NXP Semiconductors Data Sheet: Technical Data KE06 Sub-Family Data Sheet Document Number MKE06P80M48SF0 Rev. 6, 04/2020 MKE06P80M48SF0 Supports the following: MKE06Z64VLD4(R), MKE06Z128VLD4(R), MKE06Z64VQH4(R), MKE06Z128VQH4(R), MKE06Z64VLH4(R), MKE06Z128VLH4(R), MKE06Z64VLK4(R), and MKE06Z128VLK4(R) Key features * Operating characteristics - Voltage range: 2.7 to 5.5 V - Flash write voltage range: 2.7 to 5.5 V - Temperature range (ambient): -40 to 105C * Performance - Up to 48 MHz Arm(R) Cortex-M0+ core - Single cycle 32-bit x 32-bit multiplier - Single cycle I/O access port * Memories and memory interfaces - Up to 128 KB flash - Up to 16 KB RAM * Clocks - Oscillator (OSC) - supports 32.768 kHz crystal or 4 MHz to 24 MHz crystal or ceramic resonator; choice of low power or high gain oscillators - Internal clock source (ICS) - internal FLL with internal or external reference, 37.5 kHz pre-trimmed internal reference for 48 MHz system clock - Internal 1 kHz low-power oscillator (LPO) * System peripherals - Power management module (PMC) with three power modes: Run, Wait, Stop - Low-voltage detection (LVD) with reset or interrupt, selectable trip points - Watchdog with independent clock source (WDOG) - Programmable cyclic redundancy check module (CRC) - Serial wire debug interface (SWD) - Aliased SRAM bitband region (BIT-BAND) - Bit manipulation engine (BME) * Security and integrity modules - 80-bit unique identification (ID) number per chip * Human-machine interface - Up to 71 general-purpose input/output (GPIO) - Two 32-bit keyboard interrupt modules (KBI) - External interrupt (IRQ) * Analog modules - One up to 16-channel 12-bit SAR ADC, operation in Stop mode, optional hardware trigger (ADC) - Two analog comparators containing a 6-bit DAC and programmable reference input (ACMP) * Timers - One 6-channel FlexTimer/PWM (FTM) - Two 2-channel FlexTimer/PWM (FTM) - One 2-channel periodic interrupt timer (PIT) - One pulse width timer (PWT) - One real-time clock (RTC) * Communication interfaces - Two SPI modules (SPI) - Up to three UART modules (UART) - Two I2C modules (I2C) - One MSCAN module (MSCAN) * Package options - 80-pin LQFP - 64-pin QFP/LQFP - 44-pin LQFP NXP reserves the right to change the production detail specifications as may be required to permit improvements in the design of its products. KE06 Sub-Family Data Sheet, Rev. 6, 04/2020 2 NXP Semiconductors Table of Contents 1 Ordering parts.......................................................................................4 5.3 Thermal specifications................................................................. 18 1.1 Determining valid orderable parts............................................... 4 5.3.1 Thermal operating requirements.................................... 18 2 Part identification................................................................................. 4 5.3.2 Thermal characteristics.................................................. 19 2.1 Description...................................................................................4 6 Peripheral operating requirements and behaviors................................ 20 2.2 Format.......................................................................................... 4 6.1 Core modules............................................................................... 20 2.3 Fields............................................................................................4 6.1.1 SWD electricals .............................................................20 2.4 Example....................................................................................... 5 6.2 External oscillator (OSC) and ICS characteristics.......................21 3 Parameter classification........................................................................5 6.3 NVM specifications..................................................................... 23 4 Ratings..................................................................................................6 6.4 Analog..........................................................................................24 4.1 Thermal handling ratings............................................................. 6 6.4.1 ADC characteristics....................................................... 24 4.2 Moisture handling ratings............................................................ 6 6.4.2 Analog comparator (ACMP) electricals.........................27 4.3 ESD handling ratings................................................................... 6 6.5 Communication interfaces........................................................... 27 4.4 Voltage and current operating ratings..........................................7 6.5.1 SPI switching specifications.......................................... 27 5 General................................................................................................. 7 6.5.2 MSCAN......................................................................... 30 5.1 Nonswitching electrical specifications........................................ 7 7 Dimensions...........................................................................................31 5.1.1 DC characteristics.......................................................... 7 5.1.2 Supply current characteristics........................................ 14 8 Pinout................................................................................................... 31 5.1.3 EMC performance..........................................................15 8.1 Signal multiplexing and pin assignments.................................... 31 5.2 Switching specifications.............................................................. 16 8.2 Device pin assignment................................................................. 34 5.2.1 Control timing................................................................ 16 5.2.2 FTM module timing....................................................... 17 7.1 Obtaining package dimensions.................................................... 31 9 Revision history....................................................................................37 KE06 Sub-Family Data Sheet, Rev. 6, 04/2020 NXP Semiconductors 3 Ordering parts 1 Ordering parts 1.1 Determining valid orderable parts Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to nxp.com and perform a part number search for the following device numbers: KE06Z. 2 Part identification 2.1 Description Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received. 2.2 Format Part numbers for this device have the following format: Q KE## A FFF R T PP CC N 2.3 Fields This table lists the possible values for each field in the part number (not all combinations are valid): Field Description Values Q Qualification status KE## Kinetis family * KE06 A Key attribute * Z = M0+ core FFF Program flash memory size * 128 = 128 KB R Silicon revision T Temperature range (C) PP Package identifier * M = Fully qualified, general market flow * P = Prequalification * (Blank) = Main * A = Revision after main * V = -40 to 105 * LD = 44 LQFP (10 mm x 10 mm) Table continues on the next page... KE06 Sub-Family Data Sheet, Rev. 6, 04/2020 4 NXP Semiconductors Parameter classification Field Description Values * QH = 64 QFP (14 mm x 14 mm) * LH = 64 LQFP (10 mm x 10 mm) * LK = 80 LQFP (14 mm x 14 mm) CC Maximum CPU frequency (MHz) N Packaging type * 4 = 48 MHz * R = Tape and reel * (Blank) = Trays 2.4 Example This is an example part number: MKE06Z128VLK4 3 Parameter classification The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the following classification is used and the parameters are tagged accordingly in the tables where appropriate: Table 1. Parameter classifications P Those parameters are guaranteed during production testing on each individual device. C Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations. T Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category. D Those parameters are derived mainly from simulations. NOTE The classification is shown in the column labeled "C" in the parameter tables where appropriate. KE06 Sub-Family Data Sheet, Rev. 6, 04/2020 NXP Semiconductors 5 Ratings 4 Ratings 4.1 Thermal handling ratings Symbol Description Min. Max. Unit Notes TSTG Storage temperature -55 150 C 1 TSDR Solder temperature, lead-free -- 260 C 2 1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life. 2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. 4.2 Moisture handling ratings Symbol MSL Description Moisture sensitivity level Min. Max. Unit Notes -- 3 -- 1 1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. 4.3 ESD handling ratings Symbol Description Min. Max. Unit Notes VHBM Electrostatic discharge voltage, human body model -6000 +6000 V 1 VCDM Electrostatic discharge voltage, charged-device model -500 +500 V 2 Latch-up current at ambient temperature of 125C -100 +100 mA 3 ILAT 1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM). 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components. 3. Determined according to JEDEC Standard JESD78D, IC Latch-up Test. * Test was performed at 125 C case temperature (Class II). * I/O pins pass 100 mA I-test with IDD current limit at 400 mA. * I/O pins pass +50/-100 mA I-test with IDD current limit at 1000 mA. * Supply groups pass 1.5 Vccmax. * RESET pin was only tested with negative I-test due to product conditioning requirement. KE06 Sub-Family Data Sheet, Rev. 6, 04/2020 6 NXP Semiconductors General 4.4 Voltage and current operating ratings Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in the following table may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this document. This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either VSS or VDD) or the programmable pullup resistor associated with the pin is enabled. Table 2. Voltage and current operating ratings Symbol Description Min. Max. Unit VDD Digital supply voltage -0.3 6.0 V IDD Maximum current into VDD -- 120 mA VIN ID VDDA 0.31 Input voltage except true open drain pins -0.3 VDD + Input voltage of true open drain pins -0.3 6 V Instantaneous maximum current single pin limit (applies to all port pins) -25 25 mA VDD - 0.3 VDD + 0.3 V Analog supply voltage V 1. Maximum rating of VDD also applies to VIN. 5 General 5.1 Nonswitching electrical specifications 5.1.1 DC characteristics This section includes information about power supply requirements and I/O pin characteristics. Table 3. DC characteristics Symbol -- C -- Descriptions Operating voltage2 -- Min Typical1 Max Unit 2.7 -- 5.5 V Table continues on the next page... KE06 Sub-Family Data Sheet, Rev. 6, 04/2020 NXP Semiconductors 7 Nonswitching electrical specifications Table 3. DC characteristics (continued) Symbol C Descriptions Min Typical1 Max Unit VOH P Output All I/O pins, except PTA2 5 V, Iload = -5 mA high and PTA3, standard3 V, Iload = -2.5 mA voltage drive strength VDD - 0.8 -- -- V VDD - 0.8 -- -- V C P High current drive pins, high-drive strength3 5 V, Iload = -20 mA VDD - 0.8 -- -- V 3 V, Iload = -10 mA VDD - 0.8 -- -- V Output high current Max total IOH for all ports 5V -- -- -100 mA 3V -- -- -60 Output low voltage All I/O pins, standarddrive strength 5 V, Iload = 5 mA -- -- 0.8 V 3 V, Iload = 2.5 mA -- -- 0.8 V 5 V, Iload =20 mA -- -- 0.8 V 3 V, Iload = 10 mA -- -- 0.8 V 5V -- -- 100 mA 3V -- -- 60 4.5VDD<5.5 V 0.65 x VDD -- -- 2.7VDD<4.5 V 0.70 x VDD -- -- 4.5VDD<5.5 V -- -- 0.35 x VDD 2.7VDD<4.5 V -- -- 0.30 x VDD C IOHT VOL D P C P C IOLT VIH VIL D P P High current drive pins, high-drive strength3 Output low current Max total IOL for all ports Input high voltage All digital inputs Input low voltage All digital inputs V V Vhys C Input hysteresi s All digital inputs -- 0.06 x VDD -- -- mV |IIn| P Input leakage current Per pin (pins in high impedance input mode) VIN = VDD or VSS -- 0.1 1 A |IINTOT| C Total leakage combine d for all port pins Pins in high impedance input mode VIN = VDD or VSS -- -- 2 A RPU P Pullup resistors All digital inputs, when enabled (all I/O pins other than PTA2 and PTA3) -- 30.0 -- 50.0 k RPU4 P Pullup resistors PTA2 and PTA3 pins -- 30.0 -- 60.0 k IIC D DC Single pin limit injection Total MCU limit, includes current5, sum of all stressed pins 6, 7 VIN < VSS, VIN > VDD -2 -- 2 mA -5 -- 25 CIn C Input capacitance, all pins -- -- -- 7 pF VRAM C RAM retention voltage -- 2.0 -- -- V 1. Typical values are measured at 25 C. Characterized, not tested. 2. Maximum power supply VDD ramp-up rate is 70V/ms, characterized on samples of different lots. KE06 Sub-Family Data Sheet, Rev. 6, 04/2020 8 NXP Semiconductors Nonswitching electrical specifications 3. Only PTB4, PTB5, PTD0, PTD1, PTE0, PTE1, PTH0 (64-pin and 80-pin packages only), and PTH1 (64-pin and 80-pin packages only) support high current output. 4. The specified resistor value is the actual value internal to the device. The pullup value may appear higher when measured externally on the pin. 5. All functional non-supply pins, except for PTA2 and PTA3, are internally clamped to VSS and VDD. PTA2 and PTA3 are true open drain I/O pins that are internally clamped to VSS. 6. Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger value. 7. Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current conditions. If the positive injection current (VIn > VDD) is higher than IDD, the injection current may flow out of VDD and could result in external power supply going out of regulation. Ensure that external VDD load will shunt current higher than maximum injection current when the MCU is not consuming power, such as when no system clock is present, or clock rate is very low (which would reduce overall power consumption). Table 4. LVD and POR specification Symbol C Description Min Typ Max Unit 1.5 1.75 2.0 V 4.2 4.3 4.4 V Level 1 falling (LVWV = 00) 4.3 4.4 4.5 V Level 2 falling (LVWV = 01) 4.5 4.5 4.6 V Level 3 falling (LVWV = 10) 4.6 4.6 4.7 V Level 4 falling (LVWV = 11) 4.7 4.7 4.8 V POR re-arm voltage1 VPOR D VLVDH C VLVW1H C VLVW2H C VLVW3H C VLVW4H C VHYSH C High range low-voltage detect/warning hysteresis -- 100 -- mV VLVDL C Falling low-voltage detect threshold--low range (LVDV = 0) 2.56 2.61 2.66 V VLVW1L C Level 1 falling (LVWV = 00) 2.62 2.7 2.78 V VLVW2L C Level 2 falling (LVWV = 01) 2.72 2.8 2.88 V VLVW3L C Falling lowvoltage warning threshold-- low range Level 3 falling (LVWV = 10) 2.82 2.9 2.98 V VLVW4L C Level 4 falling (LVWV = 11) 2.92 3.0 3.08 V VHYSDL C Low range low-voltage detect hysteresis -- 40 -- mV VHYSWL C Low range low-voltage warning hysteresis -- 80 -- mV VBG P Buffered bandgap output 3 1.14 1.16 1.18 V Falling low-voltage detect threshold--high range (LVDV = 1)2 Falling lowvoltage warning threshold-- high range 1. Maximum is highest voltage that POR is guaranteed. 2. Rising thresholds are falling threshold + hysteresis. 3. voltage Factory trimmed at VDD = 5.0 V, Temp = 25 C KE06 Sub-Family Data Sheet, Rev. 6, 04/2020 NXP Semiconductors 9 Nonswitching electrical specifications VDD-VOH(V) IOH(mA) Figure 1. Typical VDD-VOH Vs. IOH (standard drive strength) (VDD = 5 V) VDD-VOH(V) IOH(mA) Figure 2. Typical VDD-VOH Vs. IOH (standard drive strength) (VDD = 3 V) KE06 Sub-Family Data Sheet, Rev. 6, 04/2020 10 NXP Semiconductors Nonswitching electrical specifications VDD-VOH(V) IOH(mA) Figure 3. Typical VDD-VOH Vs. IOH (high drive strength) (VDD = 5 V) VDD-VOH(V) IOH(mA) Figure 4. Typical VDD-VOH Vs. IOH (high drive strength) (VDD = 3 V) KE06 Sub-Family Data Sheet, Rev. 6, 04/2020 NXP Semiconductors 11 Nonswitching electrical specifications VOL(V) IOL(mA) Figure 5. Typical VOL Vs. IOL (standard drive strength) (VDD = 5 V) VOL(V) IOL(mA) Figure 6. Typical VOL Vs. IOL (standard drive strength) (VDD = 3 V) KE06 Sub-Family Data Sheet, Rev. 6, 04/2020 12 NXP Semiconductors Nonswitching electrical specifications VOL(V) IOL(mA) Figure 7. Typical VOL Vs. IOL (high drive strength) (VDD = 5 V) VOL(V) IOL(mA) Figure 8. Typical VOL Vs. IOL (high drive strength) (VDD = 3 V) KE06 Sub-Family Data Sheet, Rev. 6, 04/2020 NXP Semiconductors 13 Nonswitching electrical specifications 5.1.2 Supply current characteristics This section includes information about power supply current in various operating modes. Table 5. Supply current characteristics C Parameter Symbol Core/Bus Freq VDD (V) Typical1 Max2 Unit Temp C Run supply current FEI mode, all modules clocks enabled; run from flash RIDD 48/24 MHz 5 11.1 -- mA -40 to 105 C 8 -- mA -40 to 105 C mA -40 to 105 C mA -40 to 105 C C C 24/24 MHz 12/12 MHz 5 -- C 1/1 MHz 2.4 -- C 48/24 MHz 11 -- C 24/24 MHz 7.9 -- C 12/12 MHz 4.9 -- 1/1 MHz 2.3 -- 7.8 -- 24/24 MHz 5.5 -- C C C Run supply current FEI mode, all modules clocks disabled and gated; run from flash RIDD 48/24 MHz 3 5 12/12 MHz 3.8 -- C 1/1 MHz 2.3 -- C 48/24 MHz 7.7 -- C 24/24 MHz 5.4 -- C 12/12 MHz 3.7 -- C 1/1 MHz 2.2 -- 14.7 -- 9.8 14.9 C P C Run supply current FBE mode, all modules clocks enabled; run from RAM RIDD 48/24 MHz 3 5 24/24 MHz 12/12 MHz 6 -- C 1/1 MHz 2.4 -- C 48/24 MHz 14.6 -- P 24/24 MHz 9.6 12.8 C 12/12 MHz 5.9 -- C 1/1 MHz 2.3 -- 11.4 -- 24/24 MHz 7.7 12.5 C P C Run supply current FBE mode, all modules clocks disabled and gated; run from RAM RIDD 48/24 MHz 3 5 12/12 MHz 4.7 -- C 1/1 MHz 2.3 -- C 48/24 MHz 11.3 -- P 24/24 MHz 7.6 9.5 C 12/12 MHz 4.6 -- 1/1 MHz 2.2 -- 3 Table continues on the next page... KE06 Sub-Family Data Sheet, Rev. 6, 04/2020 14 NXP Semiconductors Nonswitching electrical specifications Table 5. Supply current characteristics (continued) C Parameter Symbol Core/Bus Freq VDD (V) Typical1 Max2 Unit Temp C Wait mode current FEI mode, all modules clocks enabled WIDD 48/24 MHz 5 8.4 -- mA -40 to 105 C 24/24 MHz 6.5 7.2 12/12 MHz 4.3 -- C 1/1 MHz 2.4 -- C 48/24 MHz 8.3 -- P 24/24 MHz 6.4 7 C 12/12 MHz 4.2 -- C 1/1 MHz 2.3 -- A -40 to 105 C P C P SIDD P Stop mode supply current no clocks active (except 1 kHz LPO clock)3 C ADC adder to Stop -- C ADLPC = 1 3 -- 5 2 105 -- 3 1.9 95 -- 5 86 -- 3 82 -- 5 12 -- 3 12 -- 5 130 -- 3 125 -- -40 to 105 C A -40 to 105 C A -40 to 105 C A -40 to 105 C ADLSMP = 1 ADCO = 1 MODE = 10B ADICLK = 11B C ACMP adder to Stop -- -- C C LVD adder to Stop4 -- C 1. 2. 3. 4. -- Data in Typical column was characterized at 5.0 V, 25 C or is typical recommended value. The Max current is observed at high temperature of 105 C. RTC adder cause <1 A IDD increase typically, RTC clock source is 1 kHz LPO clock. LVD is periodically woken up from Stop by 5% duty cycle. The period is equal to or less than 2 ms. 5.1.3 EMC performance Electromagnetic compatibility (EMC) performance is highly dependent on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation play a significant role in EMC performance. The system designer must consult the following applications notes, available on nxp.com for advice and guidance specifically targeted at optimizing EMC performance. * AN2321: Designing for Board Level Electromagnetic Compatibility * AN1050: Designing for Electromagnetic Compatibility (EMC) with HCMOS Microcontrollers * AN1263: Designing for Electromagnetic Compatibility with Single-Chip Microcontrollers KE06 Sub-Family Data Sheet, Rev. 6, 04/2020 NXP Semiconductors 15 Switching specifications * AN2764: Improving the Transient Immunity Performance of Microcontroller-Based Applications * AN1259: System Design and Layout Techniques for Noise Reduction in MCUBased Systems 5.1.3.1 EMC radiated emissions operating behaviors Table 6. EMC radiated emissions operating behaviors for 80-pin LQFP package Symbol Description Frequency band (MHz) Typ. Unit Notes 1, 2 VRE1 Radiated emissions voltage, band 1 0.15-50 6 dBV VRE2 Radiated emissions voltage, band 2 50-150 6 dBV VRE3 Radiated emissions voltage, band 3 150-500 11 dBV VRE4 Radiated emissions voltage, band 4 500-1000 5 dBV 0.15-1000 N3 -- VRE_IEC IEC level 2, 4 1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions--TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range. 2. VDD = 5.0 V, TA = 25 C, fOSC = 8 MHz (crystal), fSYS = 40 MHz, fBUS = 20 MHz 3. IEC/SAE Level Maximums: N12 dBV, M18 dBV, K30 dBV, I 36 dBV, H42 dBV. 4. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions--TEM Cell and Wideband TEM Cell Method 5.2 Switching specifications 5.2.1 Control timing Table 7. Control timing Symbol Min Typical1 Max Unit System and core clock fSys DC -- 48 MHz P Bus frequency (tcyc = 1/fBus) fBus DC -- 24 MHz P Internal low power oscillator frequency fLPO 0.67 1.0 1.25 KHz textrst 1.5 x -- -- ns Num C 1 D 2 3 4 D Rating External reset pulse width2 tcyc 5 D 6 D D Reset low drive IRQ pulse width trstdrv 34 x tcyc -- -- ns Asynchronous path2 tILIH 100 -- -- ns Synchronous path3 tIHIL 1.5 x tcyc -- -- ns Table continues on the next page... KE06 Sub-Family Data Sheet, Rev. 6, 04/2020 16 NXP Semiconductors Switching specifications Table 7. Control timing (continued) Num C 7 D Symbol Min Typical1 Max Unit Asynchronous path2 tILIH 100 -- -- ns Synchronous path tIHIL 1.5 x tcyc -- -- ns Port rise and fall time Normal drive strength (load = 50 pF)4 -- tRise -- 10.2 -- ns tFall -- 9.5 -- ns Port rise and fall time high drive strength (load = 50 pF)4 -- tRise -- 5.4 -- ns tFall -- 4.6 -- ns Rating Keyboard interrupt pulse width D 8 C C C C 1. Typical values are based on characterization data at VDD = 5.0 V, 25 C unless otherwise stated. 2. This is the shortest pulse that is guaranteed to be recognized as a RESET pin request. 3. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized. 4. Timing is shown with respect to 20% VDD and 80% VDD levels. Temperature range -40 C to 105 C. textrst RESET_b pin Figure 9. Reset timing tIHIL KBIPx IRQ/KBIPx tILIH Figure 10. KBIPx timing 5.2.2 FTM module timing Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock. Table 8. FTM input timing C Function Symbol Min Max Unit D Timer clock frequency fTimer fBus fSys Hz D External clock frequency fTCLK 0 fTimer/4 Hz Table continues on the next page... KE06 Sub-Family Data Sheet, Rev. 6, 04/2020 NXP Semiconductors 17 Thermal specifications Table 8. FTM input timing (continued) C Function Symbol Min Max Unit D External clock period tTCLK 4 -- tTimer, 1 D External clock high time tclkh 1.5 -- tTimer1 D External clock low time tclkl 1.5 -- tTimer1 D Input capture pulse width tICPW 1.5 -- tTimer1 1. tTimer = 1/fTimer tTCLK tclkh TCLK tclkl Figure 11. Timer external clock tICPW FTMCHn FTMCHn tICPW Figure 12. Timer input capture pulse 5.3 Thermal specifications 5.3.1 Thermal operating requirements Table 9. Thermal operating requirements Symbol Description Min. Max. Unit TJ Die junction temperature -40 125 C TA Ambient temperature -40 105 C Notes 1 1. Maximum TA can be exceeded only if the user ensures that TJ does not exceed maximum TJ. The simplest method to determine TJ is: TJ = TA + JA x chip power dissipation KE06 Sub-Family Data Sheet, Rev. 6, 04/2020 18 NXP Semiconductors Thermal specifications 5.3.2 Thermal characteristics This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is userdetermined rather than being controlled by the MCU design. To take PI/O into account in power calculations, determine the difference between actual pin voltage and VSS or VDD and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and VSS or VDD will be very small. Table 10. Thermal attributes Board type Symbol Single-layer (1S) RJA Four-layer (2s2p) Description 64 LQFP 64 QFP 44 LQFP 80 LQFP Unit Notes Thermal resistance, junction to ambient (natural convection) 71 61 75 57 C/W 1, 2 RJA Thermal resistance, junction to ambient (natural convection) 53 47 53 44 C/W 1, 3 Single-layer (1S) RJMA Thermal resistance, junction to ambient (200 ft./min. air speed) 59 50 62 47 C/W 1, 3 Four-layer (2s2p) RJMA Thermal resistance, junction to ambient (200 ft./min. air speed) 46 41 47 38 C/W 1, 3 -- RJB Thermal resistance, junction to board 35 32 34 28 C/W 4 -- RJC Thermal resistance, junction to case 20 23 20 15 C/W 5 -- JT Thermal characterization parameter, junction to package top outside center (natural convection) 5 8 5 3 C/W 6 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. 2. Per JEDEC JESD51-2 with the single layer board (JESD51-3) horizontal. 3. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal. 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package. 5. Thermal resistance between the die and the solder pad on the bottom of the package. Interface resistance is ignored. 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization. The average chip-junction temperature (TJ) in C can be obtained from: TJ = TA + (PD x JA) KE06 Sub-Family Data Sheet, Rev. 6, 04/2020 NXP Semiconductors 19 Peripheral operating requirements and behaviors Where: TA = Ambient temperature, C JA = Package thermal resistance, junction-to-ambient, C/W PD = Pint + PI/O Pint = IDD x VDD, Watts - chip internal power PI/O = Power dissipation on input and output pins - user determined For most applications, PI/O << Pint and can be neglected. An approximate relationship between PD and TJ (if PI/O is neglected) is: PD = K / (TJ + 273 C) Solving the equations above for K gives: K = PD x (TA + 273 C) + JA x (PD)2 where K is a constant pertaining to the particular part. K can be determined by measuring PD (at equilibrium) for an known TA. Using this value of K, the values of PD and TJ can be obtained by solving the above equations iteratively for any value of TA. 6 Peripheral operating requirements and behaviors 6.1 Core modules 6.1.1 SWD electricals Table 11. SWD full voltage range electricals Symbol J1 Description Min. Max. Unit Operating voltage 2.7 5.5 V 0 24 MHz 1/J1 -- ns 20 -- ns SWD_CLK frequency of operation * Serial wire debug J2 SWD_CLK cycle period J3 SWD_CLK clock pulse width * Serial wire debug J4 SWD_CLK rise and fall times -- 3 ns J9 SWD_DIO input data setup time to SWD_CLK rise 10 -- ns J10 SWD_DIO input data hold time after SWD_CLK rise 3 -- ns Table continues on the next page... KE06 Sub-Family Data Sheet, Rev. 6, 04/2020 20 NXP Semiconductors Peripheral operating requirements and behaviors Table 11. SWD full voltage range electricals (continued) Symbol Description Min. Max. Unit J11 SWD_CLK high to SWD_DIO data valid -- 35 ns J12 SWD_CLK high to SWD_DIO high-Z 5 -- ns J2 J3 J3 SWD_CLK (input) J4 J4 Figure 13. Serial wire clock input timing SWD_CLK J9 SWD_DIO J10 Input data valid J11 SWD_DIO Output data valid J12 SWD_DIO J11 SWD_DIO Output data valid Figure 14. Serial wire data timing 6.2 External oscillator (OSC) and ICS characteristics Table 12. OSC and ICS specifications (temperature range = -40 to 105 C ambient) Num C 1 C C Symbol Min Typical1 Max Unit Low range (RANGE = 0) flo 31.25 32.768 39.0625 kHz High range (RANGE = 1) fhi 4 -- 24 MHz Characteristic Crystal or resonator frequency Table continues on the next page... KE06 Sub-Family Data Sheet, Rev. 6, 04/2020 NXP Semiconductors 21 Peripheral operating requirements and behaviors Table 12. OSC and ICS specifications (temperature range = -40 to 105 C ambient) (continued) Num C 2 D 3 D 4 5 Symbol Load capacitors Feedback resistor Low Frequency, Low-Power Mode3 M Low Frequency, High-Gain Mode -- 10 -- M High Frequency, LowPower Mode -- 1 -- M High Frequency, High-Gain Mode -- 1 -- M -- 0 -- k -- 200 -- k -- 0 -- k 4 MHz -- 0 -- k 8 MHz -- 0 -- k 16 MHz -- 0 -- k -- 1000 -- ms -- 800 -- ms -- 3 -- ms -- 1.5 -- ms Series resistor High Frequency D Series resistor High Frequency, High-Gain Mode C C C Crystal start-up time low range = 32.768 kHz crystal; High range = 20 MHz crystal4,5 Unit -- D C See Max Note2 -- Mode3 RF Typical1 -- Low-Power Mode 3 D Min C1, C2 Series resistor Low Frequency D D 6 Characteristic RS2 High-Gain Mode Low-Power Low range, low power 2 RS tCSTL Low range, high gain High range, low power tCSTH High range, high gain 7 T Internal reference start-up time tIRST -- 20 50 s 8 P Internal reference clock (IRC) frequency trim range fint_t 31.25 -- 39.0625 kHz 9 P Internal reference clock frequency, factory trimmed, T = 25 C, VDD = 5 V fint_ft -- 37.5 -- kHz 10 P DCO output frequency range FLL reference = fint_t, flo, or fhi/RDIV fdco 40 -- 50 MHz 11 P Factory trimmed internal oscillator accuracy6 T = 25 C, VDD = 5 V fint_ft -0.5 -- 0.5 % 12 C Deviation of IRC over temperature when trimmed at T = 25 C, VDD = 5 V Over temperature range from -40 C to 105C fint_t -1 -- 0.5 % Over temperature range from 0 C to 105C fint_t -0.5 -- 0.5 Frequency accuracy of DCO output using factory trim value Over temperature range from -40 C to 105C fdco_ft -1.5 -- 1 Over temperature range from 0 C to 105C fdco_ft -1 -- 1 13 C % Table continues on the next page... KE06 Sub-Family Data Sheet, Rev. 6, 04/2020 22 NXP Semiconductors Peripheral operating requirements and behaviors Table 12. OSC and ICS specifications (temperature range = -40 to 105 C ambient) (continued) Num C 14 C 15 C Characteristic FLL acquisition Symbol Min Typical1 Max Unit tAcquire -- -- 2 ms CJitter -- 0.02 0.2 %fdco time4,7 Long term jitter of DCO output clock (averaged over 2 ms interval)8 1. Data in Typical column was characterized at 5.0 V, 25 C or is typical recommended value. 2. See crystal or resonator manufacturer's recommendation. 3. Load capacitors (C1,C2), feedback resistor (RF) and series resistor (RS) are incorporated internally when RANGE = HGO = 0. 4. This parameter is characterized and not tested on each device. 5. Proper PC board layout procedures must be followed to achieve specifications. 6. The accuracy is for factory trimmed deviation when performing trim process in NXP, however, the reflow process may cause an extra 0.5% drift at the room temperature. 7. This specification applies to any time the FLL reference source or reference divider is changed, trim value changed, or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running. 8. Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fBus. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via VDD and VSS and variation in crystal oscillator frequency increase the CJitter percentage for a given interval. OSC XTAL EXTAL RS RF Crystal or Resonator C1 C2 Figure 15. Typical crystal or resonator circuit 6.3 NVM specifications This section provides details about program/erase times and program/erase endurance for the flash memories. Table 13. Flash characteristics C Characteristic Symbol Min1 Typical2 Max3 Unit4 D Supply voltage for program/erase -40 C to 105 C Vprog/erase 2.7 -- 5.5 V Table continues on the next page... KE06 Sub-Family Data Sheet, Rev. 6, 04/2020 NXP Semiconductors 23 Peripheral operating requirements and behaviors Table 13. Flash characteristics (continued) 1. 2. 3. 4. C Characteristic Symbol Min1 Typical2 Max3 Unit4 D Supply voltage for read operation VRead 2.7 -- 5.5 V D NVM Bus frequency fNVMBUS 1 -- 24 MHz D NVM Operating frequency fNVMOP 0.8 1 1.05 MHz D Erase Verify All Blocks tVFYALL -- -- 2605 tcyc D Erase Verify Flash Block tRD1BLK -- -- 2579 tcyc D Erase Verify Flash Section tRD1SEC -- -- 485 tcyc D Read Once tRDONCE -- -- 464 tcyc D Program Flash (2 word) tPGM2 0.12 0.13 0.31 ms D Program Flash (4 word) tPGM4 0.21 0.21 0.49 ms D Program Once tPGMONCE 0.20 0.21 0.21 ms D Erase All Blocks tERSALL 95.42 100.18 100.30 ms D Erase Flash Block tERSBLK 95.42 100.18 100.30 ms D Erase Flash Sector tERSPG 19.10 20.05 20.09 ms D Unsecure Flash tUNSECU 95.42 100.19 100.31 ms D Verify Backdoor Access Key tVFYKEY -- -- 482 tcyc D Set User Margin Level tMLOADU -- -- 415 tcyc C FLASH Program/erase endurance TL to TH = -40 C to 105 C nFLPE 10 k 100 k -- Cycles C Data retention at an average junction temperature of TJavg = 85C after up to 10,000 program/erase cycles tD_ret 15 100 -- years Minimum times are based on maximum fNVMOP and maximum fNVMBUS Typical times are based on typical fNVMOP and maximum fNVMBUS Maximum times are based on typical fNVMOP and typical fNVMBUS plus aging tcyc = 1 / fNVMBUS Program and erase operations do not require any special power sources other than the normal VDD supply. For more detailed information about program/erase operations, see the Flash Memory Module section in the reference manual. 6.4 Analog 6.4.1 ADC characteristics Table 14. 5 V 12-bit ADC operating conditions Characteri stic Reference potential Conditions * Low * High Symbol Min Typ1 Max Unit Comment VREFL VSSA -- VDDA/2 V -- VREFH VDDA/2 -- VDDA Table continues on the next page... KE06 Sub-Family Data Sheet, Rev. 6, 04/2020 24 NXP Semiconductors Peripheral operating requirements and behaviors Table 14. 5 V 12-bit ADC operating conditions (continued) Characteri stic Conditions Symbol Min Typ1 Max Unit Comment Supply voltage Absolute VDDA 2.7 -- 5.5 V -- Delta to VDD (VDD-VDDA) VDDA -100 0 +100 mV -- Input voltage VADIN VREFL -- VREFH V -- Input capacitance CADIN -- 4.5 5.5 pF -- Input resistance RADIN -- 3 5 k -- RAS -- -- 2 k External to MCU -- -- 5 -- -- 5 -- -- 10 -- -- 10 0.4 -- 8.0 MHz -- 0.4 -- 4.0 Analog source resistance * * 12-bit mode fADCK > 4 MHz fADCK < 4 MHz * * 10-bit mode fADCK > 4 MHz fADCK < 4 MHz 8-bit mode (all valid fADCK) ADC conversion clock frequency High speed (ADLPC=0) fADCK Low power (ADLPC=1) 1. Typical values assume VDDA = 5.0 V, Temp = 25C, fADCK=1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. SIMPLIFIED INPUT PIN EQUIVALENT CIRCUIT Pad leakage due to input protection ZAS R AS z ADIN SIMPLIFIED CHANNEL SELECT CIRCUIT R ADIN ADC SAR ENGINE v ADIN v AS C AS R ADIN INPUT PIN INPUT PIN R ADIN R ADIN INPUT PIN C ADIN Figure 16. ADC input impedance equivalency diagram KE06 Sub-Family Data Sheet, Rev. 6, 04/2020 NXP Semiconductors 25 Peripheral operating requirements and behaviors Table 15. 12-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) Characteristic Conditions Supply current C Symbol Min Typ1 Max Unit T IDDA -- 133 -- A T IDDA -- 218 -- A T IDDA -- 327 -- A T IDDA -- 582 990 A ADLPC = 1 ADLSMP = 1 ADCO = 1 Supply current ADLPC = 1 ADLSMP = 0 ADCO = 1 Supply current ADLPC = 0 ADLSMP = 1 ADCO = 1 Supply current ADLPC = 0 ADLSMP = 0 ADCO = 1 Supply current Stop, reset, module off T IDDA -- 0.011 1 A ADC asynchronous clock source High speed (ADLPC = 0) P fADACK 2 3.3 5 MHz 1.25 2 3.3 -- 20 -- -- 40 -- -- 3.5 -- -- 23.5 -- -- 5.0 -- Low power (ADLPC = 1) Conversion time (including sample time) Short sample (ADLSMP = 0) Sample time Short sample (ADLSMP = 0) T tADC Long sample (ADLSMP = 1) T tADS Long sample (ADLSMP = 1) Total unadjusted Error2 Differential NonLiniarity 12-bit mode C ETUE 10-bit mode C -- 1.5 -- 8-bit mode C -- 0.8 -- 12-bit mode C -- 1.5 -- 10-bit mode C -- 0.4 -- 8-bit mode C -- 0.15 -- -- 1.5 -- DNL Integral Non-Linearity 12-bit mode C 10-bit mode C -- 0.4 -- 8-bit mode C -- 0.15 -- 12-bit mode C -- 1.0 -- 10-bit mode C -- 0.2 -- Zero-scale error4 INL EZS ADCK cycles ADCK cycles LSB3 LSB3 LSB3 LSB3 Table continues on the next page... KE06 Sub-Family Data Sheet, Rev. 6, 04/2020 26 NXP Semiconductors Peripheral operating requirements and behaviors Table 15. 12-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued) Min Typ1 Max -- 0.35 -- -- 2.5 -- C -- 0.3 -- 8-bit mode C -- 0.25 -- Quantization error 12 bit modes D EQ -- -- 0.5 Input leakage error6 all modes D EIL Temp sensor slope -40 C-25 C D m D VTEMP25 Characteristic Full-scale error5 Conditions C 8-bit mode C 12-bit mode C 10-bit mode Symbol EFS LSB3 IIn * RAS 25 C-125 C Temp sensor voltage 25 C Unit LSB3 mV -- 3.266 -- -- 3.638 -- -- 1.396 -- mV/C V 1. Typical values assume VDDA = 5.0 V, Temp = 25 C, fADCK=1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 2. Includes quantization 3. 1 LSB = (VREFH - VREFL)/2N 4. VADIN = VSSA 5. VADIN = VDDA 6. IIn = leakage current (refer to DC characteristics) 6.4.2 Analog comparator (ACMP) electricals Table 16. Comparator electrical specifications C Characteristic Symbol Min Typical Max Unit D Supply voltage VDDA 2.7 -- 5.5 V T Supply current (Operation mode) IDDA -- 10 20 A D Analog input voltage VAIN VSS - 0.3 -- VDDA V P Analog input offset voltage VAIO -- -- 40 mV C Analog comparator hysteresis (HYST=0) VH -- 15 20 mV C Analog comparator hysteresis (HYST=1) VH -- 20 30 mV T Supply current (Off mode) IDDAOFF -- 60 -- nA C Propagation Delay tD -- 0.4 1 s 6.5 Communication interfaces 6.5.1 SPI switching specifications The serial peripheral interface (SPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes. See the SPI chapter of the KE06 Sub-Family Data Sheet, Rev. 6, 04/2020 NXP Semiconductors 27 Peripheral operating requirements and behaviors chip's reference manual for information about the modified transfer formats used for communicating with slower peripheral devices. All timing is shown with respect to 20% VDD and 80% VDD, unless noted, and 25 pF load on all SPI pins. All timing assumes high-drive strength is enabled for SPI output pins. Table 17. SPI master mode timing Nu m. Symbol 1 fop 2 tSPSCK 3 tLead 4 tLag 5 tWSPSCK 6 tSU Data setup time (inputs) 7 tHI 8 tv 9 10 11 Description Min. Max. Unit Comment fBus/2048 fBus/2 Hz fBus is the bus clock 2 x tBus 2048 x tBus ns tBus = 1/fBus Enable lead time 1/2 -- tSPSCK -- Enable lag time 1/2 -- tSPSCK -- tBus - 30 1024 x tBus ns -- 8 -- ns -- Data hold time (inputs) 8 -- ns -- Data valid (after SPSCK edge) -- 25 ns -- tHO Data hold time (outputs) 20 -- ns -- tRI Rise time input -- tBus - 25 ns -- tFI Fall time input tRO Rise time output -- 25 ns -- tFO Fall time output Frequency of operation SPSCK period Clock (SPSCK) high or low time SS1 (OUTPUT) 3 2 SPSCK (CPOL=0) (OUTPUT) 11 10 11 5 6 7 MSB IN2 BIT 6 . . . 1 LSB IN 8 MOSI (OUTPUT) 4 5 SPSCK (CPOL=1) (OUTPUT) MISO (INPUT) 10 MSB OUT2 BIT 6 . . . 1 9 LSB OUT 1. If configured as an output. 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. Figure 17. SPI master mode timing (CPHA=0) KE06 Sub-Family Data Sheet, Rev. 6, 04/2020 28 NXP Semiconductors Peripheral operating requirements and behaviors SS1 (OUTPUT) 2 3 SPSCK (CPOL=0) (OUTPUT) 5 SPSCK (CPOL=1) (OUTPUT) 5 6 MISO (INPUT) 11 10 11 4 7 MSB IN2 BIT 6 . . . 1 LSB IN 9 8 MOSI (OUTPUT) 10 PORT DATA MASTER MSB OUT2 BIT 6 . . . 1 MASTER LSB OUT PORT DATA 1.If configured as output 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. Figure 18. SPI master mode timing (CPHA=1) Table 18. SPI slave mode timing Nu m. Symbol 1 fop 2 tSPSCK 3 tLead 4 tLag 5 tWSPSCK 6 tSU 7 Min. Max. Unit Comment 0 fBus/4 Hz fBus is the bus clock as defined in Control timing. 4 x tBus -- ns tBus = 1/fBus Enable lead time 1 -- tBus -- Enable lag time 1 -- tBus -- tBus - 30 -- ns -- Data setup time (inputs) 15 -- ns -- tHI Data hold time (inputs) 25 -- ns -- 8 ta Slave access time -- tBus ns Time to data active from high-impedance state 9 tdis Slave MISO disable time -- tBus ns Hold time to highimpedance state 10 tv Data valid (after SPSCK edge) -- 25 ns -- 11 tHO Data hold time (outputs) 0 -- ns -- 12 tRI Rise time input -- tBus - 25 ns -- tFI Fall time input tRO Rise time output -- 25 ns -- tFO Fall time output 13 Description Frequency of operation SPSCK period Clock (SPSCK) high or low time 38 <> <> KE06 Sub-Family Data Sheet, Rev. 6, 04/2020 NXP Semiconductors 29 Peripheral operating requirements and behaviors SS (INPUT) 2 12 13 12 13 4 SPSCK (CPOL=0) (INPUT) 5 3 SPSCK (CPOL=1) (INPUT) 5 9 8 see note MISO (OUTPUT) SLAVE MSB 6 MOSI (INPUT) 10 11 11 BIT 6 . . . 1 SLAVE LSB OUT SEE NOTE 7 MSB IN LSB IN BIT 6 . . . 1 NOTE: Not defined Figure 19. SPI slave mode timing (CPHA = 0) SS (INPUT) 4 2 3 SPSCK (CPOL=0) (INPUT) 5 SPSCK (CPOL=1) (INPUT) 5 SLAVE 8 MSB OUT 6 MOSI (INPUT) 13 12 13 11 10 see note MISO (OUTPUT) 12 9 BIT 6 . . . 1 SLAVE LSB OUT BIT 6 . . . 1 LSB IN 7 MSB IN NOTE: Not defined Figure 20. SPI slave mode timing (CPHA=1) 6.5.2 MSCAN Table 19. MSCAN wake-up pulse characteristics Parameter Symbol Min Typ Max Unit MSCAN wakeup dominant pulse filtered tWUP - - 1.5 s MSCAN wakeup dominant pulse pass tWUP 5 - - s KE06 Sub-Family Data Sheet, Rev. 6, 04/2020 30 NXP Semiconductors Dimensions 7 Dimensions 7.1 Obtaining package dimensions Package dimensions are provided in package drawings. To find a package drawing, go to nxp.com and perform a keyword search for the drawing's document number: If you want the drawing for this package Then use this document number 44-pin LQFP 98ASS23225W 64-pin QFP 98ASB42844B 64-pin LQFP 98ASS23234W 80-pin LQFP 98ASS23237W 8 Pinout 8.1 Signal multiplexing and pin assignments The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin. NOTE VSS and VSSA are internally connected. VREFH and VDDA are internally connected in 64-pin packages. PTB4, PTB5, PTD0, PTD1, PTE0, PTE1, PTH0, and PTH1 are high-current drive pins when operated as output. PTA2 and PTA3 are true open-drain pins when operated as output. 80 64 44 LQFP LQFP LQFP /QFP 1 1 1 Pin Name PTD1 Default DISABLED ALT0 PTD1 ALT1 KBI0_P25 ALT2 FTM2_CH3 ALT3 ALT4 ALT5 ALT6 ALT7 SPI1_MOSI KE06 Sub-Family Data Sheet, Rev. 6, 04/2020 NXP Semiconductors 31 Pinout 80 64 44 LQFP LQFP LQFP /QFP Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 2 2 2 PTD0 DISABLED PTD0 KBI0_P24 FTM2_CH2 3 3 -- PTH7 DISABLED PTH7 KBI1_P31 PWT_IN1 4 4 -- PTH6 DISABLED PTH6 KBI1_P30 5 -- -- PTH5 DISABLED PTH5 KBI1_P29 6 5 3 PTE7 DISABLED PTE7 KBI1_P7 TCLK2 FTM1_CH1 CAN0_TX 7 6 4 PTH2 DISABLED PTH2 KBI1_P26 BUSOUT FTM1_CH0 CAN0_RX 8 7 5 VDD VDD 9 8 6 VDDA VDDA 10 -- -- VREFH VREFH VREFH 11 9 7 VREFL VREFL VREFL 12 10 8 VSS/ VSSA VSS/ VSSA 13 11 9 PTB7 EXTAL PTB7 KBI0_P15 I2C0_SCL EXTAL 14 12 10 PTB6 XTAL PTB6 KBI0_P14 I2C0_SDA XTAL 15 13 11 PTI4 DISABLED PTI4 IRQ 16 -- -- PTI1 DISABLED PTI1 IRQ UART2_TX 17 -- -- PTI0 DISABLED PTI0 IRQ UART2_RX 18 14 -- PTH1 DISABLED PTH1 KBI1_P25 FTM2_CH1 19 15 -- PTH0 DISABLED PTH0 KBI1_P24 FTM2_CH0 20 16 -- PTE6 DISABLED PTE6 KBI1_P6 21 17 -- PTE5 DISABLED PTE5 KBI1_P5 22 18 12 PTB5 DISABLED PTB5 KBI0_P13 FTM2_CH5 SPI0_PCS ACMP1_OUT 23 19 13 PTB4 NMI_b PTB4 KBI0_P12 FTM2_CH4 SPI0_MISO ACMP1_IN2 24 20 14 PTC3 ADC0_SE11 PTC3 KBI0_P19 FTM2_CH3 ADC0_SE11 25 21 15 PTC2 ADC0_SE10 PTC2 KBI0_P18 FTM2_CH2 ADC0_SE10 26 22 16 PTD7 DISABLED PTD7 KBI0_P31 UART2_TX 27 23 17 PTD6 DISABLED PTD6 KBI0_P30 UART2_RX 28 24 18 PTD5 DISABLED PTD5 KBI0_P29 PWT_IN0 29 -- -- PTI6 DISABLED PTI6 IRQ 30 -- -- PTI5 DISABLED PTI5 IRQ 31 25 19 PTC1 ADC0_SE9 PTC1 KBI0_P17 FTM2_CH1 ADC0_SE9 32 26 20 PTC0 ADC0_SE8 PTC0 KBI0_P16 FTM2_CH0 ADC0_SE8 33 -- -- PTH4 DISABLED PTH4 KBI1_P28 I2C1_SCL 34 -- -- PTH3 DISABLED PTH3 KBI1_P27 I2C1_SDA 35 27 -- PTF7 ADC0_SE15 PTF7 KBI1_P15 ADC0_SE15 36 28 -- PTF6 ADC0_SE14 PTF6 KBI1_P14 ADC0_SE14 37 29 -- PTF5 ADC0_SE13 PTF5 KBI1_P13 ADC0_SE13 38 30 -- PTF4 ADC0_SE12 PTF4 KBI1_P12 ADC0_SE12 39 31 21 PTB3 ADC0_SE7 PTB3 KBI0_P11 SPI0_MOSI FTM0_CH1 ADC0_SE7 40 32 22 PTB2 ADC0_SE6 PTB2 KBI0_P10 SPI0_SCK FTM0_CH0 ADC0_SE6 41 33 23 PTB1 ADC0_SE5 PTB1 KBI0_P9 UART0_TX ALT7 SPI1_SCK VDD VREFH VSSA VDDA VSS NMI_b ADC0_SE5 KE06 Sub-Family Data Sheet, Rev. 6, 04/2020 32 NXP Semiconductors Pinout 80 64 44 LQFP LQFP LQFP /QFP Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 PWT_IN1 ADC0_SE4 FTM2_FLT2 ACMP1_IN1 ADC0_SE3 FTM2_FLT1 ACMP1_IN0 ADC0_SE2 ALT5 ALT6 42 34 24 PTB0 ADC0_SE4 PTB0 KBI0_P8 UART0_RX 43 35 -- PTF3 DISABLED PTF3 KBI1_P11 UART1_TX 44 36 -- PTF2 DISABLED PTF2 KBI1_P10 UART1_RX 45 37 25 PTA7 ADC0_SE3 PTA7 KBI0_P7 46 38 26 PTA6 ADC0_SE2 PTA6 KBI0_P6 47 39 -- PTE4 DISABLED PTE4 KBI1_P4 48 40 27 VSS VSS VSS 49 41 28 VDD VDD VDD 50 -- -- PTG7 DISABLED PTG7 KBI1_P23 FTM2_CH5 SPI1_PCS 51 -- -- PTG6 DISABLED PTG6 KBI1_P22 FTM2_CH4 SPI1_MISO 52 -- -- PTG5 DISABLED PTG5 KBI1_P21 FTM2_CH3 SPI1_MOSI 53 -- -- PTG4 DISABLED PTG4 KBI1_P20 FTM2_CH2 SPI1_SCK 54 42 -- PTF1 DISABLED PTF1 KBI1_P9 FTM2_CH1 55 43 -- PTF0 DISABLED PTF0 KBI1_P8 FTM2_CH0 56 44 29 PTD4 DISABLED PTD4 KBI0_P28 57 45 30 PTD3 DISABLED PTD3 KBI0_P27 SPI1_PCS 58 46 31 PTD2 DISABLED PTD2 KBI0_P26 SPI1_MISO 59 47 32 PTA3 DISABLED PTA3 KBI0_P3 UART0_TX I2C0_SCL 60 48 33 PTA2 DISABLED PTA2 KBI0_P2 UART0_RX I2C0_SDA 61 49 34 PTA1 ADC0_SE1 PTA1 KBI0_P1 FTM0_CH1 I2C0_ 4WSDAOUT ACMP0_IN1 ADC0_SE1 62 50 35 PTA0 ADC0_SE0 PTA0 KBI0_P0 FTM0_CH0 I2C0_ 4WSCLOUT ACMP0_IN0 ADC0_SE0 63 51 36 PTC7 DISABLED PTC7 KBI0_P23 UART1_TX CAN0_TX 64 52 37 PTC6 DISABLED PTC6 KBI0_P22 UART1_RX CAN0_RX 65 -- -- PTI3 DISABLED PTI3 IRQ 66 -- -- PTI2 DISABLED PTI2 IRQ 67 53 -- PTE3 DISABLED PTE3 KBI1_P3 SPI0_PCS 68 54 38 PTE2 DISABLED PTE2 KBI1_P2 SPI0_MISO 69 -- -- VSS VSS VSS 70 -- -- VDD VDD VDD 71 55 -- PTG3 DISABLED PTG3 KBI1_P19 72 56 -- PTG2 DISABLED PTG2 KBI1_P18 73 57 -- PTG1 DISABLED PTG1 KBI1_P17 74 58 -- PTG0 DISABLED PTG0 KBI1_P16 75 59 39 PTE1 DISABLED PTE1 KBI1_P1 SPI0_MOSI 76 60 40 PTE0 DISABLED PTE0 KBI1_P0 SPI0_SCK 77 61 41 PTC5 DISABLED PTC5 KBI0_P21 78 62 42 PTC4 SWD_CLK PTC4 KBI0_P20 PWT_IN0 I2C1_SCL TCLK1 I2C1_SDA FTM1_CH1 RTC_ CLKOUT ALT7 FTM1_CH0 RTC_ CLKOUT ACMP0_IN2 SWD_CLK KE06 Sub-Family Data Sheet, Rev. 6, 04/2020 NXP Semiconductors 33 Pinout 80 64 44 LQFP LQFP LQFP /QFP Pin Name Default ALT0 ALT1 79 63 43 PTA5 RESET_b PTA5 KBI0_P5 80 64 44 PTA4 SWD_DIO PTA4 KBI0_P4 ALT2 IRQ ALT3 ALT4 TCLK0 RESET_b ACMP0_OUT SWD_DIO ALT5 ALT6 ALT7 8.2 Device pin assignment KE06 Sub-Family Data Sheet, Rev. 6, 04/2020 34 NXP Semiconductors PTA4 PTA5 PTC4 PTC5 PTE0 PTE1 PTG0 PTG1 PTG2 PTG3 VDD VSS PTE2 PTE3 PTI2 PTI3 PTC6 PTC7 PTA0 PTA1 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 Pinout VREFL 11 50 PTG7 VSS/VSSA 12 49 VDD PTB7 13 48 VSS PTB6 14 47 PTE4 PTI4 15 46 PTA6 PTI1 16 45 PTA7 PTI0 17 44 PTF2 PTH1 18 43 PTF3 PTH0 19 42 PTB0 PTE6 20 41 PTB1 40 PTG6 PTB2 51 39 10 PTB3 VREFH 38 PTG5 PTF4 52 37 9 PTF5 VDDA 36 PTG4 PTF6 53 35 8 PTF7 VDD 34 PTF1 PTH3 54 33 7 PTH4 PTH2 PTC0 PTF0 32 55 31 6 PTC1 PTE7 30 PTD4 PTI5 56 29 5 PTI6 PTH5 28 PTD3 PTD5 57 27 4 PTD6 PTH6 26 PTD2 PTD7 58 25 3 PTC2 PTH7 24 PTA3 PTC3 59 23 2 PTB4 PTD0 22 PTA2 PTB5 60 21 1 PTE5 PTD1 Figure 21. 80-pin LQFP package KE06 Sub-Family Data Sheet, Rev. 6, 04/2020 NXP Semiconductors 35 PTA4 PTA5 PTC4 PTC5 PTE0 PTE1 PTG0 PTG1 PTG2 PTG3 PTE2 PTE3 PTC6 PTC7 PTA0 PTA1 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 Pinout VDD VREFL 9 40 VSS VSS/VSSA 10 39 PTE4 PTB7 11 38 PTA6 PTB6 12 37 PTA7 PTI4 13 36 PTF2 PTH1 14 35 PTF3 PTH0 15 34 PTB0 PTE6 16 33 PTB1 PTE5 32 41 PTB2 8 31 VDDA/VREFH PTB3 PTF1 30 42 PTF4 7 29 VDD PTF5 PTF0 28 43 PTF6 6 27 PTH2 PTF7 PTD4 26 44 PTC0 5 25 PTE7 PTC1 PTD3 24 45 PTD5 4 23 PTH6 PTD6 PTD2 22 46 PTD7 3 21 PTH7 PTC2 PTA3 20 47 PTC3 2 19 PTD0 PTB4 PTA2 18 48 PTB5 1 17 PTD1 Figure 22. 64-pin QFP/LQFP packages KE06 Sub-Family Data Sheet, Rev. 6, 04/2020 36 NXP Semiconductors PTA4 PTA5 PTC4 PTC5 PTE0 PTE1 PTE2 PTC6 PTC7 PTA0 PTA1 44 43 42 41 40 39 38 37 36 35 34 Revision history 28 VDD VREFL 7 27 VSS VSS/VSSA 8 26 PTA6 PTB7 9 25 PTA7 PTB6 10 24 PTB0 PTI4 11 23 PTB1 22 6 PTB2 VDDA 21 PTD4 PTB3 29 20 5 PTC0 VDD 19 PTD3 PTC1 30 18 4 PTD5 PTH2 17 PTD2 PTD6 31 16 3 PTD7 PTE7 15 PTA3 PTC2 32 14 2 PTC3 PTD0 13 PTA2 PTB4 33 12 1 PTB5 PTD1 Figure 23. 44-pin LQFP package 9 Revision history The following table provides a revision history for this document. Table 20. Revision history Rev. No. Date Substantial Changes 1 12/2013 Initial NDA release. 2 3/2014 Initial public release. 3 5/2014 * Updated the Max. of SIDD. * Updated footnote to the VOH. * Corrected Unit in the FTM input timing table. 4 07/2016 * Added a new section of Thermal operating requirements. * Corrected pinout diagram for 44-pin LQFP in the Device pin assignment. 5 01/2019 * Added a footnote of "Max power suppply ramp rate is 500 V/ms." to Operating voltage in the DC characteristics. * Added a footnote to the fint_ft in the External oscillator (OSC) and ICS characteristics. Table continues on the next page... KE06 Sub-Family Data Sheet, Rev. 6, 04/2020 NXP Semiconductors 37 Revision history Table 20. Revision history (continued) Rev. No. Date 6 04/2020 Substantial Changes * Updated the footnote to Operating voltage in the DC characteristics. * Updated the timing assumptions in the SPI switching specifications. KE06 Sub-Family Data Sheet, Rev. 6, 04/2020 38 NXP Semiconductors How to Reach Us: Home Page: nxp.com Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein. NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions. While NXP has implemented advanced security features, all products may be subject to unidentified vulnerabilities. Customers are responsible for the design and operation of their applications and products to reduce the effect of these vulnerabilities on customer's applications and products, and NXP accepts no liability for any vulnerability that is discovered. Customers should implement appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, Vision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. (c)2013-2020 NXP B.V. Document Number MKE06P80M48SF0 Revision 6, 04/2020