer 3.
OU1_TXD — Transmitter output for UART 1.
I/O EMC_D30 — External memory data line 30.
I/O GPIO7[11] — General purpose digital input/output pin.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
PE_12 D15 - - [2] N;
PU
-R — Function reserved.
OCTOUT_11 — SCT output 11. Match output 3 of
timer 2.
IU1_RXD — Receiver input for UART 1.
I/O EMC_D31 — External memory data line 31.
I/O GPIO7[12] — General purpose digital input/output pin.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
PE_13 G14 - - [2] N;
PU
-R — Function reserved.
OCTOUT_14 — SCT output 14. Match output 2 of timer 3.
I/O I2C1_SDA — I2C1 data input/output (this pin does not use a
specialized I2C pad).
OEMC_DQMOUT3 — Data mask 3 used with SDRAM and
static devices.
I/O GPIO7[13] — General purpose digital input/output pin.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
Table 3. Pin description …continued
Pin name
LBGA256
TFBGA100
LQFP208
Reset state
[1]
Type
Description
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 51 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
PE_14 C15 - - [2] N;
PU
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
OEMC_DYCS3 — SDRAM chip select 3.
I/O GPIO7[14] — General purpose digital input/output pin.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
PE_15 E13 - - [2] N;
PU
-R — Function reserved.
OCTOUT_0 — SCT output 0. Match output 0 of timer 0.
I/O I2C1_SCL — I2C1 clock input/output (this pin does not use a
specialized I2C pad).
OEMC_CKEOUT3 — SDRAM clock enable 3.
I/O GPIO7[15] — General purpose digital input/output pin.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
PF_0 D12 - 159 [2] O;
PU
I/O SSP0_SCK — Serial clock for SSP0.
IGP_CLKIN — General purpose clock input to the CGU.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
OI2S1_TX_MCLK — I2S1 transmit master clock.
PF_1 E11 - - [2] N;
PU
-R — Function reserved.
-R — Function reserved.
I/O SSP0_SSEL — Slave Select for SSP0.
-R — Function reserved.
I/O GPIO7[16] — General purpose digital input/output pin.
-R — Function reserved.
I/O SGPIO0 — General purpose digital input/output pin.
-R — Function reserved.
Table 3. Pin description …continued
Pin name
LBGA256
TFBGA100
LQFP208
Reset state
[1]
Type
Description
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 52 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
PF_2 D11 - 168 [2] N;
PU
-R — Function reserved.
OU3_TXD — Transmitter output for USART3.
I/O SSP0_MISO — Master In Slave Out for SSP0.
-R — Function reserved.
I/O GPIO7[17] — General purpose digital input/output pin.
-R — Function reserved.
I/O SGPIO1 — General purpose digital input/output pin.
-R — Function reserved.
PF_3 E10 - 170 [2] N;
PU
-R — Function reserved.
IU3_RXD — Receiver input for USART3.
I/O SSP0_MOSI — Master Out Slave in for SSP0.
-R — Function reserved.
I/O GPIO7[18] — General purpose digital input/output pin.
-R — Function reserved.
I/O SGPIO2 — General purpose digital input/output pin.
-R — Function reserved.
PF_4 D10 H4 172 [2] O;
PU
I/O SSP1_SCK — Serial clock for SSP1.
IGP_CLKIN — General purpose clock input to the CGU.
OTRACECLK — Trace clock.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
OI2S0_TX_MCLK — I2S transmit master clock.
I/O I2S0_RX_SCK — I2S receive clock. It is driven by the master
and received by the slave. Corresponds to the signal SCK in
the I2S-bus specification.
PF_5 E9 - 190 [5] N;
PU
-R — Function reserved.
I/O U3_UCLK — Serial clock input/output for USART3 in
synchronous mode.
I/O SSP1_SSEL — Slave Select for SSP1.
OTRACEDATA[0] — Trace data, bit 0.
I/O GPIO7[19] — General purpose digital input/output pin.
-R — Function reserved.
I/O SGPIO4 — General purpose digital input/output pin.
-R — Function reserved.
AI ADC1_4 — ADC1 and ADC0, input channel 4. Configure the
pin as GPIO input and use the ADC function select register in
the SCU to select the ADC.
Table 3. Pin description …continued
Pin name
LBGA256
TFBGA100
LQFP208
Reset state
[1]
Type
Description
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 53 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
PF_6 E7 - 192 [5] N;
PU
-R — Function reserved.
I/O U3_DIR — RS-485/EIA-485 output enable/direction control for
USART3.
I/O SSP1_MISO — Master In Slave Out for SSP1.
OTRACEDATA[1] — Trace data, bit 1.
I/O GPIO7[20] — General purpose digital input/output pin.
-R — Function reserved.
I/O SGPIO5 — General purpose digital input/output pin.
I/O I2S1_TX_SDA — I2S1 transmit data. It is driven by the
transmitter and read by the receiver. Corresponds to the signal
SD in the I2S-bus specification.
AI ADC1_3 — ADC1 and ADC0, input channel 3. Configure the
pin as GPIO input and use the ADC function select register in
the SCU to select the ADC.
PF_7 B7 - 193 [5] N;
PU
-R — Function reserved.
I/O U3_BAUD — Baud pin for USART3.
I/O SSP1_MOSI — Master Out Slave in for SSP1.
OTRACEDATA[2] — Trace data, bit 2.
I/O GPIO7[21] — General purpose digital input/output pin.
-R — Function reserved.
I/O SGPIO6 — General purpose digital input/output pin.
I/O I2S1_TX_WS — Transmit Word Select. It is driven by the
master and received by the slave. Corresponds to the signal
WS in the I2S-bus specification.
AI/
O
ADC1_7 — ADC1 and ADC0, input channel 7 or band gap
output. Configure the pin as GPIO input and use the ADC
function select register in the SCU to select the ADC.
PF_8 E6 - - [5] N;
PU
-R — Function reserved.
I/O U0_UCLK — Serial clock input/output for USART0 in
synchronous mode.
ICTIN_2 — SCT input 2. Capture input 2 of timer 0.
OTRACEDATA[3] — Trace data, bit 3.
I/O GPIO7[22] — General purpose digital input/output pin.
-R — Function reserved.
I/O SGPIO7 — General purpose digital input/output pin.
-R — Function reserved.
AI ADC0_2 — ADC0 and ADC1, input channel 2. Configure the
pin as GPIO input and use the ADC function select register in
the SCU to select the ADC.
Table 3. Pin description …continued
Pin name
LBGA256
TFBGA100
LQFP208
Reset state
[1]
Type
Description
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 54 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
PF_9 D6 - 203 [5] N;
PU
-R — Function reserved.
I/O U0_DIR — RS-485/EIA-485 output enable/direction control for
USART0.
OCTOUT_1 — SCT output 1. Match output 3 of timer 3.
-R — Function reserved.
I/O GPIO7[23] — General purpose digital input/output pin.
-R — Function reserved.
I/O SGPIO3 — General purpose digital input/output pin.
-R — Function reserved.
AI ADC1_2 — ADC1 and ADC0, input channel 2. Configure the
pin as GPIO input and use the ADC function select register in
the SCU to select the ADC.
PF_10 A3 - 205 [5] N;
PU
-R — Function reserved.
OU0_TXD — Transmitter output for USART0.
-R — Function reserved.
-R — Function reserved.
I/O GPIO7[24] — General purpose digital input/output pin.
-R — Function reserved.
ISD_WP — SD/MMC card write protect input.
-R — Function reserved.
AI ADC0_5 — ADC0 and ADC1, input channel 5. Configure the
pin as GPIO input and use the ADC function select register in
the SCU to select the ADC.
PF_11 A2 - 207 [5] N;
PU
-R — Function reserved.
IU0_RXD — Receiver input for USART0.
-R — Function reserved.
-R — Function reserved.
I/O GPIO7[25] — General purpose digital input/output pin.
-R — Function reserved.
OSD_VOLT2 — SD/MMC bus voltage select output 2.
-R — Function reserved.
AI ADC1_5 — ADC1 and ADC0, input channel 5. Configure the
pin as GPIO input and use the ADC function select register in
the SCU to select the ADC.
Table 3. Pin description …continued
Pin name
LBGA256
TFBGA100
LQFP208
Reset state
[1]
Type
Description
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 55 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
Clock pins
CLK0 N5 K3 62 [4] O;
PU
OEMC_CLK0 — SDRAM clock 0.
OCLKOUT — Clock output pin.
-R — Function reserved.
-R — Function reserved.
I/O SD_CLK — SD/MMC card clock.
OEMC_CLK01 — SDRAM clock 0 and clock 1 combined.
I/O SSP1_SCK — Serial clock for SSP1.
IENET_TX_CLK (ENET_REF_CLK) — Ethernet Transmit
Clock (MII interface) or Ethernet Reference Clock (RMII
interface).
CLK1 T10 - - [4] O;
PU
OEMC_CLK1 — SDRAM clock 1.
OCLKOUT — Clock output pin.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
OCGU_OUT0 — CGU spare clock output 0.
-R — Function reserved.
OI2S1_TX_MCLK — I2S1 transmit master clock.
CLK2 D14 K6 141 [4] O;
PU
OEMC_CLK3 — SDRAM clock 3.
OCLKOUT — Clock output pin.
-R — Function reserved.
-R — Function reserved.
I/O SD_CLK — SD/MMC card clock.
OEMC_CLK23 — SDRAM clock 2 and clock 3 combined.
OI2S0_TX_MCLK — I2S transmit master clock.
I/O I2S1_RX_SCK — Receive Clock. It is driven by the master
and received by the slave. Corresponds to the signal SCK in
the I2S-bus specification.
CLK3 P12 - - [4] O;
PU
OEMC_CLK2 — SDRAM clock 2.
OCLKOUT — Clock output pin.
-R — Function reserved.
-R — Function reserved.
-R — Function reserved.
OCGU_OUT1 — CGU spare clock output 1.
-R — Function reserved.
I/O I2S1_RX_SCK — Receive Clock. It is driven by the master
and received by the slave. Corresponds to the signal SCK in
the I2S-bus specification.
Table 3. Pin description …continued
Pin name
LBGA256
TFBGA100
LQFP208
Reset state
[1]
Type
Description
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 56 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
Debug pins
DBGEN L4 A6 41 [2] I I JTAG interface control signal. Also used for boundary scan. To
use the part in functional mode, connect this pin in one of the
following ways:
Leave DBGEN open. The DBGEN pin is pulled up
internally by a 50 kΩ resistor.
Tie DBGEN to VDDIO.
Pull DBGEN up to VDDIO with an external pull-up
resistor.
TCK/SWDCLK J5 H2 38 [2] I; F I Test Clock for JTAG interface (default) or Serial Wire (SW)
clock.
TRST M4 B4 42 [2] I; PU I Test Reset for JTAG interface.
TMS/SWDIO K6 C4 44 [2] I; PU I Test Mode Select for JTAG interface (default) or SW debug
data input/output.
TDO/SWO K5 H3 46 [2] O O Test Data Out for JTAG interface (default) or SW trace output.
TDI J4 G3 35 [2] I; PU I Test Data In for JTAG interface.
USB0 pins
USB0_DP F2 E1 26 [6] - I/O USB0 bidirectional D+ line. Do not add an external series
resistor.
USB0_DM G2 E2 28 [6] - I/O USB0 bidirectional D line. Do not add an external series
resistor.
USB0_VBUS F1 E3 29 [6]
[7]
- I VBUS pin (power on USB cable). This pin includes an internal
pull-down resistor of 64 k (typical) 16 k.
USB0_ID H2 F1 30 [8] - I Indicates to the transceiver whether connected as an A-device
(USB0_ID LOW) or B-device (USB0_ID HIGH). For OTG this
pin has an internal pull-up resistor.
USB0_RREF H1 F3 32 [8] - 12.0 k (accuracy 1 %) on-board resistor to ground for current
reference.
USB1 pins
USB1_DP F12 E9 129 [9] - I/O USB1 bidirectional D+ line. Add an external series resistor of
33 +/- 2 %.
USB1_DM G12 E10 130 [9] - I/O USB1 bidirectional D line. Add an external series resistor of
33 +/- 2 %.
I2C-bus pins
I2C0_SCL L15 D6 132 [10] I; F I/O I2C clock input/output. Open-drain output (for I2C-bus
compliance).
I2C0_SDA L16 E6 133 [10] I; F I/O I2C data input/output. Open-drain output (for I2C-bus
compliance).
Reset and wake-up pins
RESET D9 B6 185 [11] I; IA I External reset input: A LOW on this pin resets the device,
causing I/O ports and peripherals to take on their default
states, and processor execution to begin at address 0. This
pin does not have an internal pull-up.
Table 3. Pin description …continued
Pin name
LBGA256
TFBGA100
LQFP208
Reset state
[1]
Type
Description
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 57 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
WAKEUP0 A9 A4 187 [11] I; IA I External wake-up input; can raise an interrupt and can cause
wake-up from any of the low power modes. A pulse with a
duration of at least 45 ns wakes up the part.
Input 0 of the event monitor.No internal pull-up is enabled
when this pin is configured as input.
WAKEUP1 A10 - - [11] I; IA I External wake-up input; can raise an interrupt and can cause
wake-up from any of the low power modes. A pulse with a
duration of at least 45 ns wakes up the part.
Input 1 of the event monitor. No internal pull-up is enabled
when this pin is configured as input.
WAKEUP2 C9 - - [11] I; IA I External wake-up input; can raise an interrupt and can cause
wake-up from any of the low power modes. A pulse with a
duration of at least 45 ns wakes up the part.
Input 2 of the event monitor. This pin does not have an internal
pull-up.
WAKEUP3 D8 - - [11] I; IA I External wake-up input; can raise an interrupt and can cause
wake-up from any of the low power modes. A pulse with a
duration of at least 45 ns wakes up the part. This pin does not
have an internal pull-up.
ADC pins
ADC0_0/
ADC1_0/DAC
E3 A2 8 [8] I; IA I ADC input channel 0. Shared between 10-bit ADC0/1 and
DAC.
ADC0_1/
ADC1_1
C3 A1 4 [8] I; IA I ADC input channel 1. Shared between 10-bit ADC0/1.
ADC0_2/
ADC1_2
A4 B3 206 [8] I; IA I ADC input channel 2. Shared between 10-bit ADC0/1.
ADC0_3/
ADC1_3
B5 A3 200 [8] I; IA I ADC input channel 3. Shared between 10-bit ADC0/1.
ADC0_4/
ADC1_4
C6 - 199 [8] I; IA I ADC input channel 4. Shared between 10-bit ADC0/1.
ADC0_5/
ADC1_5
B3 - 208 [8] I; IA I ADC input channel 5. Shared between 10-bit ADC0/1.
ADC0_6/
ADC1_6
A5 - 204 [8] I; IA I ADC input channel 6. Shared between 10-bit ADC0/1.
ADC0_7/
ADC1_7
C5 - 197 [8] I; IA I ADC input channel 7. Shared between 10-bit ADC0/1.
RTC
RTC_ALARM A11 C3 186 [11] - O RTC controlled output.
RTCX1 A8 A5 182 [8] - I Input to the RTC 32 kHz ultra-low power oscillator circuit.
RTCX2 B8 B5 183 [8] - O Output from the RTC 32 kHz ultra-low power oscillator circuit.
SAMPLE B9 - - [11] O O Event monitor sample output.
Crystal oscillator pins
XTAL1 D1 B1 18 [8] - I Input to the oscillator circuit and internal clock generator
circuits.
Table 3. Pin description …continued
Pin name
LBGA256
TFBGA100
LQFP208
Reset state
[1]
Type
Description
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 58 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
[1] N = neutral, input buffer disabled; no extra VDDIO current consumption if the input is driven midway between supplies; set the EZI bit in
the SFS register to enable the input buffer; I = input, OL = output driving LOW; OH = output driving HIGH; AI/O = analog input/output; IA
= inactive; PU = pull-up enabled (weak pull-up resistor pulls up pin to VDDIO; F = floating. Reset state reflects the pin state at reset
without boot code operation.
[2] 5 V tolerant pad with 15 ns glitch filter (5 V tolerant if VDDIO present; if VDDIO not present, do not exceed 3.6 V); provides digital I/O
functions with TTL levels and hysteresis; normal drive strength.
XTAL2 E1 C1 19 [8] - O Output from the oscillator amplifier.
Power and ground pins
USB0_VDDA
3V3_DRIVER
F3 D1 24 - - Separate analog 3.3 V power supply for driver.
USB0
_VDDA3V3
G3 D2 25 - - USB 3.3 V separate power supply voltage.
USB0_VSSA
_TERM
H3 D3 27 - - Dedicated analog ground for clean reference for termination
resistors.
USB0_VSSA
_REF
G1 F2 31 - - Dedicated clean analog ground for generation of reference
currents and voltages.
VDDA B4 B2 198 - - Analog power supply and ADC reference voltage.
VBAT B10 C5 184 - - RTC power supply: 3.3 V on this pin supplies power to the
RTC.
VDDREG F10, F9,
L8, L7
E4,
E5,
F4
135,
188,
195,
82, 33
- Main regulator power supply. Tie the VDDREG and VDDIO
pins to a common power supply to ensure the same ramp-up
time for both supply voltages.
VPP E8 - - [12] - - OTP programming voltage.
VDDIO D7, E12,
F7, F8,
G10, H10,
J6, J7,
K7, L9,
L10, N7,
N13
F10,
K5
6, 52,
57,
102,
110,
155,
160,
202
[12] - - I/O power supply. Tie the VDDREG and VDDIO pins to a
common power supply to ensure the same ramp-up time for
both supply voltages.
VSS G9, H7,
J10, J11,
K8
C8,
D4,
D5,
G8,
J3,
J6
-[13] - - Ground.
VSSIO C4, D13,
G6, G7,
G8, H8,
H9, J8,
J9, K9,
K10, M13,
P7, P13
- 5, 56,
109,
157
[13] - - Ground.
VSSA B2 C2 196 - - Analog ground.
Table 3. Pin description …continued
Pin name
LBGA256
TFBGA100
LQFP208
Reset state
[1]
Type
Description
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 59 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
[3] 5 V tolerant pad with 15 ns glitch filter (5 V tolerant if VDDIO present; if VDDIO not present, do not exceed 3.6 V); provides digital I/O
functions with TTL levels, and hysteresis; high drive strength.
[4] 5 V tolerant pad with 15 ns glitch filter (5 V tolerant if VDDIO present; if VDDIO not present, do not exceed 3.6 V); provides high-speed
digital I/O functions with TTL levels and hysteresis.
[5] 5 V tolerant pad providing digital I/O functions (with TTL levels and hysteresis) and analog input or output (5 V tolerant if VDDIO present;
if VDDIO not present, do not exceed 3.6 V). When configured as a ADC input or DAC output, the pin is not 5 V tolerant and the digital
section of the pad must be disabled by setting the pin to an input function and disabling the pull-up resistor through the pin’s SFSP
register.
[6] 5 V tolerant transparent analog pad.
[7] For maximum load CL = 6.5 F and maximum resistance Rpd = 80 k, the VBUS signal takes about 2 s to fall from VBUS = 5 V to VBUS
= 0.2 V when it is no longer driven.
[8] Transparent analog pad. Not 5 V tolerant.
[9] Pad provides USB functions; 5 V tolerant if VDDIO present; if VDDIO not present, do not exceed 3.6 V. It is designed in accordance with
the USB specification, revision 2.0 (Full-speed and Low-speed mode only).
[10] Open-drain 5 V tolerant digital I/O pad, compatible with I2C-bus Fast Mode Plus specification. This pad requires an external pull-up to
provide output functionality. When power is switched off, this pin connected to the I2C-bus is floating and does not disturb the I2C lines.
[11] 5 V tolerant pad with 20 ns glitch filter; provides digital I/O functions with open-drain output and hysteresis.
[12] On the LQFP208, VPP is internally connected to VDDIO.
[13] On the LQFP208 package, VSSIO and VSS are connected to a common ground plane.
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 60 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
7. Functional description
7.1 Architectural overview
The ARM Cortex-M4 includes three AHB-Lite buses: the system bus, the I-CODE bus,
and the D-code bus. The I-CODE and D-code core buses allow for concurrent code and
data accesses from different slave ports.
The LPC436x use a multi-layer AHB matrix to connect the ARM Cortex-M4 buses and
other bus masters to peripherals in a flexible manner that optimizes performance by
allowing peripherals that are on different slaves ports of the matrix to be accessed
simultaneously by different bus masters.
An ARM Cortex-M0 co-processor is included in the LPC436x, capable of off-loading the
main ARM Cortex-M4 application processor. Most peripheral interrupts are connected to
both processors. The processors communicate with each other via an interprocessor
communication protocol.
7.2 ARM Cortex-M4 processor
The ARM Cortex-M4 CPU incorporates a 3-stage pipeline, uses a Harvard architecture
with separate local instruction and data buses as well as a third bus for peripherals, and
includes an internal prefetch unit that supports speculative branching. The ARM
Cortex-M4 supports single-cycle digital signal processing and SIMD instructions. A
hardware floating-point processor is integrated in the core. The processor includes a
NVIC with up to 53 interrupts.
7.3 ARM Cortex-M0 processors
The ARM Cortex-M0 processors are general purpose, 32-bit microprocessors, which offer
high performance and very low power consumption. The ARM Cortex-M0 processor uses
a 3-stage pipeline von Neumann architecture and a small but powerful instruction set
providing high-end processing hardware. The processors each incorporate an NVIC with
32 interrupts.
7.3.1 ARM Cortex-M0 coprocessor
The M0 coprocessor resides on the same AHB multi-layer matrix as the main Cortex-M0
core. The coprocessor can be used to off-load multiple tasks from the main Cortex-M4
processor.
7.3.2 ARM Cortex-M0 subsystem
The Cortex-M0 subsystem can be used to manage the SGPIO and SPI peripherals on the
M0 subsystem multilayer matrix but any other peripheral as well. The M0 subsystem is
separated by a bridge from the main AHB matrix. The M0 subsystem AHB matrix has two
SRAM blocks which allows to run the Cortex-M0 subsystem at full speed independently
from the main matrix.
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 61 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
One application of using the subsystem is to reduce power, for example when the main
matrix runs at a very low speed and the M0 subsystem monitors activity and increases the
main matrix speed when needed. Another application for the subsystem is to manage the
serial GPIO peripheral, which can be configured as additional SPI, I2S, or other serial
interface.
One of the two SRAM blocks connected to the subsystem AHB matrix is typically used for
code running on the M0 subsystem and the other SRAM block for data. This allows other
bus masters to access the data SRAM without interrupting the M0 processor instruction
fetches and thereby stalling the M0 subsystem.
The M0 subsystem matrix runs at an asynchronous speed from the main matrix. This
allows to operate the SGPIO at any desired frequency. The M0 subsystem can control the
SGPIO in a deterministic way, without incurring latency that occurs when the M4 controls
the SGPIO through a bridge.
7.4 Interprocessor communication
The ARM Cortex-M4 and ARM Cortex-M0 interprocessor communication is based on
using shared SRAM as mailbox and one processor raising an interrupt on the other
processor's NVIC, for example after it has delivered a new message in the mailbox. The
receiving processor can reply by raising an interrupt on the sending processor's NVIC to
acknowledge the message.
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 62 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
7.5 AHB multilayer matrix
Fig 5. AHB multilayer matrix master and slave connections
ARM
CORTEX-M4
TEST/DEBUG
INTERFACE
ARM
CORTEX-M0
APPLICATION
TEST/DEBUG
INTERFACE
ARM
CORTEX-M0
SUBSYSTEM
TEST/DEBUG
INTERFACE
DMA ETHERNET USB1
USB0
LCD SD/
MMC
EXTERNAL
MEMORY
CONTROLLER
32 kB AHB SRAM
16 kB + 16 kB
AHB SRAM
64 kB ROM
32 kB LOCAL SRAM
40 kB LOCAL SRAM
System
bus
I-
code
bus
D-
code
bus
masters
slaves
01
AHB MULTILAYER MATRIX
= master-slave connection
AHB PERIPHERALS
REGISTER
INTERFACES
aaa-018953
SPIFI
APB0 PERIPHERALS
APB0 PERIPHERALS
SPI
16 kB SRAM
SGPIO
BRIDGE
BRIDGE0
BRIDGE
BRIDGE
master
HIGH--
SPEED
PHY 2 kB SRAM
FPU
MPU
RTC PERIPHERALS
RTC PERIPHERALS
slaves
512 kB FLASH A
512 kB FLASH B
16 kB EEPROM
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 63 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
7.6 Nested Vectored Interrupt Controller (NVIC)
The NVIC is an integral part of the Cortex-M4. The tight coupling to the CPU allows for low
interrupt latency and efficient processing of late arriving interrupts.
The ARM Cortex-M0 co-processor has its own NVIC with 32 vectored interrupts. Most
peripheral interrupts are shared between the Cortex-M0 and Cortex-M4 NVICs.
7.6.1 Features
ARM Cortex-M4 core:
Controls system exceptions and peripheral interrupts
Support for up to 53 vectored interrupts
Eight programmable interrupt priority levels with hardware priority level masking
Relocatable vector table
Non-Maskable Interrupt (NMI)
Software interrupt generation
ARM Cortex-M0 core:
Support for up to 32 interrupts
Four programmable interrupt priority levels with hardware priority level masking
7.6.2 Interrupt sources
Each peripheral device has one interrupt line connected to the NVIC but may have several
interrupt flags. Individual interrupt flags may also represent more than one interrupt
source.
7.7 System Tick timer (SysTick)
The ARM Cortex-M4 includes a system tick timer (SYSTICK) that is intended to generate
a dedicated SYSTICK exception at a 10 ms interval.
Remark: The SysTick is not included in the ARM Cortex-M0 core implementation.
7.8 Event router
The event router combines various internal signals, interrupts, and the external interrupt
pins (WAKEUP[3:0]) to create an interrupt in the NVIC, if enabled. In addition, the event
router creates a wake-up signal to the ARM core and the CCU for waking up from Sleep,
Deep-sleep, Power-down, and Deep power-down modes. Individual events can be
configured as edge or level sensitive and can be enabled or disabled in the event router.
The event router can be battery powered.
The following events if enabled in the event router can create a wake-up signal from
sleep, deep-sleep, power-down, and deep power-down modes and/or create an interrupt:
External pins WAKEUP0/1/2/3 and RESET
Alarm timer, RTC (32 kHz oscillator running)
The following events if enabled in the event router can create a wake-up signal from sleep
mode only and/or create an interrupt:
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 64 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
WWDT, BOD interrupts
C_CAN0/1 and QEI interrupts
Ethernet, USB0, USB1 signals
Selected outputs of combined timers (SCTimer/PWM and timer 0/1/3)
Remark: Any interrupt can wake up the ARM Cortex-M4 from sleep mode if enabled in
the NVIC.
7.9 Global Input Multiplexer Array (GIMA)
The GIMA allows to route signals to event-driven peripheral targets like the
SCTimer/PWM, timers, event router, or the ADCs.
7.9.1 Features
Single selection of a source.
Signal inversion.
Can capture a pulse if the input event source is faster than the target clock.
Synchronization of input event and target clock.
Single-cycle pulse generation for target.
7.10 On-chip static RAM
The LPC436x support up to 154 kB SRAM with separate bus master access for higher
throughput and individual power control for low power operation.
7.11 On-chip flash memory
The LPC436x contain up to 1 MB of dual-bank flash program memory. With dual-bank
flash memory, the user code can write or erase one flash bank while reading the other
flash bank without interruption. A two-port flash accelerator maximizes the flash
performance.
In-System Programming (ISP) and In-Application Programming (IAP) routines for
programming the flash memory are provided in the Boot ROM.
7.12 EEPROM
The LPC436x contain 16 kB of on-chip byte-erasable and byte-programmable EEPROM
memory.
The EEPROM memory is divided into 128 pages. The user can access pages 1 through
127. Page 128 is protected.
7.13 Boot ROM
The internal ROM memory is used to store the boot code of the LPC436x. After a reset,
the ARM processor will start its code execution from this memory.
The boot ROM memory includes the following features:
The ROM memory size is 64 kB.
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 65 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
Supports booting from external static memory such as NOR flash, SPI flash, quad SPI
flash, USB0, and USB1.
Includes API for OTP programming.
Includes a flexible USB device stack that supports Human Interface Device (HID),
Mass Storage Class (MSC), and Device Firmware Upgrade (DFU) drivers.
Several boot modes are available if P2_7 is LOW on reset depending on the values of the
OTP bits BOOT_SRC. If the OTP memory is not programmed or the BOOT_SRC bits are
all zero, the boot mode is determined by the states of the boot pins P2_9, P2_8, P1_2,
and P1_1.
[1] The boot loader programs the appropriate pin function at reset to boot using either SSP0 or SPIFI.
Remark: Pin functions for SPIFI and SSP0 boot are different.
Table 4. Boot mode when OTP BOOT_SRC bits are programmed
Boot mode BOOT_SRC
bit 3
BOOT_SRC
bit 2
BOOT_SRC
bit 1
BOOT_SRC
bit 0
Description
Pin state 0 0 0 0 Boot source is defined by the reset state of P1_1,
P1_2, P2_8 pins, and P2_9. See Table 5.
USART0 0 0 0 1 Enter ISP mode using USART0 pins P2_0 and
P2_1.
SPIFI 0 0 1 0 Boot from Quad SPI flash connected to the SPIFI
interface using pins P3_3 to P3_8.
EMC 8-bit 0 0 1 1 Boot from external static memory (such as NOR
flash) using CS0 and an 8-bit data bus.
EMC 16-bit 0 1 0 0 Boot from external static memory (such as NOR
flash) using CS0 and a 16-bit data bus.
EMC 32-bit 0 1 0 1 Boot from external static memory (such as NOR
flash) using CS0 and a 32-bit data bus.
USB0 0 1 1 0 Boot from USB0.
USB1 0 1 1 1 Boot from USB1.
SPI (SSP) 1 0 0 0 Boot from SPI flash connected to the SSP0
interface on P3_3 (function SSP0_SCK), P3_6
(function SSP0_SSEL), P3_7 (function
SSP0_MISO), and P3_8 (function SSP0_MOSI)[1].
USART3 1 0 0 1 Enter ISP mode using USART3 pins P2_3 and
P2_4.
Table 5. Boot mode when OPT BOOT_SRC bits are zero
Boot mode Pins Description
P2_9 P2_8 P1_2 P1_1
USART0 LOW LOW LOW LOW Enter ISP mode using USART0 pins P2_0 and
P2_1.
SPIFI LOW LOW LOW HIGH Boot from Quad SPI flash connected to the SPIFI
interface on P3_3 to P3_8[1].
EMC 8-bit LOW LOW HIGH LOW Boot from external static memory (such as NOR
flash) using CS0 and an 8-bit data bus.
EMC 16-bit LOW LOW HIGH HIGH Boot from external static memory (such as NOR
flash) using CS0 and a 16-bit data bus.
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 66 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
[1] The boot loader programs the appropriate pin function at reset to boot using either SSP0 or SPIFI.
Remark: Pin functions for SPIFI and SSP0 boot are different.
7.14 Memory mapping
The memory map shown in Figure 6 and Figure 7 is global to both the Cortex-M4 and the
Cortex-M0 processors and all SRAM, flash, and EEPROM memory is shared between
both processors. Each processor uses its own ARM private bus memory map for the
NVIC and other system functions.
EMC 32-bit LOW HIGH LOW LOW Boot from external static memory (such as NOR
flash) using CS0 and a 32-bit data bus.
USB0 LOW HIGH LOW HIGH Boot from USB0
USB1 LOW HIGH HIGH LOW Boot from USB1.
SPI (SSP) LOW HIGH HIGH HIGH Boot from SPI flash connected to the SSP0
interface on P3_3 (function SSP0_SCK), P3_6
(function SSP0_SSEL), P3_7 (function
SSP0_MISO), and P3_8 (function SSP0_MOSI)[1].
USART3 HIGH LOW LOW LOW Enter ISP mode using USART3 pins P2_3 and
P2_4.
Table 5. Boot mode when OPT BOOT_SRC bits are zero
Boot mode Pins Description
P2_9 P2_8 P1_2 P1_1
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 67 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
Fig 6. LPC436x Memory mapping (overview)
reserved
peripheral bit band alias region
reserved
reserved
high-speed GPIO
reserved
0x0000 0000
0 GB
1 GB
4 GB
0x2200 0000
0x2400 0000
0x2800 0000
0x1000 0000
0x3000 0000
0x4000 0000
0x4001 2000
0x4004 0000
0x4005 0000
0x4010 0000
0x4400 0000
0x6000 0000
AHB peripherals
APB peripherals #0
APB peripherals #1
reserved
reserved
reserved
RTC domain peripherals
0x4006 0000
0x4008 0000
0x4009 0000
0x400A 0000
0x400B 0000
0x400C 0000
0x400D 0000
0x400E 0000
0x400F 0000
0x400F 1000
0x400F 2000
0x400F 4000
0x400F 8000
clocking/reset peripherals
APB peripherals #2
APB peripherals #3
0x2004 0000
4 x 16 kB AHB SRAM
0x2004 4000
16 kB EEPROM
SGPIO
SPI
0x4010 1000
0x4010 2000
0x4200 0000
reserved
local SRAM/
external static memory banks
0x2000 0000
0x2001 0000
128 MB dynamic external memory DYCS0
256 MB dynamic external memory DYCS1
256 MB dynamic external memory DYCS2
256 MB dynamic external memory DYCS3 0x7000 0000
0x8000 0000
0x8800 0000
0xE000 0000
256 MB shadow area
LPC436x
reserved
reserved
32 MB AHB SRAM bit banding
reserved
reserved
reserved
0xE010 0000
0xFFFF FFFF
reserved
128 MB SPIFI data
ARM private bus
reserved
aaa-018954
reserved
0x1000 0000
0x1000 8000
0x1008 0000
0x1008 A000
0x1040 0000
0x1041 0000
0x1C00 0000
0x1D00 0000
32 kB local SRAM
32 kB + 8 kB local SRAM
reserved
reserved
reserved
reserved
reserved
reserved
reserved
64 kB ROM
0x1E00 0000
0x1F00 0000
0x2000 0000
16 MB static external memory CS3
16 MB static external memory CS2
16 MB static external memory CS1
16 MB static external memory CS0
0x1400 0000
0x1800 0000
0x1800 4000
0x1800 4800
0x1840 0000
0x1840 2000
0x1A00 0000 256 kB flash A
0x1A04 0000 256 kB flash A
0x1A08 0000
0x1B00 0000 256 kB flash B
0x1B04 0000 256 kB flash B
0x1B08 0000
64 MB SPIFI data
16 kB SRAM (M0 subsystem)
2 kB SRAM (M0 subsystem)
8 kB ROM (M0 SERIAL)
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 68 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
Fig 7. LPC436x Memory mapping (peripherals)
reserved
peripheral bit band alias region
high-speed GPIO
reserved
reserved
reserved
reserved
0x4000 0000
0x0000 0000
0x1000 0000
0x4002 0000
0x4004 0000
0x4005 0000
0x4010 0000
0x4400 0000
0x6000 0000
0xFFFF FFFF
AHB peripherals
APB0 peripherals
APB1 peripherals
reserved
reserved
reserved
RTC domain peripherals
0x4006 0000
0x4008 0000
0x4009 0000
0x400A 0000
0x400B 0000
0x400C 0000
0x400D 0000
0x400E 0000
0x400F 0000
0x400F 1000
0x400F 2000
0x400F 4000
0x400F 8000
clocking/reset peripherals
APB2 peripherals
APB3 peripherals
SGPIO
SPI
0x4010 1000
0x4010 2000
0x4200 0000
reserved
external memories and
ARM private bus
APB2
peripherals
0x400C 1000
0x400C 2000
0x400C 3000
0x400C 4000
0x400C 6000
0x400C 8000
0x400C 7000
0x400C 5000
0x400C 0000 RI timer
USART2
USART3
timer2
timer3
SSP1
QEI
APB1
peripherals
0x400A 1000
0x400A 2000
0x400A 3000
0x400A 4000
0x400A 5000
0x400B 0000
0x400A 0000 motor control PWM
I2C0
I2S0
I2S1
C_CAN1
reserved
AHB
peripherals
0x4000 1000
0x4000 0000
SCT
0x4000 2000
0x4000 3000
0x4000 4000
0x4000 6000
0x4000 8000
0x4001 0000
0x4001 2000
0x4002 0000
0x4000 9000
0x4000 7000
0x4000 5000
DMA
SD/MMC
EMC
USB1
LCD
USB0
reserved
reserved
SPIFI
ethernet
reserved
0x4008 1000
0x4008 0000 WWDT
0x4008 2000
0x4008 3000
0x4008 4000
0x4008 6000
0x4008 A000
0x4008 7000
0x4008 8000
0x4008 9000
0x4008 5000
UART1 w/ modem
SSP0
timer0
timer1
SCU
GPIO interrupts
GPIO GROUP0 interrupt
GPIO GROUP1 interrupt
USART0
RTC domain
peripherals
0x4004 1000
0x4004 0000
alarm timer
0x4004 2000
0x4004 3000
0x4004 4000
0x4004 6000
0x4004 7000
0x4005 0000
0x4004 5000
power mode control
CREG
event router
OTP controller
reserved
reserved
RTC/event monitor
backup registers
clocking
reset control
peripherals
0x4005 1000
0x4005 0000
CGU
0x4005 2000
0x4005 3000
0x4005 4000
0x4006 0000
CCU2
RGU
CCU1
LPC436x
aaa-018955
reserved
reserved
APB3
peripherals
0x400E 1000
0x400E 2000
0x400E 3000
0x400E 4000
0x400F 0000
0x400E 5000
0x400E 0000 I2C1
DAC
C_CAN0
ADC0
ADC1
reserved
GIMA
APB0
peripherals
256 MB memory shadow area
SRAM, flash, EEPROM memories
external memory banks
0x4000 C000
0x4000 D000
reserved
flash A controller
flash B controller
0x4000 E000
0x4000 F000
EEPROM controller
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 69 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
7.15 One-Time Programmable (OTP) memory
The OTP provides 64 bit+ 256 bit of memory for general-purpose use.
7.16 General Purpose I/O (GPIO)
The LPC436x provide eight GPIO ports with up to 31 GPIO pins each.
Device pins that are not connected to a specific peripheral function are controlled by the
GPIO registers. Pins may be dynamically configured as inputs or outputs. Separate
registers allow setting or clearing any number of outputs simultaneously. The value of the
output register may be read back as well as the current state of the port pins.
All GPIO pins default to inputs with pull-up resistors enabled and input buffer disabled on
reset. The input buffer must be turned on in the system control block SFS register before
the GPIO input can be read.
7.16.1 Features
Accelerated GPIO functions:
GPIO registers are located on the AHB so that the fastest possible I/O timing can
be achieved.
Mask registers allow treating sets of port bits as a group, leaving other bits
unchanged.
All GPIO registers are byte and half-word addressable.
Entire port value can be written in one instruction.
Bit-level set and clear registers allow a single instruction set or clear of any number of
bits in one port.
Direction control of individual bits.
Up to eight GPIO pins can be selected from all GPIO pins to create an edge- or
level-sensitive GPIO interrupt request (GPIO interrupts).
Two GPIO group interrupts can be triggered by any pin or pins in each port (GPIO
group0 and group1 interrupts).
7.17 Configurable digital peripherals
7.17.1 SCTimer/PWM
The SCTimer/PWM allows a wide variety of timing, counting, output modulation, and input
capture operations. The inputs and outputs of the SCTimer/PWM are shared with the
capture and match inputs/outputs of the 32-bit general purpose counter/timers.
The SCTimer/PWM can be configured as two 16-bit counters or a unified 32-bit counter. In
the two-counter case, in addition to the counter value the following operational elements
are independent for each half:
State variable.
Limit, halt, stop, and start conditions.
Values of Match/Capture registers, plus reload or capture control values.
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 70 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
In the two-counter case, the following operational elements are global to the
SCTimer/PWM, but the last three can use match conditions from either counter:
Clock selection
Inputs
Events
Outputs
Interrupts
7.17.1.1 Features
Two 16-bit counters or one 32-bit counter.
Counters clocked by bus clock or selected input.
Up counters or up-down counters.
State variable allows sequencing across multiple counter cycles.
The following conditions define an event: a counter match condition, an input (or
output) condition, a combination of a match and/or and input/output condition in a
specified state.
Events control outputs, interrupts, and DMA requests.
Match register 0 can be used as an automatic limit.
In bi-directional mode, events can be enabled based on the count direction.
Match events can be held until another qualifying event occurs.
Selected events can limit, halt, start, or stop a counter.
Supports:
8 inputs
16 outputs
16 match/capture registers
16 events
32 states
Match register 0 to 5 support a fractional component for the dither engine
7.17.2 Serial GPIO (SGPIO)
The Serial GPIOs offer standard GPIO functionality enhanced with features to accelerate
serial stream processing.
7.17.2.1 Features
Each SGPIO input/output slice can be used to perform a serial to parallel or parallel to
serial data conversion.
16 SGPIO input/output slices each with a 32-bit FIFO that can shift the input value
from a pin or an output value to a pin with every cycle of a shift clock.
Each slice is double-buffered.
Interrupt is generated on a full FIFO, shift clock, or pattern match.
Slices can be concatenated to increase buffer size.
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 71 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
Each slice has a 32-bit pattern match filter.
7.18 AHB peripherals
7.18.1 General Purpose DMA
The DMA controller allows peripheral-to memory, memory-to-peripheral,
peripheral-to-peripheral, and memory-to-memory transactions. Each DMA stream
provides unidirectional serial DMA transfers for a single source and destination. For
example, a bidirectional port requires one stream for transmit and one for receives. The
source and destination areas can each be either a memory region or a peripheral for
master 1, but only memory for master 0.
7.18.1.1 Features
Eight DMA channels. Each channel can support a unidirectional transfer.
16 DMA request lines.
Single DMA and burst DMA request signals. Each peripheral connected to the DMA
Controller can assert either a burst DMA request or a single DMA request. The DMA
burst size is set by programming the DMA Controller.
Memory-to-memory, memory-to-peripheral, peripheral-to-memory, and
peripheral-to-peripheral transfers are supported.
Scatter or gather DMA is supported through the use of linked lists. This means that
the source and destination areas do not have to occupy contiguous areas of memory.
Hardware DMA channel priority.
AHB slave DMA programming interface. The DMA Controller is programmed by
writing to the DMA control registers over the AHB slave interface.
Two AHB bus masters for transferring data. These interfaces transfer data when a
DMA request goes active. Master 1 can access memories and peripherals, master 0
can access memories only.
32-bit AHB master bus width.
Incrementing or non-incrementing addressing for source and destination.
Programmable DMA burst size. The DMA burst size can be programmed to more
efficiently transfer data.
Internal four-word FIFO per channel.
Supports 8, 16, and 32-bit wide transactions.
Big-endian and little-endian support. The DMA Controller defaults to little-endian
mode on reset.
An interrupt to the processor can be generated on a DMA completion or when a DMA
error has occurred.
Raw interrupt status. The DMA error and DMA count raw interrupt status can be read
prior to masking.
7.18.2 SPI Flash Interface (SPIFI)
The SPI Flash Interface allows low-cost serial flash memories to be connected to the ARM
Cortex-M4 processor with little performance penalty compared to parallel flash devices
with higher pin count.
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 72 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
After a few commands configure the interface at startup, the entire flash content is
accessible as normal memory using byte, halfword, and word accesses by the processor
and/or DMA channels. Simple sequences of commands handle erasing and
programming.
Many serial flash devices use a half-duplex command-driven SPI protocol for device setup
and initialization and then move to a half-duplex, command-driven 4-bit protocol for
normal operation. Different serial flash vendors and devices accept or require different
commands and command formats. SPIFI provides sufficient flexibility to be compatible
with common flash devices and includes extensions to help insure compatibility with future
devices.
7.18.2.1 Features
Interfaces to serial flash memory in the main memory map.
Supports classic and 4-bit bidirectional serial protocols.
Half-duplex protocol compatible with various vendors and devices.
Quad SPI Flash Interface (SPIFI) with 1-, 2-, or 4-bit data at rates of up to 52 MB per
second.
Supports DMA access.
7.18.3 SD/MMC card interface
The SD/MMC card interface supports the following modes to control:
Secure Digital memory (SD version 3.0)
Secure Digital I/O (SDIO version 2.0)
Consumer Electronics Advanced Transport Architecture (CE-ATA version 1.1)
MultiMedia Cards (MMC version 4.4)
7.18.4 External Memory Controller (EMC)
Remark: The EMC is available on all LPC436x parts. The following memory bus widths
are supported:
LBGA256 packages: 32 bit
TFBGA100 packages: 16 bit
LQFP208 packages: 16 bit
The LPC436x EMC is a Memory Controller peripheral offering support for asynchronous
static memory devices such as RAM, ROM, and NOR flash. In addition, it can be used as
an interface with off-chip memory-mapped devices and peripherals.
Table 6. EMC pinout for different packages
Function LBGA256 TFBGA100 LQFP208
A EMC_A[23:0] EMC_A[13:0] EMC_A[23:0]
D EMC_D[31:0] EMC_D[15:0] EMC_D[15:0]
BLS EMC_BLS[3:0] EMC_BLS0 EMC_BLS[1:0]
CS EMC_CS[3:0] EMC_CS0 EMC_CS[3:0]
OE EMC_OE EMC_OE EMC_OE
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 73 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
7.18.4.1 Features
Dynamic memory interface support including single data rate SDRAM.
Asynchronous static memory device support including RAM, ROM, and NOR flash,
with or without asynchronous page mode.
Low transaction latency.
Read and write buffers to reduce latency and to improve performance.
8/16/32 data and 24 address lines wide static memory support.
16 bit and 32 bit wide chip select SDRAM memory support.
Static memory features include:
Asynchronous page mode read
Programmable Wait States
Bus turnaround delay
Output enable and write enable delays
Extended wait
Four chip selects for synchronous memory and four chip selects for static memory
devices.
Power-saving modes dynamically control EMC_CKEOUT and EMC_CLK signals to
SDRAMs.
Dynamic memory self-refresh mode controlled by software.
Controller supports 2048 (A0 to A10), 4096 (A0 to A11), and 8192 (A0 to A12) row
address synchronous memory parts. Those are typically 512 MB, 256 MB, and
128 MB parts, with 4, 8, 16, or 32 data bits per device.
Separate reset domains allow the for auto-refresh through a chip reset if desired.
SDRAM clock can run at full or half the Cortex-M4 core frequency.
Note: Synchronous static memory devices (synchronous burst mode) are not supported.
WE EMC_WE EMC_WE EMC_WE
CKEOUT EMC_
CKEOUT[3:0]
EMC_
CKEOUT[1:0]
EMC_
CKEOUT[1:0]
CLK EMC_CLK[3:0];
EMC_CLK01,
EMC_CLK23
EMC_CLK0, EMC_CLK3;
EMC_CLK01,
EMC_CLK23
EMC_CLK0, EMC_CLK3;
EMC_CLK01,
EMC_CLK23
DQMOUT EMC_
DQMOUT[3:0]
- EMC_
DQMOUT[1:0]
DYCS EMC_
DYCS[3:0]
EMC_DYCS[1:0] EMC_DYCS[2:0]
CAS EMC_CAS EMC_CAS EMC_CAS
RAS EMC_RAS EMC_RAS EMC_RAS
Table 6. EMC pinout for different packages
Function LBGA256 TFBGA100 LQFP208
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 74 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
7.18.5 High-speed USB Host/Device/OTG interface (USB0)
Remark: USB0 is available on the following parts: LPC435x, LPC433x, LPC432x. USB0
is not available on the LPC431x parts.
The USB OTG module allows the LPC436x to connect directly to a USB Host such as a
PC (in device mode) or to a USB Device in host mode.
7.18.5.1 Features
Contains UTMI+ compliant high-speed transceiver (PHY).
Complies with Universal Serial Bus specification 2.0.
Complies with USB On-The-Go supplement.
Complies with Enhanced Host Controller Interface Specification.
Supports auto USB 2.0 mode discovery.
Supports all high-speed USB-compliant peripherals.
Supports all full-speed USB-compliant peripherals.
Supports software Host Negotiation Protocol (HNP) and Session Request Protocol
(SRP) for OTG peripherals.
Supports interrupts.
Supports Start Of Frame (SOF) frame length adjust.
This module has its own, integrated DMA engine.
USB interface electrical test software included in ROM USB stack.
7.18.6 High-speed USB Host/Device interface with ULPI (USB1)
Remark: USB1 is available on the following parts: LPC435x and LPC433x. USB1 is not
available on the LPC432x and LPC431x parts.
The USB1 interface can operate as a full-speed USB Host/Device interface or can
connect to an external ULPI PHY for High-speed operation.
7.18.6.1 Features
Complies with Universal Serial Bus specification 2.0.
Complies with Enhanced Host Controller Interface Specification.
Supports auto USB 2.0 mode discovery.
Supports all high-speed USB-compliant peripherals if connected to external ULPI
PHY.
Supports all full-speed USB-compliant peripherals.
Supports interrupts.
Supports Start Of Frame (SOF) frame length adjust.
This module has its own, integrated DMA engine.
USB interface electrical test software included in ROM USB stack.
7.18.7 LCD controller
Remark: The LCD controller is only available on parts LPC435x. LCD is not available on
parts LPC433x, LPC432x, and LPC431x.
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 75 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
The LCD controller provides all of the necessary control signals to interface directly to
various color and monochrome LCD panels. Both STN (single and dual panel) and TFT
panels can be operated. The display resolution is selectable and can be up to 1024 768
pixels. Several color modes are provided, up to a 24-bit true-color non-palettized mode.
An on-chip 512 byte color palette allows reducing bus utilization (that is, memory size of
the displayed data) while still supporting many colors.
The LCD interface includes its own DMA controller to allow it to operate independently of
the CPU and other system functions. A built-in FIFO acts as a buffer for display data,
providing flexibility for system timing. Hardware cursor support can further reduce the
amount of CPU time required to operate the display.
7.18.7.1 Features
AHB master interface to access frame buffer.
Setup and control via a separate AHB slave interface.
Dual 16-deep programmable 64-bit wide FIFOs for buffering incoming display data.
Supports single and dual-panel monochrome Super Twisted Nematic (STN) displays
with 4-bit or 8-bit interfaces.
Supports single and dual-panel color STN displays.
Supports Thin Film Transistor (TFT) color displays.
Programmable display resolution including, but not limited to: 320 200, 320 240,
640 200, 640 240, 640 480, 800 600, and 1024 768.
Hardware cursor support for single-panel displays.
15 gray-level monochrome, 3375 color STN, and 32 K color palettized TFT support.
1, 2, or 4 bits-per-pixel (bpp) palettized displays for monochrome STN.
1, 2, 4, or 8 bpp palettized color displays for color STN and TFT.
16 bpp true-color non-palettized for color STN and TFT.
24 bpp true-color non-palettized for color TFT.
Programmable timing for different display panels.
256 entry, 16-bit palette RAM, arranged as a 128 32-bit RAM.
Frame, line, and pixel clock signals.
AC bias signal for STN, data enable signal for TFT panels.
Supports little and big-endian, and Windows CE data formats.
LCD panel clock may be generated from the peripheral clock, or from a clock input
pin.
7.18.8 Ethernet
Remark: The ethernet controller is available on parts LPC435x and LPC433x. Ethernet is
not available on parts LPC432x and LPC431x.
7.18.8.1 Features
10/100 Mbit/s
DMA support
Power management remote wake-up frame and magic packet detection
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 76 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
Supports both full-duplex and half-duplex operation
Supports CSMA/CD Protocol for half-duplex operation.
Supports IEEE 802.3x flow control for full-duplex operation.
Optional forwarding of received pause control frames to the user application in
full-duplex operation.
Back-pressure support for half-duplex operation.
Automatic transmission of zero-quanta pause frame on deassertion of flow control
input in full-duplex operation.
Supports IEEE1588 time stamping and IEEE 1588 advanced time stamping (IEEE
1588-2008 v2).
7.19 Digital serial peripherals
7.19.1 UART1
Remark: The LPC436x contain one UART with standard transmit and receive data lines.
UART1 also provides a full modem control handshake interface and support for
RS-485/9-bit mode allowing both software address detection and automatic address
detection using 9-bit mode.
UART1 includes a fractional baud rate generator. Standard baud rates such as 115 200 Bd
can be achieved with any crystal frequency above 2 MHz.
7.19.1.1 Features
Maximum UART data bit rate of 8 MBit/s.
16 B Receive and Transmit FIFOs.
Register locations conform to 16C550 industry standard.
Receiver FIFO trigger points at 1 B, 4 B, 8 B, and 14 B.
Built-in fractional baud rate generator covering wide range of baud rates without a
need for external crystals of particular values.
Auto baud capabilities and FIFO control mechanism that enables software flow
control implementation.
Equipped with standard modem interface signals. This module also provides full
support for hardware flow control.
Support for RS-485/9-bit/EIA-485 mode (UART1).
DMA support.
7.19.2 USART0/2/3
Remark: The LPC436x contain three USARTs. In addition to standard transmit and
receive data lines, the USARTs support a synchronous mode.
The USARTs include a fractional baud rate generator. Standard baud rates such as
115 200 Bd can be achieved with any crystal frequency above 2 MHz.
7.19.2.1 Features
Maximum UART data bit rate of 8 MBit/s.
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 77 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
16 B Receive and Transmit FIFOs.
Register locations conform to 16C550 industry standard.
Receiver FIFO trigger points at 1 B, 4 B, 8 B, and 14 B.
Built-in fractional baud rate generator covering wide range of baud rates without a
need for external crystals of particular values.
Auto baud capabilities and FIFO control mechanism that enables software flow
control implementation.
Support for RS-485/9-bit/EIA-485 mode.
USART3 includes an IrDA mode to support infrared communication.
All USARTs have DMA support.
Support for synchronous mode at a data bit rate of up to 8 Mbit/s.
Smart card mode conforming to ISO7816 specification
7.19.3 SPI serial I/O controller
Remark: The LPC436x contain one SPI controller.
SPI is a full duplex serial interface designed to handle multiple masters and slaves
connected to a given bus. Only a single master and a single slave can communicate on
the interface during a given data transfer. During a data transfer the master always sends
8 bits to 16 bits of data to the slave, and the slave always sends 8 bits to 16 bits of data to
the master.
7.19.3.1 Features
Maximum SPI data bit rate 25 Mbit/s.
Compliant with SPI specification
Synchronous, serial, full duplex communication
Combined SPI master and slave
Maximum data bit rate of one eighth of the input clock rate
8 bits to 16 bits per transfer
7.19.4 SSP serial I/O controller
Remark: The LPC436x contain two SSP controllers.
The SSP controller can operate on a SPI, 4-wire SSI, or Microwire bus. It can interact with
multiple masters and slaves on the bus. Only a single master and a single slave can
communicate on the bus during a given data transfer. The SSP supports full duplex
transfers, with frames of 4 bit to 16 bit of data flowing from the master to the slave and
from the slave to the master. In practice, often only one of these data flows carries
meaningful data.
7.19.4.1 Features
Maximum SSP speed in full-duplex mode of 25 Mbit/s; for transmit only 50 Mbit/s
(master) and 15 Mbit/s (slave)
Compatible with Motorola SPI, 4-wire Texas Instruments SSI, and National
Semiconductor Microwire buses
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 78 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
Synchronous serial communication
Master or slave operation
8-frame FIFOs for both transmit and receive
4-bit to 16-bit frame
DMA transfers supported by GPDMA
7.19.5 I2C-bus interface
Remark: The LPC436x each contain two I2C-bus interfaces.
The I2C-bus is bidirectional for inter-IC control using only two wires: a Serial Clock line
(SCL) and a Serial Data line (SDA). Each device is recognized by a unique address and
can operate as either a receiver-only device (for example an LCD driver) or a transmitter
with the capability to both receive and send information (such as memory). Transmitters
and/or receivers can operate in either master or slave mode, depending on whether the
chip has to initiate a data transfer or is only addressed. The I2C is a multi-master bus and
can be controlled by more than one bus master connected to it.
7.19.5.1 Features
I2C0 is a standard I2C compliant bus interface with open-drain pins. I2C0 also
supports Fast mode plus with bit rates up to 1 Mbit/s.
I2C1 uses standard I/O pins with bit rates of up to 400 kbit/s (Fast I2C-bus).
Easy to configure as master, slave, or master/slave.
Programmable clocks allow versatile rate control.
Bidirectional data transfer between masters and slaves.
Multi-master bus (no central master).
Arbitration between simultaneously transmitting masters without corruption of serial
data on the bus.
Serial clock synchronization allows devices with different bit rates to communicate via
one serial bus.
Serial clock synchronization can be used as a handshake mechanism to suspend and
resume serial transfer.
The I2C-bus can be used for test and diagnostic purposes.
All I2C-bus controllers support multiple address recognition and a bus monitor mode.
7.19.6 I2S interface
Remark: The LPC436x each contain two I2S-bus interfaces.
The I2S-bus provides a standard communication interface for digital audio applications.
The I2S-bus specification defines a 3-wire serial bus using one data line, one clock line,
and one word select signal. The basic I2S-bus connection has one master, which is
always the master, and one slave. The I2S-bus interface provides a separate transmit and
receive channel, each of which can operate as either a master or a slave.
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 79 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
7.19.6.1 Features
The I2S interfaces has separate input/output channels, each of which can operate in
master or slave mode.
Capable of handling 8-bit, 16-bit, and 32-bit word sizes.
Mono and stereo audio data supported.
The sampling frequency can range from 16 kHz to 192 kHz (16, 22.05, 32, 44.1, 48,
96, 192) kHz.
Support for an audio master clock.
Configurable word select period in master mode (separately for I2S-bus input and
output).
Two 8-word FIFO data buffers are provided, one for transmit and one for receive.
Generates interrupt requests when buffer levels cross a programmable boundary.
Two DMA requests controlled by programmable buffer levels. The DMA requests are
connected to the GPDMA block.
Controls include reset, stop and mute options separately for I2S-bus input and I2S-bus
output.
7.19.7 C_CAN
Remark: The LPC436x each contain two C_CAN controllers.
Controller Area Network (CAN) is the definition of a high performance communication
protocol for serial data communication. The C_CAN controller is designed to provide a full
implementation of the CAN protocol according to the CAN Specification Version 2.0B. The
C_CAN controller allows to build powerful local networks with low-cost multiplex wiring by
supporting distributed real-time control with a high level of reliability.
7.19.7.1 Features
Conforms to protocol version 2.0 parts A and B.
Supports bit rate of up to 1 Mbit/s.
Supports 32 Message Objects.
Each Message Object has its own identifier mask.
Provides programmable FIFO mode (concatenation of Message Objects).
Provides maskable interrupts.
Supports Disabled Automatic Retransmission (DAR) mode for time-triggered CAN
applications.
Provides programmable loop-back mode for self-test operation.
7.20 Counter/timers and motor control
7.20.1 General purpose 32-bit timers/external event counters
Remark: The LPC436x include four 32-bit timer/counters.
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 80 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
The timer/counter is designed to count cycles of the system derived clock or an
externally-supplied clock. It can optionally generate interrupts, generate timed DMA
requests, or perform other actions at specified timer values, based on four match
registers. Each timer/counter also includes two capture inputs to trap the timer value when
an input signal transitions, optionally generating an interrupt.
7.20.1.1 Features
A 32-bit timer/counter with a programmable 32-bit prescaler.
Counter or timer operation.
Two 32-bit capture channels per timer, that can take a snapshot of the timer value
when an input signal transitions. A capture event can also generate an interrupt.
Four 32-bit match registers that allow:
Continuous operation with optional interrupt generation on match.
Stop timer on match with optional interrupt generation.
Reset timer on match with optional interrupt generation.
Up to four external outputs corresponding to match registers, with the following
capabilities:
Set LOW on match.
Set HIGH on match.
Toggle on match.
Do nothing on match.
Up to two match registers can be used to generate timed DMA requests.
7.20.2 Motor control PWM
The motor control PWM is a specialized PWM supporting 3-phase motors and other
combinations. Feedback inputs are provided to automatically sense rotor position and use
that information to ramp speed up or down. An abort input causes the PWM to release all
motor drive outputs immediately . At the same time, the motor control PWM is highly
configurable for other generalized timing, counting, capture, and compare applications.
7.20.3 Quadrature Encoder Interface (QEI)
A quadrature encoder, also known as a 2-channel incremental encoder, converts angular
displacement into two pulse signals. By monitoring both the number of pulses and the
relative phase of the two signals, the user code can track the position, direction of rotation,
and velocity. In addition, a third channel, or index signal, can be used to reset the position
counter. The quadrature encoder interface decodes the digital pulses from a quadrature
encoder wheel to integrate position over time and determine direction of rotation. In
addition, the QEI can capture the velocity of the encoder wheel.
7.20.3.1 Features
Tracks encoder position.
Increments/decrements depending on direction.
Programmable for 2 or 4 position counting.
Velocity capture using built-in timer.
Velocity compare function with “less than” interrupt.
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 81 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
Uses 32-bit registers for position and velocity.
Three position compare registers with interrupts.
Index counter for revolution counting.
Index compare register with interrupts.
Can combine index and position interrupts to produce an interrupt for whole and
partial revolution displacement.
Digital filter with programmable delays for encoder input signals.
Can accept decoded signal inputs (clk and direction).
7.20.4 Repetitive Interrupt (RI) timer
The repetitive interrupt timer provides a free-running 32-bit counter which is compared to
a selectable value, generating an interrupt when a match occurs. Any bits of the
timer/compare function can be masked such that they do not contribute to the match
detection. The repetitive interrupt timer can be used to create an interrupt that repeats at
predetermined intervals.
7.20.4.1 Features
32-bit counter. Counter can be free-running or be reset by a generated interrupt.
32-bit compare value.
32-bit compare mask. An interrupt is generated when the counter value equals the
compare value, after masking. This mechanism allows for combinations not possible
with a simple compare.
7.20.5 Windowed WatchDog Timer (WWDT)
The purpose of the watchdog is to reset the controller if software fails to periodically
service it within a programmable time window.
7.20.5.1 Features
Internally resets chip if not periodically reloaded during the programmable time-out
period.
Optional windowed operation requires reload to occur between a minimum and
maximum time period, both programmable.
Optional warning interrupt can be generated at a programmable time prior to
watchdog time-out.
Enabled by software but requires a hardware reset or a watchdog reset/interrupt to be
disabled.
Incorrect feed sequence causes reset or interrupt if enabled.
Flag to indicate watchdog reset.
Programmable 24-bit timer with internal prescaler.
Selectable time period from (Tcy(WDCLK) 256 4) to (Tcy(WDCLK) 224 4) in
multiples of Tcy(WDCLK) 4.
The Watchdog Clock (WDCLK) uses the IRC as the clock source.
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 82 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
7.21 Analog peripherals
7.21.1 Analog-to-Digital Converter (ADC0/1)
Remark: The LPC436x contain two 10-bit ADCs.
7.21.1.1 Features
10-bit successive approximation analog to digital converter.
Input multiplexing among 8 pins.
Power-down mode.
Measurement range 0 to VDDA.
Sampling frequency up to 400 kSamples/s.
Burst conversion mode for single or multiple inputs.
Optional conversion on transition on ADCTRIG0 or ADCTRIG1 pins, combined timer
outputs 8 or 15, or the PWM output MCOA2.
Individual result registers for each A/D channel to reduce interrupt overhead.
DMA support.
7.21.2 Digital-to-Analog Converter (DAC)
7.21.2.1 Features
10-bit resolution
Monotonic by design (resistor string architecture)
Controllable conversion speed
Low power consumption
7.22 Peripherals in the RTC power domain
7.22.1 RTC
The Real Time Clock (RTC) is a set of counters for measuring time when system power is
on, and optionally when it is off. It uses little power when the CPU does not access its
registers, especially in the reduced power modes. A separate 32 kHz oscillator clocks the
RTC. The oscillator produces a 1 Hz internal time reference and is powered by its own
power supply pin, VBAT.
7.22.1.1 Features
Measures the passage of time to maintain a calendar and clock. Provides seconds,
minutes, hours, day of month, month, year, day of week, and day of year.
Ultra-low power design to support battery powered systems. Uses power from the
CPU power supply when it is present.
Dedicated battery power supply pin.
RTC power supply is isolated from the rest of the chip.
Calibration counter allows adjustment to better than 1 sec/day with 1 sec resolution.
Periodic interrupts can be generated from increments of any field of the time registers.
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 83 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
Alarm interrupt can be generated for a specific date/time.
7.22.1.2 Event monitor/recorder
The event monitor/recorder allows recording and creating a time stamp of events related
to the WAKEUP pins. Sensors report changes to the state of the WAKEUP pins, and the
event monitor/recorder stores records of such events. The event recorder can be
powered by the backup battery.
The event monitor/recorder can monitor the integrity of the device and record any
tampering events.
Features
Supports three digital event inputs in the VBAT power domain.
An event is defined as a level change at the digital event inputs.
For each event channel, two timestamps mark the first and the last occurrence of an
event. Each channel also has a dedicated counter tracking the total number of events.
Timestamp values are taken from the RTC.
Runs in VBAT power domain, independent of system power supply. The
event/recorder/monitor can therefore operate in Deep power-down mode.
Low power consumption.
Interrupt available if system is running.
A qualified event can be used as a wake-up trigger.
State of event interrupts accessible by software through GPIO.
7.22.2 Alarm timer
The alarm timer is a 16-bit timer and counts down at 1 kHz from a preset value generating
alarms in intervals of up to 1 min. The counter triggers a status bit when it reaches 0x00
and asserts an interrupt if enabled.
The alarm timer is part of the RTC power domain and can be battery powered.
7.23 System control
7.23.1 Configuration registers (CREG)
The following settings are controlled in the configuration register block:
BOD trip settings
Oscillator output
DMA-to-peripheral muxing
Ethernet mode
Memory mapping
Timer/USART inputs
Enabling the USB controllers
In addition, the CREG block contains the part identification and part configuration
information.
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 84 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
7.23.2 System Control Unit (SCU)
The system control unit determines the function and electrical mode of the digital pins. By
default function 0 is selected for all pins with pull-up enabled. For pins that support a
digital and analog function, the ADC function select registers in the SCU enable the
analog function.
A separate set of analog I/Os for the ADCs and the DAC as well as most USB pins are
located on separate pads and are not controlled through the SCU.
In addition, the clock delay register for the SDRAM EMC_CLK pins and the registers that
select the pin interrupts are located in the SCU.
7.23.3 Clock Generation Unit (CGU)
The Clock Generator Unit (CGU) generates several base clocks. The base clocks can be
unrelated in frequency and phase and can have different clock sources within the CGU.
One CGU base clock is routed to the CLKOUT pins. The base clock that generates the
CPU clock is referred to as CCLK.
Multiple branch clocks are derived from each base clock. The branch clocks offer flexible
control for power-management purposes. All branch clocks are outputs of one of two
Clock Control Units (CCUs) and can be controlled independently. Branch clocks derived
from the same base clock are synchronous in frequency and phase.
7.23.4 Internal RC oscillator (IRC)
The IRC is used as the clock source for the WWDT and/or as the clock that drives the
PLLs and the CPU. The nominal IRC frequency is 12 MHz. The IRC is trimmed to 1.5 %
accuracy for Tamb = 0 °C to 85 °C and 3% accuracy for Tamb = -40 °C to 0 °C and Tamb =
85 °C to 105 °C.
Upon power-up or any chip reset, the LPC436x use the IRC as the clock source. The boot
loader then configures the PLL1 to provide a 96 MHz clock for the core and PLL0USB or
PLL0AUDIO as needed if an external boot source is selected.
7.23.5 PLL0USB (for USB0)
PLL0 is a dedicated PLL for the USB0 High-speed controller.
PLL0 accepts an input clock frequency from an external oscillator in the range of 14 kHz
to 25 MHz. The input frequency is multiplied up to a high frequency with a Current
Controlled Oscillator (CCO). The CCO operates in the range of 4.3 MHz to 550 MHz.
7.23.6 PLL0AUDIO (for audio)
The audio PLL PLL0AUDIO is a general purpose PLL with a very small step size. This
PLL accepts an input clock frequency derived from an external oscillator or internal IRC.
The input frequency is multiplied up to a high frequency with a Current Controlled
Oscillator (CCO). A sigma-delta converter modulates the PLL divider ratios to obtain the
desired output frequency. The output frequency can be set as a multiple of the sampling
frequency fs to 32fs, 64fs, 128 fs, 256 fs, 384 fs, 512 fs and the sampling
frequency fs can range from 16 kHz to 192 kHz (16, 22.05, 32, 44.1, 48, 96,192) kHz.
Many other frequencies are possible as well using the integrated fractional divider.
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 85 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
7.23.7 System PLL1
The PLL1 accepts an input clock frequency from an external oscillator in the range of
1 MHz to 25 MHz. The input frequency is multiplied up to a high frequency with a Current
Controlled Oscillator (CCO). The multiplier can be an integer value from 1 to 32. The CCO
operates in the range of 156 MHz to 320 MHz. This range is possible through an
additional divider in the loop to keep the CCO within its frequency range while the PLL is
providing the desired output frequency. The output divider can be set to divide by 2, 4, 8,
or 16 to produce the output clock. Since the minimum output divider value is 2, it is
insured that the PLL output has a 50 % duty cycle. The PLL is turned off and bypassed
following a chip reset. After reset, software can enable the PLL. The program must
configure and activate the PLL, wait for the PLL to lock, and then connect to the PLL as a
clock source. The PLL settling time is 100 s.
7.23.8 Reset Generation Unit (RGU)
The RGU allows generation of independent reset signals for individual blocks and
peripherals on the LPC436x.
7.23.9 Power Management Controller (PMC)
The PMC controls the power to the cores, peripherals, and memories.
The LPC436x support the following power modes in order from highest to lowest power
consumption:
1. Active mode
2. Sleep mode
3. Power-down modes:
a. Deep-sleep mode
b. Power-down mode
c. Deep power-down mode
Active mode and sleep mode apply to the state of the core. In a dual-core system, either
core can be in active or sleep mode independently of the other core.
If the core is in Active mode, it is fully operational and can access peripherals and
memories as configured by software. If the core is in Sleep mode, it receives no clocks,
but peripherals and memories remain running.
Either core can enter sleep mode from active mode independently of the other core and
while the other core remains in active mode or is in sleep mode.
Power-down modes apply to the entire system. In the Power-down modes, both cores and
all peripherals except for peripherals in the always-on power domain are shut down.
Memories can remain powered for retaining memory contents as defined by the individual
power-down mode.
Either core in active mode can put the part into one of the three power down modes if the
core is enabled to do so. If both cores are enabled for putting the system into power-down,
then the system enters power-down only once both cores have received a WFI or WFE
instruction.
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 86 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
Wake-up from sleep mode is caused by an interrupt or event in the core’s NVIC. The
interrupt is captured in the NVIC and an event is captured in the Event router. Both cores
can wake up from sleep mode independently of each other.
Wake-up from the Power-down modes, Deep-sleep, Power-down, and Deep power-down,
is caused by an event on the WAKEUP pins or an event from the RTC or alarm timer.
When waking up from Deep power-down mode, the part resets and attempts to boot.
7.23.10 Power control
The LPC436x feature several independent power domains to control power to the core
and the peripherals (see Figure 8). The RTC and its associated peripherals (the alarm
timer, the CREG block, the OTP controller, the back-up registers, and the event router)
are located in the RTC power-domain. The main regulator or a battery supply can power
the RTC. A power selector switch ensures that the RTC block is always powered on.
Fig 8. Power domains
REAL-TIME CLOCK
BACKUP REGISTERS
RESET/WAKE-UP
CONTROL
REGULATOR
32 kHz
OSCILLATOR
ALWAYS-ON/RTC POWER DOMAIN
MAIN POWER DOMAIN
RTCX1
VBAT
VDDREG
RTCX2
VDDIO
VSS
to memories,
peripherals,
oscillators,
PLLs
to cores
to I/O pads
ADC
DAC
OTP
ADC POWER DOMAIN
OTP POWER DOMAIN
USB0 POWER DOMAIN
VDDA
VSSA
VPP
USB0
USB0_VDDA3V_DRIVER
USB0_VDDA3V3
LPC43xx
ULTRA LOW-POWER
REGULATOR
ALARM
RESET
WAKEUP0/1/2/3
to RTC
domain
peripherals
002aag378
to RTC I/O
pads (Vps)
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 87 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
7.23.11 Code security (Code Read Protection - CRP)
CRP enables different levels of security so that access to the on-chip flash and use of the
JTAG and ISP can be restricted. CRP is invoked by programming a specific pattern into a
dedicated flash location. IAP commands are not affected by CRP.
There are three levels of the Code Read Protection:
In level CRP1, access to the chip via the JTAG is disabled. Partial flash updates are
allowed (excluding flash sector 0) using a limited set of the ISP commands. This level
is useful when CRP is required and flash field updates are needed. CRP1 does
prevent the user code from erasing all sectors.
In level CRP2, access to the chip via the JTAG is disabled. Only a full flash erase and
update using a reduced set of the ISP commands is allowed.
In level CRP3, any access to the chip via the JTAG pins or the ISP is disabled. This
mode also disables the ISP override using P2_7 pin. If necessary, the application
code must provide a flash update mechanism using the IAP calls or using the
reinvoke ISP command to enable flash update via USART0. See Table 5
7.24 Serial Wire Debug/JTAG
Debug and trace functions are integrated into the ARM Cortex-M4. Serial wire debug and
trace functions are supported in addition to a standard JTAG debug and parallel trace
functions. The ARM Cortex-M4 is configured to support up to eight breakpoints and four
watch points.
Remark: Serial Wire Debug is supported for the ARM Cortex-M4 only,
The ARM Cortex-M0 coprocessors support JTAG debug. A standard ARM
Cortex-compliant debugger can debug the ARM Cortex-M4 and the ARM Cortex-M0
cores separately or both cores simultaneously.
Remark: In order to debug the ARM Cortex-M0, release the M0 reset by software in the
RGU block.
CAUTION
If level three Code Read Protection (CRP3) is selected, no future factory testing can be
performed on the device.
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 88 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
Fig 9. Dual-core debug configuration
002aah448
ARM Cortex-M0 ARM Cortex-M4
TCK
DBGEN = HIGH
TMS
TRST
TDI TDO TDO
TDO
DBGEN
RESET = HIGH
RESET
TCK
TMS
TRST
TDI
TCK
TMS
TRST
TDI
JTAG ID = 0x0BA0 1477 JTAG ID = 0x4BA0 0477
LPC43xx
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 89 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
8. Limiting values
[1] The following applies to the limiting values:
a) Absolute maximum ratings state the extreme limits that the product can withstand without leading to irrecoverable failure. Failure
includes the loss of reliability and shorter lifetime of the device. Conditions for functional operation of the part are shown in Table 11
“Static characteristics”.
b) This product includes circuitry designed for the protection of its internal devices from the damaging effects of excessive static
charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maximum.
c) Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless
otherwise noted.
[2] Including voltage on outputs in 3-state mode.
[3] Dependent on package type.
[4] Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 k series resistor.
Table 7. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).[1]
Symbol Parameter Conditions Min Max Unit
VDD(REG)(3V3) regulator supply voltage
(3.3 V)
on pin VDDREG 0.5 3.6 V
VDD(IO) input/output supply
voltage
on pin VDDIO 0.5 3.6 V
VDDA(3V3) analog supply voltage
(3.3 V)
on pin VDDA 0.5 3.6 V
VBAT battery supply voltage on pin VBAT 0.5 3.6 V
Vprog(pf) polyfuse programming
voltage
on pin VPP 0.5 3.6 V
VIinput voltage when VDD(IO) 2.4 V
5 V tolerant digital I/O pins
[2] 0.5 5.5 V
ADC/DAC pins and digital I/O
pins configured for an analog
function
0.5 VDDA(3V3) V
USB0 pins USB0_DP;
USB0_DM;USB0_VBUS
0.3 5.25 V
USB0 pins USB0_ID;
USB0_RREF
0.3 3.6 V
USB1 pins USB1_DP and
USB1_DM
0.3 5.25 V
IDD supply current per supply pin - 100 mA
ISS ground current per ground pin - 100 mA
Ilatch I/O latch-up current (0.5VDD(IO)) < VI < (1.5VDD(IO));
Tj < 125 C
- 100 mA
Tstg storage temperature [3] 65 +150 C
Ptot(pack) total power dissipation
(per package)
based on package heat transfer,
not device power consumption
- 1.5 W
VESD electrostatic discharge
voltage
human body model; all pins [4] - 2000 V
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 90 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
9. Thermal characteristics
The average chip junction temperature, Tj (C), can be calculated using the following
equation:
(1)
Tamb = ambient temperature (C),
Rth(j-a) = the package junction-to-ambient thermal resistance (C/W)
PD = sum of internal and I/O power dissipation
The internal power dissipation is the product of IDD and VDD. The I/O power dissipation of
the I/O pins is often small and many times can be negligible. However it can be significant
in some applications.
Table 8. Thermal characteristics
Symbol Parameter Conditions Min Typ Max Unit
Tj(max) maximum junction
temperature
- - - 125 C
Table 9. Thermal resistance (LQFP packages)
Symbol Parameter Conditions Thermal resistance in C/W
±15 %
LQFP144 LQFP208
Rth(j-a) thermal resistance from
junction to ambient
JEDEC (4.5 in 4 in); still
air
38 31
Single-layer (4.5 in 3 in);
still air
50 39
Rth(j-c) thermal resistance from
junction to case
-1110
Table 10. Thermal resistance value (BGA packages)
Symbol Parameter Conditions Thermal resistance in C/W ±15 %
LBGA256 TFBGA100
Rth(j-a) thermal resistance from
junction to ambient
JEDEC (4.5 in 4 in);
still air
29 46
8-layer (4.5 in 3 in);
still air
24 37
Rth(j-c) thermal resistance from
junction to case
-1411
T
jTamb PDRth j a
+=
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 91 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
10. Static characteristics
Table 11. Static characteristics
Tamb = 40 C to +105 C, unless otherwise specified.
Symbol Parameter Conditions Min Typ[1] Max Unit
Supply pins
VDD(IO) input/output supply
voltage
[17] 2.4 - 3.6 V
VDD(REG)(3V3) regulator supply voltage
(3.3 V)
[2] 2.4 - 3.6 V
VDDA(3V3) analog supply voltage
(3.3 V)
on pin VDDA 2.4 - 3.6 V
on pins
USB0_VDDA3V3_
DRIVER and
USB0_VDDA3V3
3.0 3.3 3.6 V
VBAT battery supply voltage [2] 2.4 - 3.6 V
Vprog(pf) polyfuse programming
voltage
on pin VPP (for OTP) [3] 2.7 - 3.6 V
Iprog(pf) polyfuse programming
current
on pin VPP; OTP
programming time
1.6 ms
- - 30 mA
IDD(REG)(3V3) regulator supply current
(3.3 V)
Active mode; ARM
Cortex-M0 core in reset;
code
while(1){}
executed from RAM; all
peripherals disabled;
PLL1 enabled
CCLK = 12 MHz [4] -10-mA
CCLK = 60 MHz [4] 28 - mA
CCLK = 120 MHz [4] -51-mA
CCLK = 180 MHz [4] -74-mA
CCLK = 204 MHz [4] -83-mA
IDD(REG)(3V3) regulator supply current
(3.3 V)
after WFE/WFI instruction
executed from RAM; all
peripherals disabled;
ARM Cortex-M0 core in
reset
sleep mode [4][5] - 8.8 - mA
deep-sleep mode [4] - 145 - A
power-down mode [4] -23-A
deep power-down
mode
[4][6] - 0.05 - A
deep power-down
mode; VBAT floating
[4] - 3.0 - A
IBAT battery supply current VBAT = 3.0 V;
VDD(REG)(3V3) = 3.3 V
[7] - 0.1 nA
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 92 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
IBAT battery supply current VDD(REG)(3V3) = 3.3 V;
VBAT = 3.6 V
deep-sleep mode
[8]
- 1.5 - A
power-down mode [8] - 1.5 - A
deep power-down
mode
[8]
- 1.5 - A
IBAT battery supply current Deep power-down mode;
RTC running;
VDD(REG) = VDDA =
VDDIO = 0 V; - 3.0 - A
VDD(REG)(3V3) =
VBAT = 3.3 V
-
1.5 - A
IDD(IO) I/O supply current deep sleep mode - < 0.1 - A
power-down mode - < 0.1 - A
deep power-down mode - < 0.1 - A
IDDA Analog supply current on pin VDDA;
deep sleep mode
[10] - 0.4 -
A
power-down mode [10] - 0.4 - A
deep power-down
mode
[10] - 0.007 -
A
RESET pin
VIH HIGH-level input
voltage
[9] 0.8 (Vps
0.35)
- 5.5 V
VIL LOW-level input voltage [9] 0.5 - 0.3 (Vps
0.1)
V
Vhys hysteresis voltage [9] 0.05 (Vps
0.35)
--V
Standard I/O pins - normal drive strength
CIinput capacitance - - 2 pF
ILL LOW-level leakage
current
VI = 0 V; on-chip pull-up
resistor disabled
-3-nA
ILH HIGH-level leakage
current
VI = VDD(IO); on-chip
pull-down resistor
disabled
-3-nA
VI = 5 V; Tamb = 25 °C - 0.5 - nA
VI = 5 V; Tamb = 105 °C - 40 - nA
IOZ OFF-state output
current
VO = 0 V to VDD(IO);
on-chip pull-up/down
resistors disabled;
absolute value
-3-nA
VIinput voltage pin configured to provide
a digital function;
VDD(IO) 2.4 V
0 - 5.5 V
VDD(IO) = 0 V 0 - 3.6 V
VOoutput voltage output active 0 - VDD(IO) V
Table 11. Static characteristics …continued
Tamb = 40 C to +105 C, unless otherwise specified.
Symbol Parameter Conditions Min Typ[1] Max Unit
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 93 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
VIH HIGH-level input
voltage
0.7
VDD(IO)
- 5.5 V
VIL LOW-level input voltage 0.5 - 0.3
VDD(IO)
V
Vhys hysteresis voltage 0.1
VDD(IO)
--V
VOH HIGH-level output
voltage
IOH = 6 mA VDD(IO)
0.4
--V
VOL LOW-level output
voltage
IOL = 6 mA - - 0.4 V
IOH HIGH-level output
current
VOH = VDD(IO) 0.4 V 6- - mA
IOL LOW-level output
current
VOL = 0.4 V 6 - - mA
IOHS HIGH-level short-circuit
output current
drive HIGH; connected to
ground
[11] - - 86.5 mA
IOLS LOW-level short-circuit
output current
drive LOW; connected to
VDD(IO)
[11] - - 76.5 mA
Ipd pull-down current VI = 5 V [13]
[14]
[15]
-93-A
Ipu pull-up current VI = 0 V [13]
[14]
[15]
-62 - A
VDD(IO) < VI 5 V - 10 - A
Rsseries resistance on I/O pins with analog
function; analog function
enabled
200
I/O pins - high drive strength
CIinput capacitance - - 5.2 pF
ILL LOW-level leakage
current
VI = 0 V; on-chip pull-up
resistor disabled
-3-nA
IOZ OFF-state output
current
VO = 0 V to VDD(IO);
on-chip pull-up/down
resistors disabled;
absolute value
-3-nA
VIinput voltage pin configured to provide
a digital function;
VDD(IO) 2.4 V 0 - 5.5 V
VDD(IO) = 0 V 0 - 3.6 V
VOoutput voltage output active 0 - VDD(IO) V
VIH HIGH-level input
voltage
0.7
VDD(IO)
- 5.5 V
VIL LOW-level input voltage 0.5 - 0.3
VDD(IO)
V
Table 11. Static characteristics …continued
Tamb = 40 C to +105 C, unless otherwise specified.
Symbol Parameter Conditions Min Typ[1] Max Unit
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 94 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
Vhys hysteresis voltage 0.1
VDD(IO)
--V
Ipd pull-down current VI = VDD(IO) [13]
[14]
[15]
-62-A
Ipu pull-up current VI = 0 V [13]
[14]
[15]
-62 - A
VDD(IO) < VI 5 V - 10 - A
I/O pins - high drive strength: standard drive mode
ILH HIGH-level leakage
current
VI = VDD(IO); on-chip
pull-down resistor
disabled
-3-nA
VI = 5 V; Tamb = 25 °C - 0.6 - nA
VI = 5 V; Tamb = 105 °C - 65 - nA
IOH HIGH-level output
current
VOH = VDD(IO) 0.4 V 4- - mA
IOL LOW-level output
current
VOL = 0.4 V 4 - - mA
IOHS HIGH-level short-circuit
output current
drive HIGH; connected to
ground
[11] - - 32 mA
IOLS LOW-level short-circuit
output current
drive LOW; connected to
VDD(IO)
[11] - - 32 mA
I/O pins - high drive strength: medium drive mode
ILH HIGH-level leakage
current
VI = VDD(IO); on-chip
pull-down resistor
disabled
-3-nA
VI = 5 V; Tamb = 25 °C - 0.7 - nA
VI = 5 V; Tamb = 105 °C - 70 - nA
IOH HIGH-level output
current
VOH = VDD(IO) 0.4 V 8- - mA
IOL LOW-level output
current
VOL = 0.4 V 8 - - mA
IOHS HIGH-level short-circuit
output current
drive HIGH; connected to
ground
[11] - - 65 mA
IOLS LOW-level short-circuit
output current
drive LOW; connected to
VDD(IO)
[11] - - 63 mA
I/O pins - high drive strength: high drive mode
ILH HIGH-level leakage
current
VI = VDD(IO); on-chip
pull-down resistor
disabled
-3-nA
VI = 5 V; Tamb = 25 °C - 0.6 - nA
VI = 5 V; Tamb = 105 °C - 63 - nA
IOH HIGH-level output
current
VOH = VDD(IO) 0.4 V 14 - - mA
Table 11. Static characteristics …continued
Tamb = 40 C to +105 C, unless otherwise specified.
Symbol Parameter Conditions Min Typ[1] Max Unit
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 95 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
IOL LOW-level output
current
VOL = 0.4 V 14 - - mA
IOHS HIGH-level short-circuit
output current
drive HIGH; connected to
ground
[11] --113mA
IOLS LOW-level short-circuit
output current
drive LOW; connected to
VDD(IO)
[11] --110mA
I/O pins - high drive strength: ultra-high drive mode
ILH HIGH-level leakage
current
VI = VDD(IO); on-chip
pull-down resistor
disabled
-3-nA
VI = 5 V; Tamb = 25 °C - 0.6 - nA
VI = 5 V; Tamb = 105 °C - 63 - nA
IOH HIGH-level output
current
VOH = VDD(IO) 0.4 V 20 - - mA
IOL LOW-level output
current
VOL = 0.4 V 20 - - mA
IOHS HIGH-level short-circuit
output current
drive HIGH; connected to
ground
[11] - - 165 mA
IOLS LOW-level short-circuit
output current
drive LOW; connected to
VDD(IO)
[11] - - 156 mA
I/O pins - high-speed
CIinput capacitance - - 2 pF
ILL LOW-level leakage
current
VI = 0 V; on-chip pull-up
resistor disabled
-3-nA
ILH HIGH-level leakage
current
VI = VDD(IO); on-chip
pull-down resistor
disabled
-3-nA
VI = 5 V; Tamb = 25 °C - 0.5 - nA
VI = 5 V; Tamb = 105 °C - 40 - nA
IOZ OFF-state output
current
VO = 0 V to VDD(IO);
on-chip pull-up/down
resistors disabled;
absolute value
-3-nA
VIinput voltage pin configured to provide
a digital function;
VDD(IO) 2.4 V 0 - 5.5 V
VDD(IO) = 0 V 0 - 3.6 V
VOoutput voltage output active 0 - VDD(IO) V
VIH HIGH-level input
voltage
0.7
VDD(IO)
- 5.5 V
VIL LOW-level input voltage 0.5 - 0.3
VDD(IO)
V
Vhys hysteresis voltage 0.1
VDD(IO)
--V
Table 11. Static characteristics …continued
Tamb = 40 C to +105 C, unless otherwise specified.
Symbol Parameter Conditions Min Typ[1] Max Unit
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 96 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
VOH HIGH-level output
voltage
IOH = 8 mA VDD(IO)
0.4
--V
VOL LOW-level output
voltage
IOL = 8 mA - - 0.4 V
IOH HIGH-level output
current
VOH = VDD(IO) 0.4 V 8- - mA
IOL LOW-level output
current
VOL = 0.4 V 8 - - mA
IOHS HIGH-level short-circuit
output current
drive HIGH; connected to
ground
[11] - - 86 mA
IOLS LOW-level short-circuit
output current
drive LOW; connected to
VDD(IO)
[11] - - 76 mA
Ipd pull-down current VI = VDD(IO) [13]
[14]
[15]
-62-A
Ipu pull-up current VI = 0 V [13]
[14]
[15]
-62 - A
VDD(IO) < VI 5 V - 0 - A
Open-drain I2C0-bus pins
VIH HIGH-level input
voltage
0.7
VDD(IO)
--V
VIL LOW-level input voltage 0.5 0.14 0.3
VDD(IO)
V
Vhys hysteresis voltage 0.1
VDD(IO)
--V
VOL LOW-level output
voltage
IOLS = 3 mA - - 0.4 V
ILI input leakage current VI = VDD(IO) [12] - 4.5 - A
VI = 5 V - - 10 A
Oscillator pins
Vi(XTAL1) input voltage on pin
XTAL1
0.5 - 1.2 V
Vo(XTAL2) output voltage on pin
XTAL2
0.5 - 1.2 V
Cio input/output
capacitance
[16] - - 0.8 pF
USB0 pins[17]
VIinput voltage on pins USB0_DP;
USB0_DM; USB0_VBUS
VDD(IO) 2.4 V 0 - 5.25 V
VDD(IO) = 0 V 0 - 3.6 V
Rpd pull-down resistance on pin USB0_VBUS 48 64 80 k
Table 11. Static characteristics …continued
Tamb = 40 C to +105 C, unless otherwise specified.
Symbol Parameter Conditions Min Typ[1] Max Unit
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 97 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply voltages.
[2] The recommended operating condition for the battery supply is VDD(REG)(3V3) > VBAT + 0.2 V. Special conditions for VDD(REG)(3V3) apply
when writing to the flash and EEPROM. See Table 16 and Table 15.
[3] Pin VPP should either be not connected (when OTP does not need to be programmed) or tied to pins VDDIO and VDDREG to ensure
the same ramp-up time for both supply voltages.
[4] VDD(REG)(3V3) = 3.3 V; VDD(IO) = 3.3 V; Tamb = 25 C.
[5] PLL1 disabled; IRC running; CCLK = 12 MHz.
[6] VBAT = 3.6 V.
[7] Tamb = -40 C to +105 C; VDD(IO) = VDDA = 3.6 V; over entire frequency range CCLK = 12 MHz to 204 MHz; in active mode, sleep
mode; deep-sleep mode, power-down mode, and deep power-down mode.
[8] On pin VBAT; Tamb = 25 C.
[9] Vps corresponds to the output of the power switch (see Figure 8) which is determined by the greater of VBAT and VDD(Reg)(3V3).
[10] VDDA(3V3) = 3.3 V; Tamb = 25 C.
[11] Allowed as long as the current limit does not exceed the maximum current allowed by the device.
[12] To VSS.
[13] The values specified are simulated and absolute values.
[14] The weak pull-up resistor is connected to the VDD(IO) rail and pulls up the I/O pin to the VDD(IO) level.
[15] The input cell disables the weak pull-up resistor when the applied input voltage exceeds VDD(IO).
VIC common-mode input
voltage
high-speed mode 50 200 500 mV
full-speed/low-speed
mode
800 - 2500 mV
chirp mode 50 - 600 mV
Vi(dif) differential input voltage 100 400 1100 mV
USB1 pins (USB1_DP/USB1_DM)[17]
IOZ OFF-state output
current
0 V < VI < 3.3 V [17] --10 A
VBUS bus supply voltage [18] - - 5.25 V
VDI differential input
sensitivity voltage
(D+) (D)0.2 - - V
VCM differential common
mode voltage range
includes VDI range 0.8 - 2.5 V
Vth(rs)se single-ended receiver
switching threshold
voltage
0.8 - 2.0 V
VOL LOW-level output
voltage for
low-/full-speed
RL of 1.5 k to 3.6 V - - 0.18 V
VOH HIGH-level output
voltage (driven) for
low-/full-speed
RL of 15 k to GND 2.8 - 3.5 V
Ctrans transceiver capacitance pin to GND - - 20 pF
ZDRV driver output
impedance for driver
which is not high-speed
capable
with 33 series resistor;
steady state drive
[19] 36 - 44.1
Table 11. Static characteristics …continued
Tamb = 40 C to +105 C, unless otherwise specified.
Symbol Parameter Conditions Min Typ[1] Max Unit
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 98 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
[16] The parameter value specified is a simulated value excluding bond capacitance.
[17] For USB operation 3.0 V VDD((IO) 3.6 V. Guaranteed by design.
[18] VDD(IO) present.
[19] Includes external resistors of 33 1 % on D+ and D.
10.1 Power consumption
Conditions: Tamb = 25 C; executing code while (1){} from SRAM; M0 core in reset; system PLL
enabled; IRC enabled; all peripherals disabled; all peripheral clocks disabled.
Fig 10. Typical supply current versus regulator supply voltage VDD(REEG)(3V3) in active
mode
Conditions: VDD(REG)(3V3) = 3.3 V; executing code while (1){} from SRAM; M0 core in reset; system
PLL enabled; IRC enabled; all peripherals disabled; all peripheral clocks disabled.
Fig 11. Typical supply current versus temperature in active mode
aaa-013450
2.2 2.4 2.6 2.8 3 3.2 3.4 3.6
0
20
40
60
80
100
VDD(REG)(3V3) (V)
I
DD(REG)(3V3)
DD(REG)(3V3)
IDD(REG)(3V3)
(mA)
(mA)
(mA)
12 MHz
12 MHz
12 MHz
60 MHz
60 MHz
60 MHz
120 MHz
120 MHz
120 MHz
180 MHz
180 MHz
180 MHz
204 MHz
204 MHz
204 MHz
aaa-013449
-40 -20 0 20 40 60 80 100 120
0
20
40
60
80
100
temperature (°C)
I
DD(REG)(3V3)
DD(REG)(3V3)
IDD(REG)(3V3)
(mA)
(mA)
(mA)
12 MHz
12 MHz
12 MHz
60 MHz
60 MHz
60 MHz
120 MHz
120 MHz
120 MHz
180 MHz
180 MHz
180 MHz
204 MHz
204 MHz
204 MHz
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 99 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
Conditions: active mode entered executing code while (1){} from SRAM; M0 core in reset;
VDD(REG)(3V3) = 3.3 V; system PLL enabled; IRC enabled; all peripherals disabled; all peripheral
clocks disabled.
Fig 12. Typical supply current versus core frequency in active mode; code executed from
SRAM
Conditions: VDD(REG)(3V3) = 3.3 V; internal pull-up resistors disabled; M0 core in reset; system PLL
disabled; IRC enabled; all peripherals disabled; all peripheral clocks disabled. CCLK = 12 MHz.
Fig 13. Typical supply current versus temperature in sleep mode
aaa-013452
12 36 60 84 108 132 156 180 20
4
0
20
40
60
80
100
frequency (MHz)
I
DD(REG)(3V3)
DD(REG)(3V3)
IDD(REG)(3V3)
(mA)
(mA)
(mA)
+105 C
+105 C
+105 °C
+90 C
+90 C
+90 °C
+25 C
+25 C
+25 °C
0 C
0 C
0 °C
-40 C
-40 C
-40 °C
aaa-013047
-40 -20 0 20 40 60 80 100 120
0
5
10
15
20
temperature (°C)
I
DD(REG)(3V3)
DD(REG)(3V3)
IDD(REG)(3V3)
(mA)
(mA)
(mA)
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 100 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
Conditions: VDD(REG)(3V3) = VDD(IO) = 3.3 V. Conditions: VDD(REG)(3V3) = VDD(IO) = 3.3 V.
Fig 14. Typical supply current versus temperature in
Deep-sleep mode
Fig 15. Typical supply current versus temperature in
Power-down mode
002aah410
-40 0 40 80 120
0
0.4
0.8
1.2
1.6
temperature (°C)
(μA)
(μA)
IDD(REG)(3V3)
(mA)
002aah412
-40 0 40 80 120
0
60
120
180
240
300
temperature (°C)
(μA)
(μA)
IDD(REG)(3V3)
(μA)
Conditions: VDD(REG)(3V3) = VDD(IO) = 3.3 V. VBAT =
VDD(REG)(3V3) + 0.4 V.
Conditions: VBAT = 3.6 V. VDD(REG)(3V3) not present.
Fig 16. Typical supply current versus temperature in
Deep power-down mode
Fig 17. Typical battery supply current versus
temperature
002aah424
-40 -20 0 20 40 60 80 100 120
0
5
10
15
20
25
temperature (°C)
(μA)
IBAT
IDD(REG)(3V3)/IBAT
(μA)
IBAT
IDD(REG)(3V3)
002aah415
-40 -20 0 20 40 60 80 100 120
0
5
10
15
20
25
30
temperature (°C)
IBAT
IBAT
IBAT
(μA)
(μA)
(μA)
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 101 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
10.2 Peripheral power consumption
The typical power consumption at T = 25 C for each individual peripheral is measured as
follows:
1. Enable all branch clocks and measure the current IDD(REG)(3V3).
2. Disable the branch clock to the peripheral to be measured and keep all other branch
clocks enabled.
3. Calculate the difference between measurement 1 and 2. The result is the peripheral
power consumption.
Conditions: VDD(REG)(3V3) = 3.0 V; VBAT = 2.6 V to 3.6 V; CCLK = 12 MHz.
Remark: The recommended operating condition for the battery supply is
VDD(REG)(3V3) > VBAT + 0.2 V.
Fig 18. Typical battery supply current in Active mode
002aah379
-0.4 -0.2 0 0.2 0.4 0.6
0
20
40
60
80
100
V
BAT
- V
DD(REG)(3V3)
(V)
I
BAT
(μA)
Table 12. Peripheral power consumption
Peripheral Branch clock IDD(REG)(3V3) in mA
Branch clock
frequency = 48 MHz
Branch clock
frequency = 96 MHz
M0 subsystem core CLK_PERIPH_CORE 2.4 4.8
M0 coprocessor CLK_M4_M0APP 3.3 6.6
I2C1 CLK_APB3_I2C1 0.01 0.01
I2C0 CLK_APB1_I2C0 < 0.01 0.02
DAC CLK_APB3_DAC 0.01 0.02
ADC0 CLK_APB3_ADC0 0.07 0.07
ADC1 CLK_APB3_ADC1 0.07 0.07
CAN0 CLK_APB3_CAN0 0.17 0.17
CAN1 CLK_APB1_CAN1 0.16 0.15
MOTOCON CLK_APB1_MOTOCON 0.04 0.04
I2S CLK_APB1_I2S 0.09 0.08
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 102 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
SPIFI CLK_SPIFI,
CLK_M4_SPIFI
1.14 2.29
GPIO CLK_M4_GPIO 0.72 1.43
LCD CLK_M4_LCD 0.91 1.82
ETHERNET CLK_M4_ETHERNET 1.06 2.15
UART0 CLK_M4_UART0,
CLK_APB0_UART0
0.24 0.43
UART1 CLK_M4_UART1,
CLK_APB0_UART1
0.24 0.43
UART2 CLK_M4_UART2,
CLK_APB2_UART2
0.26 0.5
UART3 CLK_M4_USART3,
CLK_APB2_UART3
0.27 0.45
TIMER0 CLK_M4_TIMER0 0.08 0.15
TIMER1 CLK_M4_TIMER1 0.09 0.15
TIMER2 CLK_M4_TIMER2 0.1 0.19
TIMER3 CLK_M4_TIMER3 0.08 0.16
SDIO CLK_M4_SDIO,
CLK_SDIO
0.66 1.17
SCTimer/PWM CLK_M4_SCT 0.66 1.3
SSP0 CLK_M4_SSP0,
CLK_APB0_SSP0
0.13 0.23
SSP1 CLK_M4_SSP1,
CLK_APB2_SSP1
0.14 0.27
DMA CLK_M4_DMA 1.81 3.61
WWDT CLK_M4_WWDT 0.03 0.09
QEI CLK_M4_QEI 0.28 0.55
USB0 CLK_M4_USB0,
CLK_USB0
1.9 3.9
USB1 CLK_M4_USB1,
CLK_USB1
3.02 5.69
RITIMER CLK_M4_RITIMER 0.05 0.1
EMC CLK_M4_EMC,
CLK_M4_EMC_DIV
3.94 7.95
SCU CLK_M4_SCU 0.1 0.21
CREG CLK_M4_CREG 0.35 0.7
Flash bank A CLK_M4_FLASHA 1.47 2.97
Flash bank B CLK_M4_FLASHB 1.4 2.84
SGPIO CLK_PERIPH_SGPIO 0.1 0.17
SPI CLK_SPI 0.07 0.11
Table 12. Peripheral power consumption
Peripheral Branch clock IDD(REG)(3V3) in mA
Branch clock
frequency = 48 MHz
Branch clock
frequency = 96 MHz
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 103 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
10.3 Electrical pin characteristics
Conditions: VDD(REG)(3V3) = VDD(IO) = 3.3 V. Conditions: VDD(REG)(3V3) = VDD(IO) = 3.3 V.
Fig 19. Standard I/O pins; typical LOW level output
current IOL versus LOW level output voltage
VOL
Fig 20. Standard I/O pins; typical HIGH level output
voltage VOH versus HIGH level output current
IOH
002aah368
016 32 48 64 80 96
2
2.4
2.8
3.2
3.6
IOH (mA)
VOH
(V)
-40 °C
+25 °C
+85 °C
+105 °C
002aah359
0 6 12 18 24 30 36
2
2.4
2.8
3.2
3.6
IOH (mA)
VOH
(V)
-40 °C
+25 °C
+85 °C
+105 °C
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 104 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
Conditions: VDD(REG)(3V3) = VDD(IO) = 3.3 V; normal-drive;
EHD = 0x0.
Conditions: VDD(REG)(3V3) = VDD(IO) = 3.3 V;
medium-drive; EHD = 0x1.
Conditions: VDD(REG)(3V3) = VDD(IO) = 3.3 V; high-drive;
EHD = 0x2.
Conditions: VDD(REG)(3V3) = VDD(IO) = 3.3 V; ultra
high-drive; EHD = 0x3.
Fig 21. High-drive pins; typical LOW level output current IOL versus LOW level output voltage VOL
002aah360
0 0.1 0.2 0.3 0.4 0.5 0.6
0
3
6
9
12
15
VOL (V)
IOL
(mA)
-40 °C
+25 °C
+85 °C
+105 °C
002aah361
0 0.1 0.2 0.3 0.4 0.5 0.6
0
5
10
15
20
25
VOL (V)
IOL
(mA)
-40 °C
+25 °C
+85 °C
+105 °C
002aah362
0 0.1 0.2 0.3 0.4 0.5 0.6
0
8
16
24
32
40
VOL (V)
IOL
(mA)
-40 °C
+25 °C
+85 °C
+105 °C
002aah363
0 0.1 0.2 0.3 0.4 0.5 0.6
0
15
30
45
60
VOL (V)
IOL
(mA)
-40 °C
+25 °C
+85 °C
+105 °C
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 105 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
Conditions: VDD(REG)(3V3) = VDD(IO) = 3.3 V; normal-drive;
EHD = 0x0.
Conditions: VDD(REG)(3V3) = VDD(IO) = 3.3 V;
medium-drive; EHD = 0x1.
Conditions: VDD(REG)(3V3) = VDD(IO) = 3.3 V; high-drive;
EHD = 0x2.
Conditions: VDD(REG)(3V3) = VDD(IO) = 3.3 V; ultra
high-drive; EHD = 0x3.
Fig 22. High-drive pins; typical HIGH level output voltage VOH versus HGH level output current IOH
002aah364
0 4 8 12 16 20 24
2
2.4
2.8
3.2
3.6
IOH (mA)
VOH
(V)
-40 °C
+25 °C
+85 °C
+105 °C
002aah367
0 8 16 24 32 40 48
2
2.4
2.8
3.2
3.6
IOH (mA)
VOH
(V)
-40 °C
+25 °C
+85 °C
+105 °C
002aah368
016 32 48 64 80 96
2
2.4
2.8
3.2
3.6
IOH (mA)
VOH
(V)
-40 °C
+25 °C
+85 °C
+105 °C
002aah369
020 40 60 80 100 120
2
2.4
2.8
3.2
3.6
IOH (mA)
VOH
(V)
-40 °C
+25 °C
+85 °C
+105 °C
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 106 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
Conditions: VDD(IO) = 3.3 V. Simulated data over process and temperature.
Fig 23. Pull-up current Ipu versus input voltage VI
Conditions: VDD(IO) = 3.3 V. Simulated data over process and temperature.
Fig 24. Pull-down current Ipd versus input voltage VI
002aah422
0 1 2 3 4 5
-80
-60
-40
-20
0
20
VI (V)
Ipu
Ipu
Ipu
(μA)
(μA)
(μA)
+105 C
+105 C
+105 °C
+25 C
+25 C
+25 °C
-40 C
-40 C
-40 °C
002aah418
0 1 2 3 4 5
0
30
60
90
120
VI (V)
Ipd
Ipd
Ipd
(μA)
(μA)
(μA)
-40 C
-40 C
-40 °C
+25 C
+25 C
+25 °C
+105 C
+105 C
+105 °C
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 107 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
10.4 BOD and band gap static characteristics
[1] Interrupt and reset levels are selected by writing to the BODLV1/2 bits in the control register CREGE0, see
the LPC43xx user manual.
[1] Based on characterization, not tested in production.
Table 13. BOD static characteristics[1]
Tamb = 25 C; simulated values for nominal processing.
Symbol Parameter Conditions Min Typ Max Unit
Vth threshold voltage interrupt level 2
assertion - 2.95 - V
de-assertion - 3.03 - V
interrupt level 3
assertion - 3.05 - V
de-assertion - 3.13 - V
reset level 2
assertion - 2.1 - V
de-assertion - 2.18 - V
reset level 3
assertion - 2.2 - V
de-assertion - 2.28 - V
Table 14. Band gap characteristics
VDDA(3V3) over specified ranges; Tamb = 40 C to +105 C; unless otherwise specified
Symbol Parameter Min Typ Max Unit
Vref(bg) band gap reference voltage [1] 0.707 0.745 0.783 mV
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 108 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
11. Dynamic characteristics
11.1 Flash/EEPROM memory
[1] Number of erase/program cycles.
[2] Programming times are given for writing 512 bytes from RAM to the flash. Data must be written to the flash
in blocks of 512 bytes.
[1] See the LPC43xx user manual how to program the wait states for the different read (RPHASEx) and erase/program phases (PHASEx)
Table 15. Flash characteristics
Tamb = 40 C to +105 C, unless otherwise specified. VDD(REG)(3V3) = 2.4 V to 3.6 V for read
operations; VDD(REG)(3V3) = 2.7 V to 3.6 V for erase/program operations.
Symbol Parameter Conditions Min Typ Max Unit
Nendu endurance sector erase/program [1] 10 000 - - cycles
page erase/program; page
in large sector
1 000 - - cycles
page erase/program; page
in small sector
10 000 - - cycles
tret retention time powered 10 - - years
unpowered 10 - - years
ter erase time page, sector, or multiple
consecutive sectors
- 100 - ms
tprog programming
time
[2] -1-ms
Table 16. EEPROM characteristics
Tamb = 40 C to +105 C; VDD(REG)(3V3) = 2.7 V to 3.6 V.
Symbol Parameter Conditions Min Typ Max Unit
fclk clock frequency 800 1500 1600 kHz
Nendu endurance 100 000 - - cycles
tret retention time Tamb = 40 C to +85 C 20 - - years
85 C < Tamb 105 C 10 - - years
taaccess time read - 120 - ns
erase/program;
fclk = 1500 kHz
- 1.99 - ms
erase/program;
fclk = 1600 kHz
- 1.87 - ms
twait wait time read; RPHASE1 [1] 70 - - ns
read; RPHASE2 [1] 35 - - ns
write; PHASE1 [1] 20 - - ns
write; PHASE2 [1] 40 - - ns
write; PHASE3 [1] 10 - - ns
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 109 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
11.2 Wake-up times
[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply
voltages.
[2] Tcy(clk) = 1/CCLK with CCLK = CPU clock frequency.
11.3 External clock for oscillator in slave mode
Remark: The input voltage on the XTAL1/2 pins must be 1.2 V (see Table 11). For
connecting the oscillator to the XTAL pins, also see Section 13.2 and Section 13.4.
[1] Parameters are valid over operating temperature range unless otherwise specified.
Table 17. Dynamic characteristic: Wake-up from Deep-sleep, Power-down, and Deep
power-down modes
Tamb = 40 C to +105 C
Symbol Parameter Conditions Min Typ[1] Max Unit
twake wake-up time from Sleep mode [2] 3 Tcy(clk) 5 Tcy(clk) -ns
from Deep-sleep and
Power-down mode
12 51 - s
from Deep power-down mode - 200 - μs
after reset - 200 - μs
Table 18. Dynamic characteristic: external clock
Tamb = 40 C to +105 C; VDD(IO) over specified ranges.[1]
Symbol Parameter Conditions Min Max Unit
fosc oscillator frequency 1 25 MHz
Tcy(clk) clock cycle time 40 1000 ns
tCHCX clock HIGH time Tcy(clk) 0.4 Tcy(clk) 0.6 ns
tCLCX clock LOW time Tcy(clk) 0.4 Tcy(clk) 0.6 ns
Fig 25. External clock timing (with an amplitude of at least Vi(RMS) = 200 mV)
t
CLCX
t
CHCX
T
cy(clk)
002aag698
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 110 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
11.4 Crystal oscillator
[1] Parameters are valid over operating temperature range unless otherwise specified.
[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply
voltages.
[3] Indicates RMS period jitter.
[4] PLL-induced jitter is not included.
[5] Select HF = 0 in the XTAL_OSC_CTRL register.
[6] Select HF = 1 in the XTAL_OSC_CTRL register.
11.5 IRC oscillator
[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply
voltages.
11.6 RTC oscillator
See Section 13.3 for connecting the RTC oscillator to an external clock source.
[1] Parameters are valid over operating temperature range unless otherwise specified.
[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply
voltages.
Table 19. Dynamic characteristic: oscillator
Tamb = 40 C to +105 C; VDD(IO) over specified ranges; 2.4 V VDD(REG)(3V3) 3.6 V.[1]
Symbol Parameter Conditions Min Typ[2] Max Unit
Low-frequency mode (1-20 MHz)[5]
tjit(per) period jitter time 5 MHz crystal [3][4] - 13.2 - ps
10 MHz crystal - 6.6 - ps
15 MHz crystal - 4.8 - ps
High-frequency mode (20 - 25 MHz)[6]
tjit(per) period jitter time 20 MHz crystal [3][4] - 4.3 - ps
25 MHz crystal - 3.7 - ps
Table 20. Dynamic characteristic: IRC oscillator
2.4 V VDD(REG)(3V3) 3.6 V
Symbol Parameter Conditions Min Typ[1] Max Unit
fosc(RC) internal RC
oscillator
frequency
-40 C Tamb 0 C 12.0 - 3 % 12.0 12.0 + 3 % MHz
0 C Tamb 85 C 12.0 - 1.5 % 12.0 12.0 + 1.5 % MHz
85 C Tamb 105 C 12.0 - 3 % 12.0 12.0 + 3 % MHz
Table 21. Dynamic characteristic: RTC oscillator
Tamb = 40 C to +105 C; 2.4 V VDD(REG)(3V3) 3.6 V or 2.4 V VBAT 3.6 V[1]
Symbol Parameter Conditions Min Typ[1] Max Unit
fiinput frequency - - 32.768 - kHz
ICC(osc) oscillator supply
current
280 800 nA
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 111 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
11.7 GPCLKIN
11.8 I/O pins
For I/O pins that are configured as input only, there is no limitation on the rise and fall
times.
[1] Simulated data.
[2] Simulated using 10 cm of 50 Ω PCB trace with 5 pF receiver input. Rise and fall times measured between
80 % and 20 % of the full output signal level.
[3] The slew rate is configured in the system control block in the SFSP registers using the EHS bit. See the
LPC43xx user manual.
[4] CL = 20 pF. Rise and fall times measured between 90 % and 10 % of the full input signal level.
Table 22. Dynamic characteristic: GPCLKIN
Tamb = 25 C; 2.4 V VDD(REG)(3V3) 3.6 V
Symbol Parameter Min Typ Max Unit
GP_CLKIN input frequency - - 25 MHz
Table 23. Dynamic characteristic: I/O pins[1]
Tamb = 40 C to +85 C; 2.7 V VDD(IO) 3.6 V.
Symbol Parameter Conditions Min Typ Max Unit
Standard I/O pins - normal drive strength
trrise time pin configured as output; EHS = 1 [2][3] 1.0 - 2.5 ns
tffall time pin configured as output; EHS = 1 [2][3] 0.9 - 2.5 ns
trrise time pin configured as output; EHS = 0 [2][3] 1.9 - 4.3 ns
tffall time pin configured as output; EHS = 0 [2][3] 1.9 - 4.0 ns
I/O pins - high drive strength
trrise time pin configured as output; standard
drive mode (EHD = 0x0)
[2][5] 4.3 - 7.9 ns
tffall time pin configured as output; standard
drive mode (EHD = 0x0)
[2][5] 4.7 - 8.7 ns
trrise time pin configured as output; medium
drive mode (EHD = 0x1)
[2][5] 3.2 - 5.7 ns
tffall time pin configured as output; medium
drive mode (EHD = 0x1)
[2][5] 3.2 - 5.5 ns
trrise time pin configured as output; high drive
mode (EHD = 0x2)
[2][5] 2.9 - 4.9 ns
tffall time pin configured as output; high drive
mode (EHD = 0x2)
[2][5] 2.5 - 3.9 ns
trrise time pin configured as output; ultra-high
drive mode (EHD = 0x3)
[2][5] 2.8 - 4.7 ns
tffall time pin configured as output; ultra-high
drive mode (EHD = 0x3)
[2][5] 2.4 - 3.4 ns
I/O pins - high-speed
trrise time pin configured as output; EHS = 1 [2][3] 350 - 670 ps
tffall time pin configured as output; EHS = 1 [2][3] 450 - 730 ps
trrise time pin configured as output; EHS = 0 [2][3] 1.0 - 1.9 ns
tffall time pin configured as output; EHS = 0 [2][3] 1.0 - 2.0 ns
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 112 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
[5] The drive modes are configured in the system control block in the SFSP registers using the EHD bit. See
the LPC43xx user manual.
11.9 I2C-bus
[1] Parameters are valid over operating temperature range unless otherwise specified. See the I2C-bus specification UM10204 for details.
[2] tHD;DAT is the data hold time that is measured from the falling edge of SCL; applies to data in transmission and the acknowledge.
[3] A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the VIH(min) of the SCL signal) to
bridge the undefined region of the falling edge of SCL.
[4] Cb = total capacitance of one bus line in pF. If mixed with Hs-mode devices, faster fall times are allowed.
[5] The maximum tf for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time for the SDA output stage tf is specified at
250 ns. This allows series protection resistors to be connected in between the SDA and the SCL pins and the SDA/SCL bus lines
without exceeding the maximum specified tf.
[6] In Fast-mode Plus, fall time is specified the same for both output stage and bus timing. If series resistors are used, designers should
allow for this when considering bus timing.
[7] The maximum tHD;DAT could be 3.45 s and 0.9 s for Standard-mode and Fast-mode but must be less than the maximum of tVD;DAT or
tVD;ACK by a transition time. This maximum must only be met if the device does not stretch the LOW period (tLOW) of the SCL signal. If
the clock stretches the SCL, the data must be valid by the set-up time before it releases the clock.
[8] tSU;DAT is the data set-up time that is measured with respect to the rising edge of SCL; applies to data in transmission and the
acknowledge.
[9] A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system but the requirement tSU;DAT = 250 ns must then be met.
This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the
LOW period of the SCL signal, it must output the next data bit to the SDA line tr(max) + tSU;DAT = 1000 + 250 = 1250 ns (according to the
Standard-mode I2C-bus specification) before the SCL line is released. Also the acknowledge timing must meet this set-up time.
Table 24. Dynamic characteristic: I2C-bus pins
Tamb = 40 C to +105 C; 2.4 V VDD(REG)(3V3) 3.6 V.[1]
Symbol Parameter Conditions Min Max Unit
fSCL SCL clock frequency Standard-mode 0 100 kHz
Fast-mode 0 400 kHz
Fast-mode Plus 0 1 MHz
tffall time [3][4][5][6] of both SDA and
SCL signals
Standard-mode
- 300 ns
Fast-mode 20 + 0.1 Cb300 ns
Fast-mode Plus - 120 ns
tLOW LOW period of the SCL clock Standard-mode 4.7 - s
Fast-mode 1.3 - s
Fast-mode Plus 0.5 - s
tHIGH HIGH period of the SCL clock Standard-mode 4.0 - s
Fast-mode 0.6 - s
Fast-mode Plus 0.26 - s
tHD;DAT data hold time [2][3][7] Standard-mode 0 - s
Fast-mode 0 - s
Fast-mode Plus 0 - s
tSU;DAT data set-up time
[8][9] Standard-mode 250 - ns
Fast-mode 100 - ns
Fast-mode Plus 50 - ns
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 113 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
11.10 I2S-bus interface
[1] Clock to the I2S-bus interface BASE_APB1_CLK = 150 MHz; peripheral clock to the I2S-bus interface
PCLK = BASE_APB1_CLK / 12. I2S clock cycle time Tcy(clk) = 79.2 ns, corresponds to the SCK signal in the
I2S-bus specification.
Fig 26. I2C-bus pins clock timing
002aaf425
tf
70 %
30 %
SDA
tf
70 %
30 %
S
70 %
30 %
70 %
30 %
tHD;DAT
SCL
1 / fSCL
70 %
30 % 70 %
30 %
tVD;DAT
tHIGH
tLOW
tSU;DAT
Table 25. Dynamic characteristics: I2S-bus interface pins
Tamb = 40 C to 105 C; 2.4 V VDD(REG)(3V3) 3.6 V; 2.7 V VDD(IO) 3.6 V; CL = 20 pF.
Conditions and data refer to I2S0 and I2S1 pins. Simulated values.
Symbol Parameter Conditions Min Typ Max Unit
common to input and output
trrise time - 4 - ns
tffall time - 4 - ns
tWH pulse width HIGH on pins I2Sx_TX_SCK
and I2Sx_RX_SCK
36 - - ns
tWL pulse width LOW on pins I2Sx_TX_SCK
and I2Sx_RX_SCK
36 - - ns
output
tv(Q) data output valid time on pin I2Sx_TX_SDA [1] - 4.4 - ns
on pin I2Sx_TX_WS - 4.3 - ns
input
tsu(D) data input set-up time on pin I2Sx_RX_SDA [1] -0-ns
on pin I2Sx_RX_WS 0.20 ns
th(D) data input hold time on pin I2Sx_RX_SDA [1] - 3.7 - ns
on pin I2Sx_RX_WS - 3.9 - ns
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 114 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
11.11 USART interface
Fig 27. I2S-bus timing (transmit)
Fig 28. I2S-bus timing (receive)
002aag497
I2Sx_TX_SCK
I2Sx_TX_SDA
I2Sx_TX_WS
Tcy(clk) tftr
tWH tWL
tv(Q)
tv(Q)
002aag498
Tcy(clk) tftr
tWH
tsu(D) th(D)
tsu(D) tsu(D)
tWL
I2Sx_RX_SCK
I2Sx_RX_SDA
I2Sx_RX_WS
Table 26. USART dynamic characteristics
Tamb = 40 C to 105 C; 2.4 V VDD(REG)(3V3) 3.6 V; 2.7 V VDD(IO) 3.6 V; CL = 20 pF. EHS = 1
for all pins. Simulated values.
Symbol Parameter Min Max Unit
USART master (in synchronous mode)
tsu(D) data input set-up time 26.6 - ns
th(D) data input hold time 0 - ns
tv(Q) data output valid time 0 10.4 ns
USART slave (in synchronous mode)
tsu(D) data input set-up time 2.4 - ns
th(D) data input hold time 0 - ns
tv(Q) data output valid time 4.3 24.3 ns
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 115 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
Fig 29. USART timing
SCLK (FES = 1)
TXD
RXD
Tcy(clk)
tv(Q) tv(Q)
th(D)
tsu(D)
START BIT0
SCLK (FES = 0)
START BIT0 BIT1
BIT1
aaa-016717
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 116 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
11.12 SSP interface
Table 27. Dynamic characteristics: SSP pins in SPI mode
Tamb = 40 C to +105 C; 2.4 V VDD(REG)(3V3) 3.6 V; 2.7 V VDD(IO) 3.6 V; CL = 20 pF; sampled at 10 % and 90 % of
the signal level; EHS = 1 for all pins. Simulated values.
Symbol Parameter Conditions Min Typ Max Unit
SSP master
Tcy(clk) clock cycle time full-duplex mode [1] 1/(25.5 106)- - s
when only transmitting 1/(51 106)- - s
tDS data set-up time in SPI mode 12.2 - - ns
tDH data hold time in SPI mode 3.6 - - ns
tv(Q) data output valid
time
in SPI mode - - 6.7 ns
th(Q) data output hold
time
in SPI mode 1.7 - - ns
tlead lead time continuous transfer mode
SPI mode; CPOL = 0;
CPHA = 0
Tcy(clk) + 3.3 - Tcy(clk) + 8.2 ns
SPI mode; CPOL = 0;
CPHA = 1
0.5 Tcy(clk) + 3.3 - 0.5 Tcy(clk) + 8.2 ns
SPI mode; CPOL = 1;
CPHA = 0
Tcy(clk) + 3.3 - Tcy(clk) + 8.2 ns
SPI mode; CPOL = 1;
CPHA = 1
0.5 Tcy(clk) + 3.3 - 0.5 Tcy(clk) + 8.2 ns
synchronous serial
frame mode
0.5 Tcy(clk) + 3.3 - 0.5 Tcy(clk) + 8.2 ns
microwire frame format Tcy(clk) + 3.3 - Tcy(clk) + 8.2 ns
tlag lag time continuous transfer mode
SPI mode; CPOL = 0;
CPHA = 0
0.5 Tcy(clk) -- ns
SPI mode; CPOL = 0;
CPHA = 1
Tcy(clk) -- ns
SPI mode; CPOL = 1;
CPHA = 0
0.5 Tcy(clk) -- ns
SPI mode; CPOL = 1;
CPHA = 1
Tcy(clk) -- ns
synchronous serial
frame mode
Tcy(clk) -- ns
microwire frame format 0.5 Tcy(clk) -- ns
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 117 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
tddelay time continuous transfer mode
SPI mode; CPOL = 0;
CPHA = 0
- 0.5 Tcy(clk) -ns
SPI mode; CPOL = 0;
CPHA = 1
- n/a - ns
SPI mode; CPOL = 1;
CPHA = 0
- 0.5 Tcy(clk) -ns
SPI mode; CPOL = 1;
CPHA = 1
- n/a - ns
synchronous serial
frame mode
-T
cy(clk) -ns
microwire frame format - n/a - ns
SSP slave
PCLK Peripheral clock
frequency
- - 204 MHz
Tcy(clk) clock cycle time [2] 1/(11 106)- - s
tDS data set-up time in SPI mode 1.5 - - ns
tDH data hold time in SPI mode 2 - - ns
tv(Q) data output valid
time
in SPI mode - - [4 (1/PCLK)] + 1 ns
th(Q) data output hold
time
in SPI mode 4.5 - - ns
tlead lead time continuous transfer mode
SPI mode; CPOL = 0;
CPHA = 0
Tcy(clk) -- ns
SPI mode; CPOL = 0;
CPHA = 1
0.5 Tcy(clk) -- ns
SPI mode; CPOL = 1;
CPHA = 0
Tcy(clk) -- ns
SPI mode; CPOL = 1;
CPHA = 1
0.5 Tcy(clk) -- ns
synchronous serial
frame mode
0.5 Tcy(clk) -- ns
microwire frame format Tcy(clk) -- ns
Table 27. Dynamic characteristics: SSP pins in SPI mode
Tamb = 40 C to +105 C; 2.4 V VDD(REG)(3V3) 3.6 V; 2.7 V VDD(IO) 3.6 V; CL = 20 pF; sampled at 10 % and 90 % of
the signal level; EHS = 1 for all pins. Simulated values.
Symbol Parameter Conditions Min Typ Max Unit
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 118 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
[1] Tcy(clk) = (SSPCLKDIV (1 + SCR) CPSDVSR) / fmain. The clock cycle time derived from the SPI bit rate Tcy(clk) is a function of the
main clock frequency fmain, the SSP peripheral clock divider (SSPCLKDIV), the SSP SCR parameter (specified in the SSP0CR0
register), and the SSP CPSDVSR parameter (specified in the SSP clock prescale register).
[2] Tcy(clk) 12 Tcy(PCLK).
tlag lag time continuous transfer mode
SPI mode; CPOL = 0;
CPHA = 0
0.5 x Tcy(clk) + 1.5 - - ns
SPI mode; CPOL = 0;
CPHA = 1
Tcy(clk) + 1.5 - - ns
SPI mode; CPOL = 1;
CPHA = 0
0.5 Tcy(clk) + 1.5 - - ns
SPI mode; CPOL = 1;
CPHA = 1
Tcy(clk) + 1.5 - - ns
synchronous serial
frame mode
Tcy(clk) + 1.5 - - ns
microwire frame format 0.5 Tcy(clk) -- ns
tddelay time continuous transfer mode
SPI mode; CPOL = 0;
CPHA = 0
- 0.5 Tcy(clk) -ns
SPI mode; CPOL = 0;
CPHA = 1
- n/a - ns
SPI mode; CPOL = 1;
CPHA = 0
- 0.5 Tcy(clk) -ns
SPI mode; CPOL = 1;
CPHA = 1
- n/a - ns
synchronous serial
frame mode
-T
cy(clk) -ns
microwire frame format - n/a - ns
Table 27. Dynamic characteristics: SSP pins in SPI mode
Tamb = 40 C to +105 C; 2.4 V VDD(REG)(3V3) 3.6 V; 2.7 V VDD(IO) 3.6 V; CL = 20 pF; sampled at 10 % and 90 % of
the signal level; EHS = 1 for all pins. Simulated values.
Symbol Parameter Conditions Min Typ Max Unit
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 119 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
11.13 SPI interface
[1] Tcy(clk) = 8/BASE_SPI_CLK. Tcy(PCLK) = 1/BASE_SPI_CLK.
Table 28. Dynamic characteristics: SPI
Tamb = 40 C to +105 C; 2.4 V VDD(REG)(3V3) 3.6 V; 2.7 V VDD(IO) 3.6 V. Simulated values.
Symbol Parameter Conditions Min Typ Max Unit
Tcy(PCLK) PCLK cycle time 5 ns
Tcy(clk) clock cycle time [1] 40 - - ns
Master
tDS data set-up time 7.2 - - ns
tDH data hold time 0 - - ns
tv(Q) data output valid time - - 3.7 ns
th(Q) data output hold time - - 1.2 ns
Slave
tDS data set-up time 1.2 - - ns
tDH data hold time 3 x Tcy(PCLK) + 0.54 - - ns
tv(Q) data output valid time - - 3 x Tcy(PCLK) + 9.7 ns
th(Q) data output hold time - - 2 x Tcy(PCLK) + 7.1 ns
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 120 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
11.14 SSP/SPI timing diagrams
Fig 30. SSP in SPI mode and SPI master timing
SCK (CPOL = 0)
MOSI (CPHA = 1)
SSEL
MISO (CPHA = 1)
Tcy(clk)
tDS tDH
tv(Q)
DATA VALID (LSB) DATA VALID
th(Q)
SCK (CPOL = 1)
DATA VALID (LSB) DATA VALID
MOSI (CPHA = 0)
MISO (CPHA = 0) tDS
tlead tlag
td
tDH
DATA VALID (MSB) DATA VALID (MSB)DATA VALID
DATA VALID (LSB)
DATA VALID (LSB)
th(Q)
DATA VALID DATA VALID
tv(Q)
aaa-013462
DATA VALID (MSB)
DATA VALID (MSB)
DATA VALID (MSB)
DATA VALID (MSB) IDLE
IDLE
DATA VALID (MSB)
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 121 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
Fig 31. SSP in SPI mode and SPI slave timing
SCK (CPOL = 0)
MISO (CPHA = 1)
SSEL
MOSI (CPHA = 1)
Tcy(clk)
tDS tDH
tv(Q)
DATA VALID (LSB) DATA VALID
th(Q)
SCK (CPOL = 1)
DATA VALID (LSB) DATA VALID
MISO (CPHA = 0)
MOSI (CPHA = 0) tDS
tlead tlag
td
tDH
DATA VALID (MSB) DATA VALID (MSB)DATA VALID
DATA VALID (LSB)
DATA VALID (LSB)
th(Q)
DATA VALID (MSB) DATA VALID
tv(Q)
aaa-014942
DATA VALID (MSB)
DATA VALID (MSB)
DATA VALID (MSB)
DATA VALID (MSB)
IDLE
IDLE
IDLE
IDLE
DATA VALID (MSB)
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 122 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
11.15 SPIFI
11.16 SGPIO timing
The following considerations apply to SGPIO timing:
SGPIO input signals are synchronized by the internal clock SGPIO_CLOCK. To
guarantee that no samples are missed, all input signals should have a duration of at
least one SGPIO_CLOCK cycle plus the set-up and hold times.
When an external clock input is used to generate output data, synchronization causes
a latency of at least one SGPIO_CLOCK cycle. The maximum output data rate is one
output every two SGPIO_CLOCK cycles.
Synchronization also causes a latency of one SGPIO_CLOCK cycle when sampling
several inputs. This may cause inputs with very similar timings to be sampled with a
difference of one SGPIO_CLOCK cycle.
Table 29. Dynamic characteristics: SPIFI
Tamb = 40 C to 105 C; 2.4 V VDD(REG)(3V3) 3.6 V; 2.7 V VDD(IO) 3.6 V. CL = 20 pF. Sampled
at 90 % and 10 % of the signal level. EHS = 1 for all pins. Simulated values.
Symbol Parameter Min Max Unit
Tcy(clk) clock cycle time 9.6 - ns
tDS data set-up time 3.2 - ns
tDH data hold time 0 - ns
tv(Q) data output valid time - 3.2 ns
th(Q) data output hold time 0.6 - ns
Fig 32. SPIFI timing (Mode 0)
SPIFI_SCK
SPIFI data out
SPIFI data in
Tcy(clk)
tDS tDH
tv(Q)
DATA VALID DATA VALID
th(Q)
DATA VALID DATA VALID
002aah409
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 123 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
[1] SGPIO_CLOCK is the internally generated SGPIO clock. TSGPIO = 1/fSGPIO_CLOCK.
Table 30. Dynamic characteristics: SGPIO
Tamb = 40 C to +85 C; 2.4 V VDD(REG)(3V3) 3.6 V; 2.7 V VDD(IO) 3.6 V. Simulated values.
Symbol Parameter Conditions Min Typ Max Unit
tsu(D) data input set-up time 2 - - ns
th(D) data input hold time [1] TSGPIO + 2 - - ns
tsu(D) data input set-up time sampled by
SGPIO_CLOCK
[1] TSGPIO + 2 - - ns
th(D) data input hold time sampled by
SGPIO_CLOCK
[1] TSGPIO + 2 - - ns
tv(Q) data output valid time [1] - - 2 x TSGPIO ns
th(Q) data output hold time [1] TSGPIO -ns
tv(Q) data output valid time sampled by
SGPIO_CLOCK
[1] -3 - 3 ns
th(Q) data output hold time sampled by
SGPIO_CLOCK
[1] -3 - 3 ns
Fig 33. SGPIO timing
SGPIO_CLOCK
DIN
CLKINext
sync(CLKINext) = CLKINi
sync(DIN)
Dout
CLKout
DINi
DINi
DQi
th(D)
tsu(D)
th(Q)
tv(Q)
002aah668
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 124 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
11.17 External memory interface
Table 31. Dynamic characteristics: Static asynchronous external memory interface
CL = 22 pF for EMC_Dn CL = 20 pF for all others; Tamb = 40 C to 105 C; 2.4 V VDD(REG)(3V3) 3.6 V;
2.7 V VDD(IO) 3.6 V; values guaranteed by design; the values in the table have been calculated with WAITTURN = 0x0 in
STATICWAITTURN register. Timing parameters are given for single memory access cycles. In a normal read operation, the
EMC changes the address while CS is asserted which results in multiple memory accesses.
Symbol Parameter[1] Conditions Min Typ Max Unit
Read cycle parameters
tCSLAV CS LOW to address valid
time
3.1 - 1.6 ns
tCSLOEL CS LOW to OE LOW time [2][2] 0.6 + Tcy(clk)
WAITOEN
- 1.3 + Tcy(clk)
WAITOEN
ns
tCSLBLSL CS LOW to BLS LOW time PB = 1 0.7 - 1.8 ns
tOELOEH OE LOW to OE HIGH time [2] 0.6 +
(WAITRD
WAITOEN + 1)
Tcy(clk)
-0.4 +
(WAITRD
WAITOEN + 1)
Tcy(clk)
ns
tam memory access time - - 16 +
(WAITRD
WAITOEN +1)
Tcy(clk)
ns
th(D) data input hold time 16 - - ns
tCSHBLSH CS HIGH to BLS HIGH
time
PB = 1 0.4 - 1.9 ns
tCSHOEH CS HIGH to OE HIGH time 0.4 - 1.4 ns
tOEHANV OE HIGH to address invalid PB = 1 2.0 - 2.6 ns
tCSHEOR CS HIGH to end of read
time
[3] 2.0 - 0 ns
tCSLSOR CS LOW to start of read
time
[4] 0 - 1.8 ns
Write cycle parameters
tCSLAV CS LOW to address valid
time
3.1 - 1.6 ns
tCSLDV CS LOW to data valid time 3.1 - 1.5 ns
tCSLWEL CS LOW to WE LOW time PB = 1 1.5 +
(WAITWEN + 1)
Tcy(clk)
- 0.2 +
(WAITWEN + 1)
Tcy(clk)
ns
tCSLBLSL CS LOW to BLS LOW time PB = 1 0.7 - 1.8 ns
tWELWEH WE LOW to WE HIGH time PB = 1 [2] 0.6 +
(WAITWR
WAITWEN + 1)
Tcy(clk)
-0.4 +
(WAITWR
WAITWEN + 1)
Tcy(clk)
ns
tWEHDNV WE HIGH to data invalid
time
PB = 1 [2] 0.9 + Tcy(clk) - 2.3 + Tcy(clk) ns
tWEHEOW WE HIGH to end of write
time
PB = 1 [2][5] 0.4 + Tcy(clk) -0.3 + Tcy(clk) ns
tCSLBLSL CS LOW to BLS LOW PB = 0 0.7 +
(WAITWEN + 1)
Tcy(clk)
- 1.8 +
(WAITWEN + 1)
Tcy(clk)
ns
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 125 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
[1] Parameters specified for 40 % of VDD(IO) for rising edges and 60 % of VDD(IO) for falling edges.
[2] Tcy(clk) = 1/CCLK (see LPC43xx/LPC43Sxx User manual).
[3] End Of Read (EOR): longest of tCSHOEH, tOEHANV, tCSHBLSH.
[4] Start Of Read (SOR): longest of tCSLAV, tCSLOEL, tCSLBLSL.
[5] End Of Write (EOW): earliest of address not valid or EMC_BLSn HIGH.
tBLSLBLSH BLS LOW to BLS HIGH
time
PB = 0 [2] 0.9 +
(WAITWR
WAITWEN + 1)
Tcy(clk)
-0.1 +
(WAITWR
WAITWEN + 1)
Tcy(clk)
ns
tBLSHEOW BLS HIGH to end of write
time
PB = 0 [2][5] 1.9 + Tcy(clk) -0.5 + Tcy(clk) ns
tBLSHDNV BLS HIGH to data invalid
time
PB = 0 [2] 2.5 + Tcy(clk) - 1.4 + Tcy(clk) ns
tCSHEOW CS HIGH to end of write
time
[5] 2.0 - 0 ns
tBLSHDNV BLS HIGH to data invalid
time
PB = 1 2.5 - 1.4 ns
tWEHANV WE HIGH to address
invalid time
PB = 1 0.9 + Tcy(clk) - 2.4 + Tcy(clk) ns
Table 31. Dynamic characteristics: Static asynchronous external memory interface …continued
CL = 22 pF for EMC_Dn CL = 20 pF for all others; Tamb = 40 C to 105 C; 2.4 V VDD(REG)(3V3) 3.6 V;
2.7 V VDD(IO) 3.6 V; values guaranteed by design; the values in the table have been calculated with WAITTURN = 0x0 in
STATICWAITTURN register. Timing parameters are given for single memory access cycles. In a normal read operation, the
EMC changes the address while CS is asserted which results in multiple memory accesses.
Symbol Parameter[1] Conditions Min Typ Max Unit
Fig 34. External static memory read/write access (PB = 0)
tCSLDV
tCSLBLSL
tCSHEOW
tBLSHEOW
tCSLAV
EOR
SOR EOW
EMC_An
EMC_CSn
EMC_OE
EMC_BLSn
EMC_WE
EMC_Dn
002aag699
tCSHOEH
tOEHANV
tCSHEOR
tam
tCSLSOR
tOELOEH
tCSLOEL
tCSLAV
th(D)
tBLSLBLSH
tBLSHDNV
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 126 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
Fig 35. External static memory read/write access (PB = 1)
EMC_An
tCSLAV
tCSLBLSL
EMC_CSn
EMC_OE
EMC_BLSn
EMC_WE
tCSLSOR
tCSLDV
tam
th(D)
EOR
SOR EOW
EMC_Dn
tCSLWEL tWELWEH tWEHEOW
002aag700
tCSLBLSL
tCSLAV
tCSLOEL
tOELOEH
tCSHOEH
tOEHANV
tCSHBLSH
tCSHEOR
tCSHEOW
tWEHDNV
tBLSHDNV
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 127 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
[1] Program the EMC_CLKn delay values in the EMCDELAYCLK register (see the LPC43xx User manual).
The delay values must be the same for all SDRAM clocks EMC_CLKn: CLK0_DELAY = CLK1_DELAY =
CLK2_DELAY = CLK3_DELAY.
Table 32. Dynamic characteristics: Dynamic external memory interface
Simulated data over temperature and process range; CL = 10 pF for EMC_DYCSn, EMC_RAS, EMC_CAS, EMC_WE,
EMC_An; CL = 9 pF for EMC_Dn; CL = 5 pF for EMC_DQMOUTn, EMC_CLKn, EMC_CKEOUTn; Tamb = 40 C to 105 C;
2.4 V VDD(REG)(3V3) 3.6 V; VDD(IO) =3.3 V 10 %; RD = 1 (see LPC43xx/LPC43Sxx User manual); EMC_CLKn delays
CLK0_DELAY = CLK1_DELAY = CLK2_DELAY = CLK3_DELAY = 0.
Symbol Parameter Min Typ Max Unit
Tcy(clk) clock cycle time 8.4 - - ns
Common to read and write cycles
td(DYCSV) dynamic chip select valid delay time - 3.1 + 0.5 Tcy(clk) 5.1 + 0.5 Tcy(clk) ns
th(DYCS) dynamic chip select hold time 0.3 + 0.5 Tcy(clk) 0.9 + 0.5 Tcy(clk) -ns
td(RASV) row address strobe valid delay time - 3.1 + 0.5 Tcy(clk) 4.9 + 0.5 Tcy(clk) ns
th(RAS) row address strobe hold time 0.5 + 0.5 Tcy(clk) 1.1 + 0.5 Tcy(clk) -ns
td(CASV) column address strobe valid delay time - 2.9 + 0.5 Tcy(clk) 4.6 + 0.5 Tcy(clk) ns
th(CAS) column address strobe hold time 0.3 + 0.5 Tcy(clk) 0.9 + 0.5 Tcy(clk) -ns
td(WEV) write enable valid delay time - 3.2 + 0.5 Tcy(clk) 5.9 + 0.5 Tcy(clk) ns
th(WE) write enable hold time 1.3 + 0.5 Tcy(clk) 1.4 + 0.5 Tcy(clk) -ns
td(DQMOUTV) DQMOUT valid delay time - 3.1 + 0.5 Tcy(clk) 5.0 + 0.5 Tcy(clk) ns
th(DQMOUT) DQMOUT hold time 0.2 + 0.5 Tcy(clk) 0.8 + 0.5 Tcy(clk) -ns
td(AV) address valid delay time - 3.8 + 0.5 Tcy(clk) 6.3 + 0.5 Tcy(clk) ns
th(A) address hold time 0.3 + 0.5 Tcy(clk) 0.9 + 0.5 Tcy(clk) -ns
td(CKEOUTV) CKEOUT valid delay time - 3.1 + 0.5 Tcy(clk) 5.1 + 0.5 Tcy(clk) ns
th(CKEOUT) CKEOUT hold time 0.5 Tcy(clk) 0.7 + 0.5 Tcy(clk) -ns
Read cycle parameters
tsu(D) data input set-up time 1.5 0.5 - ns
th(D) data input hold time 2.2 0.8 - ns
Write cycle parameters
td(QV) data output valid delay time - 3.8 + 0.5 Tcy(clk) 6.2 + 0.5 Tcy(clk) ns
th(Q) data output hold time 0.5 Tcy(clk) 0.7 + 0.5 Tcy(clk) -ns
Table 33. Dynamic characteristics: Dynamic external memory interface; EMC_CLK[3:0]
delay values
Tamb = 40 C to 105 C; VDD(IO) =3.3 V 10 %; 2.4 V VDD(REG)(3V3) 3.6 V.
Symbol Parameter Conditions Min Typ Max Unit
tddelay time delay value
CLKn_DELAY = 0
[1]
0.0 0.0 0.0 ns
CLKn_DELAY = 1 [1] 0.4 0.5 0.8 ns
CLKn_DELAY = 2 [1] 0.7 1.0 1.7 ns
CLKn_DELAY = 3 [1] 1.1 1.6 2.5 ns
CLKn_DELAY = 4 [1] 1.4 2.0 3.3 ns
CLKn_DELAY = 5 [1] 1.7 2.6 4.1 ns
CLKn_DELAY = 6 [1] 2.1 3.1 4.9 ns
CLKn_DELAY = 7 [1] 2.5 3.6 5.8 ns
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 128 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
For the programmable EMC_CLK[3:0] clock delays CLKn_DELAY, see Figure 32.
Remark: For SDRAM operation, set CLK0_DELAY = CLK1_DELAY = CLK2_DELAY = CLK3_DELAY in the EMCDELAYCLK
register.
Fig 36. SDRAM timing
002aag703
Tcy(clk)
EMC_CLKn
delay = 0
EMC_CLKn
delay > 0
EMC_DYCSn,
EMC_RAS,
EMC_CAS,
EMC_WE,
EMC_CKEOUTn,
EMC_A[22:0],
EMC_DQMOUTn
th(Q)
th(Q) - td
th(D)
tsu(D)
th(D)
tsu(D)
EMC_D[31:0]
write
EMC_D[31:0]
read; delay = 0
EMC_D[31:0]
read; delay > 0
th(x) - td
td(xV) - td
td(QV) - td
td(QV)
th(x)
td(xV)
EMC_CLKn delay td; programmable CLKn_DELAY
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 129 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
11.18 USB interface
[1] Characterized but not implemented as production test. Guaranteed by design.
Remark: If only USB0 (HS USB) is used, the pins VDDREG and VDDIO can be at
different voltages within the operating range but should have the same ramp up time. If
USB1(FS USB) is used, the pins VDDREG and VDDIO should be a minimum of 3.0 V and
be tied together.
Table 34. Dynamic characteristics: USB0 and USB1 pins (full-speed)
CL = 50 pF; Rpu = 1.5 k on D+ to VDD(IO), unless otherwise specified; 3.0 V VDD(IO) 3.6 V.
Symbol Parameter Conditions Min Typ Max Unit
trrise time 10 % to 90 % 4.0 - 20.0 ns
tffall time 10 % to 90 % 4.0 - 20.0 ns
tFRFM differential rise and fall time match-
ing
tr / tf90 - 111.11 %
VCRS output signal crossover voltage 1.3 - 2.0 V
tFEOPT source SE0 interval of EOP see Figure 37 160 - 175 ns
tFDEOP source jitter for differential transition
to SE0 transition
see Figure 37 2 - +5 ns
tJR1 receiver jitter to next transition 18.5 - +18.5 ns
tJR2 receiver jitter for paired transitions 10 % to 90 % 9 - +9 ns
tEOPR1 EOP width at receiver must reject as
EOP; see
Figure 37
[1] 40 - - ns
tEOPR2 EOP width at receiver must accept as
EOP; see
Figure 37
[1] 82 - - ns
Fig 37. Differential data-to-EOP transition skew and EOP width
002aab561
TPERIOD
differential
data lines
crossover point
source EOP width: tFEOPT
receiver EOP width: tEOPR1, tEOPR2
crossover point
extended
differential data to
SE0/EOP skew
n × TPERIOD + tFDEOP
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 130 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
[1] Characterized but not implemented as production test.
[2] Total average power consumption.
[3] The driver is active only 20 % of the time.
11.19 Ethernet
Remark: The timing characteristics of the ENET_MDC and ENET_MDIO signals comply
with the IEEE standard 802.3.
Table 35. Static characteristics: USB0 PHY pins[1]
Symbol Parameter Conditions Min Typ Max Unit
High-speed mode
Pcons power consumption [2] -68- mW
IDDA(3V3) analog supply current (3.3 V) on pin USB0_VDDA3V3_DRIVER;
total supply current
[3]
-18- mA
during transmit - 31 - mA
during receive - 14 - mA
with driver tri-stated - 14 - mA
IDDD digital supply current - 7 - mA
Full-speed/low-speed mode
Pcons power consumption [2] -15- mW
IDDA(3V3) analog supply current (3.3 V) on pin USB0_VDDA3V3_DRIVER;
total supply current - 3.5 - mA
during transmit - 5 - mA
during receive - 3 - mA
with driver tri-stated - 3 - mA
IDDD digital supply current - 3 - mA
Suspend mode
IDDA(3V3) analog supply current (3.3 V) - 24 - A
with driver tri-stated - 24 - A
with OTG functionality enabled - 3 - mA
IDDD digital supply current - 30 - A
VBUS detector outputs
Vth threshold voltage for VBUS valid 4.4 - - V
for session end 0.2 - 0.8 V
for A valid 0.8 - 2 V
for B valid 2 - 4 V
Vhys hysteresis voltage for session end - 150 10 mV
A valid - 200 10 mV
B valid - 200 10 mV
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 131 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
[1] Output drivers can drive a load 25 pF accommodating over 12 inch of PCB trace and the input
capacitance of the receiving device.
[2] Timing values are given from the point at which the clock signal waveform crosses 1.4 V to the valid input or
output level.
Table 36. Dynamic characteristics: Ethernet
Tamb = 40 C to 105 C, 2.4 V VDD(REG)(3V3) 3.6 V; 2.7 V VDD(IO) 3.6 V. Values guaranteed
by design.
Symbol Parameter Conditions Min Max Unit
RMII mode
fclk clock frequency for ENET_RX_CLK [1] - 50 MHz
clk clock duty cycle [1] 50 50 %
tsu set-up time for ENET_TXDn, ENET_TX_EN,
ENET_RXDn, ENET_RX_ER,
ENET_RX_DV
[1][2] 4- ns
thhold time for ENET_TXDn, ENET_TX_EN,
ENET_RXDn, ENET_RX_ER,
ENET_RX_DV
[1][2] 2- ns
MII mode
fclk clock frequency for ENET_TX_CLK [1] - 25 MHz
clk clock duty cycle [1] 50 50 %
tsu set-up time for ENET_TXDn, ENET_TX_EN,
ENET_TX_ER
[1][2] 4- ns
thhold time for ENET_TXDn, ENET_TX_EN,
ENET_TX_ER
[1][2] 2- ns
fclk clock frequency for ENET_RX_CLK [1] - 25 MHz
clk clock duty cycle [1] 50 50 %
tsu set-up time for ENET_RXDn, ENET_RX_ER,
ENET_RX_DV
[1][2] 4- ns
thhold time for ENET_RXDn, ENET_RX_ER,
ENET_RX_DV
[1][2] 2- ns
Fig 38. Ethernet timing
002aag210
th
tsu
ENET_RX_CLK
ENET_TX_CLK
ENET_RXD[n]
ENET_RX_DV
ENET_RX_ER
ENET_TXD[n]
ENET_TX_EN
ENET_TX_ER
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 132 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
11.20 SD/MMC
11.21 LCD
Table 37. Dynamic characteristics: SD/MMC
Tamb = 40 C to +105 C, 2.4 V VDD(REG)(3V3) 3.6 V; 2.7 V VDD(IO) 3.6 V, CL = 20 pF.
SAMPLE_DELAY = 0x9, DRV_DELAY = 0x6 in the SDDELAY register, sampled at 90 % and 10 %
of the signal level, EHS = 1 for SD_CLK pin, EHS = 0 for SD_DATn and SD_CMD pins. Simulated
values.
Symbol Parameter Conditions Min Max Unit
fclk clock frequency on pin SD_CLK; data transfer mode - 52 MHz
tsu(D) data input set-up time on pins SD_DATn as inputs 5.2 - ns
on pins SD_CMD as inputs 7 - ns
th(D) data input hold time on pins SD_DATn as inputs 0.2 - ns
on pins SD_CMD as inputs 1ns
td(QV) data output valid delay
time
on pins SD_DATn as outputs - 15.7 ns
on pins SD_CMD as outputs - 15.9 ns
th(Q) data output hold time on pins SD_DATn as outputs 3.5 - ns
on pins SD_CMD as outputs 3.5 - ns
Fig 39. SD/MMC timing
002aag204
SD_CLK
SD_DATn (O)
SD_DATn (I)
td(QV)
th(D)
tsu(D)
Tcy(clk)
th(Q)
SD_CMD (O)
SD_CMD (I)
Table 38. Dynamic characteristics: LCD
Tamb = 40 C to 105 C; 2.4 V VDD(REG)(3V3) 3.6 V; 2.7 V VDD(IO) 3.6 V; CL = 20 pF.
Simulated values.
Symbol Parameter Conditions Min Typ Max Unit
fclk clock frequency on pin LCD_DCLK - 50 - MHz
td(QV) data output valid
delay time
- - 17 ns
th(Q) data output hold time 8.5 - - ns
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 133 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
12. ADC/DAC electrical characteristics
[1] The ADC is monotonic, there are no missing codes.
[2] The differential linearity error (ED) is the difference between the actual step width and the ideal step width. See Figure 40.
[3] The integral non-linearity (EL(adj)) is the peak difference between the center of the steps of the actual and the ideal transfer curve after
appropriate adjustment of gain and offset errors. See Figure 40.
[4] The offset error (EO) is the absolute difference between the straight line which fits the actual curve and the straight line which fits the
ideal curve. See Figure 40.
[5] The gain error (EG) is the relative difference in percent between the straight line fitting the actual transfer curve after removing offset
error, and the straight line which fits the ideal transfer curve. See Figure 40.
[6] The absolute error (ET) is the maximum difference between the center of the steps of the actual transfer curve of the non-calibrated
ADC and the ideal transfer curve. See Figure 40.
[7] Tamb = 25 C.
[8] Input resistance Ri depends on the sampling frequency fs: Ri = 2 k + 1 / (fs Cia).
Table 39. ADC characteristics
VDDA(3V3) over specified ranges; Tamb = 40 C to +105 C; unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Unit
VIA analog input voltage 0 - VDDA(3V3) V
Cia analog input capacitance - - 2 pF
EDdifferential linearity error 2.7 V VDDA(3V3) 3.6 V [1][2] -0.8 - LSB
2.4 V VDDA(3V3) < 2.7 V - 1.0 - LSB
EL(adj) integral non-linearity 2.7 V VDDA(3V3) 3.6 V [3] -0.8 - LSB
2.4 V VDDA(3V3) < 2.7 V - 1.5 - LSB
EOoffset error 2.7 V VDDA(3V3) 3.6 V [4] -0.15 - LSB
2.4 V VDDA(3V3) < 2.7 V - 0.15 - LSB
EGgain error 2.7 V VDDA(3V3) 3.6 V [5] -0.3 - %
2.4 V VDDA(3V3) < 2.7 V - 0.35 - %
ETabsolute error 2.7 V VDDA(3V3) 3.6 V [6] -3 - LSB
2.4 V VDDA(3V3) < 2.7 V - 4 - LSB
Rvsi voltage source interface
resistance
see Figure 41 - - 1/(7 fclk(ADC)
Cia)
k
Riinput resistance [7][8] - - 1.2 M
fclk(ADC) ADC clock frequency - - 4.5 MHz
fssampling frequency 10-bit resolution; 11 clock
cycles
- - 400 kSamples/s
2-bit resolution; 3 clock
cycles
1.5 MSamples/s
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 134 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
(1) Example of an actual transfer curve.
(2) The ideal transfer curve.
(3) Differential linearity error (ED).
(4) Integral non-linearity (EL(adj)).
(5) Center of a step of the actual transfer curve.
Fig 40. 10-bit ADC characteristics
002aaf959
1023
1022
1021
1020
1019
(2)
(1)
10241018 1019 1020 1021 1022 1023
7123456
7
6
5
4
3
2
1
0
1018
(5)
(4)
(3)
1 LSB
(ideal)
code
out
VDDA(3V3) VSSA
1024
offset
error
EO
gain
error
EG
offset error
EO
VIA (LSBideal)
1 LSB =
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 135 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
[1] In the DAC CR register, bit BIAS = 0 (see the LPC43xx/LPC43Sxx user manual).
[2] Settling time is calculated within 1/2 LSB of the final value.
Rs < 1/((7 fclk(ADC) Cia) 2 k
Fig 41. ADC interface to pins
LPC43xx
ADC0_n/ADC1_n
Cia = 2 pF
Rvsi
Rs
VSS
VEXT
002aah084
ADC
COMPARATOR
2 kΩ (analog pin)
2.2 kΩ (multiplexed pin)
Table 40. DAC characteristics
VDDA(3V3) over specified ranges; Tamb = 40 C to +105 C; unless otherwise specified
Symbol Parameter Conditions Min Typ Max Unit
EDdifferential linearity error 2.7 V VDDA(3V3) 3.6 V [1] -0.8 - LSB
2.4 V VDDA(3V3) < 2.7 V - 1.0 - LSB
EL(adj) integral non-linearity code = 0 to 975
2.7 V VDDA(3V3) 3.6 V
[1] -1.0 - LSB
2.4 V VDDA(3V3) < 2.7 V - 1.5 - LSB
EOoffset error 2.7 V VDDA(3V3) 3.6 V [1] -0.8 - LSB
2.4 V VDDA(3V3) < 2.7 V - 1.0 - LSB
EGgain error 2.7 V VDDA(3V3) 3.6 V [1] -0.3 - %
2.4 V VDDA(3V3) < 2.7 V - 1.0 - %
CLload capacitance - - 200 pF
RLload resistance 1 - - k
tssettling time [1] 0.4 
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 136 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
13. Application information
13.1 LCD panel signal usage
Table 41. LCD panel connections for STN single panel mode
External pin 4-bit mono STN single panel 8-bit mono STN single panel Color STN single panel
LPC43xx pin
used
LCD function LPC43xx pin
used
LCD function LPC43xx pin
used
LCD function
LCD_VD[23:8] - - - - - -
LCD_VD7 - - P8_4 UD[7] P8_4 UD[7]
LCD_VD6 - - P8_5 UD[6] P8_5 UD[6]
LCD_VD5 - - P8_6 UD[5] P8_6 UD[5]
LCD_VD4 - - P8_7 UD[4] P8_7 UD[4]
LCD_VD3 P4_2 UD[3] P4_2 UD[3] P4_2 UD[3]
LCD_VD2 P4_3 UD[2] P4_3 UD[2] P4_3 UD[2]
LCD_VD1 P4_4 UD[1] P4_4 UD[1] P4_4 UD[1]
LCD_VD0 P4_1 UD[0] P4_1 UD[0] P4_1 UD[0]
LCD_LP P7_6 LCDLP P7_6 LCDLP P7_6 LCDLP
LCD_ENAB/
LCDM
P4_6 LCDENAB/
LCDM
P4_6 LCDENAB/
LCDM
P4_6 LCDENAB/
LCDM
LCD_FP P4_5 LCDFP P4_5 LCDFP P4_5 LCDFP
LCD_DCLK P4_7 LCDDCLK P4_7 LCDDCLK P4_7 LCDDCLK
LCD_LE P7_0 LCDLE P7_0 LCDLE P7_0 LCDLE
LCD_PWR P7_7 CDPWR P7_7 LCDPWR P7_7 LCDPWR
GP_CLKIN PF_4 LCDCLKIN PF_4 LCDCLKIN PF_4 LCDCLKIN
Table 42. LCD panel connections for STN dual panel mode
External pin 4-bit mono STN dual panel 8-bit mono STN dual panel Color STN dual panel
LPC43xx pin
used
LCD function LPC43xx pin
used
LCD function LPC43xx pin
used
LCD function
LCD_VD[23:16] - - - - - -
LCD_VD15 - - PB_4 LD[7] PB_4 LD[7]
LCD_VD14 - - PB_5 LD[6] PB_5 LD[6]
LCD_VD13 - - PB_6 LD[5] PB_6 LD[5]
LCD_VD12 - - P8_3 LD[4] P8_3 LD[4]
LCD_VD11 P4_9 LD[3] P4_9 LD[3] P4_9 LD[3]
LCD_VD10 P4_10 LD[2] P4_10 LD[2] P4_10 LD[2]
LCD_VD9 P4_8 LD[1] P4_8 LD[1] P4_8 LD[1]
LCD_VD8 P7_5 LD[0] P7_5 LD[0] P7_5 LD[0]
LCD_VD7 - - UD[7] P8_4 UD[7]
LCD_VD6 - - P8_5 UD[6] P8_5 UD[6]
LCD_VD5 - - P8_6 UD[5] P8_6 UD[5]
LCD_VD4 - - P8_7 UD[4] P8_7 UD[4]
LCD_VD3 P4_2 UD[3] P4_2 UD[3] P4_2 UD[3]
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 137 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
LCD_VD2 P4_3 UD[2] P4_3 UD[2] P4_3 UD[2]
LCD_VD1 P4_4 UD[1] P4_4 UD[1] P4_4 UD[1]
LCD_VD0 P4_1 UD[0] P4_1 UD[0] P4_1 UD[0]
LCD_LP P7_6 LCDLP P7_6 LCDLP P7_6 LCDLP
LCD_ENAB/
LCDM
P4_6 LCDENAB/
LCDM
P4_6 LCDENAB/
LCDM
P4_6 LCDENAB/
LCDM
LCD_FP P4_5 LCDFP P4_5 LCDFP P4_5 LCDFP
LCD_DCLK P4_7 LCDDCLK P4_7 LCDDCLK P4_7 LCDDCLK
LCD_LE P7_0 LCDLE P7_0 LCDLE P7_0 LCDLE
LCD_PWR P7_7 LCDPWR P7_7 LCDPWR P7_7 LCDPWR
GP_CLKIN PF_4 LCDCLKIN PF_4 LCDCLKIN PF_4 LCDCLKIN
Table 42. LCD panel connections for STN dual panel mode
External pin 4-bit mono STN dual panel 8-bit mono STN dual panel Color STN dual panel
LPC43xx pin
used
LCD function LPC43xx pin
used
LCD function LPC43xx pin
used
LCD function
Table 43. LCD panel connections for TFT panels
External
pin
TFT 12 bit (4:4:4
mode)
TFT 16 bit (5:6:5 mode) TFT 16 bit (1:5:5:5 mode) TFT 24 bit
LPC43xx
pin used
LCD
function
LPC43xx
pin used
LCD
function
LPC43xx pin
used
LCD
function
LPC43xx
pin used
LCD
function
LCD_VD23 PB_0 BLUE3 PB_0 BLUE4 PB_0 BLUE4 PB_0 BLUE7
LCD_VD22 PB_1 BLUE2 PB_1 BLUE3 PB_1 BLUE3 PB_1 BLUE6
LCD_VD21 PB_2 BLUE1 PB_2 BLUE2 PB_2 BLUE2 PB_2 BLUE5
LCD_VD20 PB_3 BLUE0 PB_3 BLUE1 PB_3 BLUE1 PB_3 BLUE4
LCD_VD19 - - P7_1 BLUE0 P7_1 BLUE0 P7_1 BLUE3
LCD_VD18 - - - - P7_2 intensity P7_2 BLUE2
LCD_VD17 - - - - - - P7_3 BLUE1
LCD_VD16 - - - - - - P7_4 BLUE0
LCD_VD15 PB_4 GREEN3 PB_4 GREEN5 PB_4 GREEN4 PB_4 GREEN7
LCD_VD14 PB_5 GREEN2 PB_5 GREEN4 PB_5 GREEN3 PB_5 GREEN6
LCD_VD13 PB_6 GREEN1 PB_6 GREEN3 PB_6 GREEN2 PB_6 GREEN5
LCD_VD12 P8_3 GREEN0 P8_3 GREEN2 P8_3 GREEN1 P8_3 GREEN4
LCD_VD11 - - P4_9 GREEN1 P4_9 GREEN0 P4_9 GREEN3
LCD_VD10 - - P4_10 GREEN0 P4_10 intensity P4_10 GREEN2
LCD_VD9 - - - - - - P4_8 GREEN1
LCD_VD8 - - - - - - P7_5 GREEN0
LCD_VD7 P8_4 RED3 P8_4 RED4 P8_4 RED4 P8_4 RED7
LCD_VD6 P8_5 RED2 P8_5 RED3 P8_5 RED3 P8_5 RED6
LCD_VD5 P8_6 RED1 P8_6 RED2 P8_6 RED2 P8_6 RED5
LCD_VD4 P8_7 RED0 P8_7 RED1 P8_7 RED1 P8_7 RED4
LCD_VD3 - - P4_2 RED0 P4_2 RED0 P4_2 RED3
LCD_VD2 - - - - P4_3 intensity P4_3 RED2
LCD_VD1 - - - - - - P4_4 RED1
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 138 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
13.2 Crystal oscillator
The crystal oscillator is controlled by the XTAL_OSC_CTRL register in the CGU (see
LPC43xx/LPC43Sxx user manual).
The crystal oscillator operates at frequencies of 1 MHz to 25 MHz. This frequency can be
boosted to a higher frequency, up to the maximum CPU operating frequency, by the PLL.
The oscillator can operate in one of two modes: slave mode and oscillation mode.
In slave mode, couple the input clock signal with a capacitor of 100 pF (CC in
Figure 42), with an amplitude of at least 200 mV (RMS). The XTAL2 pin in this
configuration can be left unconnected.
External components and models used in oscillation mode are shown in Figure 43,
and in Table 44 and Table 45. Since the feedback resistance is integrated on chip,
only a crystal and the capacitances CX1 and CX2 need to be connected externally in
case of fundamental mode oscillation (L, CL and RS represent the fundamental
frequency). Capacitance CP in Figure 43 represents the parallel package capacitance
and must not be larger than 7 pF. Parameters FC, CL, RS and CP are supplied by the
crystal manufacturer.
LCD_VD0 - - - - - - P4_1 RED0
LCD_LP P7_6 LCDLP P7_6 LCDLP P7_6 LCDLP P7_6 LCDLP
LCD_ENAB
/LCDM
P4_6 LCDENAB/
LCDM
P4_6 LCDENAB/
LCDM
P4_6 LCDENAB/
LCDM
P4_6 LCDENAB/
LCDM
LCD_FP P4_5 LCDFP P4_5 LCDFP P4_5 LCDFP P4_5 LCDFP
LCD_DCLK P4_7 LCDDCLK P4_7 LCDDCLK P4_7 LCDDCLK P4_7 LCDDCLK
LCD_LE P7_0 LCDLE P7_0 LCDLE P7_0 LCDLE P7_0 LCDLE
LCD_PWR P7_7 LCDPWR P7_7 LCDPWR P7_7 LCDPWR P7_7 LCDPWR
GP_CLKIN PF_4 LCDCLKIN PF_4 LCDCLKIN PF_4 LCDCLKIN PF_4 LCDCLKIN
Table 43. LCD panel connections for TFT panels
External
pin
TFT 12 bit (4:4:4
mode)
TFT 16 bit (5:6:5 mode) TFT 16 bit (1:5:5:5 mode) TFT 24 bit
LPC43xx
pin used
LCD
function
LPC43xx
pin used
LCD
function
LPC43xx pin
used
LCD
function
LPC43xx
pin used
LCD
function
Table 44. Recommended values for CX1/X2 in oscillation mode (crystal and external
components parameters) low frequency mode
Fundamental oscillation
frequency
Maximum crystal series
resistance RS
External load capacitors
CX1, CX2
2 MHz < 200 33 pF, 33 pF
< 200 39 pF, 39 pF
< 200 56 pF, 56 pF
4 MHz < 200 18 pF, 18 pF
< 200 39 pF, 39 pF
< 200 56 pF, 56 pF
8 MHz < 200 18 pF, 18 pF
< 200 39 pF, 39 pF
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 139 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
12 MHz < 160 18 pF, 18 pF
< 160 39 pF, 39 pF
16 MHz < 120 18 pF, 18 pF
< 80 33 pF, 33 pF
20 MHz < 100 18 pF, 18 pF
< 80 33 pF, 33 pF
Table 45. Recommended values for CX1/X2 in oscillation mode (crystal and external
components parameters) high frequency mode
Fundamental oscillation
frequency
Maximum crystal series
resistance RS
External load capacitors CX1,
CX2
15 MHz < 80 18 pF, 18 pF
20 MHz < 80 39 pF, 39 pF
< 100 47 pF, 47 pF
Fig 42. Slave mode operation of the on-chip oscillator
Fig 43. Oscillator modes with external crystal model used for CX1/CX2 evaluation
Table 44. Recommended values for CX1/X2 in oscillation mode (crystal and external
components parameters) low frequency mode
Fundamental oscillation
frequency
Maximum crystal series
resistance RS
External load capacitors
CX1, CX2
LPC43xx
XTAL1
Ci
100 pF
Cg
002aag379
002aag380
LPC43xx
XTAL1 XTAL2
CX2
CX1
XTAL
=CLCP
RS
L
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 140 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
13.3 RTC oscillator
In the RTC oscillator circuit, only the crystal (XTAL) and the capacitances CRTCX1 and
CRTCX2 need to be connected externally. Typical capacitance values for CRTCX1 and
CRTCX2 are CRTCX1/2 = 20 (typical) 4 pF.
An external clock can be connected to RTCX1 if RTCX2 is left open. The recommended
amplitude of the clock signal is Vi(RMS) = 100 mV to 200 mV with a coupling capacitance of
5 pF to 10 pF.
13.4 XTAL and RTCX Printed Circuit Board (PCB) layout guidelines
Connect the crystal on the PCB as close as possible to the oscillator input and output pins
of the chip. Take care that the load capacitors CX1, CX2, and CX3 in case of third overtone
crystal usage have a common ground plane. Also connect the external components to the
ground plain. To keep the noise coupled in via the PCB as small as possible, make loops
and parasitics as small as possible. Choose smaller values of CX1 and CX2 if parasitics
increase in the PCB layout.
Ensure that no high-speed or high-drive signals are near the RTCX1/2 signals.
13.5 Standard I/O pin configuration
Figure 45 shows the possible pin modes for standard I/O pins with analog input function:
Digital output driver enabled/disabled
Digital input: Pull-up enabled/disabled
Digital input: Pull-down enabled/disabled
Digital input: Repeater mode enabled/disabled
Digital input: Input buffer enabled/disabled
Analog input
The default configuration for standard I/O pins is input buffer disabled and pull-up
enabled. The weak MOS devices provide a drive capability equivalent to pull-up and
pull-down resistors.
Fig 44. RTC 32 kHz oscillator circuit
002aah083
LPC43xx
RTCX1 RTCX2
CRTCX2
CRTCX1
XTAL
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 141 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
13.5.1 Reset pin configuration
13.5.2 Suggested USB interface solutions
The USB device can be connected to the USB as self-powered device (see Figure 47) or
bus-powered device (see Figure 48).
The glitch filter rejects pulses of typical 12 ns width.
Fig 45. Standard I/O pin configuration with analog input
slew rate bit EHS
pull-up enable bit EPUN
pull-down enable bit EPD
glitch
filter
analog I/O
ESD
ESD
PIN
VDDIO
VSSIO
input buffer enable bit EZI
filter select bit ZIF
data input to core
data output from core
enable output driver
002aah028
Fig 46. Reset pin configuration
VSS
reset
002aag702
Vps
Vps
Vps
Rpu ESD
ESD
20 ns RC
GLITCH FILTER PIN
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 142 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
On the LPC436x, USBn_VBUS pins are 5 V tolerant only when VDDIO is applied and at
operating voltage level. Therefore, if the USBn_VBUS function is connected to the USB
connector and the device is self-powered, the USBn_VBUS pins must be protected for
situations when VDDIO = 0 V.
If VDDIO is always at operating level while VBUS = 5 V, the USBn_VBUS pin can be
connected directly to the VBUS pin on the USB connector.
For systems where VDDIO can be 0 V and VBUS is directly applied to the USBn_VBUS
pins, precautions must be taken to reduce the voltage to below 3.6 V, which is the
maximum allowable voltage on the USBn_VBUS pins in this case.
One method is to use a voltage divider to connect the USBn_VBUS pins to VBUS on the
USB connector. The voltage divider ratio should be such that the USB_VBUS pin will be
greater than 0.7VDDIO to indicate a logic HIGH while below the 3.6 V allowable maximum
voltage.
For the following operating conditions
VBUSmax = 5.25 V
VDDIO = 3.6 V,
the voltage divider should provide a reduction of 3.6 V/5.25 V or ~0.686.
For bus-powered devices, a regulator powered by USB can provide 3.3 V to VDDIO
whenever bus power is present and ensure that power to the USBn_VBUS pins is always
present when the 5 V VBUS signal is applied. See Figure 48.
Remark: Applying 5 V to the USBn_VBUS pins for a short time while the regulator ramps
up might compromise the long-term reliability of the part but does not affect its function.
Fig 47. USB interface on a self-powered device where USBn_VBUS = 5 V
LPC43xx
VDDIO
USB-B
connector
USBn_VBUS VBUS
USB
R2
R3
aaa-013458
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 143 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
Remark: If the VBUS function of the USB1 interface is not connected, configure the pin
function for GPIO using the function control bits in the SYSCON block.
Remark: In OTG mode, it is important to be able to detect the VBUS level and to charge
and discharge VBUS. This requires adding active devices that disconnect the link when
VDDIO is not present.
Fig 48. USB interface on a bus-powered device
Fig 49. USB interface for USB operating in OTG mode
REGULATOR
VBUSUSBn_VBUS
LPC43xx
VDDIO
USB-B
connector
USB
aaa-013459
VBUS
USBn_VBUS
LPC43xx
VDDIO
USB-B
connector
USB
aaa-013460
T2
T1
R1
R2
R3
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 144 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
14. Package outline
Fig 50. Package outline LBGA256 package
REFERENCES
OUTLINE
VERSION EUROPEAN
PROJECTION ISSUE DATE
IEC JEDEC
MO-192
JEITA
- - - - - -
SOT740-2
SOT740-2
05-06-16
05-08-04
UNIT A
max
mm 1.55 0.45
0.35 1.1
0.9 0.55
0.45 17.2
16.8 17.2
16.8
A1
DIMENSIONS (mm are the original dimensions)
LBGA256: plastic low profile ball grid array package; 256 balls; body 17 x 17 x 1 mm
X
A2b D E e
1
e1
15
e2
15
v
0.25
w
0.1
y
0.12
y1
0.35
1/2 e
1/2 e
AA2
A1
detail X
D
E
BA
ball A1
index area
y
y1C
C
AB
A
BC
DE
F
H
K
G
J
L
MN
PR
T
2 4 6 8 10 12 14 16
1 3 5 7 9 11 13 15
ball A1
index area
e
e
e1
b
e2
C
C
vM
wM
05 10 mm
scale
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 145 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
Fig 51. Package outline of the LQFP208 package
UNIT A1A2A3bpcE
(1) eH
ELL
pZywv θ
REFERENCES
OUTLINE
VERSION EUROPEAN
PROJECTION ISSUE DATE
IEC JEDEC JEITA
mm 0.15
0.05 1.45
1.35 0.25 0.27
0.17 0.20
0.09 28.1
27.9 0.5 30.15
29.85 1.43
1.08 7
0
o
o
0.080.121 0.08
DIMENSIONS (mm are the original dimensions)
Note
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
0.75
0.45
SOT459-1 136E30 MS-026 00-02-06
03-02-20
D(1)
28.1
27.9
HD
30.15
29.85
E
Z
1.43
1.08
D
pin 1 index
bp
e
θ
EA1
A
Lp
detail X L
(A )
3
B
52
c
D
H
bp
E
HA2
vMB
D
ZD
A
ZE
e
vMA
X
1
208
157
156 105
104
53
y
wM
wM
0 5 10 mm
scale
LQFP208; plastic low profile quad flat package; 208 leads; body 28 x 28 x 1.4 mm SOT459-1
A
max.
1.6
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 146 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
Fig 52. Package outline of the TFBGA100 package
REFERENCES
OUTLINE
VERSION EUROPEAN
PROJECTION ISSUE DATE
IEC JEDEC JEITA
SOT926-1 - - - - - - - - -
SOT926-1
05-12-09
05-12-22
UNIT A
max
mm 1.2 0.4
0.3 0.8
0.65 0.5
0.4 9.1
8.9 9.1
8.9
A1
DIMENSIONS (mm are the original dimensions)
TFBGA100: plastic thin fine-pitch ball grid array package; 100 balls; body 9 x 9 x 0.7 mm
A2b D E e2
7.2
e
0.8
e1
7.2
v
0.15
w
0.05
y
0.08
y1
0.1
0 2.5 5 mm
scale
b
e2
e1
e
e
1/2 e
1/2 e
AC B
vMCwM
ball A1
index area
A
B
C
D
E
F
H
K
G
J
24681013579
ball A1
index area
B A
E
D
C
y
C
y1
X
detail X
A
A1
A2
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 147 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
15. Soldering
Fig 53. Reflow soldering of the LBGA256 package
DIMENSIONS in mm
PSLSPSRHxHy
Hx
Hy
SOT740-2
solder land plus solder paste
occupied area
Footprint information for reflow soldering of LBGA256 package
solder land
solder paste deposit
solder resist
P
P
SL
SP
SR
Generic footprint pattern
Refer to the package outline drawing for actual layout
detail X
see detail X
sot740-2_fr
1.00 0.450 0.450 0.600 17.500 17.500
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 148 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
Fig 54. Reflow soldering of the LQFP208 package
SOT459-1
DIMENSIONS in mm
occupied area
Footprint information for reflow soldering of LQFP208 package
Ax
Bx
Gx
Gy
Hy
Hx
AyBy
P1P2
D2 (8×) D1
(0.125)
Ax Ay Bx By D1 D2 Gx Gy Hx HyP1 P2 C
sot459-1_fr
solder land
C
Generic footprint pattern
Refer to the package outline drawing for actual layout
31.300 31.300 28.300 28.3000.500 0.560 0.2801.500 0.400 28.500 28.500 31.550 31.550
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 149 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
Fig 55. Reflow soldering of the TFBGA100 package
DIMENSIONS in mm
PSLSPSRHxHy
Hx
Hy
SOT926-1
solder land plus solder paste
occupied area
Footprint information for reflow soldering of TFBGA100 package
solder land
solder paste deposit
solder resist
P
P
SL
SP
SR
Generic footprint pattern
Refer to the package outline drawing for actual layout
detail X
see detail X
sot926-1_fr
0.80 0.330 0.400 0.480 9.400 9.400
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 150 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
16. Abbreviations
Table 46. Abbreviations
Acronym Description
ADC Analog-to-Digital Converter
AHB Advanced High-performance Bus
APB Advanced Peripheral Bus
API Application Programming Interface
BOD BrownOut Detection
CAN Controller Area Network
CMAC Cipher-based Message Authentication Code
CSMA/CD Carrier Sense Multiple Access with Collision Detection
DAC Digital-to-Analog Converter
DC-DC Direct Current-to-Direct Current
DMA Direct Memory Access
GPIO General Purpose Input/Output
IRC Internal RC
IrDA Infrared Data Association
JTAG Joint Test Action Group
LCD Liquid Crystal Display
LSB Least Significant Bit
MAC Media Access Control
MCU MicroController Unit
MIIM Media Independent Interface Management
n.c. not connected
OHCI Open Host Controller Interface
OTG On-The-Go
PHY Physical Layer
PLL Phase-Locked Loop
PMC Power Mode Control
PWM Pulse Width Modulator
RIT Repetitive Interrupt Timer
RMII Reduced Media Independent Interface
SDRAM Synchronous Dynamic Random Access Memory
SIMD Single Instruction Multiple Data
SPI Serial Peripheral Interface
SSI Serial Synchronous Interface
SSP Synchronous Serial Port
UART Universal Asynchronous Receiver/Transmitter
ULPI UTMI+ Low Pin Interface
USART Universal Synchronous Asynchronous Receiver/Transmitter
USB Universal Serial Bus
UTMI USB2.0 Transceiver Macrocell Interface
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 151 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
17. References
[1] LPC43xx/LPC43Sxx User manual UM10503:
http://www.nxp.com/documents/user_manual/UM10503.pdf
[2] LPC43xx Errata sheet:
http://www.nxp.com/documents/errata_sheet/ES_LPC43XX.pdf
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 152 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
18. Revision history
Table 47. Revision history
Document ID Release date Data sheet status Change notice Supersedes
LPC436x v.1.3 20200110 Product data sheet - LPC436x v.1.2
Updated for rise and fall times for I/O pins configured as input only.
LPC436x v.1.2 20160304 Product data sheet - LPC436x v.1.1
Updated Table 32 “Dynamic characteristics: Dynamic external memory interface”:
Read cycle parameters th(D) min value is 2.2 ns and max value is “-”.
Fixed the number of ADC channels for LPC4367JET100 in Table 2 “Ordering options”
to 4.
LPC436x v.1.1 <tbd> Product data sheet 2015110041 LPC436x v.1.0
Modifications: Added CIN number, 2015110041 for SSP timing value changes in the change notice
column of the Revision history table.
Updated Table 27 “Dynamic characteristics: SSP pins in SPI mode”:
changed units of Tcy(clk), clock cycle time, SSP slave and master from ns to s.
removed tv(Q), data output valid time in SPI mode, minimum value of 3 ´ (1/PCLK)
from SSP slave mode.
added units to td, delay time, for SSP slave and master mode.
LPC436x v.1.0 <tbd> Product data sheet - -
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 153 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
19. Legal information
19.1 Data sheet status
[1] Please consult the most recently issued document before initiating or completing a design.
[2] The term ‘short data sheet’ is explained in section “Definitions”.
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status
information is available on the Internet at URL http://www.nxp.com.
19.2 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences of
use of such information.
Short data sheet — A short data sheet is an extract from a full data sheet
with the same product type number(s) and title. A short data sheet is intended
for quick reference only and should not be relied upon to contain detailed and
full information. For detailed and full information see the relevant full data
sheet, which is available on request via the local NXP Semiconductors sales
office. In case of any inconsistency or conflict with the short data sheet, the
full data sheet shall prevail.
Product specification — The information and data provided in a Product
data sheet shall define the specification of the product as agreed between
NXP Semiconductors and its customer, unless NXP Semiconductors and
customer have explicitly agreed otherwise in writing. In no event however,
shall an agreement be valid in which the NXP Semiconductors product is
deemed to offer functions and qualities beyond those described in the
Product data sheet.
19.3 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation - lost
profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards
customer for the products described herein shall be limited in accordance
with the Terms and conditions of commercial sale of NXP Semiconductors.
Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.
Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.
Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP Semiconductors
accepts no liability for any assistance with applications or customer product
design. It is customer’s sole responsibility to determine whether the NXP
Semiconductors product is suitable and fit for the customer’s applications and
products planned, as well as for the planned application and use of
customer’s third party customer(s). Customers should provide appropriate
design and operating safeguards to minimize the risks associated with their
applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.
Limiting values — Stress above one or more limiting values (as defined in
the Absolute Maximum Ratings System of IEC 60134) will cause permanent
damage to the device. Limiting values are stress ratings only and (proper)
operation of the device at these or any other conditions above those given in
the Recommended operating conditions section (if present) or the
Characteristics sections of this document is not warranted. Constant or
repeated exposure to limiting values will permanently and irreversibly affect
the quality and reliability of the device.
Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.
No offer to sell or license — Nothing in this document may be interpreted or
construed as an offer to sell products that is open for acceptance or the grant,
conveyance or implication of any license under any copyrights, patents or
other industrial or intellectual property rights.
Document status[1][2] Product status[3] Definition
Objective [short] data sheet Development This document contains data from the objective specification for product development.
Preliminary [short] data sheet Qualification This document contains data from the preliminary specification.
Product [short] data sheet Production This document contains the product specification.
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 154 of 156
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.
Non-automotive qualified products — Unless this data sheet expressly
states that this specific NXP Semiconductors product is automotive qualified,
the product is not suitable for automotive use. It is neither qualified nor tested
in accordance with automotive testing or application requirements. NXP
Semiconductors accepts no liability for inclusion and/or use of
non-automotive qualified products in automotive equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards, customer
(a) shall use the product without NXP Semiconductors’ warranty of the
product for such automotive applications, use and specifications, and (b)
whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.
19.4 Trademarks
Notice: All referenced brands, product names, service names and trademarks
are the property of their respective owners.
I2C-bus — logo is a trademark of NXP B.V.
20. Contact information
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com
LPC436X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2020. All rights reserved.
Product data sheet Rev. 1.3 — 10 January 2020 155 of 156
continued >>
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
21. Contents
1 General description . . . . . . . . . . . . . . . . . . . . . . 1
2 Features and benefits . . . . . . . . . . . . . . . . . . . . 1
3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4 Ordering information . . . . . . . . . . . . . . . . . . . . . 5
4.1 Ordering options . . . . . . . . . . . . . . . . . . . . . . . . 5
5 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 6
6 Pinning information . . . . . . . . . . . . . . . . . . . . . . 7
6.1 Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
6.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 8
7 Functional description . . . . . . . . . . . . . . . . . . 60
7.1 Architectural overview. . . . . . . . . . . . . . . . . . . 60
7.2 ARM Cortex-M4 processor . . . . . . . . . . . . . . . 60
7.3 ARM Cortex-M0 processors . . . . . . . . . . . . . . 60
7.3.1 ARM Cortex-M0 coprocessor . . . . . . . . . . . . . 60
7.3.2 ARM Cortex-M0 subsystem . . . . . . . . . . . . . . 60
7.4 Interprocessor communication . . . . . . . . . . . . 61
7.5 AHB multilayer matrix . . . . . . . . . . . . . . . . . . . 62
7.6 Nested Vectored Interrupt Controller (NVIC) . 63
7.6.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.6.2 Interrupt sources. . . . . . . . . . . . . . . . . . . . . . . 63
7.7 System Tick timer (SysTick) . . . . . . . . . . . . . . 63
7.8 Event router . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.9 Global Input Multiplexer Array (GIMA) . . . . . . 64
7.9.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.10 On-chip static RAM. . . . . . . . . . . . . . . . . . . . . 64
7.11 On-chip flash memory. . . . . . . . . . . . . . . . . . . 64
7.12 EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.13 Boot ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.14 Memory mapping . . . . . . . . . . . . . . . . . . . . . . 66
7.15 One-Time Programmable (OTP) memory. . . . 69
7.16 General Purpose I/O (GPIO) . . . . . . . . . . . . . 69
7.16.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.17 Configurable digital peripherals . . . . . . . . . . . 69
7.17.1 SCTimer/PWM . . . . . . . . . . . . . . . . . . . . . . . . 69
7.17.1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.17.2 Serial GPIO (SGPIO) . . . . . . . . . . . . . . . . . . . 70
7.17.2.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.18 AHB peripherals . . . . . . . . . . . . . . . . . . . . . . . 71
7.18.1 General Purpose DMA . . . . . . . . . . . . . . . . . . 71
7.18.1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.18.2 SPI Flash Interface (SPIFI). . . . . . . . . . . . . . . 71
7.18.2.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.18.3 SD/MMC card interface . . . . . . . . . . . . . . . . . 72
7.18.4 External Memory Controller (EMC). . . . . . . . . 72
7.18.4.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.18.5 High-speed USB Host/Device/OTG interface
(USB0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.18.5.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.18.6 High-speed USB Host/Device interface with ULPI
(USB1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.18.6.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.18.7 LCD controller . . . . . . . . . . . . . . . . . . . . . . . . 74
7.18.7.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.18.8 Ethernet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.18.8.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.19 Digital serial peripherals. . . . . . . . . . . . . . . . . 76
7.19.1 UART1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.19.1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.19.2 USART0/2/3 . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.19.2.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.19.3 SPI serial I/O controller . . . . . . . . . . . . . . . . . 77
7.19.3.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.19.4 SSP serial I/O controller. . . . . . . . . . . . . . . . . 77
7.19.4.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.19.5 I2C-bus interface . . . . . . . . . . . . . . . . . . . . . . 78
7.19.5.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.19.6 I2S interface . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.19.6.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.19.7 C_CAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.19.7.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.20 Counter/timers and motor control. . . . . . . . . . 79
7.20.1 General purpose 32-bit timers/external event
counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.20.1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.20.2 Motor control PWM . . . . . . . . . . . . . . . . . . . . 80
7.20.3 Quadrature Encoder Interface (QEI) . . . . . . . 80
7.20.3.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.20.4 Repetitive Interrupt (RI) timer. . . . . . . . . . . . . 81
7.20.4.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.20.5 Windowed WatchDog Timer (WWDT) . . . . . . 81
7.20.5.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.21 Analog peripherals . . . . . . . . . . . . . . . . . . . . . 82
7.21.1 Analog-to-Digital Converter (ADC0/1) . . . . . . 82
7.21.1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.21.2 Digital-to-Analog Converter (DAC). . . . . . . . . 82
7.21.2.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.22 Peripherals in the RTC power domain . . . . . . 82
7.22.1 RTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.22.1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.22.1.2 Event monitor/recorder. . . . . . . . . . . . . . . . . . 83
7.22.2 Alarm timer . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.23 System control . . . . . . . . . . . . . . . . . . . . . . . . 83
7.23.1 Configuration registers (CREG) . . . . . . . . . . . 83
7.23.2 System Control Unit (SCU) . . . . . . . . . . . . . . 84
7.23.3 Clock Generation Unit (CGU). . . . . . . . . . . . . 84
NXP Semiconductors LPC436x
32-bit ARM Cortex-M4/M0 microcontroller
© NXP Semiconductors B.V. 2020. All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com
Date of release: 10 January 2020
Document identifier: LPC436X
Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section ‘Legal information’.
7.23.4 Internal RC oscillator (IRC). . . . . . . . . . . . . . . 84
7.23.5 PLL0USB (for USB0) . . . . . . . . . . . . . . . . . . . 84
7.23.6 PLL0AUDIO (for audio). . . . . . . . . . . . . . . . . . 84
7.23.7 System PLL1 . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.23.8 Reset Generation Unit (RGU). . . . . . . . . . . . . 85
7.23.9 Power Management Controller (PMC) . . . . . . 85
7.23.10 Power control . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.23.11 Code security (Code Read Protection - CRP) 87
7.24 Serial Wire Debug/JTAG. . . . . . . . . . . . . . . . . 87
8 Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 89
9 Thermal characteristics. . . . . . . . . . . . . . . . . . 90
10 Static characteristics. . . . . . . . . . . . . . . . . . . . 91
10.1 Power consumption . . . . . . . . . . . . . . . . . . . . 98
10.2 Peripheral power consumption . . . . . . . . . . . 101
10.3 Electrical pin characteristics . . . . . . . . . . . . . 103
10.4 BOD and band gap static characteristics . . . 107
11 Dynamic characteristics . . . . . . . . . . . . . . . . 108
11.1 Flash/EEPROM memory . . . . . . . . . . . . . . . 108
11.2 Wake-up times . . . . . . . . . . . . . . . . . . . . . . . 109
11.3 External clock for oscillator in slave mode . . 109
11.4 Crystal oscillator . . . . . . . . . . . . . . . . . . . . . . 110
11.5 IRC oscillator . . . . . . . . . . . . . . . . . . . . . . . . 110
11.6 RTC oscillator . . . . . . . . . . . . . . . . . . . . . . . . 110
11.7 GPCLKIN . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
11.8 I/O pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
11.9 I2C-bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
11.10 I2S-bus interface . . . . . . . . . . . . . . . . . . . . . . 113
11.11 USART interface. . . . . . . . . . . . . . . . . . . . . . 114
11.12 SSP interface . . . . . . . . . . . . . . . . . . . . . . . . 116
11.13 SPI interface . . . . . . . . . . . . . . . . . . . . . . . . . 119
11.14 SSP/SPI timing diagrams . . . . . . . . . . . . . . . 120
11.15 SPIFI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
11.16 SGPIO timing . . . . . . . . . . . . . . . . . . . . . . . . 122
11.17 External memory interface . . . . . . . . . . . . . . 124
11.18 USB interface . . . . . . . . . . . . . . . . . . . . . . . . 129
11.19 Ethernet . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
11.20 SD/MMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
11.21 LCD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
12 ADC/DAC electrical characteristics . . . . . . . 133
13 Application information. . . . . . . . . . . . . . . . . 136
13.1 LCD panel signal usage . . . . . . . . . . . . . . . . 136
13.2 Crystal oscillator . . . . . . . . . . . . . . . . . . . . . . 138
13.3 RTC oscillator . . . . . . . . . . . . . . . . . . . . . . . . 140
13.4 XTAL and RTCX Printed Circuit Board (PCB)
layout guidelines . . . . . . . . . . . . . . . . . . . . . . 140
13.5 Standard I/O pin configuration . . . . . . . . . . . 140
13.5.1 Reset pin configuration . . . . . . . . . . . . . . . . . 141
13.5.2 Suggested USB interface solutions . . . . . . . 141
14 Package outline . . . . . . . . . . . . . . . . . . . . . . . 144
15 Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
16 Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . 150
17 References . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
18 Revision history . . . . . . . . . . . . . . . . . . . . . . 152
19 Legal information . . . . . . . . . . . . . . . . . . . . . 153
19.1 Data sheet status . . . . . . . . . . . . . . . . . . . . . 153
19.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 153
19.3 Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . 153
19.4 Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . 154
20 Contact information . . . . . . . . . . . . . . . . . . . 154
21 Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155