Full-Bridge DMOS PWM Motor Driver
A4950
5
Allegro MicroSystems, LLC
115 Northeast Cutoff
Worcester, Massachusetts 01615-0036 U.S.A.
1.508.853.5000; www.allegromicro.com
Functional Description
Device Operation
The A4950 is designed to operate DC motors. The output drivers
are all low-RDS(on) , N-channel DMOS drivers that feature inter-
nal synchronous rectification to reduce power dissipation. The
current in the output full bridge is regulated with fixed off-time
pulse width modulated (PWM) control circuitry. The IN1 and IN2
inputs allow two-wire control for the bridge.
Protection circuitry includes internal thermal shutdown, and pro-
tection against shorted loads, or against output shorts to ground
or supply. Undervoltage lockout prevents damage by keeping the
outputs off until the driver has enough voltage to operate nor-
mally.
Standby Mode
Low Power Standby mode is activated when both input (INx)
pins are low for longer than 1 ms. Low Power Standby mode
disables most of the internal circuitry, including the charge pump
and the regulator. When the A4950 is coming out of standby
mode, the charge pump should be allowed to reach its regulated
voltage (a maximum delay of 200 s) before any PWM com-
mands are issued to the device.
Internal PWM Current Control
Initially, a diagonal pair of source and sink FET outputs are
enabled and current flows through the motor winding and the
optional external current sense resistor, RS
. When the voltage
across RS equals the comparator trip value, then the current sense
comparator resets the PWM latch. The latch then turns off the
sink and source FETs (Mixed Decay mode).
VREF
The maximum value of current limiting is set by the selection of
RSx and the voltage at the VREF pin. The transconductance func-
tion is approximated by the maximum value of current limiting,
ITripMAX (A), which is set by:
ITripMAX =10 RS
VREF
where VREF is the input voltage on the VREF pin (V) and RS is
the resistance of the sense resistor () on the LSS terminal.
Overcurrent Protection
A current monitor will protect the IC from damage due to output
shorts. If a short is detected, the IC will latch the fault and disable
the outputs. The fault latch can only be cleared by coming out of
Low Power Standby mode or by cycling the power to VBB. Dur-
ing OCP events, Absolute Maximum Ratings may be exceeded
for a short period of time before the device latches.
Shutdown
If the die temperature increases to approximately 160°C, the full
bridge outputs will be disabled until the internal temperature falls
below a hysteresis, TTSDhys , of 15°C. Internal UVLO is present
on VBB to prevent the output drivers from turning-on below the
UVLO threshold.
Braking
The braking function is implemented by driving the device in
Slow Decay mode, which is done by applying a logic high to both
inputs, after a bridge-enable Chop command (see PWM Control
Truth Table). Because it is possible to drive current in both direc-
tions through the DMOS switches, this configuration effectively
shorts-out the motor-generated BEMF, as long as the Chop com-
mand is asserted. The maximum current can be approximated by
VBEMF / RL . Care should be taken to ensure that the maximum
ratings of the device are not exceeded in worse case braking situ-
ations: high speed and high-inertia loads.