TAR5SB15~TAR5SB50
2014-03-01
1
TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic
TAR5SB15 ~ TAR5SB50
Point Regulators (Low-Dropout Regulator)
The TAR5SBxx Series is comprised of general-purpose bipolar
single-power-supply devices incorporating a control pin which can
be used to turn them ON/OFF.
Overtemperature and overcurrent protection circuits are built
in to the devices’ output circuit.
Features
Low stand-by current
Overtemperature/overcurrent protection
Operation voltage range is wide.
Maximum output current is high.
Difference between input voltage and output voltage is low.
Small package. (SOT-23 5pin)
Ceramic capacitors can be used.
Pin Assignments (top view)
Overtemperature protection and overcurrent protection functions are not necessary guarantee of operating
ratings below the absolute maximum ratings.
Do not use devices under conditions in which their absolute maximum ratings will be exceeded.
Weight: 0.014 g (typ.)
1 3 2
VOUT
VIN
4
GND
NOISE
CONTROL
5
Start of commercial production
2002-09
TAR5SB15~TAR5SB50
2014-03-01
2
List of Products Number and Marking Marking on the Product
Products No. Marking Products No. Marking
TAR5SB15 1B5 TAR5SB33 3B3
TAR5SB16 1B6 TAR5SB34 3B4
TAR5SB17 1B7 TAR5SB35 3B5
TAR5SB18 1B8 TAR5SB36 3B6
TAR5SB19 1B9 TAR5SB37 3B7
TAR5SB20 2B0 TAR5SB38 3B8
TAR5SB21 2B1 TAR5SB39 3B9
TAR5SB22 2B2 TAR5SB40 4B0
TAR5SB23 2B3 TAR5SB41 4B1
TAR5SB24 2B4 TAR5SB42 4B2
TAR5SB25 2B5 TAR5SB43 4B3
TAR5SB26 2B6 TAR5SB44 4B4
TAR5SB27 2B7 TAR5SB45 4B5
TAR5SB28 2B8 TAR5SB46 4B6
TAR5SB29 2B9 TAR5SB47 4B7
TAR5SB30 3B0 TAR5SB48 4B8
TAR5SB31 3B1 TAR5SB49 4B9
TAR5SB32 3B2 TAR5SB50 5B0
Absolute Maximum Ratings (Ta = 25°C)
Characteristics Symbol Rating Unit
Supply voltage VIN 15 V
Output current IOUT 200 mA
200 (Note 1)
Power dissipation PD
380 (Note 2)
mW
Operation temperature range Topr 40 to 85 °C
Storage temperature range Tstg 55 to 150 °C
Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the
significant change in temperature, etc.) may cause this product to decrease in the reliability significantly
even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute
maximum ratings and the operating ranges.
Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook
(“Handling Precautions”/“Derating Concept and Methods”) and individual reliability data (i.e. reliability test
report and estimated failure rate, etc).
Note 1: Unit Ratintg
Note 2: Mounted on a glass epoxy circuit board of 30 × 30 mm. Pad dimension of 50 mm2
3 B 0
Example: TAR5SB30 (3.0 V output)
TAR5SB15~TAR5SB50
2014-03-01
3
TAR5SB15~TAR5SB22
Electrical Characteristic (unless otherwise specified, VIN = VOUT + 1 V, IOUT = 50 mA,
CIN = 1 μF, COUT = 10 μF, C NOISE = 0.01 μF, Tj = 25°C)
Characteristics Symbol Test Condition Min Typ. Max Unit
Output voltage VOUT Please refer to the Output Voltage Accuracy table.
Line regulation Regline VOUT + 1 V VIN 15 V,
IOUT = 1 mA 3 15 mV
Load regulation Regload 1 mA IOUT 150 mA 25 75 mV
IB1 IOUT = 0 mA 170
Quiescent current
IB2 I
OUT = 50 mA 550 850
μA
Stand-by current IB (OFF) V
CT = 0 V 0.1 μA
Output noise voltage VNO
VIN = VOUT + 1 V, IOUT = 10 mA,
10 Hz f 100 kHz,
CNOISE = 0.01 μF, Ta = 25°C
30 μVrms
Temperature coefficient TCVO 40°C Topr 85°C 100 ppm/°C
Input voltage VIN 2.4 15 V
Ripple rejection R.R.
VIN = VOUT + 1 V, IOUT = 10 mA,
CNOISE = 0.01 μF, f = 1 kHz,
VRipple = 500 mVp-p, Ta = 25°C
70 dB
Control voltage (ON) VCT (ON) 1.5 V
IN V
Control voltage (OFF) VCT (OFF) 0.4 V
Control current (ON) ICT (ON) V
CT = 1.5 V 3 10 μA
Control current (OFF) ICT (OFF) V
CT = 0 V 0 0.1 μA
TAR5SB23~TAR5SB50
Electrical Characteristic (unless otherwise specified, VIN = VOUT + 1 V, IOUT = 50 mA,
CIN = 1 μF, COUT = 10 μF, C NOISE = 0.01 μF, Tj = 25°C)
Characteristics Symbol Test Condition Min Typ. Max Unit
Output voltage VOUT Please refer to the Output Voltage Accuracy table.
Line regulation Regline VOUT + 1 V VIN 15 V,
IOUT = 1 mA 3 15 mV
Load regulation Regload 1 mA IOUT 150 mA 25 75 mV
IB1 IOUT = 0 mA 170
Quiescent current
IB2 I
OUT = 50 mA 550 850
μA
Stand-by current IB (OFF) V
CT = 0 V 0.1 μA
Output noise voltage VNO
VIN = VOUT + 1 V, IOUT = 10 mA,
10 Hz f 100 kHz,
CNOISE = 0.01 μF, Ta = 25°C
30 μVrms
Dropout volatge VIN VOUT
IOUT = 50 mA 130 200 mV
Temperature coefficient TCVO 40°C Topr 85°C 100 ppm/°C
Input voltage VIN VOUT
+ 0.2 V 15 V
Ripple rejection R.R.
VIN = VOUT + 1 V, IOUT = 10 mA,
CNOISE = 0.01 μF, f = 1 kHz,
VRipple = 500 mVp-p, Ta = 25°C
70 dB
Control voltage (ON) VCT (ON) 1.5 V
IN V
Control voltage (OFF) VCT (OFF) 0.4 V
Control current (ON) ICT (ON) V
CT = 1.5 V 3 10 μA
Control current (OFF) ICT (OFF) V
CT = 0 V 0 0.1 μA
TAR5SB15~TAR5SB50
2014-03-01
4
Output Voltage Accuracy
(VIN = VOUT + 1 V, IOUT = 50 mA, CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF, T j = 25°C)
Product No. Symbol Min Typ. Max Unit
TAR5SB15 1.44 1.5 1.56
TAR5SB16 1.54 1.6 1.66
TAR5SB17 1.64 1.7 1.76
TAR5SB18 1.74 1.8 1.86
TAR5SB19 1.84 1.9 1.96
TAR5SB20 1.94 2.0 2.06
TAR5SB21 2.04 2.1 2.16
TAR5SB22 2.14 2.2 2.26
TAR5SB23 2.24 2.3 2.36
TAR5SB24 2.34 2.4 2.46
TAR5SB25 2.43 2.5 2.57
TAR5SB26 2.53 2.6 2.67
TAR5SB27 2.63 2.7 2.77
TAR5SB28 2.73 2.8 2.87
TAR5SB29 2.83 2.9 2.97
TAR5SB30 2.92 3.0 3.08
TAR5SB31 3.02 3.1 3.18
TAR5SB32 3.12 3.2 3.28
TAR5SB33 3.21 3.3 3.39
TAR5SB34 3.31 3.4 3.49
TAR5SB35 3.41 3.5 3.59
TAR5SB36 3.51 3.6 3.69
TAR5SB37 3.6 3.7 3.8
TAR5SB38 3.7 3.8 3.9
TAR5SB39 3.8 3.9 4.0
TAR5SB40 3.9 4.0 4.1
TAR5SB41 3.99 4.1 4.21
TAR5SB42 4.09 4.2 4.31
TAR5SB43 4.19 4.3 4.41
TAR5SB44 4.29 4.4 4.51
TAR5SB45 4.38 4.5 4.62
TAR5SB46 4.48 4.6 4.72
TAR5SB47 4.58 4.7 4.82
TAR5SB48 4.68 4.8 4.92
TAR5SB49 4.77 4.9 5.03
TAR5SB50
VOUT
4.87 5.0 5.13
V
TAR5SB15~TAR5SB50
2014-03-01
5
Application Note
1. Recommended Application Circuit
The figure above shows the recommended configuration for using a point regulator. Insert a capacitor for
stable input/output operation.
If the control function is not to be used, Toshiba recommend that the control pin (pin 1) be connected to the
VCC pin.
2. Power Dissipation
The power dissipation for board-mounted TAR5SBxx Series devices (rated at 380 mW) is measured using a
board whose size and pattern are as shown below. When incorporating a device belonging to this series into
your design, derate the power dissipation as far as possible by reducing the levels of parameters such as input
voltage, output current and ambient temperature. Toshiba recommend that these devices should typically be
derated to 70% to 80% of their absolute maximum power dissipation value.
Thermal Resistance Evaluation Board
Control Level Operation
HIGH ON
LOW OFF
V
IN
5
NOISE
4
1 3
GND
2
V
OUT
CONTROL
0.01 μF
1 μF 10 μF
Circuit board material: glass epoxy,
Circuit board dimension: 30 mm × 30 mm,
Copper foil pad area: 50 mm2 (t = 0.8 mm)
COUT C
NOISE
VIN
VOUT
CONTROL GND
NOISE
TAR5SB15~TAR5SB50
2014-03-01
6
3. Ripple Rejection
The devices of the TAR5SBxx Series feature a circuit with an excellent ripple rejection characteristic.
Because the circuit also features an excellent output fluctuation characteristic for sudden supply voltage drops,
the circuit is ideal for use in the RF blocks incorporated in all mobile telephones.
4. NOISE Pin
TAR5SBxx Series devices incorporate a NOISE pin to reduce output noise voltage. Inserting a capacitor
between the NOISE pin and GND reduces output noise. To ensure stable operation, insert a capacitor of
0.0047 μF or more between the NOISE pin and GND.
The output voltage rise time varies according to the capacitance of the capacitor connected to the NOISE
pin.
Ripple Rejection f
TAR5SB28 Input Transient Response
Frequency f (Hz)
Time t (ms)
Ripple rejection (dB)
0
10 100 1 k 10 k 100 k 300 k
10
20
30
40
50
60
70
80
10 μF
2.2 μF
1 μF
VIN = 4.0 V, CNOISE = 0.01 μF,
CIN = 1 μF, Vripple = 500 mVpp,
Iout = 10 mA, Ta = 25°C
CNOISE VN
Turn On Waveform
NOISE capacitance CNOISE (F)
Time t (ms)
Control voltage
VCT (ON) (V)
Output noise voltage VN (μV)
0
10
20
30
40
50
60
0.001 μ 0.01 μ 1.0 μ
TAR5S50
0.1 μ
TAR5S30
TAR5S15
CIN = 1 μF, Cout = 10 μF,
Iout = 10 mA, Ta = 25°C
Output voltage
VOUT (V)
01 45 8 10
Input voltage
2.8 V
2 3 6 7 9
Output voltage
3.1 V
3.4 V
Ta = 25°C, CIN = 1 μF,
Cout = 10 μF, C NOISE = 0.01 μF,
VIN: 3.4 V 3.1 V, Iout = 50 mA
4010 20
0
1
2
3
1
2
10 0 9030
0
60 50 80 70
Output voltage waveform
Control voltage waveform
CNOISE = 0.01 μF
1 μF
0.33 μF
0.1 μF
CIN = 1 μF, Cout = 10 μF,
Iout = 50 mA, Ta = 25°C
TAR5SB15~TAR5SB50
2014-03-01
7
5. Example of Characteristics when Ceramic Capacitor is Used
Shown below is the stable operation area, where the output voltage does not oscillate, evaluated using a
Toshiba evaluation circuit. The equivalent series resistance (ESR) of the output capacitor and output current
determines this area. TAR5SBxx Series devices operate stably even when a ceramic capacitor is used as the
output capacitor.
If a ceramic capacitor is used as the output capacitor and the ripple frequency is 30 kHz or more, the ripple
rejection differs from that when a tantalum capacitor is used. This is shown below.
Toshiba recommend that users check that devices operate stably under the intended conditions of use.
Examples of safe operating area characteristics
Evaluation Circuit for Stable Operating Area
Ripple Rejection Characteristic (f = 10 kHz~300 kHz)
(TAR5SB15)Stable Operating Area
Output current IOUT (mA)
(TAR5SB50)Stable Operating Area
(TAR5SB28)Stable Operating Area
Output current IOUT (mA)
Output current IOUT (mA)
Equivalent series resistance ESR (Ω)
Equivalent series resistance ESR (Ω)
Equivalent series resistance ESR (Ω)
Ripple rejection (dB)
(TAR5SB30) Ripple Rejection – f
Frequency f (Hz)
TAR5SB**
GND
CIN
Ceramic
VIN
=
VOUT
+1 V
CONTROL
CNOISE = 0.01 μF
ROUT
ESR
COUT
Ceramic
Capacitors used for evaluation
Made by Murata CIN: GRM40B105K
COUT: GRM40B105K/GRM40B106K
30
0
10
20
40
70
50
60 Ceramic
2.2 μF
10 k 300 k 100 k
Ceramic 10 μF
Tantalum10 μF
Tantalum 2.2 μF
Tantalum 1 μF
Ceramic
1 μF
@VIN = 4.0 V, CNOISE = 0.01 μF,
CIN = 1 μF, Vripple = 500 mVp-p,
Iout = 10 mA, Ta = 25°C
1000 k
80 40
0.02
0.1
1
10
100
0 20 15060 120 100 140
@VIN = 2.5 V, CNOISE = 0.01 μF,
CIN = 1 μF, Cout = 1 μF~10 μF,
Ta = 25°C
Stable Operating Area
80 40
0.02
0.1
1
10
100
020 15060 120 100 140
@VIN = 6.0 V, CNOISE = 0.01 μF,
CIN = 1 μF, Cout = 1 μF~10 μF,
Ta = 25°C
Stable Operating Area
80 40
0.02
0.1
1
10
100
0 20 15060 120 100 140
@VIN = 3.8 V, CNOISE = 0.01 μF,
CIN = 1 μF, Cout = 1 μF~10 μF,
Ta = 25°C
Stable Operating Area
TAR5SB15~TAR5SB50
2014-03-01
8
Output voltage VOUT (V)
Output voltage VOUT (V)
Output current IOUT (mA)
(TAR5SB15) IOUT – VOUT
Output voltage VOUT (V)
Output current IOUT (mA)
(TAR5SB18) IOUT – VOUT
Output voltage VOUT (V)
Output current IOUT (mA)
(TAR5SB20) IOUT – VOUT
Output voltage VOUT (V)
Output current IOUT (mA)
(TAR5SB21) IOUT – VOUT
Output current IOUT (mA)
(TAR5SB22) IOUT – VOUT
Output current IOUT (mA)
(TAR5SB23) IOUT – VOUT
Output voltage VOUT (V)
1.4
1.5
1.6
VIN = 2.5 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
0 50 100 150
Ta = 85°C
40
25
1.7
1.8
1.9
VIN = 2.8 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
0 50 100 150
Ta = 85°C
40
25
1.9
2.0
2.1
VIN = 3.0 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
0 50 100 150
Ta = 85°C
40
25
2.0
2.1
2.2
VIN = 3.1 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
0 50 100 150
Ta = 85°C
40
25
2.1
2.2
2.3
VIN = 3.2 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
0 50 100 150
Ta = 85°C
40
25
2.2
2.3
VIN = 3.3 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
0 50 100 150
Ta = 85°C
40
25
TAR5SB15~TAR5SB50
2014-03-01
9
Output current IOUT (mA)
(TAR5SB27) IOUT – VOUT
Output voltage VOUT (V)
VIN = 3.7 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
2.6
2.7
2.8
0 50 100 150
Ta = 85°C
25
40
Output current IOUT (mA)
(TAR5SB30) IOUT – VOUT
Output voltage VOUT (V)
VIN = 3.8 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF Pulse width = 1 ms
2.7
2.8
2.9
0 50 100 150
Ta = 85°C
25
40
Output current IOUT (mA)
(TAR5SB25) IOUT – VOUT
Output voltage VOUT (V)
Output current IOUT (mA)
(TAR5SB31) IOUT – VOUT
Output voltage VOUT (V)
VIN = 3.9 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF Pulse width = 1 ms
2.8
2.9
3
0 50 100 150
Ta = 85°C
25
40
2.4
2.5
2.6
VIN = 2.6 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
0 50 100 150
Ta = 85°C
40
25
Output current IOUT (mA)
(TAR5SB28) IOUT – VOUT
Output voltage VOUT (V)
Output current IOUT (mA)
(TAR5SB29) IOUT – VOUT
Output voltage VOUT (V)
VIN = 4.0 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF Pulse width = 1 ms
2.9
3.0
3.1
0 50 100 150
Ta = 85°C
25
40
3.0
3.1
3.2
VIN = 4.1 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
0 50 100 150
Ta = 85°C
40
25
TAR5SB15~TAR5SB50
2014-03-01
10
Output current IOUT (mA)
(TAR5SB32) IOUT – VOUT
Output voltage VOUT (V)
Output current IOUT (mA)
(TAR5SB33) IOUT – VOUT
Output voltage VOUT (V)
VIN = 4.3 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
3.2
3.3
3.4
0 50 100 150
Ta = 85°C
25
40
Output current IOUT (mA)
(TAR5SB45) IOUT – VOUT
Output voltage VOUT (V)
VIN = 5.5 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
4.4
4.5
4.6
0 50 100 150
Ta = 85°C
25
40
Output current IOUT (mA)
(TAR5SB50) IOUT – VOUT
Output voltage VOUT (V)
VIN = 6.0 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF Pulse width = 1 ms
4.9
5.0
5.1
0 50 100 150
Ta = 85°C
25
40
Output current IOUT (mA)
(TAR5SB35) IOUT – VOUT
Output voltage VOUT (V)
VIN = 4.5 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF Pulse width = 1 ms
3.4
3.5
3.6
0 50 100 150
Ta = 85°C
25
40
Output current IOUT (mA)
(TAR5SB48) IOUT – VOUT
Output voltage V
OUT (V)
VIN = 5.8 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF Pulse width = 1 ms
4.7
4.8
4.9
0 50 100 150
Ta = 85°C
25
40
3.1
3.2
3.3
VIN = 4.2 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
0 50 100 150
Ta = 85°C
40
25
TAR5SB15~TAR5SB50
2014-03-01
11
Bias current IB (mA)
Bias current IB (mA)
Input voltage VIN (V)
(TAR5SB15) IB – VIN
Bias current IB (mA)
Input voltage VIN (V)
(TAR5SB18) IB – VIN
Bias current IB (mA)
Input voltage VIN (V)
(TAR5SB20) IB – VIN
Bias current IB (mA)
Input voltage VIN (V)
(TAR5SB21) IB – VIN
Input voltage VIN (V)
(TAR5SB22) IB – VIN
Input voltage VIN (V)
(TAR5SB23) IB – VIN
Bias current IB (mA)
CIN = 1 μF, COUT = 10 μF, C NOISE = 0.01 μF
Pulse width = 1 ms
0
5
10
0 5 10 15
IOUT = 150 mA
100
50 1
CIN = 1 μF, COUT = 10 μF, C NOISE = 0.01 μF
Pulse width = 1 ms
0
5
10
0 5 10 15
IOUT = 150 mA
100
50 1
CIN = 1 μF, COUT = 10 μF, C NOISE = 0.01 μF
Pulse width = 1 ms
0
5
10
0 5 10 15
IOUT = 150 mA
100
50 1
CIN = 1 μF, COUT = 10 μF, C NOISE = 0.01 μF
Pulse width = 1 ms
0
5
10
0 5 10 15
IOUT = 150 mA
100
50 1
CIN = 1 μF, COUT = 10 μF, C NOISE = 0.01 μF
Pulse width = 1 ms
0
5
10
0 5 10 15
IOUT = 150 mA
100
50 1
CIN = 1 μF, COUT = 10 μF, C NOISE = 0.01 μF
Pulse width = 1 ms
0
5
10
0 5 10 15
IOUT = 150 mA
100
50 1
TAR5SB15~TAR5SB50
2014-03-01
12
Input voltage VIN (V)
(TAR5SB27) IB – VIN
Bias current IB (mA)
CIN = 1 μF, COUT = 10 μF, C NOISE = 0.01 μF
Pulse width = 1 ms
0
5
10
0 5 10 15
IOUT = 150 mA
100
50 1
Input voltage VIN (V)
(TAR5SB30) IB – VIN
Bias current IB (mA)
CIN = 1 μF, COUT = 10 μF, C NOISE = 0.01 μF
Pulse width = 1 ms
0
5
10
0 5 10 15
IOUT = 150 mA
100
50 1
Input voltage VIN (V)
(TAR5SB25) IB – VIN
Bias current IB (mA)
Input voltage VIN (V)
(TAR5SB31) IB – VIN
Bias current IB (mA)
Input voltage VIN (V)
(TAR5SB28) IB – VIN
Bias current IB (mA)
CIN = 1 μF, COUT = 10 μF, C NOISE = 0.01 μF
Pulse width = 1 ms
0
5
10
0 5 10 15
IOUT = 150 mA
100
50 1
Input voltage VIN (V)
(TAR5SB29) IB – VIN
Bias current IB (mA)
CIN = 1 μF, COUT = 10 μF, C NOISE = 0.01 μF
Pulse width = 1 ms
0
5
10
0 5 10 15
IOUT = 150 mA
100
50 1
CIN = 1 μF, COUT = 10 μF, C NOISE = 0.01 μF
Pulse width = 1 ms
0
5
10
0 5 10 15
IOUT = 150 mA
100
50 1
CIN = 1 μF, COUT = 10 μF, C NOISE = 0.01 μF
Pulse width = 1 ms
0
5
10
0 5 10 15
IOUT = 150 mA
100
50 1
TAR5SB15~TAR5SB50
2014-03-01
13
Input voltage VIN (V)
(TAR5SB32) IB – VIN
Bias current IB (mA)
Input voltage VIN (V)
(TAR5SB33) IB – VIN
Bias current IB (mA)
0
5
10
0 5 10 15
IOUT = 150 mA
100
50 1
CIN = 1 μF, COUT = 10 μF, C NOISE = 0.01 μF
Pulse width = 1 ms
Input voltage VIN (V)
(TAR5SB45) IB – VIN
Bias current IB (mA)
0
5
10
0 5 10 15
IOUT = 150 mA
100
50 1
CIN = 1 μF, COUT = 10 μF, C NOISE = 0.01 μF
Pulse width = 1 ms
Input voltage VIN (V)
(TAR5SB50) IB – VIN
Bias current IB (mA)
CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF
Pulse width = 1 ms
0
5
10
0 5 10 15
IOUT = 150 mA
100
50 1
0
5
10
0 5 10 15
IOUT = 150 mA
100
50 1
CIN = 1 μF, COUT = 10 μF, C NOISE = 0.01 μF
Pulse width = 1 ms
Input voltage VIN (V)
(TAR5SB35) IB – VIN
Bias current IB (mA)
CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF
Pulse width = 1 ms
0
5
10
0 5 10 15
IOUT = 150 mA
100
50 1
Input voltage VIN (V)
(TAR5SB48) IB – VIN
Bias current IB (mA)
CIN = 1 μF, COUT = 10 μF, C NOISE = 0.01 μF
Pulse width = 1 ms
0
5
10
0 5 10 15
IOUT = 150 mA
100
50 1
TAR5SB15~TAR5SB50
2014-03-01
14
Output voltage VOUT (V)
Output voltage VOUT (V)
Input voltage VIN (V)
(TAR5SB15) VOUT – VIN
Output voltage VOUT (V)
Input voltage VIN (V)
(TAR5SB18) VOUT – VIN
Output voltage VOUT (V)
Input voltage VIN (V)
(TAR5SB20) VOUT – VIN
Output voltage VOUT (V)
Input voltage VIN (V)
(TAR5SB21) VOUT – VIN
Input voltage VIN (V)
(TAR5SB22) VOUT – VIN
Input voltage VIN (V)
(TAR5SB23) VOUT – VIN
Output voltage VOUT (V)
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
TAR5SB15~TAR5SB50
2014-03-01
15
Input voltage VIN (V)
(TAR5SB27) VOUT – VIN
Output voltage VOUT (V)
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
Input voltage VIN (V)
(TAR5SB30) VOUT – VIN
Output voltage VOUT (V)
Input voltage VIN (V)
(TAR5SB25) VOUT – VIN
Output voltage VOUT (V)
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
Input voltage VIN (V)
(TAR5SB31) VOUT – VIN
Output voltage VOUT (V)
Input voltage VIN (V)
(TAR5SB28) VOUT – VIN
Output voltage VOUT (V)
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
Input voltage VIN (V)
(TAR5SB29) VOUT – VIN
Output voltage VOUT (V)
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
TAR5SB15~TAR5SB50
2014-03-01
16
Input voltage VIN (V)
(TAR5SB33) VOUT – VIN
Output voltage VOUT (V)
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
Input voltage VIN (V)
(TAR5SB32) VOUT – VIN
Output voltage VOUT (V)
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
Input voltage VIN (V)
(TAR5SB45) VOUT – VIN
Output voltage VOUT (V)
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
Input voltage VIN (V)
(TAR5SB50) VOUT – VIN
Output voltage VOUT (V)
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
Input voltage VIN (V)
(TAR5SB48) VOUT – VIN
Output voltage VOUT (V)
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
Input voltage VIN (V)
(TAR5SB35) VOUT – VIN
Output voltage VOUT (V)
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
TAR5SB15~TAR5SB50
2014-03-01
17
Output voltage VOUT (V)
Output voltage VOUT (V)
Ambient temperature Ta (°C)
(TAR5SB15) VOUT – Ta
Output voltage VOUT (V)
Ambient temperature Ta (°C)
(TAR5SB18) VOUT – Ta
Output voltage VOUT (V)
Ambient temperature Ta (°C)
(TAR5SB20) VOUT – Ta
Output voltage VOUT (V)
Ambient temperature Ta (°C)
(TAR5SB21) VOUT – Ta
Ambient temperature Ta (°C)
(TAR5SB22) VOUT – Ta
Ambient temperature Ta (°C)
(TAR5SB23) VOUT – Ta
Output voltage VOUT (V)
50
1.4 25 0 25 100 75 50
1.45
1.5
1.55
1.6
VIN = 2.5 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, P u ls e wi d t h = 1 ms
IOUT = 50 mA
100 150
50
1.7 25 0 25 100 75 50
1.75
1.8
1.85
1.9
VIN = 2.8 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
IOUT = 50 mA
100 150
50
1.9 25 0 25 100 75 50
1.95
2.0
2.05
2.1
VIN = 3.0 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, P u ls e wi d t h = 1 ms
IOUT = 50 mA
100 150
50
2.0 25 0 25 100 75 50
2.05
2.1
2.15
2.2
VIN = 3.1 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
IOUT = 50 mA
100 150
50
2.1 25 0 25 100 75 50
2.15
2.2
2.25
2.3
VIN = 3.2 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, P u ls e wi d t h = 1 ms
IOUT = 50 mA
100 150
50
2.2 25 0 25 100 75 50
2.25
2.3
2.35
2.4
VIN = 3.3 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
IOUT = 50 mA
100 150
TAR5SB15~TAR5SB50
2014-03-01
18
Ambient temperature Ta (°C)
(TAR5SB25) VOUT – Ta
Output voltage VOUT (V)
50
2.4 25 0 25 100 75 50
2.45
2.5
2.55
2.6
VIN = 3.5 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, P u ls e wi d t h = 1 ms
IOUT = 50 mA
100 150
Ambient temperature Ta (°C)
(TAR5SB27) VOUT – Ta
Output voltage VOUT (V)
50
2.6 25 0 25 100 75 50
2.65
2.7
2.75
2.8
VIN = 3.7 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
IOUT = 50 mA
100 150
Ambient temperature Ta (°C)
(TAR5SB30) VOUT – Ta
Output voltage VOUT (V)
Ambient temperature Ta (°C)
(TAR5SB31) VOUT – Ta
Output voltage VOUT (V)
Ambient temperature Ta (°C)
(TAR5SB28) VOUT – Ta
Output voltage VOUT (V)
50
2.7 25 0 25 100 75 50
2.75
2.8
2.85
2.9
VIN = 3.8 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF Pulse width = 1 ms
IOUT = 50 mA
100 150
Ambient temperature Ta (°C)
(TAR5SB29) VOUT – Ta
Output voltage VOUT (V)
50
2.8 25 0 25 100 75 50
2.85
2.9
2.95
3.0
VIN = 3.9 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
IOUT = 50 mA
100 150
50
2.9 25 0 25 75 50
2.95
3.0
3.05
3.1
VIN = 4 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF Pulse width = 1 ms
IOUT = 50 mA
100
100 150
50
3.0 25 0 25 100 75 50
3.05
3.1
3.15
3.2
VIN = 4.1 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
IOUT = 50 mA
100 150
TAR5SB15~TAR5SB50
2014-03-01
19
Ambient temperature Ta (°C)
(TAR5SB32) VOUT – Ta
Output voltage VOUT (V)
Ambient temperature Ta (°C)
(TAR5SB33) VOUT – Ta
Output voltage VOUT (V)
50
3.2 25 0 25 75 50
3.25
3.3
3.35
3.4
VIN = 4.3 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, P u ls e wi d t h = 1 ms
IOUT = 50 mA
100
100 150
Ambient temperature Ta (°C)
(TAR5SB45) VOUT – Ta
Output voltage VOUT (V)
Ambient temperature Ta (°C)
(TAR5SB50) VOUT – Ta
Output voltage VOUT (V)
Ambient temperature Ta (°C)
(TAR5SB35) VOUT – Ta
Output voltage VOUT (V)
Ambient temperature Ta (°C)
(TAR5SB48) VOUT – Ta
Output voltage VOUT (V)
50
4.4 25 0 25 100 75 50
4.45
4.5
4.55
4.6
VIN = 5.5 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
IOUT = 50 mA
100
150
50
3.4 25 0 25 100 75 50
3.45
3.5
3.55
3.6
VIN = 4.5 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
IOUT = 50 mA
100
150
50
4.9 25 0 25 100 75 50
4.95
5
5.05
5.1
VIN = 6 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF Pulse width = 1 ms
IOUT = 50 mA
100
150
50
4.7 25 0 25 100 75 50
4.75
4.8
4.85
4.9
VIN = 5.8 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF Pulse width = 1 ms
IOUT = 50 mA
100
150
50
3.1 25 0 25 100 75 50
3.15
3.2
3.25
3.3
VIN = 4.2 V, CIN = 1 μF, C OUT = 10 μF,
CNOISE = 0.01 μF, P u ls e wi d t h = 1 ms
IOUT = 50 mA
100 150
TAR5SB15~TAR5SB50
2014-03-01
20
50 25 0 25 100 75 50
0
0.1
0.2
0.3
0.4
0.5
0.6
CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF
Pulse width = 1 ms
IOUT = 150 mA
100
50
10
1
Ambient temperature Ta (°C)
IB – Ta
Bias current I
B (mA)
Ambient temperature Ta (°C)
(TAR5SB23~TAR5SB50) VIN - VOUT – Ta
Dropout voltage VIN - VOUT (V)
Output current IOUT (mA)
(TAR5SB23~TAR5SB50) VIN - VOUT – IOUT
Dropout voltage VIN - VOUT (V)
Output current IOUT (mA)
IB – IOUT
Bias current IB (mA)
Time t (ms)
Turn On Waveform
Output voltage
VOUT (V)
Time t (ms)
Turn Off Waveform
Output voltage
VOUT (V)
50 25 0 25 100 75 50
0
0.5
1
1.5
2
2.5
3
VIN = VOUT + 1 V, CIN = 1 μF,
COUT = 10 μF, C NOISE = 0.01 μF
Pulse width = 1 ms
IOUT = 150 mA
100
50
10
1
0 50 100 150
Ta = 25°C
85
40
0
0.1
0.2
0.3
0.4
0.5
CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01μF
Pulse width = 1 ms
VIN = VOUT + 1 V,
VCT (ON) = 1.5 0 V, CIN = 1 μF,
COUT = 10 μF, C NOISE = 0.01 μF
0 1
Control voltage waveform
Output voltage waveform
2
3
0
1
0
1
2
3
2
3
0
1
0
1
2
3
VIN = VOUT + 1 V,
VCT (ON) = 0 1.5 V, CIN = 1 μF,
COUT = 10 μF, C NOISE = 0.01 μF
0 1
Ta = 25°C
85
40
Control voltage waveform
Output voltage waveform
Control voltage
V
CT (ON) (V)
Control voltage
VCT (ON) (V)
VIN = VOUT + 1 V,
CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF
Pulse width = 1 ms
0
0.5
1.0
1.5
2.0
2.5
0 50 100 150
Ta = 25°C
85
40
TAR5SB15~TAR5SB50
2014-03-01
21
Ambient temperature Ta (°C)
PD – Ta
Power dissipation PD (mW)
40
0
0 40 120 80
100
200
300
400
Circuit board material: glass epoxy,
Circuit board dimention:
30 mm × 30 mm,
pad area: 50 mm2 (t = 0.8 mm)
Unit
Frequency f (Hz)
VN – f
Output noise voltage VN (μV/
Hz
)
VIN = VOUT + 1 V, IOUT = 10 mA, CIN = 1 μF,
COUT = 10 μF, C NOISE = 0.01 μF,
10 Hz < f < 100 kHz, Ta = 25°C
10
1
0.1
0.01
0.001
10 100 1 k 10 k 100 k
Frequency f (Hz)
Ripple Rejection – f
Ripple rejection (dB)
0
10
20
60
70
80
30
40
50
10 100 1 k 10 k 100 k 1000 k
VIN = VOUT + 1 V, IOUT = 10 mA, CIN = 1 μF,
COUT = 10 μF, C NOISE = 0.01 μF,
VRipple = 500 mVp-p, Ta = 25°C
TAR5SB15 (1.5 V)
TAR5SB30 (3.0 V)
TAR5SB50
(
5.0 V
)
TAR5SB45 (4.5 V)
TAR5SB35 (3.5 V)
TAR5SB25 (2.5 V)
TAR5SB15~TAR5SB50
2014-03-01
22
Package Dimensions
Weight: 0.014 g (typ.)
TAR5SB15~TAR5SB50
2014-03-01
23
RESTRICTIONS ON PRODUCT USE
Toshiba Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information
in this document, and related hardware, software and systems (collectively "Product") without notice.
This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with
TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are
responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and
systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily
injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the
Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of
all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes
for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the
instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their
own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such
design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts,
diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating
parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR
APPLICATIONS.
PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE
EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH
MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT
("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without
limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for
automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions,
safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE
PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your
TOSHIBA sales representative.
Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any
applicable laws or regulations.
The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any
infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to
any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE
FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY
WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR
LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND
LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO
SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
Do not use or otherwise make available Product or related software or technology for any military purposes, including without
limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile
technology products (mass destruction weapons). Product and related software and technology may be controlled under the
applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the
U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited
except in compliance with all applicable export laws and regulations.
Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product.
Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances,
including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES
OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.