- 1 -
M378B2873GB0
M391B2873GB0
Rev. 1.2, Aug. 2011
SAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND
SPECIFICATIONS WITHOUT NOTICE.
Products and specifications discussed herein are for reference purposes only. All information discussed
herein is provided on an "AS IS" basis, without warranties of any kind.
This document and all information discussed herein remain the sole and exclusive property of Samsung
Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property
right is granted by one party to the other party under this document, by implication, estoppel or other-
wise.
Samsung products are not intended for use in life support, critical care, medical, safety equipment, or
similar applications where product failure could result in loss of life or personal or physical harm, or any
military or defense application, or any governmental procurement to which special terms or provisions
may apply.
For updates or additional information about Samsung products, contact your nearest Samsung office.
All brand names, trademarks and registered trademarks belong to their respective owners.
2011 Samsung Electronics Co., Ltd. All rights reserved.
M378B5673GB0
datasheet
M391B5673GB0
240pin Unbuffered DIMM
based on 1Gb G-die
78FBGA with Lead-Free & Halogen-Free
(RoHS compliant)
- 2 -
datasheet DDR3 SDRAM
Rev. 1.2
Unbuffered DIMM
Revision History
Revision No. History Draft Date Remark Editor
1.0 - First Release Nov. 2010 - S.H.Kim
1.01 - Corrected typo Dec. 2010 - S.H.Kim
1.1 - Added module line up (2GB ECC UDIMM) Apr. 2011 - J.Y.Lee
1.11 - Corrected typo Jul. 2011 - J.Y.Lee
1.2 - Changed timing parameters (Setup/Hold time) Aug. 2011 - J.Y.Lee
- 3 -
datasheet DDR3 SDRAM
Rev. 1.2
Unbuffered DIMM
Table Of Contents
240pin Unbuffered DIMM based on 1Gb G-die
1. DDR3 Unbuffered DIMM Ordering Information............................................................................................................. 4
2. Key Features................................................................................................................................................................. 4
3. Address Configuration .................................................................................................................................................. 4
4. x64 DIMM Pin Configurations (Front side/Back side) ................................................................................................... 5
5. x72 DIMM Pin Configurations (Front side/Back side) ................................................................................................... 6
6. Pin Description ............................................................................................................................................................. 7
7. SPD and Thermal Sensor for ECC UDIMMs ................................................................................................................ 7
8. Input/Output Functional Description.............................................................................................................................. 8
8.1 Address Mirroring Feature....................................................................................................................................... 9
8.1.1. DRAM Pin Wiring Mirroring .............................................................................................................................. 9
9. Function Block Diagram:............................................................................................................................................... 10
9.1 1GB, 128Mx64 Non ECC Module (Populated as 1 rank of x8 DDR3 SDRAMs) ..................................................... 10
9.2 1GB, 128Mx72 ECC Module (Populated as 1 rank of x8 DDR3 SDRAMs) ............................................................ 11
9.3 2GB, 256Mx64 Non ECC Module (Populated as 2 ranks of x8 DDR3 SDRAMs) ................................................... 12
9.4 2GB, 256Mx72 ECC Module (Populated as 2 ranks of x8 DDR3 SDRAMs).......................................................... 13
10. Absolute Maximum Ratings ........................................................................................................................................ 14
10.1 Absolute Maximum DC Ratings............................................................................................................................. 14
10.2 DRAM Component Operating Temperature Range .............................................................................................. 14
11. AC & DC Operating Conditions................................................................................................................................... 14
11.1 Recommended DC Operating Conditions (SSTL-15)............................................................................................ 14
12. AC & DC Input Measurement Levels .......................................................................................................................... 15
12.1 AC & DC Logic Input Levels for Single-ended Signals.......................................................................................... 15
12.2 VREF Tolerances.................................................................................................................................................... 16
12.3 AC and DC Logic Input Levels for Differential Signals .......................................................................................... 17
12.3.1. Differential Signals Definition ......................................................................................................................... 17
12.3.2. Differential Swing Requirement for Clock (CK - CK) and Strobe (DQS - DQS) ............................................. 17
12.3.3. Single-ended Requirements for Differential Signals ...................................................................................... 18
12.3.4. Differential Input Cross Point Voltage ............................................................................................................ 19
12.4 Slew Rate Definition for Single Ended Input Signals............................................................................................. 19
12.5 Slew rate definition for Differential Input Signals ................................................................................................... 19
13. AC & DC Output Measurement Levels ....................................................................................................................... 20
13.1 Single Ended AC and DC Output Levels............................................................................................................... 20
13.2 Differential AC and DC Output Levels ................................................................................................................... 20
13.3 Single-ended Output Slew Rate ............................................................................................................................ 20
13.4 Differential Output Slew Rate ................................................................................................................................ 21
14. DIMM IDD specification definition ............................................................................................................................... 22
15. IDD SPEC Table ......................................................................................................................................................... 24
16. Input/Output Capacitance ........................................................................................................................................... 26
17. Electrical Characteristics and AC timing ..................................................................................................................... 27
17.1 Refresh Parameters by Device Density................................................................................................................. 27
17.2 Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin ................................................................ 27
17.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin ................................................................. 27
17.3.1. Speed Bin Table Notes .................................................................................................................................. 31
18. Timing Parameters by Speed Grade .......................................................................................................................... 32
18.1 Jitter Notes ............................................................................................................................................................ 38
18.2 Timing Parameter Notes........................................................................................................................................ 39
19. Physical Dimensions................................................................................................................................................... 40
19.1 128Mbx8 based 128Mx64/x72 Module (1 Rank) - M378/91B2873GB0 ................................................................40
19.2 128Mbx8 based 256Mx64/x72 Module (2 Ranks) - M378/91B5673GB0 .............................................................. 41
- 4 -
datasheet DDR3 SDRAM
Rev. 1.2
Unbuffered DIMM
1. DDR3 Unbuffered DIMM Ordering Information
NOTE :
1. "##" - F8/H9/K0/MA
2. F8 - 1066Mbps 7-7-7 / H9 - 1333Mbps 9-9-9 / K0 - 1600Mbps 11-11-11 / MA - 1866Mbps 13-13-13
- DDR3-1866(13-13-13) is backward compatible to DDR3-1600(11-11-11), DDR3-1333(9-9-9), DDR3-1066(7-7-7)
- DDR3-1600(11-11-11) is backward compatible to DDR3-1333(9-9-9), DDR3-1066(7-7-7)
- DDR3-1333(9-9-9) is backward compatible to DDR3-1066(7-7-7)
2. Key Features
JEDEC standard 1.5V ± 0.075V Power Supply
•V
DDQ = 1.5V ± 0.075V
400MHz fCK for 800Mb/sec/pin, 533MHz fCK for 1066Mb/sec/pin, 667MHz fCK for 1333Mb/sec/pin, 800MHz fCK for 1600Mb/sec/pin,
933MHz fCK for 1866Mb/sec/pin
8 independent internal bank
Programmable CAS Latency: 6,7,8,9,10,11,13
Programmable Additive Latency(Posted CAS) : 0, CL - 2, or CL - 1 clock
Programmable CAS Write Latency(CWL) = 5 (DDR3-800), 6 (DDR3-1066), 7 (DDR3-1333), 8 (DDR3-1600) and 9 (DDR3-1866)
Burst Length: 8 (Interleave without any limit, sequential with starting address “000” only), 4 with tCCD = 4 which does not allow seamless read or
write [either On the fly using A12 or MRS]
Bi-directional Differential Data Strobe
On Die Termination using ODT pin
Average Refresh Period 7.8us at lower then TCASE 85°C, 3.9us at 85°C < TCASE 95°C
Asynchronous Reset
3. Address Configuration
Part Number2Density Organization Component Composition Number of
Rank Height
M378B2873GB0-CF8/H9/K0/MA 1GB 128Mx64 128Mx8(K4B1G0846G-BC##)*8 1 30mm
M391B2873GB0-CF8/H9/K0/MA 1GB 128Mx72 128Mx8(K4B1G0846G-BC##)*9 1 30mm
M378B5673GB0-CF8/H9/K0/MA 2GB 256Mx64 128Mx8(K4B1G0846G-BC##)*16 2 30mm
M391B5673GB0-CF8/H9/K0/MA 2GB 256Mx72 128Mx8(K4B1G0846G-BC##)*18 2 30mm
Speed DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 DDR3-1866 Unit
6-6-6 7-7-7 9-9-9 11-11-11 13-13-13
tCK(min) 2.5 1.875 1.5 1.25 1.07 ns
CAS Latency 6791113 tCK
tRCD(min) 15 13.125 13.5 13.75 13.91 ns
tRP(min) 15 13.125 13.5 13.75 13.91 ns
tRAS(min) 37.5 37.5 36 35 34 ns
tRC(min) 52.5 50.625 49.5 48.75 47.91 ns
Organization Row Address Column Address Bank Address Auto Precharge
128x8(1Gb) based Module A0-A13 A0-A9 BA0-BA2 A10/AP
- 5 -
datasheet DDR3 SDRAM
Rev. 1.2
Unbuffered DIMM
4. x64 DIMM Pin Configurations (Front side/Back side)
NOTE :
NC = No Connect; NU = Not Used; RFU = Reserved Future Use
1. S1, ODT1, CKE1: Used for dual-rank UDIMMs; NC on single-rank UDIMMs
2. CK1,NC and CK1,NC : Used for dual-rank UDIMMs; not used on single-rank UDIMMs, but terminated
3. TEST (pin 167) used by memory bus analysis tools (unused on memory DIMMs)
SAMSUNG ELECTRONICS CO., Ltd. reserves the right to change products and specifications without notice.
Pin Front Pin Back Pin Front Pin Back Pin Front Pin Back
1VREFDQ 121 VSS 42 NC 162 NC 82 DQ33 202 VSS
2VSS 122 DQ4 43 NC 163 VSS 83 VSS 203 DM4
3 DQ0 123 DQ5 44 VSS 164 NC 84 DQS4204 NC
4 DQ1 124 VSS 45 NC 165 NC 85 DQS4 205 VSS
5VSS 125 DM0 46 NC 166 VSS 86 VSS 206 DQ38
6DQS
0 126 NC 47 VSS 167 NC (TEST)387 DQ34 207 DQ39
7 DQS0 127 VSS 48 NC 168 Reset 88 DQ35 208 VSS
8VSS 128 DQ6 KEY 89 VSS 209 DQ44
9 DQ2 129 DQ7 49 NC 169 CKE1,NC190 DQ40 210 DQ45
10 DQ3 130 VSS 50 CKE0 170 VDD 91 DQ41 211 VSS
11 VSS 131 DQ12 51 VDD 171 NC 92 VSS 212 DM5
12 DQ8 132 DQ13 52 BA2 172 NC 93 DQS5213 NC
13 DQ9 133 VSS 53 NC 173 VDD 94 DQS5 214 VSS
14 VSS 134 DM1 54 VDD 174 A12/BC 95 VSS 215 DQ46
15 DQS1 135 NC 55 A11 175 A9 96 DQ42 216 DQ47
16 DQS1 136 VSS 56 A7 176 VDD 97 DQ43 217 VSS
17 VSS 137 DQ14 57 VDD 177 A8 98 VSS 218 DQ52
18 DQ10 138 DQ15 58 A5 178 A6 99 DQ48 219 DQ53
19 DQ11 139 VSS 59 A4 179 VDD 100 DQ49 220 VSS
20 VSS 140 DQ20 60 VDD 180 A3 101 VSS 221 DM6
21 DQ16 141 DQ21 61 A2 181 A1 102 DQS6222 NC
22 DQ17 142 VSS 62 VDD 182 VDD 103 DQS6 223 VSS
23 VSS 143 DM2 63 CK1,NC2183 VDD 104 VSS 224 DQ54
24 DQS2 144 NC 64 CK1,NC2184 CK0 105 DQ50 225 DQ55
25 DQS2 145 VSS 65 VDD 185 CK0 106 DQ51 226 VSS
26 VSS 146 DQ22 66 VDD 186 VDD 107 VSS 227 DQ60
27 DQ18 147 DQ23 67 VREFCA 187 NC 108 DQ56 228 DQ61
28 DQ19 148 VSS 68 NC 188 A0 109 DQ57 229 VSS
29 VSS 149 DQ28 69 VDD 189 VDD 110 VSS 230 DM7
30 DQ24 150 DQ29 70 A10/AP 190 BA1 111 DQS7231 NC
31 DQ25 151 VSS 71 BA0 191 VDD 112 DQS7 232 VSS
32 VSS 152 DM3 72 VDD 192 RAS 113 VSS 233 DQ62
33 DQS3 153 NC 73 WE 193 S0 114 DQ58 234 DQ63
34 DQS3 154 VSS 74 CAS 194 VDD 115 DQ59 235 VSS
35 VSS 155 DQ30 75 VDD 195 ODT0 116 VSS 236 VDDSPD
36 DQ26 156 DQ31 76 S1, NC1196 A13 117 SA0 237 SA1
37 DQ27 157 VSS 77 ODT1, NC1197 VDD 118 SCL 238 SDA
38 VSS 158 NC 78 VDD 198 NC 119 SA2 239 VSS
39 NC 159 NC 79 NC 199 VSS 120 VTT 240 VTT
40 NC 160 VSS 80 VSS 200 DQ36
41 VSS 161 NC 81 DQ32 201 DQ37
- 6 -
datasheet DDR3 SDRAM
Rev. 1.2
Unbuffered DIMM
5. x72 DIMM Pin Configurations (Front side/Back side)
NOTE :
NC = No Connect; NU = Not Used; RFU = Reserved Future Use
1. S1, ODT1, CKE1: Used for dual-rank UDIMMs; NC on single-rank UDIMMs
2. CK1,NC and CK1,NC : Used for dual-rank UDIMMs; not used on single-rank UDIMMs, but terminated
3. TEST (pin 167) used by memory bus analysis tools (unused on memory DIMMs)
SAMSUNG ELECTRONICS CO., Ltd. reserves the right to change products and specifications without notice.
Pin Front Pin Back Pin Front Pin Back Pin Front Pin Back
1VREFDQ 121 VSS 42 DQS8 162 NC 82 DQ33 202 VSS
2VSS 122 DQ4 43 DQS8 163 VSS 83 VSS 203 DM4
3 DQ0 123 DQ5 44 VSS 164 CB6 84 DQS4204 NC
4 DQ1 124 VSS 45 CB2 165 CB7 85 DQS4 205 VSS
5VSS 125 DM0 46 CB3 166 VSS 86 VSS 206 DQ38
6DQS
0 126 NC 47 VSS 167 NC (TEST)387 DQ34 207 DQ39
7 DQS0 127 VSS 48 NC 168 Reset 88 DQ35 208 VSS
8VSS 128 DQ6 KEY 89 VSS 209 DQ44
9 DQ2 129 DQ7 49 NC 169 CKE1,NC190 DQ40 210 DQ45
10 DQ3 130 VSS 50 CKE0 170 VDD 91 DQ41 211 VSS
11 VSS 131 DQ12 51 VDD 171 NC 92 VSS 212 DM5
12 DQ8 132 DQ13 52 BA2 172 NC 93 DQS5213 NC
13 DQ9 133 VSS 53 NC 173 VDD 94 DQS5 214 VSS
14 VSS 134 DM1 54 VDD 174 A12/BC 95 VSS 215 DQ46
15 DQS1 135 NC 55 A11 175 A9 96 DQ42 216 DQ47
16 DQS1 136 VSS 56 A7 176 VDD 97 DQ43 217 VSS
17 VSS 137 DQ14 57 VDD 177 A8 98 VSS 218 DQ52
18 DQ10 138 DQ15 58 A5 178 A6 99 DQ48 219 DQ53
19 DQ11 139 VSS 59 A4 179 VDD 100 DQ49 220 VSS
20 VSS 140 DQ20 60 VDD 180 A3 101 VSS 221 DM6
21 DQ16 141 DQ21 61 A2 181 A1 102 DQS6222 NC
22 DQ17 142 VSS 62 VDD 182 VDD 103 DQS6 223 VSS
23 VSS 143 DM2 63 CK1,NC2183 VDD 104 VSS 224 DQ54
24 DQS2 144 NC 64 CK1,NC2184 CK0 105 DQ50 225 DQ55
25 DQS2 145 VSS 65 VDD 185 CK0 106 DQ51 226 VSS
26 VSS 146 DQ22 66 VDD 186 VDD 107 VSS 227 DQ60
27 DQ18 147 DQ23 67 VREFCA 187 EVENT 108 DQ56 228 DQ61
28 DQ19 148 VSS 68 NC 188 A0 109 DQ57 229 VSS
29 VSS 149 DQ28 69 VDD 189 VDD 110 VSS 230 DM7
30 DQ24 150 DQ29 70 A10/AP 190 BA1 111 DQS7231 NC
31 DQ25 151 VSS 71 BA0 191 VDD 112 DQS7 232 VSS
32 VSS 152 DM3 72 VDD 192 RAS 113 VSS 233 DQ62
33 DQS3 153 NC 73 WE 193 S0 114 DQ58 234 DQ63
34 DQS3 154 VSS 74 CAS 194 VDD 115 DQ59 235 VSS
35 VSS 155 DQ30 75 VDD 195 ODT0 116 VSS 236 VDDSPD
36 DQ26 156 DQ31 76 S1, NC1196 A13 117 SA0 237 SA1
37 DQ27 157 VSS 77 ODT1, NC1197 VDD 118 SCL 238 SDA
38 VSS 158 CB4 78 VDD 198 NC 119 SA2 239 VSS
39 CB0 159 CB5 79 NC 199 VSS 120 VTT 240 VTT
40 CB1 160 VSS 80 VSS 200 DQ36
41 VSS 161 DM8 81 DQ32 201 DQ37
- 7 -
datasheet DDR3 SDRAM
Rev. 1.2
Unbuffered DIMM
6. Pin Description
NOTE :
* The VDD and VDDQ pins are tied common to a single power-plane on these designs.
** DM8, DQS8 and DQS8 are for ECC UDIMM only.
7. SPD and Thermal Sensor for ECC UDIMMs
On DIMM thermal sensor will provide DRAM temperature readout through a integrated thermal sensor.
NOTE :
1. Raw Cards D (1Rx8 ECC) and E (2Rx8 ECC) support a thermal sensor.
2. When the SPD and the thermal sensor are placed on the module, R1 is placed but R2 is not.
When only the SPD is placed on the module, R2 is placed but R1 is not.
[ Table 1 ] Temperature Sensor Characteristics
Pin Name Description Pin Name Description
A0-A13 SDRAM address bus SCL I2C serial bus clock for EEPROM
BA0-BA2 SDRAM bank select SDA I2C serial bus data line for EEPROM
RAS SDRAM row address strobe SA0-SA2 I2C serial address select for EEPROM
CAS SDRAM column address strobe VDD*SDRAM core power supply
WE SDRAM write enable VDDQ*SDRAM I/O Driver power supply
S0, S1 DIMM Rank Select Lines VREFDQ SDRAM I/O reference supply
CKE0,CKE1 SDRAM clock enable lines VREFCA SDRAM command/address reference supply
ODT0, ODT1 On-die termination control lines VSS Power supply return (ground)
DQ0 - DQ63 DIMM memory data bus VDDSPD Serial EEPROM positive power supply
CB0 - CB7 DIMM ECC check bits NC Spare Pins(no connect)
DQS0 - DQS8 SDRAM data strobes
(positive line of differential pair) TEST Used by memory bus analysis tools
(unused on memory DIMMs)
DQS0-DQS8SDRAM differential data strobes
(negative line of differential pair) RESET Set DRAMs Known State
DM0-DM8 SDRAM data masks/high data strobes
(x8-based x72 DIMMs) EVENT Reserved for optional temperature-sensing hardware
CK0, CK1 SDRAM clocks
(positive line of differential pair) VTT SDRAM I/O termination supply
CK0, CK1 SDRAM clocks
(negative line of differential pair) RFU Reserved for future use
Grade Range Temperature Sensor Accuracy Units NOTE
Min. Typ. Max.
B
75 < Ta < 95 - +/- 0.5 +/- 1.0
°C
-
40 < Ta < 125 - +/- 1.0 +/- 2.0 -
-20 < Ta < 125 - +/- 2.0 +/- 3.0 -
Resolution 0.25 °C /LSB -
SCL SDA
WP/EVENT
SA0 SA1 SA2
SA0 SA1 SA2
EVENT
R1
0 Ω
R2
0 Ω
- 8 -
datasheet DDR3 SDRAM
Rev. 1.2
Unbuffered DIMM
8. Input/Output Functional Description
NOTE :
1. DM8, DQS8 and DQS8 are for ECC UDIMM only.
Symbol Type Function
CK0-CK1
CK0-CK1SSTL
CK and CK are differential clock inputs. All the DDR3 SDRAM addr/cntl inputs are sampled on the crossing of positive
edge of CK and negative edge of CK. Output (read) data is reference to the crossing of CK and CK (Both directions of
crossing)
CKE0-CKE1 SSTL Activates the SDRAM CK signal when high and deactivates the CK signal when low. By deactivating the clocks, CKE low
initiates the Power Down mode, or the Self-Refresh mode
S0-S1 SSTL
Enables the associated SDRAM command decoder when low and disables the command decoder when high. When the
command decoder is disabled, new command are ignored but previous operations continue. This signal provides for
external rank selection on systems with multiple ranks.
RAS, CAS, WE SSTL RAS, CAS, and WE (ALONG WITH S) define the command being entered.
ODT0-ODT1 SSTL When high, termination resistance is enabled for all DQ, DQS, DQS and DM pins, assuming the function is enabled in the
Extended Mode Register Set (EMRS).
VREFDQ Supply Reference voltage for SSTL 15 I/O inputs.
VREFCA Supply Reference voltage for SSTL 15 command/address inputs.
VDDQ Supply Power supply for the DDR3 SDRAM output buffers to provide improved noise immunity. For all current DDR3 unbuffered
DIMM designs, VDDQ shares the same power plane as VDD pins.
BA0-BA2 SSTL Selects which SDRAM bank of eight is activated.
A0-A13 SSTL
During a Bank Activate command cycle, Address input defines the row address (RA0-RA13)
During a Read or Write command cycle, Address input defines the column address, In addition to the column address,
AP is used to invoke autoprecharge operation at the end of the burst read or write cycle. If AP is high, autoprecharge is
selected and BA0, BA1, BA2 defines the bank to be precharged. If AP is low, autoprecharge is disabled. During a pre-
charge command cycle, AP is used in conjunction with BA0, BA1, BA2 to control which bank(s) to precharge. If AP is
high, all banks will be precharged regardless of the state of BA0, BA1 or BA2. If AP is low, BA0, BA1 and BA2 are used
to define which bank to precharge. A12(BC) is sampled during READ and WRITE commands to determine if burst chop
(on-the-fly) will be performed (HIGH, no burst chop; Low, burst chopped).
DQ0-DQ63
CB0-CB7 SSTL Data and Check Bit Input/Output pins.
DM0-DM81SSTL
DM is an input mask signal for write data. Input data is masked when DM is sampled High coincident with that input data
during a write access. DM is sampled on both edges of DQS. Although DM pins are input only, the DM loading matches
the DQ and DQS loading.
VDD,VSS Supply Power and ground for DDR3 SDRAM input buffers, and core logic. VDD and VDDQ pins are tied to VDD/VDDQ planes on
these modules.
DQS0-DQS81
DQS0-DQS81SSTL Data strobe for input and output data.
SA0-SA2 - These signals and tied at the system planar to either VSS or VDDSPD to configure the serial SPD EERPOM address
range.
SDA - This bidirectional pin is used to transfer data into or out of the SPD EEPROM. An external resistor may be connected
from the SDA bus line to VDDSPD to act as a pull-up on the system board.
SCL - This signal is used to clock data into and out of the SPD EEPROM. An external resistor may be connected from the SCL
bus time to VDDSPD to act as a pull-up on the system board.
VDDSPD Supply Power supply for SPD EEPROM. This supply is separate from the VDD/VDDQ power plane. EEPROM supply is operable
from 3.0V to 3.6V.
RESET - The RESET pin is connected to the RESET pin on each DRAM. When low, all DRAMs are set to a know state.
EVENT Output This signal indicates that a thermal event has been detected in the thermal sensing device. The system should guarantee
the electrical level requirement is met for the EVENT pin on TS/SPD part
- 9 -
datasheet DDR3 SDRAM
Rev. 1.2
Unbuffered DIMM
8.1 Address Mirroring Feature
Figure 1. Wiring Differences for Mirrored and Non-Mirrored Addresses
There is a via grid located under the DRAMs for wiring the CA signals (address, bank address, command, and control lines) to the DRAM pins. The length
of the traces from the vias to the DRAMs places limitations on the bandwidth of the module. The shorter these traces, the higher the bandwidth. To extend
the bandwidth of the CA bus for DDR3 modules, a scheme was defined to reduce the length of these traces.
The pins on the DRAM are defined in a manner that allows for these short trace lengths. The CA bus pins in Columns 2 and 8, ignoring the mechanical
support pins, do not have any special functions (secondary functions). This allows the most flexibility with these pins. These are address pins A3, A4, A5,
A6, A7, A8 and bank address pins BA0 and BA1. Refer to Table . Rank 0 DRAM pins are wired straight, with no mismatch between the connector pin
assignment and the DRAM pin assignment. Some of the Rank 1 DRAM pins are cross wired as defined in the table. Pins not listed in the table are wired
straight.
8.1.1 DRAM Pin Wiring Mirroring
Figure 1illustrates the wiring in both the mirrored and non-mirrored case. The lengths of the traces to the DRAM pins, is obviously shorter. The via grid is smaller as well.
Since the cross-wired pins have no secondary functions, there is no problem in normal operation. Any data written is read the same way. There are limi-
tations however. When writing to the internal registers with a "load mode" operation, the specific address is required. See the DDR3 UDIMM SPD specifi-
cation for these details. The controller must read the SPD and have the capability of de-mirroring the address when accessing the second rank.
SAMSUNG DDR3 dual rank UDIMM R/C B(2Rx8) and R/C E(2Rx8) Modules are using Mirrored Addresses mode.
Connector Pin DRAM Pin
Rank 0 Rank 1
A3 A3 A4
A4 A4 A3
A5 A5 A6
A6 A6 A5
A7 A7 A8
A8 A8 A7
BA0 BA0 BA1
BA1 BA1 BA0
- 10 -
datasheet DDR3 SDRAM
Rev. 1.2
Unbuffered DIMM
9. Function Block Diagram:
9.1 1GB, 128Mx64 Non ECC Module (Populated as 1 rank of x8 DDR3 SDRAMs)
S0
DQS0
DQS0
DM0
DM CS DQS DQS
DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D0
DQS1
DQS1
DM1
DM CS DQS DQS
DQ8
DQ9
DQ10
DQ11
DQ12
DQ13
DQ14
DQ15
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D1
DQS2
DQS2
DM2
DM CS DQS DQS
DQ16
DQ17
DQ18
DQ19
DQ20
DQ21
DQ22
DQ23
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D2
DQS3
DQS3
DM3
DM NU/ CS DQS DQS
DQ24
DQ25
DQ26
DQ27
DQ28
DQ29
DQ30
DQ31
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D3
DQS4
DQS4
DM4
DM CS DQS DQS
DQ32
DQ33
DQ34
DQ35
DQ36
DQ37
DQ38
DQ39
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D4
DQS5
DQS5
DM5
DM CS DQS DQS
DQ40
DQ41
DQ42
DQ43
DQ44
DQ45
DQ46
DQ47
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D5
DQS6
DQS6
DM6
DM CS DQS DQS
DQ48
DQ49
DQ50
DQ51
DQ52
DQ53
DQ54
DQ55
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D6
DQS7
DQS7
DM7
DM CS DQS DQS
DQ56
DQ57
DQ58
DQ59
DQ60
DQ61
DQ62
DQ63
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D7
NOTE :
1. For each DRAM, a unique ZQ resistor is connected to
ground. The ZQ resistor is 240 Ohm +/- 1%
2. One SPD exists per module.
VSS
D0 - D7
VDD/VDDQ D0 - D7
D0 - D7
VREFDQ
VDDSPD SPD
A0 - A13 A0-A13 : SDRAMs D0 - D7
RAS RAS : SDRAMs D0 - D7
CAS CAS : SDRAMs D0 - D7
WE WE : SDRAMs D0 - D7
CKE0 CKE : SDRAMs D0 - D7
BA0 - BA2 BA0-BA2 : SDRAMs D0 - D7
ODT0 ODT : SDRAMs D0 - D7
VREFCA
D0 - D7
CK0 CK : SDRAMs D0 - D7
ZQ
ZQ
ZQ
ZQ
ZQ
ZQ
ZQ
ZQ
A0
Serial PD
A1 A2
SA0 SA1 SA2
SCL
SDA
WP
- 11 -
datasheet DDR3 SDRAM
Rev. 1.2
Unbuffered DIMM
9.2 1GB, 128Mx72 ECC Module (Populated as 1 rank of x8 DDR3 SDRAMs)
S0
DQS0
DQS0
DM0
DM CS DQS DQS
DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D0
DQS1
DQS1
DM1
DM CS DQS DQS
DQ8
DQ9
DQ10
DQ11
DQ12
DQ13
DQ14
DQ15
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D1
DQS2
DQS2
DM2
DM CS DQS DQS
DQ16
DQ17
DQ18
DQ19
DQ20
DQ21
DQ22
DQ23
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D2
DQS3
DQS3
DM3
DM CS DQS DQS
DQ24
DQ25
DQ26
DQ27
DQ28
DQ29
DQ30
DQ31
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D3
DQS4
DQS4
DM4
DM CS DQS DQS
DQ32
DQ33
DQ34
DQ35
DQ36
DQ37
DQ38
DQ39
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D4
DQS5
DQS5
DM5
DM CS DQS DQS
DQ40
DQ41
DQ42
DQ43
DQ44
DQ45
DQ46
DQ47
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D5
DQS6
DQS6
DM6
DM CS DQS DQS
DQ48
DQ49
DQ50
DQ51
DQ52
DQ53
DQ54
DQ55
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D6
DQS7
DQS7
DM7
DM CS DQS DQS
DQ56
DQ57
DQ58
DQ59
DQ60
DQ61
DQ62
DQ63
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D7
DQS8
DQS8
DM8
DM CS DQS DQS
CB0
CB1
CB2
CB3
CB4
CB5
CB6
CB7
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D8
VSS
D0 - D8
VDD/VDDQ D0 - D8
D0 - D8
VREFDQ
VDDSPD SPD
VREFCA
D0 - D8
NOTE :
1. For each DRAM, a unique ZQ resistor is connected to
ground. The ZQ resistor is 240 Ohm +/- 1%
2. Refer to "SPD and Thermal sensor for ECC UDIMMs"
for SPD detail.
A0 - A15 A0-A15 : SDRAMs D0 - D8
RAS RAS : SDRAMs D0 - D8
CAS CAS : SDRAMs D0 - D8
WE WE : SDRAMs D0 - D8
CKE0 CKE : SDRAMs D0 - D8
BA0 - BA2 BA0-BA2 : SDRAMs D0 - D8
ODT0 ODT : SDRAMs D0 - D8
CK0 CK : SDRAMs D0 - D8
ZQ
ZQ
ZQ
ZQ
ZQ
ZQ
ZQ
ZQ
ZQ
A0
Serial PD
A1 A2
SA0 SA1 SA2
SCL
SDA
EVENTEVENT
- 12 -
datasheet DDR3 SDRAM
Rev. 1.2
Unbuffered DIMM
9.3 2GB, 256Mx64 Non ECC Module (Populated as 2 ranks of x8 DDR3 SDRAMs)
S0
DQS0
DQS0
DM0
DM CS DQS DQS
DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D0
DQS1
DQS1
DM1
DM CS DQS DQS
DQ8
DQ9
DQ10
DQ11
DQ12
DQ13
DQ14
DQ15
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D1
DQS2
DQS2
DM2
DM CS DQS DQS
DQ16
DQ17
DQ18
DQ19
DQ20
DQ21
DQ22
DQ23
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D2
DQS3
DQS3
DM3
DM CS DQS DQS
DQ24
DQ25
DQ26
DQ27
DQ28
DQ29
DQ30
DQ31
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D3
DQS4
DQS4
DM4
DM CS DQS DQS
DQ32
DQ33
DQ34
DQ35
DQ36
DQ37
DQ38
DQ39
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D4
DQS5
DQS5
DM5
DM CS DQS DQS
DQ40
DQ41
DQ42
DQ43
DQ44
DQ45
DQ46
DQ47
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D5
DQS6
DQS6
DM6
DM CS DQS DQS
DQ48
DQ49
DQ50
DQ51
DQ52
DQ53
DQ54
DQ55
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D6
DQS7
DQS7
DM7
DM CS DQS DQS
DQ56
DQ57
DQ58
DQ59
DQ60
DQ61
DQ62
DQ63
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D7
DM CS DQS DQS
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D8
DM CS DQS DQS
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D9
DM CS DQS DQS
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D10
DM CS DQS DQS
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D11
DM CS DQS DQS
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D12
DM CS DQS DQS
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D13
DM CS DQS DQS
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D14
DM CS DQS DQS
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D15
S1
VSS
D0 - D15
VDD/VDDQ D0 - D15
D0 - D15
VREFDQ
VDDSPD SPD
A0 - A15 A0-A15 : SDRAMs D0 - D15
RAS RAS : SDRAMs D0 - D15
CAS CAS : SDRAMs D0 - D15
WE WE : SDRAMs D0 - D15
CKE0 CKE : SDRAMs D0 - D7
BA0 - BA2 BA0-BA2 : SDRAMs D0 - D15
ODT0 ODT : SDRAMs D0 - D7
VREFCA
D0 - D15
ODT1 ODT : SDRAMs D8 - D15
CK0 CK : SDRAMs D0 - D7
CK1 CK : SDRAMs D8 - D15
CKE1 CKE : SDRAMs D8 - D15
NOTE :
1. For each DRAM, a unique ZQ resistor is connected to
ground. The ZQ resistor is 240 Ohm +/- 1%
2. One SPD exists per module.
ZQZQ ZQZQ
ZQZQ ZQZQ
ZQZQ ZQZQ
ZQZQ ZQZQ
A0
Serial PD
A1 A2
SA0 SA1 SA2
SCL
SDA
WP
- 13 -
datasheet DDR3 SDRAM
Rev. 1.2
Unbuffered DIMM
9.4 2GB, 256Mx72 ECC Module (Populated as 2 ranks of x8 DDR3 SDRAMs)
S0
DQS0
DQS0
DM0
DM CS DQS DQS
DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D0
DQS1
DQS1
DM1
DM CS DQS DQS
DQ8
DQ9
DQ10
DQ11
DQ12
DQ13
DQ14
DQ15
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D1
DQS2
DQS2
DM2
DM CS DQS DQS
DQ16
DQ17
DQ18
DQ19
DQ20
DQ21
DQ22
DQ23
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D2
DQS3
DQS3
DM3
DM CS DQS DQS
DQ24
DQ25
DQ26
DQ27
DQ28
DQ29
DQ30
DQ31
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D3
DQS4
DQS4
DM4
DM CS DQS DQS
DQ32
DQ33
DQ34
DQ35
DQ36
DQ37
DQ38
DQ39
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D4
DQS5
DQS5
DM5
DM CS DQS DQS
DQ40
DQ41
DQ42
DQ43
DQ44
DQ45
DQ46
DQ47
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D5
DQS6
DQS6
DM6
DM CS DQS DQS
DQ48
DQ49
DQ50
DQ51
DQ52
DQ53
DQ54
DQ55
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D6
DQS7
DQS7
DM7
DM CS DQS DQS
DQ56
DQ57
DQ58
DQ59
DQ60
DQ61
DQ62
DQ63
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D7
DM CS DQS DQS
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D9
DM CS DQS DQS
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D10
DM CS DQS DQS
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D11
DM CS DQS DQS
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D12
DM CS DQS DQS
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D13
DM CS DQS DQS
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D14
DM CS DQS DQS
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D15
DM CS DQS DQS
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D16
S1
DQS8
DQS8
DM8
DM CS DQS DQS
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D8
DM CS DQS DQS
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D17
CB0
CB1
CB2
CB3
CB4
CB5
CB6
CB7
VSS
D0 - D17
VDD/VDDQ D0 - D17
D0 - D17
VREFDQ
VDDSPD SPD
VREFCA
D0 - D17
NOTE :
1. For each DRAM, a unique ZQ resistor is connected to
ground. The ZQ resistor is 240 Ohm +/- 1%
2. Refer to "SPD and Thermal sensor for ECC UDIMMs"
for SPD detail.
A0 - A15 A0-A15 : SDRAMs D0 - D17
RAS RAS : SDRAMs D0 - D17
CAS CAS : SDRAMs D0 - D17
WE WE : SDRAMs D0 - D17
CKE0 CKE : SDRAMs D0 - D8
BA0 - BA2 BA0-BA2 : SDRAMs D0 - D17
ODT0 ODT : SDRAMs D0 - D8
ODT1 ODT : SDRAMs D9 - D17
CK0 CK : SDRAMs D0 - D8
CK1 CK : SDRAMs D9 - D17
CKE1 CKE : SDRAMs D9 - D17
ZQ
ZQ
ZQ
ZQ
ZQ
ZQ
ZQ
ZQ
ZQ
ZQ
ZQ
ZQ
ZQ
ZQ
ZQ
ZQ
ZQ
ZQ
A0
Serial PD
A1 A2
SA0 SA1 SA2
SCL
SDA
EVENTEVENT
- 14 -
datasheet DDR3 SDRAM
Rev. 1.2
Unbuffered DIMM
10. Absolute Maximum Ratings
10.1 Absolute Maximum DC Ratings
NOTE :
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions
for extended periods may affect reliability.
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard.
3. VDD and VDDQ must be within 300mV of each other at all times; and VREF must be not greater than 0.6 x VDDQ, When VDD and VDDQ are less than 500mV; VREF may be
equal to or less than 300mV.
10.2 DRAM Component Operating Temperature Range
NOTE :
1. Operating Temperature TOPER is the case surface temperature on the center/top side of the DRAM. For measurement conditions, please refer to the JEDEC document
JESD51-2.
2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature must be main-
tained between 0-85°C under all operating conditions
3. Some applications require operation of the Extended Temperature Range between 85°C and 95°C case temperature. Full specifications are guaranteed in this range, but the
following additional conditions apply:
a) Refresh commands must be doubled in frequency, therefore reducing the refresh interval tREFI to 3.9us.
b) If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to either use the Manual Self-Refresh mode with Extended Temperature
Range capability (MR2 A6 = 0b and MR2 A7 = 1b), in this case IDD6 current can be increased around 10~20% than normal Temperature range.
11. AC & DC Operating Conditions
11.1 Recommended DC Operating Conditions (SSTL-15)
NOTE:
1. Under all conditions VDDQ must be less than or equal to VDD.
2. VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together.
Symbol Parameter Rating Units NOTE
VDD Voltage on VDD pin relative to VSS -0.4 V ~ 1.975 V V 1,3
VDDQ Voltage on VDDQ pin relative to VSS -0.4 V ~ 1.975 V V 1,3
VIN, VOUT Voltage on any pin relative to VSS -0.4 V ~ 1.975 V V 1
TSTG Storage Temperature -55 to +100 °C 1, 2
Symbol Parameter rating Unit NOTE
TOPER Operating Temperature Range 0 to 95 °C 1, 2, 3
Symbol Parameter Rating Units NOTE
Min. Typ. Max.
VDD Supply Voltage 1.425 1.5 1.575 V 1,2
VDDQ Supply Voltage for Output 1.425 1.5 1.575 V 1,2
- 15 -
datasheet DDR3 SDRAM
Rev. 1.2
Unbuffered DIMM
12. AC & DC Input Measurement Levels
12.1 AC & DC Logic Input Levels for Single-ended Signals
[ Table 2 ] Single-ended AC & DC input levels for Command and Address
NOTE :
1. For input only pins except RESET, VREF = VREFCA(DC)
2. See ’Overshoot/Undershoot Specification’ on page 18.
3. The AC peak noise on VREF may not allow VREF to deviate from VREF(DC) by more than ± 1% VDD (for reference : approx. ± 15mV)
4. For reference : approx. VDD/2 ± 15mV
5. VIH(dc) is used as a simplified symbol for VIH.CA(DC100)
6. VIL(dc) is used as a simplified symbol for VIL.CA(DC100)
7. VIH(ac) is used as a simplified symbol for VIH.CA(AC175), VIH.CA(AC150), VIH.CA(AC135) and VIH.CA(AC125); VIH.CA(AC175) value is used when VREF + 175mV is referenced
, VIH.CA(AC150) value is used when VREF + 150mV is referenced, VIH.CA(AC135) value is used when VREF + 135mV is referenced and VIH.CA(AC125) value is used when
VREF + 125mV is referenced.
8. VIL(ac) is used as a simplified symbol for VIL.CA(AC175) and VIL.CA(AC150), VIL.CA(AC135) and VIL.CA(AC125); VIL.CA(AC175) value is used when VREF - 175mV is refer-
enced, VIL.CA(AC150) value is used when VREF - 150mV is referenced, VIL.CA(AC135) value is used when VREF - 135mV is referenced and VIL.CA(AC125) value is used
when VREF - 125mV is referenced.
[ Table 3 ] Single-ended AC & DC input levels for DQ and DM
NOTE :
1. For input only pins except RESET, VREF = VREFDQ(DC)
2. See ’Overshoot/Undershoot Specification’ on page 18.
3. The AC peak noise on VREF may not allow VREF to deviate from VREF(DC) by more than ± 1% VDD (for reference : approx. ± 15mV)
4. For reference : approx. VDD/2 ± 15mV
5. VIH(dc) is used as a simplified symbol for VIH.DQ(DC100)
6. VIL(dc) is used as a simplified symbol for VIL.DQ(DC100)
7. VIH(ac) is used as a simplified symbol for VIH.DQ(AC175), VIH.DQ(AC150) and VIH.DQ(AC135) ; VIH.DQ(AC175) value is used when VREF + 175mV is referenced,
VIH.DQ(AC150) value is used when VREF + 150mV is referenced.
8. VIL(ac) is used as a simplified symbol for VIL.DQ(AC175), VIL.DQ(AC150) ; VIL.DQ(AC175) value is used when VREF - 175mV is referenced, VIL.DQ(AC150) value is used when
VREF - 150mV is referenced.
Symbol Parameter DDR3-800/1066/1333/1600 DDR3-1866 Unit NOTE
Min. Max. Min. Max.
VIH.CA(DC100) DC input logic high VREF + 100 VDD VREF + 100 VDD mV 1,5
VIL.CA(DC100) DC input logic low VSS VREF - 100 VSS VREF - 100 mV 1,6
VIH.CA(AC175) AC input logic high VREF + 175 Note 2 - - mV 1,2,7
VIL.CA(AC175) AC input logic low Note 2 VREF - 175 --mV1,2,8
VIH.CA(AC150) AC input logic high VREF+150 Note 2 - - mV 1,2,7
VIL.CA(AC150) AC input logic low Note 2 VREF-150 --mV1,2,8
VIH.CA(AC135) AC input logic high - - VREF + 135 Note 2 mV 1,2,7
VIL.CA(AC135) AC input logic low - - Note 2 VREF - 135 mV 1,2,8
VIH.CA(AC125) AC input logic high - - VREF+125 Note 2 mV 1,2,7
VIL.CA(AC125) AC input logic low - - Note 2 VREF-125 mV 1,2,8
VREFCA(DC) Reference Voltage for ADD,
CMD inputs 0.49*VDD 0.51*VDD 0.49*VDD 0.51*VDD V3,4
Symbol Parameter DDR3-800/1066 DDR3-1333/1600 DDR3-1866 Unit NOTE
Min. Max. Min. Max. Min. Max.
VIH.DQ(DC100) DC input logic high VREF + 100 VDD VREF + 100 VDD VREF + 100 VDD mV 1,5
VIL.DQ(DC100) DC input logic low VSS VREF - 100 VSS VREF - 100 VSS VREF - 100 mV 1,6
VIH.DQ(AC175) AC input logic high VREF + 175 NOTE 2----mV1,2,7
VIL.DQ(AC175) AC input logic low NOTE 2 VREF - 175 ----mV1,2,8
VIH.DQ(AC150) AC input logic high VREF + 150 NOTE 2 VREF + 150 NOTE 2 - - mV 1,2,7
VIL.DQ(AC150) AC input logic low NOTE 2 VREF - 150 NOTE 2 VREF - 150 - - mV 1,2,8
VIH.DQ(AC135) AC input logic high - - - - VREF + 135 NOTE 2 mV 1,2,7
VIL.DQ(AC135) AC input logic low - - - - NOTE 2 VREF - 135 mV 1,2,8
VREFDQ(DC) Reference Voltage for DQ,
DM inputs 0.49*VDD 0.51*VDD 0.49*VDD 0.51*VDD 0.49*VDD 0.51*VDD V3,4
- 16 -
datasheet DDR3 SDRAM
Rev. 1.2
Unbuffered DIMM
12.2 VREF Tolerances.
The dc-tolerance limits and ac-noise limits for the reference voltages VREFCA and VREFDQ are illustrate in Figure 2. It shows a valid reference voltage
VREF(t) as a function of time. (VREF stands for VREFCA and VREFDQ likewise).
VREF(DC) is the linear average of VREF(t) over a very long period of time (e.g. 1 sec). This average has to meet the min/max requirements of VREF
. Fur-
thermore VREF(t) may temporarily deviate from VREF(DC) by no more than ± 1% VDD.
Figure 2. Illustration of VREF(DC) tolerance and VREF ac-noise limits
The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC) and VIL(DC) are dependent on VREF
.
"VREF" shall be understood as VREF(DC), as defined in Figure 2.
This clarifies, that dc-variations of VREF affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to
which setup and hold is measured. System timing and voltage budgets need to account for VREF(DC) deviations from the optimum position within the
data-eye of the input signals.
This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with VREF ac-noise.
Timing and voltage effects due to ac-noise on VREF up to the specified limit (+/-1% of VDD) are included in DRAM timings and their associated deratings.
voltage
VDD
VSS
time
- 17 -
datasheet DDR3 SDRAM
Rev. 1.2
Unbuffered DIMM
12.3 AC and DC Logic Input Levels for Differential Signals
12.3.1 Differential Signals Definition
Figure 3. Definition of differential ac-swing and "time above ac level" tDVAC
12.3.2 Differential Swing Requirement for Clock (CK - CK) and Strobe (DQS - DQS)
NOTE :
1. Used to define a differential signal slew-rate.
2. for CK - CK use VIH/VIL(AC) of ADD/CMD and VREFCA; for DQS - DQS use VIH/VIL(AC) of DQs and VREFDQ; if a reduced ac-high or ac-low level is used for a signal group,
then the reduced level applies also here.
3. These values are not defined, however they single-ended signals CK, CK, DQS, DQS, DQSL need to be within the respective limits (VIH(DC) max, VIL(DC)min) for single-
ended signals as well as the limitations for overshoot and undershoot. Refer to "overshoot and Undersheet Specification"
[ Table 4 ] Allowed time before ringback (tDVAC) for CK - CK and DQS - DQS.
Symbol Parameter DDR3-800/1066/1333/1600/1866 unit NOTE
min max
VIHdiff differential input high +0.2 NOTE 3 V 1
VILdiff differential input low NOTE 3 -0.2 V 1
VIHdiff(AC) differential input high ac 2 x (VIH(AC) - VREF)NOTE 3 V 2
VILdiff(AC) differential input low ac NOTE 3 2 x (VIL(AC) - VREF)V2
Slew Rate [V/ns]
tDVAC [ps] @ |VIH/Ldiff(AC)|
= 350mV
tDVAC [ps] @ |VIH/Ldiff(AC)|
= 300mV
tDVAC [ps] @ |VIH/Ldiff(AC)|
= 270mV
tDVAC [ps] @ |VIH/Ldiff(AC)|
= 250mV
min max min max min max min max
> 4.0 75 - 175 - TBD - TBD -
4.0 57 - 170 - TBD - TBD -
3.0 50 - 167 - TBD - TBD -
2.0 38 - 163 - TBD - TBD -
1.8 34 - 162 - TBD - TBD -
1.6 29 - 161 - TBD - TBD -
1.4 22 - 159 - TBD - TBD -
1.2 13 - 155 - TBD - TBD -
1.0 0 - 150 - TBD - TBD -
< 1.0 0 - 150 - TBD - TBD -
0.0
tDVAC
VIH.DIFF.MIN
half cycle
Differential Input Voltage (i.e. DQS-DQS, CK-CK)
time
tDVAC
VIH.DIFF.AC.MIN
VIL.DIFF.MAX
VIL.DIFF.AC.MAX
- 18 -
datasheet DDR3 SDRAM
Rev. 1.2
Unbuffered DIMM
12.3.3 Single-ended Requirements for Differential Signals
Each individual component of a differential signal (CK, DQS, CK, DQS) has also to comply with certain requirements for single-ended signals.
CK and CK have to approximately reach VSEHmin / VSELmax (approximately equal to the ac-levels ( VIH(AC) / VIL(AC) ) for ADD/CMD signals) in every
half-cycle.
DQS, DQS have to reach VSEHmin / VSELmax (approximately the ac-levels ( VIH(AC) / VIL(AC) ) for DQ signals) in every half-cycle proceeding and follow-
ing a valid transition.
Note that the applicable ac-levels for ADD/CMD and DQ’s might be different per speed-bin etc. E.g. if VIH150(AC)/VIL150(AC) is used for ADD/CMD
signals, then these ac-levels apply also for the single-ended signals CK and CK .
Figure 4. Single-ended requirement for differential signals
Note that while ADD/CMD and DQ signal requirements are with respect to VREF
, the single-ended components of differential signals have a requirement
with respect to VDD/2; this is nominally the same. The transition of single-ended signals through the ac-levels is used to measure setup time. For single-
ended components of differential signals the requirement to reach VSELmax, VSEHmin has no bearing on timing, but adds a restriction on the common
mode characteristics of these signals.
[ Table 5 ] Single ended levels for CK, DQS, CK, DQS
NOTE :
1. For CK, CK use VIH/VIL(AC) of ADD/CMD; for strobes (DQS, DQS) use VIH/VIL(AC) of DQs.
2. VIH(AC)/VIL(AC) for DQs is based on VREFDQ; VIH(AC)/VIL(AC) for ADD/CMD is based on VREFCA; if a reduced ac-high or ac-low level is used for a signal group, then the
reduced level applies also here
3. These values are not defined, however the single-ended signals CK, CK, DQS, DQS need to be within the respective limits (VIH(DC) max, VIL(DC)min) for single-ended sig-
nals as well as the limitations for overshoot and undershoot. Refer to "Overshoot and Undershoot Specification"
Symbol Parameter DDR3-800/1066/1333/1600/1866 Unit NOTE
Min Max
VSEH
Single-ended high-level for strobes (VDD/2)+0.175 NOTE 3 V 1, 2
Single-ended high-level for CK, CK (VDD/2)+0.175 NOTE 3 V 1, 2
VSEL
Single-ended low-level for strobes NOTE 3 (VDD/2)-0.175 V1, 2
Single-ended low-level for CK, CK NOTE 3 (VDD/2)-0.175 V1, 2
- 19 -
datasheet DDR3 SDRAM
Rev. 1.2
Unbuffered DIMM
12.3.4 Differential Input Cross Point Voltage
To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each cross point voltage of differential input
signals (CK, CK and DQS, DQS) must meet the requirements in below table. The differential input cross point voltage VIX is measured from the actual
cross point of true and complement signal to the mid level between of VDD and VSS.
Figure 5. VIX Definition
[ Table 6 ] Cross point voltage for differential input signals (CK, DQS)
NOTE :
1. Extended range for VIX is only allowed for clock and if single-ended clock input signals CK and CK are monotonic, have a single-ended swing VSEL / VSEH of at least VDD/2
±250 mV, and the differential slew rate of CK-CK is larger than 3 V/ ns.
2. The relation between VIX Min/Max and VSEL/VSEH should satisfy following.
(VDD/2) + VIX(Min) - VSEL 25mV
VSEH - ((VDD/2) + VIX(Max)) 25mV
12.4 Slew Rate Definition for Single Ended Input Signals
See "Address / Command Setup, Hold and Derating" for single-ended slew rate definitions for address and command signals.
See "Data Setup, Hold and Slew Rate Derating" for single-ended slew rate definitions for data signals.
12.5 Slew rate definition for Differential Input Signals
Input slew rate for differential signals (CK, CK and DQS, DQS) are defined and measured as shown in below.
[ Table 7 ] Differential input slew rate definition
NOTE : The differential signal (i.e. CK - CK and DQS - DQS) must be linear between these thresholds
Figure 6. Differential input slew rate definition for DQS, DQS and CK, CK
Symbol Parameter DDR3-800/1066/1333/1600/1866 Unit NOTE
Min Max
VIX Differential Input Cross Point Voltage relative to VDD/2 for CK,CK -150 150 mV 2
-175 175 mV 1
VIX Differential Input Cross Point Voltage relative to VDD/2 for DQS,DQS -150 150 mV 2
Description Measured Defined by
From To
Differential input slew rate for rising edge (CK-CK and DQS-DQS)VILdiffmax VIHdiffmin
VIHdiffmin - VILdiffmax
Delta TRdiff
Differential input slew rate for falling edge (CK-CK and DQS-DQS)VIHdiffmin VILdiffmax
VIHdiffmin - VILdiffmax
Delta TFdiff
VDD
CK, DQS
VDD/2
CK, DQS
VSS
VIX
VIX
VIX
VIHdiffmin
0
VILdiffmax
delta TRdiff
delta TFdiff
- 20 -
datasheet DDR3 SDRAM
Rev. 1.2
Unbuffered DIMM
13. AC & DC Output Measurement Levels
13.1 Single Ended AC and DC Output Levels
[ Table 8 ] Single Ended AC and DC output levels
NOTE : 1. The swing of +/-0.1 x VDDQ is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40Ω and an effective test
load of 25Ω to VTT=VDDQ/2.
13.2 Differential AC and DC Output Levels
[ Table 9 ] Differential AC and DC output levels
NOTE : 1. The swing of +/-0.2xVDDQ is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40Ω and an effective test
load of 25Ω to VTT=VDDQ/2 at each of the differential outputs.
13.3 Single-ended Output Slew Rate
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC)
for single ended signals as shown in below.
[ Table 10 ] Single ended Output slew rate definition
NOTE : Output slew rate is verified by design and characterization, and may not be subject to production test.
[ Table 11 ] Single ended output slew rate
Description : SR : Slew Rate
Q : Query Output (like in DQ, which stands for Data-in, Query-Output)
se : Single-ended Signals
For Ron = RZQ/7 setting
NOTE : 1) In two cased, a maximum slew rate of 6V/ns applies for a single DQ signal within a byte lane.
- Case_1 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high to low of low to high) while all remaining DQ
signals in the same byte lane are static (i.e they stay at either high or low).
- Case_2 is defined for a single DQ signals in the same byte lane are switching into the opposite direction (i.e. from low to high or high to low respectively). For the
remaining DQ signal switching into the opposite direction, the regular maximum limit of 5 V/ns applies.
Figure 7. Single-ended Output Slew Rate Definition
Symbol Parameter DDR3-800/1066/1333/1600/1866 Units NOTE
VOH(DC) DC output high measurement level (for IV curve linearity) 0.8 x VDDQ V
VOM(DC) DC output mid measurement level (for IV curve linearity) 0.5 x VDDQ V
VOL(DC) DC output low measurement level (for IV curve linearity) 0.2 x VDDQ V
VOH(AC) AC output high measurement level (for output SR) VTT + 0.1 x VDDQ V1
VOL(AC) AC output low measurement level (for output SR) VTT - 0.1 x VDDQ V1
Symbol Parameter DDR3-800/1066/1333/1600/1866 Units NOTE
VOHdiff(AC) AC differential output high measurement level (for output SR) +0.2 x VDDQ V1
VOLdiff(AC) AC differential output low measurement level (for output SR) -0.2 x VDDQ V1
Description Measured Defined by
From To
Single ended output slew rate for rising edge VOL(AC) VOH(AC) VOH(AC)-VOL(AC)
Delta TRse
Single ended output slew rate for falling edge VOH(AC) VOL(AC) VOH(AC)-VOL(AC)
Delta TFse
Parameter Symbol DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 DDR3-1866 Units
Min Max Min Max Min Max Min Max Min Max
Single ended output slew rate SRQse 2.5 5 2.5 5 2.5 5 2.5 5 2.5 51) V/ns
VOH(AC)
VOL(AC)
delta TRsedelta TFse
VTT
- 21 -
datasheet DDR3 SDRAM
Rev. 1.2
Unbuffered DIMM
13.4 Differential Output Slew Rate
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOLdiff(AC) and VOH-
diff(AC) for differential signals as shown in below.
[ Table 12 ] Differential Output slew rate definition
NOTE : Output slew rate is verified by design and characterization, and may not be subject to production test.
[ Table 13 ] Differential Output slew rate
Description : SR : Slew Rate
Q : Query Output (like in DQ, which stands for Data-in, Query-Output)
diff : Differential Signals
For Ron = RZQ/7 setting
Figure 8. Differential output slew rate definition
Description Measured Defined by
From To
Differential output slew rate for rising edge VOLdiff(AC) VOHdiff(AC) VOHdiff(AC)-VOLdiff(AC)
Delta TRdiff
Differential output slew rate for falling edge VOHdiff(AC) VOLdiff(AC) VOHdiff(AC)-VOLdiff(AC)
Delta TFdiff
Parameter Symbol DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 DDR3-1866 Units
Min Max Min Max Min Max Min Max Min Max
Differential output slew rate SRQdiff 5 10 5 10 5 10 5 10 5 12 V/ns
VOHdiff(AC)
VOLdiff(AC)
delta TRdiffdelta TFdiff
VTT
- 22 -
datasheet DDR3 SDRAM
Rev. 1.2
Unbuffered DIMM
14. DIMM IDD specification definition
Symbol Description
IDD0
Operating One Bank Active-Precharge Current
CKE: High; External clock: On; tCK, nRC, nRAS, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: High between ACT and PRE;
Command, Address, Bank Address Inputs: partially toggling ; Data IO: FLOATING; DM:stable at 0; Bank Activity: Cycling with one bank active at a time:
0,0,1,1,2,2,... ; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pat-
tern
IDD1
Operating One Bank Active-Read-Precharge Current
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: High between ACT, RD
and PRE; Command, Address, Bank Address Inputs, Data IO: partially toggling ; DM:stable at 0; Bank Activity: Cycling with one bank active at a time:
0,0,1,1,2,2,... ; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pat-
tern
IDD2N
Precharge Standby Current
CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: partially toggling ; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode
Registers2); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern
IDD2P0
Precharge Power-Down Current Slow Exit
CKE: Low; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: stable at 0; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers2);
ODT Signal: stable at 0; Precharge Power Down Mode: Slow Exit3)
IDD2P1
Precharge Power-Down Current Fast Exit
CKE: Low; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: stable at 0; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers2);
ODT Signal: stable at 0; Precharge Power Down Mode: Fast Exit3)
IDD2Q
Precharge Quiet Standby Current
CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: stable at 0; Data IO: FLOATING; DM:stable at 0;Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers2);
ODT Signal: stable at 0
IDD3N
Active Standby Current
CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: partially toggling ; Data IO: FLOATING; DM:stable at 0;Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode
Registers2); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern
IDD3P
Active Power-Down Current
CKE: Low; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: stable at 0; Data IO: FLOATING;DM:stable at 0; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers2); ODT
Signal: stable at 0
IDD4R
Operating Burst Read Current
CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: High between RD; Command, Address,
Bank Address Inputs: partially toggling ; Data IO: seamless read data burst with different data between one burst and the next one ; DM:stable at 0; Bank
Activity: all banks open, RD commands cycling through banks: 0,0,1,1,2,2,... ; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable
at 0; Pattern Details: Refer to Component Datasheet for detail pattern
IDD4W
Operating Burst Write Current
CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: High between WR; Command, Address,
Bank Address Inputs: partially toggling ; Data IO: seamless write data burst with different data between one burst and the next one ; DM: stable at 0; Bank
Activity: all banks open, WR commands cycling through banks: 0,0,1,1,2,2,... ; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable
at HIGH; Pattern Details: Refer to Component Datasheet for detail pattern
IDD5B
Burst Refresh Current
CKE: High; External clock: On; tCK, CL, nRFC: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: High between REF; Command,
Address, Bank Address Inputs: partially toggling ; Data IO: FLOATING;DM:stable at 0; Bank Activity: REF command every nRFC ; Output Buffer and
RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern
IDD6
Self Refresh Current: Normal Temperature Range
TCASE: 0 - 85°C; Auto Self-Refresh (ASR): Disabled4); Self-Refresh Temperature Range (SRT): Normal5); CKE: Low; External clock: Off; CK and CK:
LOW; CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS, Command, Address, Bank Address, Data IO: FLOATING;DM:stable at 0;
Bank Activity: Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: FLOATING
IDD6ET
Self-Refresh Current: Extended Temperature Range (optional)6)
TCASE: 0 - 95°C; Auto Self-Refresh (ASR): Disabled4); Self-Refresh Temperature Range (SRT): Extended5); CKE: Low; External clock: Off; CK and CK:
LOW; CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS, Command, Address, Bank Address, Data IO: FLOATING;DM:stable at 0;
Bank Activity: Extended Temperature Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: FLOATING
IDD7
Operating Bank Interleave Read Current
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, nRRD, nFAW, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: CL-1; CS: High
between ACT and RDA; Command, Address, Bank Address Inputs: partially toggling ; Data IO: read data bursts with different data between one burst and
the next one ; DM:stable at 0; Bank Activity: two times interleaved cycling through banks (0, 1, ...7) with different addressing ; Output Buffer and RTT:
Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern
IDD8
RESET Low Current
RESET : Low; External clock : off; CK and CK : LOW; CKE : FLOATING ; CS, Command, Address, Bank Address, Data IO : FLOATING ; ODT Signal :
FLOATING
- 23 -
datasheet DDR3 SDRAM
Rev. 1.2
Unbuffered DIMM
NOTE :
1) Burst Length: BL8 fixed by MRS: set MR0 A[1,0]=00B
2) Output Buffer Enable: set MR1 A[12] = 0B; set MR1 A[5,1] = 01B; RTT_Nom enable: set MR1 A[9,6,2] = 011B; RTT_Wr enable: set MR2 A[10,9] = 10B
3) Precharge Power Down Mode: set MR0 A12=0B for Slow Exit or MR0 A12=1B for Fast Exit
4) Auto Self-Refresh (ASR): set MR2 A6 = 0B to disable or 1B to enable feature
5) Self-Refresh Temperature Range (SRT): set MR2 A7=0B for normal or 1B for extended temperature range
6) Refer to DRAM supplier data sheet and/or DIMM SPD to determine if optional features or requirements are supported by DDR3 SDRAM device
7) IDD current measure method and detail patterns are described on DDR3 component datasheet
8) VDD and VDDQ are merged on module PCB.
9) DIMM IDD SPEC is measured with Qoff condition
(IDDQ values are not considered)
- 24 -
datasheet DDR3 SDRAM
Rev. 1.2
Unbuffered DIMM
15. IDD SPEC Table
M378B2873GB0 : 1GB(128Mx64) Module
NOTE :
1. DIMM IDD SPEC is calculated with considering de-actived rank(IDLE) is IDD2N.
M391B2873GB0 : 1GB(128Mx72) Module
NOTE :
1. DIMM IDD SPEC is calculated with considering de-actived rank(IDLE) is IDD2N.
Symbol CF8
(DDR3-1066@CL=7)
CH9
(DDR3-1333@CL=9)
CK0
(DDR3-1600@CL=11)
CMA
(DDR3-1866@CL=13) Unit NOTE
IDD0 280 280 280 320 mA 1
IDD1 320 336 384 400 mA 1
IDD2P0(slow exit) 80 80 80 80 mA
IDD2P1(fast exit) 96 96 96 96 mA
IDD2N 120 120 120 160 mA
IDD2Q 120 120 120 160 mA
IDD3P 120 120 120 120 mA
IDD3N 160 160 160 160 mA
IDD4R 480 560 640 720 mA 1
IDD4W 480 560 640 760 mA 1
IDD5B 680 720 720 840 mA 1
IDD6 80 80 80 80 mA
IDD7 840 1040 1080 1120 mA 1
IDD8 80 80 80 80 mA
Symbol CF8
(DDR3-1066@CL=7)
CH9
(DDR3-1333@CL=9)
CK0
(DDR3-1600@CL=11)
CMA
(DDR3-1866@CL=13) Unit NOTE
IDD0 315 315 315 360 mA 1
IDD1 360 378 432 450 mA 1
IDD2P0(slow exit) 90 90 90 90 mA
IDD2P1(fast exit) 108 108 108 108 mA
IDD2N 135 135 135 180 mA
IDD2Q 135 135 135 180 mA
IDD3P 135 135 135 135 mA
IDD3N 180 180 180 180 mA
IDD4R 540 630 720 810 mA 1
IDD4W 540 630 720 855 mA 1
IDD5B 765 810 810 945 mA 1
IDD6 90 90 90 90 mA
IDD7 945 1170 1215 1260 mA 1
IDD8 90 90 90 90 mA
- 25 -
datasheet DDR3 SDRAM
Rev. 1.2
Unbuffered DIMM
M378B5673GB0 : 2GB(256Mx64) Module
NOTE :
1. DIMM IDD SPEC is calculated with considering de-actived rank(IDLE) is IDD2N.
M391B5673GB0 : 2GB(256Mx72) Module
NOTE :
1. DIMM IDD SPEC is calculated with considering de-actived rank(IDLE) is IDD2N.
Symbol CF8
(DDR3-1066@CL=7)
CH9
(DDR3-1333@CL=9)
CK0
(DDR3-1600@CL=11)
CMA
(DDR3-1866@CL=13) Unit NOTE
IDD0 400 400 400 480 mA 1
IDD1 440 456 504 560 mA 1
IDD2P0(slow exit) 160 160 160 160 mA
IDD2P1(fast exit) 192 192 192 192 mA
IDD2N 240 240 240 320 mA
IDD2Q 240 240 240 320 mA
IDD3P 240 240 240 240 mA
IDD3N 280 280 280 320 mA
IDD4R 600 680 760 880 mA 1
IDD4W 600 680 760 920 mA 1
IDD5B 800 840 840 1000 mA 1
IDD6 160 160 160 160 mA
IDD7 960 1160 1200 1280 mA 1
IDD8 160 160 160 160 mA
Symbol CF8
(DDR3-1066@CL=7)
CH9
(DDR3-1333@CL=9)
CK0
(DDR3-1600@CL=11)
CMA
(DDR3-1866@CL=13) Unit NOTE
IDD0 450 450 450 540 mA 1
IDD1 495 513 567 630 mA 1
IDD2P0(slow exit) 180 180 180 180 mA
IDD2P1(fast exit) 216 216 216 216 mA
IDD2N 270 270 270 360 mA
IDD2Q 270 270 270 360 mA
IDD3P 270 270 270 270 mA
IDD3N 315 315 315 360 mA
IDD4R 675 765 855 990 mA 1
IDD4W 675 765 855 1035 mA 1
IDD5B 900 945 945 1125 mA 1
IDD6 180 180 180 180 mA
IDD7 1080 1305 1350 1440 mA 1
IDD8 180 180 180 180 mA
- 26 -
datasheet DDR3 SDRAM
Rev. 1.2
Unbuffered DIMM
16. Input/Output Capacitance
[ Table 14 ] Input/Output Capacitance
NOTE : This parameter is Component Input/Output Capacitance so that is different from Module level Capacitance.
1. Although the DM, TDQS and TDQS pins have different functions, the loading matches DQ and DQS
2. This parameter is not subject to production test. It is verified by design and characterization.
The capacitance is measured according to JEP147("PROCEDURE FOR MEASURING INPUT CAPACITANCE USING A VECTOR NETWORK ANALYZER( VNA)") with
VDD, VDDQ, VSS, VSSQ applied and all other pins floating (except the pin under test, CKE, RESET and ODT as necessary). VDD=VDDQ=1.5V, VBIAS=VDD/2 and on-die
termination off.
3. This parameter applies to monolithic devices only; stacked/dual-die devices are not covered here
4. Absolute value of CCK-CCK
5. Absolute value of CIO(DQS)-CIO(DQS)
6. CI applies to ODT, CS, CKE, A0-A15, BA0-BA2, RAS, CAS, WE.
7. CDI_CTRL applies to ODT, CS and CKE
8. CDI_CTRL=CI(CTRL)-0.5*(CI(CLK)+CI(CLK))
9. CDI_ADD_CMD applies to A0-A15, BA0-BA2, RAS, CAS and WE
10. CDI_ADD_CMD=CI(ADD_CMD) - 0.5*(CI(CLK)+CI(CLK))
11. CDIO=CIO(DQ,DM) - 0.5*(CIO(DQS)+CIO(DQS))
12. Maximum external load capacitance on ZQ pin: 5pF
Parameter Symbol DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 DDR3-1866 Units NOTE
Min Max Min Max Min Max Min Max Min Max
Input/output capacitance
(DQ, DM, DQS, DQS, TDQS, TDQS)CIO 1.5 3.0 1.5 2.7 1.5 2.5 1.5 2.3 1.4 2.2 pF 1,2,3
Input capacitance
(CK and CK) CCK 0.8 1.6 0.8 1.6 0.8 1.4 0.8 1.4 0.8 1.3 pF 2,3
Input capacitance delta
(CK and CK) CDCK 0 0.15 0 0.15 0 0.15 0 0.15 0 0.15 pF 2,3,4
Input capacitance
(All other input-only pins) CI 0.75 1.5 0.75 1.5 0.75 1.3 0.75 1.3 0.75 1.2 pF 2,3,6
Input capacitance delta
(DQS and DQS) CDDQS 0 0.2 0 0.2 0 0.15 0 0.15 0 0.15 pF 2,3,5
Input capacitance delta
(All control input-only pins) CDI_CTRL -0.5 0.3 -0.5 0.3 -0.4 0.2 -0.4 0.2 -0.4 0.2 pF 2,3,7,8
Input capacitance delta
(all ADD and CMD input-only pins) CDI_ADD_CMD -0.5 0.5 -0.5 0.5 -0.4 0.4 -0.4 0.4 -0.4 0.4 pF 2,3,9,10
Input/output capacitance delta
(DQ, DM, DQS, DQS, TDQS, TDQS)CDIO -0.5 0.3 -0.5 0.3 -0.5 0.3 -0.5 0.3 -0.5 0.3 pF 2,3,11
Input/output capacitance of ZQ pin CZQ - 3 - 3 - 3 - 3 - 3 pF 2, 3, 12
- 27 -
datasheet DDR3 SDRAM
Rev. 1.2
Unbuffered DIMM
17. Electrical Characteristics and AC timing
(0 °C<TCASE 95 °C, VDDQ = 1.5V ± 0.075V; VDD = 1.5V ± 0.075V)
17.1 Refresh Parameters by Device Density
NOTE :
1. Users should refer to the DRAM supplier data sheet and/or the DIMM SPD to determine if DDR3 SDRAM devices support the following options or requirements referred to in
this material.
17.2 Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin
17.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin
DDR3 SDRAM Speed Bins include tCK, tRCD, tRP, tRAS and tRC for each corresponding bin.
[ Table 15 ] DDR3-800 Speed Bins
Parameter Symbol 1Gb 2Gb 4Gb 8Gb Units NOTE
All Bank Refresh to active/refresh cmd time tRFC 110 160 260 350 ns
Average periodic refresh interval tREFI
0 °CTCASE 85°C7.8 7.8 7.8 7.8 μs
85 °C < TCASE 95°C3.9 3.9 3.9 3.9 μs 1
Speed DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 DDR3-1866
Units NOTEBin (CL - tRCD - tRP) 6-6-6 7-7-7 9-9-9 11-11-11 13-13-13
Parameter min min min min min
CL 6 7 91113tCK
tRCD 15 13.13 13.5 13.75 13.91 ns
tRP 15 13.13 13.5 13.75 13.91 ns
tRAS 37.5 37.5 36 35 34 ns
tRC 52.5 50.63 49.5 48.75 47.91 ns
tRRD 10 7.5 6.0 6.0 5.0 ns
tFAW 40 37.5 30 30 27 ns
Speed DDR3-800
Units NOTECL-nRCD-nRP 6 - 6 - 6
Parameter Symbol min max
Internal read command to first data tAA 15 20 ns
ACT to internal read or write delay time tRCD 15 -ns
PRE command period tRP 15 -ns
ACT to ACT or REF command period tRC 52.5 -ns
ACT to PRE command period tRAS 37.5 9*tREFI ns
CL = 6 / CWL = 5 tCK(AVG) 2.5 3.3 ns 1,2,3
Supported CL Settings 6nCK
Supported CWL Settings 5nCK
- 28 -
datasheet DDR3 SDRAM
Rev. 1.2
Unbuffered DIMM
[ Table 16 ] DDR3-1066 Speed Bins
[ Table 17 ] DDR3-1333 Speed Bins
Speed DDR3-1066
Units NOTECL-nRCD-nRP 7 - 7 - 7
Parameter Symbol min max
Internal read command to first data tAA 13.125 20 ns
ACT to internal read or write delay time tRCD 13.125 -ns
PRE command period tRP 13.125 -ns
ACT to ACT or REF command period tRC 50.625 -ns
ACT to PRE command period tRAS 37.5 9*tREFI ns
CL = 6 CWL = 5 tCK(AVG) 2.5 3.3 ns 1,2,3,5
CWL = 6 tCK(AVG) Reserved ns 1,2,3,4
CL = 7 CWL = 5 tCK(AVG) Reserved ns 4
CWL = 6 tCK(AVG) 1.875 <2.5 ns 1,2,3,4,9
CL = 8 CWL = 5 tCK(AVG) Reserved ns 4
CWL = 6 tCK(AVG) 1.875 <2.5 ns 1,2,3
Supported CL Settings 6,7,8 nCK
Supported CWL Settings 5,6 nCK
Speed DDR3-1333
Units NOTECL-nRCD-nRP 9 -9 - 9
Parameter Symbol min max
Internal read command to first data tAA 13.5 (13.125)920 ns
ACT to internal read or write delay time tRCD 13.5 (13.125)9-ns
PRE command period tRP 13.5 (13.125)9-ns
ACT to ACT or REF command period tRC 49.5 (49.125)9-ns
ACT to PRE command period tRAS 36 9*tREFI ns
CL = 6
CWL = 5 tCK(AVG) 2.5 3.3 ns 1,2,3,6
CWL = 6 tCK(AVG) Reserved ns 1,2,3,4,6
CWL = 7 tCK(AVG) Reserved ns 4
CL = 7
CWL = 5 tCK(AVG) Reserved ns 4
CWL = 6 tCK(AVG) 1.875 <2.5 ns 1,2,3,4,6
CWL = 7 tCK(AVG) Reserved ns 1,2,3,4
CL = 8
CWL = 5 tCK(AVG) Reserved ns 4
CWL = 6 tCK(AVG) 1.875 <2.5 ns 1,2,3,6
CWL = 7 tCK(AVG) Reserved ns 1,2,3,4
CL = 9 CWL = 5,6 tCK(AVG) Reserved ns 4
CWL = 7 tCK(AVG) 1.5 <1.875 ns 1,2,3,4,9
CL = 10 CWL = 5,6 tCK(AVG) Reserved ns 4
CWL = 7 tCK(AVG) Reserved ns 1,2,3
Supported CL Settings 6,7,8,9 nCK
Supported CWL Settings 5,6,7 nCK
- 29 -
datasheet DDR3 SDRAM
Rev. 1.2
Unbuffered DIMM
[ Table 18 ] DDR3-1600 Speed Bins
Speed DDR3-1600
Units NOTECL-nRCD-nRP 11-11-11
Parameter Symbol min max
Intermal read command to first data tAA 13.75
(13.125)920 ns
ACT to internal read or write delay time tRCD 13.75
(13.125)9-ns
PRE command period tRP 13.75
(13.125)9-ns
ACT to ACT or REF command period tRC 48.75
(48.125)9-ns
ACT to PRE command period tRAS 35 9*tREFI ns
CL = 6
CWL = 5 tCK(AVG) 2.5 3.3 ns 1,2,3,7
CWL = 6 tCK(AVG) Reserved ns 1,2,3,4,7
CWL = 7, 8 tCK(AVG) Reserved ns 4
CL = 7
CWL = 5 tCK(AVG) Reserved ns 4
CWL = 6 tCK(AVG) 1.875 <2.5 ns 1,2,3,4,7
CWL = 7 tCK(AVG) Reserved ns 1,2,3,4,7
CWL = 8 tCK(AVG) Reserved ns 4
CL = 8
CWL = 5 tCK(AVG) Reserved ns 4
CWL = 6 tCK(AVG) 1.875 <2.5 ns 1,2,3,7
CWL = 7 tCK(AVG) Reserved ns 1,2,3,4,7
CWL = 8 tCK(AVG) Reserved ns 1,2,3,4
CL = 9
CWL = 5,6 tCK(AVG) Reserved ns 4
CWL = 7 tCK(AVG) 1.5 <1.875 ns 1,2,3,4,7
CWL = 8 tCK(AVG) Reserved ns 1,2,3,4
CL = 10
CWL = 5,6 tCK(AVG) Reserved ns 4
CWL = 7 tCK(AVG) 1.5 <1.875 ns 1,2,3,7
CWL = 8 tCK(AVG) Reserved ns 1,2,3,4
CL = 11 CWL = 5,6,7 tCK(AVG) Reserved ns 4
CWL = 8 tCK(AVG) 1.25 <1.5 ns 1,2,3,9
Supported CL Settings 6,7,8,9,10,11 nCK
Supported CWL Settings 5,6,7,8 nCK
- 30 -
datasheet DDR3 SDRAM
Rev. 1.2
Unbuffered DIMM
[ Table 19 ] DDR3-1866 Speed Bins
Speed DDR3-1866
Units NOTECL-nRCD-nRP 13-13-13
Parameter Symbol min max
Internal read command to first data tAA 13.91
(13.125)10 20 ns
ACT to internal read or write delay time tRCD 13.91
(13.125)10 -ns
PRE command period tRP 13.91
(13.125)10 -ns
ACT to ACT or REF command period tRC 47.91
(47.125)10 -ns
ACT to PRE command period tRAS 34 9*tREFI ns
CL = 6
CWL = 5 tCK(AVG) 2.5 3.3 ns 1,2,3,8
CWL = 6 tCK(AVG) Reserved ns 1,2,3,4,8
CWL = 7,8,9 tCK(AVG) Reserved ns 4
CL = 7
CWL = 5 tCK(AVG) Reserved ns 4
CWL = 6 tCK(AVG) 1.875 2.5 ns 1,2,3,4,8
CWL = 7,8,9 tCK(AVG) Reserved ns 4
CL = 8
CWL = 5 tCK(AVG) Reserved ns 4
CWL = 6 tCK(AVG) 1.875 <2.5 ns 1,2,3,8
CWL = 7 tCK(AVG) Reserved ns 1,2,3,4,8
CWL = 8,9 tCK(AVG) Reserved ns 4
CL = 9
CWL = 5,6 tCK(AVG) Reserved ns 4
CWL = 7 tCK(AVG) 1.5 1.875 ns 1,2,3,4,8
CWL = 8 tCK(AVG) Reserved ns 4
CWL = 9 tCK(AVG) Reserved ns 4
CL = 10
CWL = 5,6 tCK(AVG) Reserved ns 4
CWL = 7 tCK(AVG) 1.5 <1.875 ns 1,2,3,8
CWL = 8 tCK(AVG) Reserved ns 1,2,3,4,8
CL = 11
CWL = 5,6,7 tCK(AVG) Reserved ns 4
CWL = 8 tCK(AVG) 1.25 1.5 ns 1,2,3,4,8
CWL = 9 tCK(AVG) Reserved ns 1,2,3,4
CL = 12 CWL = 5,6,7,8 tCK(AVG) Reserved ns 4
CWL = 9 tCK(AVG) Reserved ns 1,2,3,4
CL = 13 CWL = 5,6,7,8 tCK(AVG) Reserved ns 4
CWL = 9 tCK(AVG) 1.07 <1.25 ns 1,2,3,9
Supported CL Settings 6,7,8,9,10,11,13 nCK
Supported CWL Settings 5,6,7,8,9 nCK
- 31 -
datasheet DDR3 SDRAM
Rev. 1.2
Unbuffered DIMM
17.3.1 Speed Bin Table Notes
Absolute Specification (TOPER; VDDQ = VDD = 1.5V +/- 0.075 V);
NOTE :
1. The CL setting and CWL setting result in tCK(AVG).MIN and tCK(AVG).MAX requirements. When making a selection of tCK(AVG), both need to be fulfilled: Requirements
from CL setting as well as requirements from CWL setting.
2. tCK(AVG).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized by the DLL - all possible intermediate frequencies may not be guar-
anteed. An application should use the next smaller JEDEC standard tCK(AVG) value (2.5, 1.875, 1.5, or 1.25 ns) when calculating CL [nCK] = tAA [ns] / tCK(AVG) [ns],
rounding up to the next "SupportedCL".
3. tCK(AVG).MAX limits: Calculate tCK(AVG) = tAA.MAX / CL SELECTED and round the resulting tCK(AVG) down to the next valid speed bin (i.e. 3.3ns or 2.5ns or 1.875 ns or
1.25 ns). This result is tCK(AVG).MAX corresponding to CL SELECTED.
4. "Reserved" settings are not allowed. User must program a different value.
5. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/
Characterization.
6. Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/
Characterization.
7. Any DDR3-1600 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/
Characterization.
8. Any DDR3-1866 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/
Characterization.
9. For devices supporting optional downshift to CL=7 and CL=9, tAA/tRCD/tRP min must be 13.125 ns or lower. SPD settings must be programmed to match. For example,
DDR3-1333(CL9) devices supporting downshift to DDR3-1066(CL7) should program 13.125 ns in SPD bytes for tAAmin (Byte 16), tRCDmin (Byte 18), and tRPmin (Byte
20). DDR3-1600(CL11) devices supporting downshift to DDR3-1333(CL9) or DDR3-1066(CL7) should program 13.125 ns in SPD bytes for tAAmin (Byte16), tRCDmin (Byte
18), and tRPmin (Byte 20). DDR3-1866(CL13) devices supporting downshift to DDR3-1600(CL11) or DDR3-1333(CL9) or DDR3-1066(CL7) should program 13.125 ns in
SPD bytes for tAAmin (Byte16), tRCDmin (Byte 18), and tRPmin (Byte 20). DDR3-1600 devices supporting down binning to DDR3-1333 or DDR3-1066 should program
13.125ns in SPD byte for tAAmin (Byte 16), tRCDmin (Byte 18) and tRPmin (Byte 20). Once tRP (Byte 20) is programmed to 13.125ns, tRCmin (Byte 21,23) also should be
programmed accodingly. For example, 49.125ns, (tRASmin + tRPmin = 36ns + 13.125ns) for DDR3-1333 and 48.125ns (tRASmin + tRPmin = 35ns + 13.125ns) for DDR3-
1600.
10. For devices supporting optional down binning to CL=11, CL=9 and CL=7, tAA/tRCD/tRPmin must be 13.125ns. SPD setting must be programed to match. For example,
DDR3-1866 devices supporting down binning to DDR3-1600 or DDR3-1333 or 1066 should program 13.125ns in SPD bytes for tAAmin(byte16), tRCDmin(Byte18) and tRP-
min (byte20). Once tRP (Byte20) is programmed to 13.125ns, tRCmin (Byte21,23) also should be programmed accordingly. For example, 47.125ns (tRASmin + tRPmin =
34ns + 13.125ns)
- 32 -
datasheet DDR3 SDRAM
Rev. 1.2
Unbuffered DIMM
18. Timing Parameters by Speed Grade
[ Table 20 ] Timing Parameters by Speed Bins for DDR3-800 to DDR3-1333 (Cont.)
Speed DDR3-800 DDR3-1066 DDR3-1333
Units NOTE
Parameter Symbol MIN MAX MIN MAX MIN MAX
Clock Timing
Minimum Clock Cycle Time (DLL off mode) tCK(DLL_OFF) 8 - 8 - 8 - ns 6
Average Clock Period tCK(avg) See Speed Bins Table ps
Clock Period tCK(abs) tCK(avg)min +
tJIT(per)min
tCK(avg)max +
tJIT(per)max
tCK(avg)min +
tJIT(per)min
tCK(avg)max +
tJIT(per)max
tCK(avg)min +
tJIT(per)min
tCK(avg)max +
tJIT(per)max ps
Average high pulse width tCH(avg) 0.47 0.53 0.47 0.53 0.47 0.53 tCK(avg)
Average low pulse width tCL(avg) 0.47 0.53 0.47 0.53 0.47 0.53 tCK(avg)
Clock Period Jitter tJIT(per) -100 100 -90 90 -80 80 ps
Clock Period Jitter during DLL locking period tJIT(per, lck) -90 90 -80 80 -70 70 ps
Cycle to Cycle Period Jitter tJIT(cc) 200 180 160 ps
Cycle to Cycle Period Jitter during DLL locking period tJIT(cc, lck) 180 160 140 ps
Cumulative error across 2 cycles tERR(2per) - 147 147 - 132 132 - 118 118 ps
Cumulative error across 3 cycles tERR(3per) - 175 175 - 157 157 - 140 140 ps
Cumulative error across 4 cycles tERR(4per) - 194 194 - 175 175 - 155 155 ps
Cumulative error across 5 cycles tERR(5per) - 209 209 - 188 188 - 168 168 ps
Cumulative error across 6 cycles tERR(6per) - 222 222 - 200 200 - 177 177 ps
Cumulative error across 7 cycles tERR(7per) - 232 232 - 209 209 - 186 186 ps
Cumulative error across 8 cycles tERR(8per) - 241 241 - 217 217 - 193 193 ps
Cumulative error across 9 cycles tERR(9per) - 249 249 - 224 224 - 200 200 ps
Cumulative error across 10 cycles tERR(10per) - 257 257 - 231 231 - 205 205 ps
Cumulative error across 11 cycles tERR(11per) - 263 263 - 237 237 - 210 210 ps
Cumulative error across 12 cycles tERR(12per) - 269 269 - 242 242 - 215 215 ps
Cumulative error across n = 13, 14 ... 49, 50 cycles tERR(nper) tERR(nper)min = (1 + 0.68ln(n))*tJIT(per)min
tERR(nper)max = (1 = 0.68ln(n))*tJIT(per)max ps 24
Absolute clock HIGH pulse width tCH(abs) 0.43 -0.43 -0.43 -tCK(avg) 25
Absolute clock Low pulse width tCL(abs) 0.43 -0.43 -0.43 -tCK(avg) 26
Data Timing
DQS,DQS to DQ skew, per group, per access tDQSQ -200 -150 -125 ps 13
DQ output hold time from DQS, DQS tQH 0.38 -0.38 -0.38 -tCK(avg) 13, g
DQ low-impedance time from CK, CK tLZ(DQ) -800 400 -600 300 -500 250 ps 13,14, f
DQ high-impedance time from CK, CK tHZ(DQ) -400 -300 -250 ps 13,14, f
Data setup time to DQS, DQS referenced
to VIH(AC)VIL(AC) levels
tDS(base)
AC175 75 -25 -- - ps d, 17
tDS(base)
AC150 125 -75 -30 -ps d, 17
Data hold time to DQS, DQS referenced
to VIH(DC)VIL(DC) levels
tDH(base)
DC100 150 -100 -65 -ps d, 17
DQ and DM Input pulse width for each input tDIPW 600 -490 -400 -ps 28
Data Strobe Timing
DQS, DQS differential READ Preamble tRPRE 0.9 NOTE 19 0.9 NOTE 19 0.9 NOTE 19 tCK 13, 19, g
DQS, DQS differential READ Postamble tRPST 0.3 NOTE 11 0.3 NOTE 11 0.3 NOTE 11 tCK 11, 13, b
DQS, DQS differential output high time tQSH 0.38 -0.38 -0.4 -tCK(avg) 13, g
DQS, DQS differential output low time tQSL 0.38 -0.38 -0.4 -tCK(avg) 13, g
DQS, DQS differential WRITE Preamble tWPRE 0.9 -0.9 -0.9 - tCK
DQS, DQS differential WRITE Postamble tWPST 0.3 -0.3 -0.3 - tCK
DQS, DQS rising edge output access time from rising CK, CK tDQSCK -400 400 -300 300 -255 255 ps 13,f
DQS, DQS low-impedance time (Referenced from RL-1) tLZ(DQS) -800 400 -600 300 -500 250 ps 13,14,f
DQS, DQS high-impedance time (Referenced from RL+BL/2) tHZ(DQS) -400 -300 -250 ps 12,13,14
DQS, DQS differential input low pulse width tDQSL 0.45 0.55 0.45 0.55 0.45 0.55 tCK 29, 31
DQS, DQS differential input high pulse width tDQSH 0.45 0.55 0.45 0.55 0.45 0.55 tCK 30, 31
DQS, DQS rising edge to CK, CK rising edge tDQSS -0.25 0.25 -0.25 0.25 -0.25 0.25 tCK(avg) c
DQS,DQS falling edge setup time to CK, CK rising edge tDSS 0.2 -0.2 -0.2 -tCK(avg) c, 32
DQS,DQS falling edge hold time to CK, CK rising edge tDSH 0.2 -0.2 -0.2 -tCK(avg) c, 32
- 33 -
datasheet DDR3 SDRAM
Rev. 1.2
Unbuffered DIMM
[ Table 20 ] Timing Parameters by Speed Bins for DDR3-800 to DDR3-1333 (Cont.)
Speed DDR3-800 DDR3-1066 DDR3-1333
Units NOTE
Parameter Symbol MIN MAX MIN MAX MIN MAX
Command and Address Timing
DLL locking time tDLLK 512 -512 -512 -nCK
internal READ Command to PRECHARGE Command delay tRTP max
(4nCK,7.5ns) -max
(4nCK,7.5ns) -max
(4nCK,7.5ns) - e
Delay from start of internal write transaction to internal read com-
mand tWTR max
(4nCK,7.5ns) -max
(4nCK,7.5ns) -max
(4nCK,7.5ns) -e,18
WRITE recovery time tWR 15 -15 -15 -ns e
Mode Register Set command cycle time tMRD 4 - 4 - 4 - nCK
Mode Register Set command update delay tMOD max
(12nCK,15ns) -max
(12nCK,15ns) -max
(12nCK,15ns) -
CAS to CAS command delay tCCD 4 - 4 - 4 - nCK
Auto precharge write recovery + precharge time tDAL(min) WR + roundup (tRP / tCK(AVG)) nCK
Multi-Purpose Register Recovery Time tMPRR 1 - 1 - 1 - nCK 22
ACTIVE to PRECHARGE command period tRAS See “Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin” on page 42 ns e
ACTIVE to ACTIVE command period for 1KB page size tRRD max
(4nCK,10ns) -max
(4nCK,7.5ns) -max
(4nCK,6ns) - e
ACTIVE to ACTIVE command period for 2KB page size tRRD max
(4nCK,10ns) -max
(4nCK,10ns) -max
(4nCK,7.5ns) - e
Four activate window for 1KB page size tFAW 40 -37.5 -30 -ns e
Four activate window for 2KB page size tFAW 50 -50 -45 -ns e
Command and Address setup time to CK, CK referenced to
VIH(AC) / VIL(AC) levels
tIS(base)
AC175 200 -125 -65 -ps b,16
tIS(base)
AC150 200+150 -125+150 -65+125 -ps b,16,27
Command and Address hold time from CK, CK referenced to
VIH(DC) / VIL(DC) levels
tIH(base)
DC100 275 -200 -140 -ps b,16
Control & Address Input pulse width for each input tIPW 900 -780 -620 -ps 28
Calibration Timing
Power-up and RESET calibration time tZQinitI 512 -512 -512 -nCK
Normal operation Full calibration time tZQoper 256 -256 -256 -nCK
Normal operation short calibration time tZQCS 64 -64 -64 -nCK 23
Reset Timing
Exit Reset from CKE HIGH to a valid command tXPR max(5nCK,
tRFC + 10ns) -max(5nCK,
tRFC + 10ns) -max(5nCK,
tRFC + 10ns) -
Self Refresh Timing
Exit Self Refresh to commands not requiring a locked DLL tXS max(5nCK,tRF
C + 10ns) -max(5nCK,tRF
C + 10ns) -max(5nCK,tRF
C + 10ns) -
Exit Self Refresh to commands requiring a locked DLL tXSDLL tDLLK(min) -tDLLK(min) -tDLLK(min) -nCK
Minimum CKE low width for Self refresh entry to exit timing tCKESR tCKE(min) +
1tCK -tCKE(min) +
1tCK -tCKE(min) +
1tCK -
Valid Clock Requirement after Self Refresh Entry (SRE) or Power-
Down Entry (PDE) tCKSRE max(5nCK,
10ns) -max(5nCK,
10ns) -max(5nCK,
10ns) -
Valid Clock Requirement before Self Refresh Exit (SRX) or Power-
Down Exit (PDX) or Reset Exit tCKSRX max(5nCK,
10ns) -max(5nCK,
10ns) -max(5nCK,
10ns) -
- 34 -
datasheet DDR3 SDRAM
Rev. 1.2
Unbuffered DIMM
[ Table 20 ] Timing Parameters by Speed Bins for DDR3-800 to DDR3-1333
Speed DDR3-800 DDR3-1066 DDR3-1333
Units NOTE
Parameter Symbol MIN MAX MIN MAX MIN MAX
Power Down Timing
Exit Power Down with DLL on to any valid command;Exit Pre-
charge Power Down with DLL
frozen to commands not requiring a locked DLL
tXP
max
(3nCK,
7.5ns)
-
max
(3nCK,
7.5ns)
-max
(3nCK,6ns) -
Exit Precharge Power Down with DLL frozen to commands re-
quiring a locked DLL tXPDLL
max
(10nCK,
24ns)
-
max
(10nCK,
24ns)
-
max
(10nCK,
24ns)
- 2
CKE minimum pulse width tCKE
max
(3nCK,
7.5ns)
-
max
(3nCK,
5.625ns)
-
max
(3nCK,
5.625ns)
-
Command pass disable delay tCPDED 1 - 1 - 1 - nCK
Power Down Entry to Exit Timing tPD tCKE(min) 9*tREFI tCKE(min) 9*tREFI tCKE(min) 9*tREFI tCK 15
Timing of ACT command to Power Down entry tACTPDEN 1 - 1 - 1 - nCK 20
Timing of PRE command to Power Down entry tPRPDEN 1 - 1 - 1 - nCK 20
Timing of RD/RDA command to Power Down entry tRDPDEN RL + 4 +1 -RL + 4 +1 -RL + 4 +1 -
Timing of WR command to Power Down entry
(BL8OTF, BL8MRS, BC4OTF) tWRPDEN
WL + 4
+(tWR/
tCK(avg))
-
WL + 4
+(tWR/
tCK(avg))
-
WL + 4
+(tWR/
tCK(avg))
-nCK 9
Timing of WRA command to Power Down entry
(BL8OTF, BL8MRS, BC4OTF) tWRAPDEN WL+4+WR +1 -WL+4+WR+1 -WL+4+WR+1 -nCK 10
Timing of WR command to Power Down entry
(BC4MRS) tWRPDEN
WL + 2
+(tWR/
tCK(avg))
-
WL + 2
+(tWR/
tCK(avg))
-
WL + 2
+(tWR/
tCK(avg))
-nCK 9
Timing of WRA command to Power Down entry
(BC4MRS) tWRAPDEN WL +2 +WR
+1 -WL +2 +WR
+1 -WL +2 +WR
+1 -nCK 10
Timing of REF command to Power Down entry tREFPDEN 1 - 1 - 1 - 20,21
Timing of MRS command to Power Down entry tMRSPDEN tMOD(min) -tMOD(min) -tMOD(min) -
ODT Timing
ODT high time without write command or with write command
and BC4 ODTH4 4 - 4 - 4 - nCK
ODT high time with Write command and BL8 ODTH8 6 - 6 - 6 - nCK
Asynchronous RTT turn-on delay (Power-Down with DLL fro-
zen) tAONPD 28.5 28.5 28.5 ns
Asynchronous RTT turn-off delay (Power-Down with DLL fro-
zen) tAOFPD 28.5 28.5 28.5 ns
RTT turn-on tAON -400 400 -300 300 -250 250 ps 7,f
RTT_NOM and RTT_WR turn-off time from ODTLoff reference tAOF 0.3 0.7 0.3 0.7 0.3 0.7 tCK(avg) 8,f
RTT dynamic change skew tADC 0.3 0.7 0.3 0.7 0.3 0.7 tCK(avg) f
Write Leveling Timing
First DQS/DQS rising edge after write leveling mode is pro-
grammed tWLMRD 40 -40 -40 - tCK 3
DQS/DQS delay after write leveling mode is programmed tWLDQSEN 25 -25 -25 - tCK 3
Write leveling setup time from rising CK, CK crossing to rising
DQS, DQS crossing tWLS 325 -245 -195 -ps
Write leveling hold time from rising DQS, DQS crossing to rising
CK, CK crossing tWLH 325 -245 -195 -ps
Write leveling output delay tWLO 0 9 0 9 0 9 ns
Write leveling output error tWLOE 0 2 0 2 0 2 ns
- 35 -
datasheet DDR3 SDRAM
Rev. 1.2
Unbuffered DIMM
[ Table 21 ] Timing Parameters by Speed Bins for DDR3-1600, DDR3-1866 (Cont.)
Speed DDR3-1600 DDR3-1866
Units NOTE
Parameter Symbol MIN MAX MIN MAX
Clock Timing
Minimum Clock Cycle Time (DLL off mode) tCK(DLL_OFF) 8 - 8 - ns 6
Average Clock Period tCK(avg) See Speed Bins Table ps
Clock Period tCK(abs) tCK(avg)min + tJIT(per)min tCK(avg)max +
tJIT(per)max
tCK(avg)min +
tJIT(per)min
tCK(avg)max +
tJIT(per)max ps
Average high pulse width tCH(avg) 0.47 0.53 0.47 0.53 tCK(avg)
Average low pulse width tCL(avg) 0.47 0.53 0.47 0.53 tCK(avg)
Clock Period Jitter tJIT(per) -70 70 -60 60 ps
Clock Period Jitter during DLL locking period tJIT(per, lck) -60 60 -50 50 ps
Cycle to Cycle Period Jitter tJIT(cc) 140 120 ps
Cycle to Cycle Period Jitter during DLL locking period tJIT(cc, lck) 120 100 ps
Cumulative error across 2 cycles tERR(2per) -103 103 -88 88 ps
Cumulative error across 3 cycles tERR(3per) -122 122 -105 105 ps
Cumulative error across 4 cycles tERR(4per) -136 136 -117 117 ps
Cumulative error across 5 cycles tERR(5per) -147 147 -126 126 ps
Cumulative error across 6 cycles tERR(6per) -155 155 -133 133 ps
Cumulative error across 7 cycles tERR(7per) -163 163 -139 139 ps
Cumulative error across 8 cycles tERR(8per) -169 169 -145 145 ps
Cumulative error across 9 cycles tERR(9per) -175 175 -150 150 ps
Cumulative error across 10 cycles tERR(10per) -180 180 -154 154 ps
Cumulative error across 11 cycles tERR(11per) -184 184 -158 158 ps
Cumulative error across 12 cycles tERR(12per) -188 188 -161 161 ps
Cumulative error across n = 13, 14 ... 49, 50 cycles tERR(nper) tERR(nper)min = (1 + 0.68ln(n))*tJIT(per)min
tERR(nper)max = (1 = 0.68ln(n))*tJIT(per)max ps 24
Absolute clock HIGH pulse width tCH(abs) 0.43 -0.43 -tCK(avg) 25
Absolute clock Low pulse width tCL(abs) 0.43 -0.43 -tCK(avg) 26
Data Timing
DQS,DQS to DQ skew, per group, per access tDQSQ -100 -85 ps 13
DQ output hold time from DQS, DQS tQH 0.38 -0.38 -tCK(avg) 13, g
DQ low-impedance time from CK, CK tLZ(DQ) -450 225 -390 195 ps 13,14, f
DQ high-impedance time from CK, CK tHZ(DQ) - 225 -195 ps 13,14, f
Data setup time to DQS, DQS referenced to VIH(AC)VIL(AC) lev-
els
tDS(base)
AC150 10 - - -ps d, 17
tDS(base)
AC135 - - 0 -ps d, 17
Data hold time to DQS, DQS referenced to VIH(DC)VIL(DC) levels tDH(base)
DC100 45 -20 -ps d, 17
DQ and DM Input pulse width for each input tDIPW 360 -320 -ps 28
Data Strobe Timing
DQS, DQS differential READ Preamble tRPRE 0.9 NOTE 19 0.9 NOTE 19 tCK 13, 19, g
DQS, DQS differential READ Postamble tRPST 0.3 NOTE 11 0.3 NOTE 11 tCK 11, 13, b
DQS, DQS differential output high time tQSH 0.4 -0.4 -tCK(avg) 13, g
DQS, DQS differential output low time tQSL 0.4 -0.4 -tCK(avg) 13, g
DQS, DQS differential WRITE Preamble tWPRE 0.9 -0.9 - tCK
DQS, DQS differential WRITE Postamble tWPST 0.3 -0.3 - tCK
DQS, DQS rising edge output access time from rising CK, CK tDQSCK -225 225 -195 195 ps 13,f
DQS, DQS low-impedance time (Referenced from RL-1) tLZ(DQS) -450 225 -390 195 ps 13,14,f
DQS, DQS high-impedance time (Referenced from RL+BL/2) tHZ(DQS) -225 -195 ps 12,13,14
DQS, DQS differential input low pulse width tDQSL 0.45 0.55 0.45 0.55 tCK 29, 31
DQS, DQS differential input high pulse width tDQSH 0.45 0.55 0.45 0.55 tCK 30, 31
DQS, DQS rising edge to CK, CK rising edge tDQSS -0.27 0.27 -0.27 0.27 tCK(avg) c
DQS,DQS falling edge setup time to CK, CK rising edge tDSS 0.9 NOTE 19 0.18 -tCK(avg) c, 32
DQS,DQS falling edge hold time to CK, CK rising edge tDSH 0.3 NOTE 11 0.18 -tCK(avg) c, 32
- 36 -
datasheet DDR3 SDRAM
Rev. 1.2
Unbuffered DIMM
[ Table 21 ] Timing Parameters by Speed Bins for DDR3-1600, DDR3-1866 (Cont.)
Speed DDR3-1600 DDR3-1866
Units NOTE
Parameter Symbol MIN MAX MIN MAX
Command and Address Timing
DLL locking time tDLLK 512 -512 -nCK
internal READ Command to PRECHARGE Command delay tRTP max
(4nCK,7.5ns) -max
(4nCK,7.5ns) - e
Delay from start of internal write transaction to internal read com-
mand tWTR max
(4nCK,7.5ns) -max
(4nCK,7.5ns) -e,18
WRITE recovery time tWR 15 -15 -ns e
Mode Register Set command cycle time tMRD 4 - 4 - nCK
Mode Register Set command update delay tMOD max
(12nCK,15ns) -max
(12nCK,15ns) -
CAS to CAS command delay tCCD 4 - 4 - nCK
Auto precharge write recovery + precharge time tDAL(min) WR + roundup (tRP /
tCK(AVG)) nCK
Multi-Purpose Register Recovery Time tMPRR 1 - 1 - nCK 22
ACTIVE to PRECHARGE command period tRAS See “Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin” on page 42 ns e
ACTIVE to ACTIVE command period for 1KB page size tRRD max
(4nCK,6ns) -max
(4nCK, 5ns) - e
ACTIVE to ACTIVE command period for 2KB page size tRRD max
(4nCK,7.5ns) -max
(4nCK, 6ns) - e
Four activate window for 1KB page size tFAW 30 -27 -ns e
Four activate window for 2KB page size tFAW 40 -35 -ns e
Command and Address setup time to CK, CK referenced to
VIH(AC) / VIL(AC) levels
tIS(base)
AC175 45 - - -ps b,16
tIS(base)
AC150 170 - - -ps b,16
tIS(base)
AC135 - - 65 ps b,16
tIS(base)
AC125 - - 150 -ps b,16,27
Command and Address hold time from CK, CK referenced to
VIH(DC) / VIL(DC) levels
tIH(base)
DC100 120 -100 -ps b,16
Control & Address Input pulse width for each input tIPW 560 -535 -ps 28
Calibration Timing
Power-up and RESET calibration time tZQinitI 512 -max(512nCK,640ns) -nCK
Normal operation Full calibration time tZQoper 256 -max(256nCK,320ns) -nCK
Normal operation short calibration time tZQCS 64 -max(64nCK,80ns) -nCK 23
Reset Timing
Exit Reset from CKE HIGH to a valid command tXPR max(5nCK, tRFC +
10ns) -max(5nCK, tRFC +
10ns) -
Self Refresh Timing
Exit Self Refresh to commands not requiring a locked DLL tXS max(5nCK,tRFC +
10ns) -max(5nCK,tRFC +
10ns) -
Exit Self Refresh to commands requiring a locked DLL tXSDLL tDLLK(min) -tDLLK(min) -nCK
Minimum CKE low width for Self refresh entry to exit timing tCKESR tCKE(min) + 1tCK -tCKE(min) + 1nCK -
Valid Clock Requirement after Self Refresh Entry (SRE) or Power-
Down Entry (PDE) tCKSRE max(5nCK,
10ns) -max(5nCK,
10ns) -
Valid Clock Requirement before Self Refresh Exit (SRX) or Power-
Down Exit (PDX) or Reset Exit tCKSRX max(5nCK,
10ns) -max(5nCK,
10ns) -
- 37 -
datasheet DDR3 SDRAM
Rev. 1.2
Unbuffered DIMM
[ Table 21 ] Timing Parameters by Speed Bins for DDR3-1600, DDR3-1866
Speed DDR3-1600 DDR3-1866
Units NOTE
Parameter Symbol MIN MAX MIN MAX
Power Down Timing
Exit Power Down with DLL on to any valid command;Exit Pre-
charge Power Down with DLL
frozen to commands not requiring a locked DLL
tXP max
(3nCK,6ns) -max(3nCK,6ns) -
Exit Precharge Power Down with DLL frozen to commands re-
quiring a locked DLL tXPDLL
max
(10nCK,
24ns)
-max(10nCK,24ns) - 2
CKE minimum pulse width tCKE max
(3nCK,5ns) -max(3nCK,5ns) -
Command pass disable delay tCPDED 1 - 2 - nCK
Power Down Entry to Exit Timing tPD tCKE(min) 9*tREFI tCKE(min) 9*tREFI tCK 15
Timing of ACT command to Power Down entry tACTPDEN 1 - 1 - nCK 20
Timing of PRE command to Power Down entry tPRPDEN 1 - 1 - nCK 20
Timing of RD/RDA command to Power Down entry tRDPDEN RL + 4 +1 -RL + 4 +1 -
Timing of WR command to Power Down entry
(BL8OTF, BL8MRS, BC4OTF) tWRPDEN WL + 4 +(tWR/
tCK(avg)) -WL + 4 +(tWR/
tCK(avg)) -nCK 9
Timing of WRA command to Power Down entry
(BL8OTF, BL8MRS, BC4OTF) tWRAPDEN WL + 4 +WR +1 -WL + 4 +WR +1 -nCK 10
Timing of WR command to Power Down entry
(BC4MRS) tWRPDEN WL + 2 +(tWR/
tCK(avg)) -WL + 2 +(tWR/
tCK(avg)) -nCK 9
Timing of WRA command to Power Down entry
(BC4MRS) tWRAPDEN WL +2 +WR +1 -WL +2 +WR +1 -nCK 10
Timing of REF command to Power Down entry tREFPDEN 1 - 1 - 20,21
Timing of MRS command to Power Down entry tMRSPDEN tMOD(min) - tMOD(min) -
ODT Timing
ODT high time without write command or with write command
and BC4 ODTH4 4 - 4 - nCK
ODT high time with Write command and BL8 ODTH8 6 - 6 - nCK
Asynchronous RTT turn-on delay (Power-Down with DLL fro-
zen) tAONPD 28.5 28.5 ns
Asynchronous RTT turn-off delay (Power-Down with DLL fro-
zen) tAOFPD 28.5 28.5 ns
RTT turn-on tAON -225 225 -195 195 ps 7,f
RTT_NOM and RTT_WR turn-off time from ODTLoff reference tAOF 0.3 0.7 0.3 0.7 tCK(avg) 8,f
RTT dynamic change skew tADC 0.3 0.7 0.3 0.7 tCK(avg) f
Write Leveling Timing
First DQS/DQS rising edge after write leveling mode is pro-
grammed tWLMRD 40 -40 - tCK 3
DQS/DQS delay after write leveling mode is programmed tWLDQSEN 25 -25 - tCK 3
Write leveling setup time from rising CK, CK crossing to rising
DQS, DQS crossing tWLS 165 -140 -ps
Write leveling hold time from rising DQS, DQS crossing to rising
CK, CK crossing tWLH 165 -140 -ps
Write leveling output delay tWLO 07.5 07.5 ns
Write leveling output error tWLOE 0 2 0 2 ns
- 38 -
datasheet DDR3 SDRAM
Rev. 1.2
Unbuffered DIMM
18.1 Jitter Notes
Specific Note a Unit ’tCK(avg)’ represents the actual tCK(avg) of the input clock under operation. Unit ’nCK’ represents one clock cycle of the
input clock, counting the actual clock edges.ex) tMRD = 4 [nCK] means; if one Mode Register Set command is registered at Tm,
another Mode Register Set command may be registered at Tm+4, even if (Tm+4 - Tm) is 4 x tCK(avg) + tERR(4per),min.
Specific Note b These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition
edge to its respective clock signal (CK/CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e.
tJIT(per), tJIT(cc), etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is,
these parameters should be met whether clock jitter is present or not.
Specific Note c These parameters are measured from a data strobe signal (DQS, DQS) crossing to its respective clock signal (CK, CK) crossing.
The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per), tJIT(cc), etc.), as these are relative to the
clock signal crossing. That is, these parameters should be met whether clock jitter is present or not.
Specific Note d These parameters are measured from a data signal (DM, DQ0, DQ1, etc.) transition edge to its respective data strobe signal
(DQS, DQS) crossing.
Specific Note e For these parameters, the DDR3 SDRAM device supports tnPARAM [nCK] = RU{ tPARAM [ns] / tCK(avg) [ns] }, which is in clock
cycles, assuming all input clock jitter specifications are satisfied. For example, the device will support tnRP = RU{tRP / tCK(avg)},
which is in clock cycles, if all input clock jitter specifications are met. This means: For DDR3-800 6-6-6, of which tRP = 15ns, the
device will support tnRP = RU{tRP / tCK(avg)} = 6, as long as the input clock jitter specifications are met, i.e. Precharge com-
mand at Tm and Active command at Tm+6 is valid even if (Tm+6 - Tm) is less than 15ns due to input clock jitter.
Specific Note f When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(mper),act of the input
clock, where 2 <= m <= 12. (output deratings are relative to the SDRAM input clock.)
For example, if the measured jitter into a DDR3-800 SDRAM has tERR(mper),act,min = - 172 ps and tERR(mper),act,max = +
193 ps, then tDQSCK,min(derated) = tDQSCK,min - tERR(mper),act,max = - 400 ps - 193 ps = - 593 ps and tDQSCK,max(der-
ated) = tDQSCK,max - tERR(mper),act,min = 400 ps + 172 ps = + 572 ps. Similarly, tLZ(DQ) for DDR3-800 derates to
tLZ(DQ),min(derated) = - 800 ps - 193 ps = - 993 ps and tLZ(DQ),max(derated) = 400 ps + 172 ps = + 572 ps. (Caution on the
min/max usage!)
Note that tERR(mper),act,min is the minimum measured value of tERR(nper) where 2 <= n <=
12, and tERR(mper),act,max is the maximum measured value of tERR(nper) where 2 <= n <= 12.
Specific Note g When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT(per),act of the input
clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR3-800 SDRAM has
tCK(avg),act = 2500 ps, tJIT(per),act,min = - 72 ps and tJIT(per),act,max = + 93 ps, then tRPRE,min(derated) = tRPRE,min +
tJIT(per),act,min = 0.9 x tCK(avg),act + tJIT(per),act,min = 0.9 x 2500 ps - 72 ps = + 2178 ps. Similarly, tQH,min(derated) =
tQH,min + tJIT(per),act,min = 0.38 x tCK(avg),act + tJIT(per),act,min = 0.38 x 2500 ps - 72 ps = + 878 ps. (Caution on the min/
max usage!)
- 39 -
datasheet DDR3 SDRAM
Rev. 1.2
Unbuffered DIMM
18.2 Timing Parameter Notes
1. Actual value dependant upon measurement level definitions which are TBD.
2. Commands requiring a locked DLL are: READ (and RAP) and synchronous ODT commands.
3. The max values are system dependent.
4. WR as programmed in mode register
5. Value must be rounded-up to next higher integer value
6. There is no maximum cycle time limit besides the need to satisfy the refresh interval, tREFI.
7. For definition of RTT turn-on time tAON see "Device Operation & Timing Diagram Datasheet"
8. For definition of RTT turn-off time tAOF see "Device Operation & Timing Diagram Datasheet".
9. tWR is defined in ns, for calculation of tWRPDEN it is necessary to round up tWR / tCK to the next integer.
10. WR in clock cycles as programmed in MR0
11. The maximum read postamble is bound by tDQSCK(min) plus tQSH(min) on the left side and tHZ(DQS)max on the right side. See "Device Operation & Timing
Diagram Datasheet.
12. Output timing deratings are relative to the SDRAM input clock. When the device is operated with input clock jitter, this parameter needs to be derated
by TBD
13. Value is only valid for RON34
14. Single ended signal parameter. Refer to chapter 8 and chapter 9 for definition and measurement method.
15. tREFI depends on TOPER
16. tIS(base) and tIH(base) values are for 1V/ns CMD/ADD single-ended slew rate and 2V/ns CK, CK differential slew rate, Note for DQ and DM signals,
VREF(DC) = VREFDQ(DC). For input only pins except RESET, VREF(DC)=VREFCA(DC).
See "Address/Command Setup, Hold and Derating" on component datasheet.
17. tDS(base) and tDH(base) values are for 1V/ns DQ single-ended slew rate and 2V/ns DQS, DQS differential slew rate. Note for DQ and DM signals,
VREF(DC)= VREFDQ(DC). For input only pins except RESET, VREF(DC)=VREFCA(DC).
See "Data Setup, Hold and Slew Rate Derating" on component datasheet.
18. Start of internal write transaction is defined as follows ;
For BL8 (fixed by MRS and on-the-fly) : Rising clock edge 4 clock cycles after WL.
For BC4 (on-the-fly) : Rising clock edge 4 clock cycles after WL
For BC4 (fixed by MRS) : Rising clock edge 2 clock cycles after WL
19. The maximum read preamble is bound by tLZDQS(min) on the left side and tDQSCK(max) on the right side. See "Device Operation & Timing Diagram
Datasheet"
20. CKE is allowed to be registered low while operations such as row activation, precharge, autoprecharge or refresh are in progress, but power-down
IDD spec will not be applied until finishing those operations.
21. Although CKE is allowed to be registered LOW after a REFRESH command once tREFPDEN(min) is satisfied, there are cases where additional time
such as tXPDLL(min) is also required. See "Device Operation & Timing Diagram Datasheet".
22. Defined between end of MPR read burst and MRS which reloads MPR or disables MPR function.
23. One ZQCS command can effectively correct a minimum of 0.5 % (ZQCorrection) of RON and RTT impedance error within 64 nCK for all speed bins assuming
the maximum sensitivities specified in the ’Output Driver Voltage and Temperature Sensitivity’ and ’ODT Voltage and Temperature Sensitivity’ tables. The
appropriate interval between ZQCS commands can be determined from these tables and other application specific parameters.
One method for calculating the interval between ZQCS commands, given the temperature (Tdriftrate) and voltage (Vdriftrate) drift rates that the SDRAM is sub-
ject to in the application, is illustrated. The interval could be defined by the following formula:
where TSens = max(dRTTdT, dRONdTM) and VSens = max(dRTTdV, dRONdVM) define the SDRAM temperature and voltage sensitivities.
For example, if TSens = 1.5% /°C, VSens = 0.15% / mV, Tdriftrate = 1°C / sec and Vdriftrate = 15 mV / sec, then the interval between ZQCS commands is calcu-
lated as:
24. n = from 13 cycles to 50 cycles. This row defines 38 parameters.
25. tCH(abs) is the absolute instantaneous clock high pulse width, as measured from one rising edge to the following falling edge.
26. tCL(abs) is the absolute instantaneous clock low pulse width, as measured from one falling edge to the following rising edge.
27. The tIS(base) AC150 specifications are adjusted from the tIS(base) AC175 specification by adding an additional 125 ps for DDR3-800/1066 or 100ps for DDR3-
1333/1600 of derating to accommodate for the lower alternate threshold of 150mV and another 25ps to account for the earlier reference point [(175mv - 150
mV) / 1 V/ns].
28. Pulse width of a input signal is defined as the width between the first crossing of VREF(DC) and the consecutive crossing of VREF(DC)
29. tDQSL describes the instantaneous differential input low pulse width on DQS-DQS, as measured from one falling edge to the next consecutive rising edge.
30. tDQSH describes the instantaneous differential input high pulse width on DQS-DQS, as measured from one rising edge to the next consecutive falling edge.
31. tDQSH, act + tDQSL, act = 1 tCK, act ; with tXYZ, act being the actual measured value of the respective timing parameter in the application.
32. tDSH, act + tDSS, act = 1 tCK, act ; with tXYZ, act being the actual measured value of the respective timing parameter in the application.
33. The tIS(base) AC125 specifications are adjusted from the tIS(base) AC135 specification by adding an additional 75ps for DDR3-1866 to accommodate for the
lower alternate threshold of 125mV and another 10ps to account for the earlier reference point [(135mv - 125mV) / 1 V/ns].
ZQCorrection
(TSens x Tdriftrate) + (VSens x Vdriftrate)
0.5
(1.5 x 1) + (0.15 x 15) = 0.133
~
~
128ms
- 40 -
datasheet DDR3 SDRAM
Rev. 1.2
Unbuffered DIMM
19. Physical Dimensions
19.1 128Mbx8 based 128Mx64/x72 Module (1 Rank) - M378/91B2873GB0
133.35 ± 0.15
Max 4.0
54.675
Units : Millimeters
9.50
128.95
(2)
(4X)3.00 ± 0.1
30.00 ± 0.15
2.30
17.30
The used device is 128M x8 DDR3 SDRAM, FBGA.
DDR3 SDRAM Part NO : K4B1G0846G-BC∗∗
* NOTE : Tolerances on all dimensions ±0.15 unless otherwise specified.
AB
47.00 71.00
2.50
1.00
0.2 ± 0.15
2.50 ± 0.20
Detail B
5.00
Detail A
1.50±0.10
0.80 ± 0.05
3.80
2x 2.10 ± 0.15
2.50
SPD
N/A
(for x72)
(for x64)
ECC
1.270 ± 0.10
- 41 -
datasheet DDR3 SDRAM
Rev. 1.2
Unbuffered DIMM
19.2 128Mbx8 based 256Mx64/x72 Module (2 Ranks) - M378/91B5673GB0
133.35 ± 0.15
Max 4.0
54.675
Units : Millimeters
9.50
128.95
(2)
(4X)3.00 ± 0.1
30.00 ± 0.15
2.30
17.30
The used device is 128M x8 DDR3 SDRAM, FBGA.
DDR3 SDRAM Part NO : K4B1G0846G-BC∗∗
* NOTE : Tolerances on all dimensions ±0.15 unless otherwise specified.
AB
47.00 71.00
2.50
1.00
0.2 ± 0.15
2.50 ± 0.20
Detail B
5.00
Detail A
1.50±0.10
0.80 ± 0.05
3.80
2x 2.10 ± 0.15
2.50
SPD
N/A
(for x72)
(for x64)
ECC
1.270 ± 0.10
N/A
(for x64)
(for x72)
ECC