© Semiconductor Components Industries, LLC, 2011
November, 2018 Rev. 15
1Publication Order Number:
NL17SZ04/D
NL17SZ04
Single Inverter
The NL17SZ04 is an inverter in tiny footprint packages.
Features
Designed for 1.65 V to 5.5 V VCC Operation
2.7 ns tPD at VCC = 5 V (typ)
Inputs/Outputs Overvoltage Tolerant up to 5.5 V
IOFF Supports Partial Power Down Protection
Source/Sink 24 mA at 3.0 V
Available in SC88A, SC74A, SOT553, SOT953 and UDFN6
Packages
Chip Complexity < 100 FETs
NLV Prefix for Automotive and Other Applications Requiring
Unique Site and Control Change Requirements; AECQ100
Qualified and PPAP Capable
These Devices are PbFree, Halogen Free/BFR Free and are RoHS
Compliant
Figure 1. Logic Symbol
AY
1
See detailed ordering, marking and shipping information in the
package dimensions section on page 7 of this data sheet.
ORDERING INFORMATION
MARKING
DIAGRAMS
www.onsemi.com
XX = Specific Device Code
M = Date Code*
G= PbFree Package
(Note: Microdot may be in either location)
*Date Code orientation and/or position may
vary depending upon manufacturing location.
SC88A
DF SUFFIX
CASE 419A
SOT553
XV5 SUFFIX
CASE 463B
XX MG
G
XX MG
G
UDFN6
1.0 x 1.0
CASE 517BX
X M
1
SOT953
P5 SUFFIX
CASE 527AE
X M
1
XXX MG
G
SC74A
DBV SUFFIX
CASE 318BQ
XM
UDFN6
1.45 x 1.0
CASE 517AQ
1
NL17SZ04
www.onsemi.com
2
Figure 2. Pinout (Top View)
VCC
NC
A
Y
GND
1
2
34
5
(SC88A/SOT553/SC74A)
VCC
NC
A
Y
GND
1
2
3
5
4
SOT953
VCC
NC
A
YGND
1
2
3
5
4
6
NC
UDFN6
PIN ASSIGNMENT
(SC88A/SOT553/SC74A)
Pin
1
2
3
4
5
Function
NC
A
GND
Y
VCC
PIN ASSIGNMENT (SOT953)
Pin
1
2
3
4
5
Function
A
GND
NC
Y
VCC
PIN ASSIGNMENT (UDFN)
Pin
1
2
3
4
5
Function
NC
A
GND
Y
NC
6V
CC
Input
FUNCTION TABLE
Output
Y
H
L
A
L
H
NL17SZ04
www.onsemi.com
3
MAXIMUM RATINGS
Symbol Characteristics Value Unit
VCC DC Supply Voltage UDFN6, SOT553, SC88A (NLV)
SC74A, SC88A, SOT953
0.5 to +7.0
0.5 to +6.5
V
VIN DC Input Voltage UDFN6, SOT553, SC88A (NLV)
SC74A, SC88A, SOT953
0.5 to +7.0
0.5 to +6.5
V
VOUT DC Output Voltage ActiveMode (High or Low State)
SC88A (NLV), TriState Mode (Note 1)
UDFN6, SOT553 PowerDown Mode (VCC = 0 V)
0.5 to VCC + 0.5
0.5 to +7.0
0.5 to +7.0
V
DC Output Voltage ActiveMode (High or Low State)
SC74A, SC88A, SOT953 TriState Mode (Note 1)
PowerDown Mode (VCC = 0 V)
0.5 to VCC + 0.5
0.5 to +6.5
0.5 to +6.5
V
IIK DC Input Diode Current VIN < GND 50 mA
IOK DC Output Diode Current VOUT < GND ±50 mA
IOUT DC Output Source/Sink Current ±50 mA
ICC or IGND DC Supply Current per Supply Pin or Ground Pin ±100 mA
TSTG Storage Temperature Range 65 to +150 °C
TLLead Temperature, 1 mm from Case for 10 secs 260 °C
TJJunction Temperature Under Bias +150 °C
qJA Thermal Resistance (Note 2) SC88A
SC74A
SOT553
SOT953
UDFN6
659
555
562
560
382
°C/W
PDPower Dissipation in Still Air SC88A
SC74A
SOT553
SOT953
UDFN6
190
225
222
223
327
mW
MSL Moisture Sensitivity Level 1
FRFlammability Rating Oxygen Index: 28 to 34 UL 94 V0 @ 0.125 in
VESD ESD Withstand Voltage (Note 3) Human Body Model
Charged Device Model
2000
1000
V
ILatchup Latchup Performance (Note 4) $100 mA
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality
should not be assumed, damage may occur and reliability may be affected.
1. Applicable to devices with outputs that may be tristated.
2. Measured with minimum pad spacing on an FR4 board, using 10mmby1inch, 2 ounce copper trace no air flow.
3. HBM tested to ANSI/ESDA/JEDEC JS0012017. CDM tested to EIA/JESD22C101F. JEDEC recommends that ESD qualification to
EIA/JESD22A115A (Machine Model) be discontinued per JEDEC/JEP172A.
4. Tested to EIA/JESD78 Class II.
NL17SZ04
www.onsemi.com
4
RECOMMENDED OPERATING CONDITIONS
Symbol Characteristics Min Max Unit
VCC Positive DC Supply Voltage 1.65 5.5 V
VIN DC Input Voltage 0 5.5 V
VOUT DC Output Voltage ActiveMode (High or Low State)
TriState Mode (Note 1)
PowerDown Mode (VCC = 0 V)
0
0
0
VCC
5.5
5.5
TAOperating Temperature Range 55 +125 °C
tr , tfInput Rise and Fall Time VCC = 3.0 V to 3.6 V
(SC88A (NLV), UDFN6, SOT553) VCC = 4.5 V to 5.5 V
0
0
100
20
ns/V
Input Rise and Fall Time VCC = 1.65 V to 1.95 V
(SC74A, SC88A, SOT953) VCC = 2.3 V to 2.7 V
VCC = 3.0 V to 3.6 V
VCC = 4.5 V to 5.5 V
0
0
0
0
20
20
10
5
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond
the Recommended Operating Ranges limits may affect device reliability.
DC ELECTRICAL CHARACTERISTICS
Symbol Parameter Condition
VCC
(V)
TA = 255C555C 3 TA 3 1255C
Units
Min Typ Max Min Max
VIH HighLevel Input
Voltage
1.65 to 1.95 0.65 VCC 0.65 VCC V
2.3 to 5.5 0.70 VCC 0.70 VCC
VIL LowLevel Input
Voltage
1.65 to 1.95 0.35 VCC 0.35 VCC V
2.3 to 5.5 0.30 VCC 0.30 VCC
VOH HighLevel Output
Voltage
VIN = VIH or VIL
IOH = 100 mA
IOH = 4 mA
IOH = 8 mA
IOH = 12 mA
IOH = 16 mA
IOH = 24 mA
IOH = 32 mA
1.65 to 5.5
1.65
2.3
2.7
3.0
3.0
4.5
VCC 0.1
1.29
1.9
2.2
2.4
2.3
3.8
VCC
1.4
2.1
2.4
2.7
2.5
4.0
VCC 0.1
1.29
1.9
2.2
2.4
2.3
3.8
V
VOL LowLevel Output
Voltage
VIN = VIH or VIL
IOL = 100 mA
IOL = 4 mA
IOL = 8 mA
IOL = 12 mA
IOL = 16 mA
IOL = 24 mA
IOL = 32 mA
1.65 to 5.5
1.65
2.3
2.7
3.0
3.0
4.5
0.08
0.2
0.22
0.28
0.38
0.42
0.1
0.24
0.3
0.4
0.4
0.55
0.55
0.1
0.24
0.3
0.4
0.4
0.55
0.55
V
IIN Input Leakage Current VIN = 5.5 V or GND 1.65 to 5.5 ±0.1* ±1.0 mA
IOFF Power Off Leakage
Current
VIN = 5.5 V or
VOUT = 5.5 V
0 1.0 10 mA
ICC Quiescent Supply
Current
VIN = VCC or GND 5.5 1.0 10 mA
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product
performance may not be indicated by the Electrical Characteristics if operated under different conditions.
*Guaranteed by design.
NL17SZ04
www.onsemi.com
5
AC ELECTRICAL CHARACTERISTICS (tR = tF = 3.0 ns)
Symbol Parameter Condition
VCC
(V)
TA = 255C555C 3 TA 3 1255C
Units
Min Typ Max Min Max
tPLH
tPHL
Propagation Delay, A to Y
(Figures 3 and 4)
RL = 1 MW, CL = 15 pF 1.65 to 1.95 5.3 11.4 12.0 ns
RL = 1 MW, CL = 15 pF 2.3 to 2.7 3.5 6.5 7.0
RL = 1 MW, CL = 15 pF 3.0 to 3.6 2.1 4.5 4.7
RL = 500 W, CL = 50 pF 2.9 5.5 5.2
RL = 1 MW, CL = 15 pF 4.5 to 5.5 1.8 3.9 4.1
RL = 500 W, CL = 50 pF 2.4 4.3 4.5
CAPACITIVE CHARACTERISTICS (tR = tF = 3.0 ns)
Symbol Parameter Condition Typical Units
CIN Input Capacitance VCC = 5.5 V, VIN = 0 V or VCC 2.5 pF
COUT Output Capacitance VCC = 5.5 V, VIN = 0 V or VCC 2.5 pF
CPD Power Dissipation Capacitance
(Note 5)
10 MHz, VCC = 3.3 V, VIN = 0 V or VCC
10 MHz, VCC = 5.5 V, VIN = 0 V or VCC
9
11
pF
5. CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.
Average operating current can be obtained by the equation: ICC(OPR) = CPD VCC fin + ICC. CPD is used to determine the noload dynamic
power consumption; PD = CPD VCC2 fin + ICC VCC.
NL17SZ04
www.onsemi.com
6
Figure 3. Test Circuit
CL includes probe and jig capacitance
RT is ZOUT of pulse generator (typically 50 W)
f = 1 MHz
R1
OUTPUT
RT
2 x VCC
DUT
GND
OPEN
CL*
RL
Test Switch
Position
CL, pF RL, WR1, W
tPLH / tPHL Open See AC Characteristics Table
tPLZ / tPZL 2 x VCC 50 500 500
tPHZ / tPZH GND 50 500 500
X = Don’t Care
tr = 3 ns
tPZH tPHZ
tPZL tPLZ
Vmo
Vmo
Vmi
Figure 4. Switching Waveforms
90%
10%
90%
10%
INPUT
OUTPUT
OUTPUT
~0 V
INPUT
OUTPUT
OUTPUT
tf = 3 ns
VCC
GND
VOH
VOL
VOH
VOL
Vmo
Vmo
Vmi
tPHL tPLH
tPLH tPHL
Vmo
Vmo
Vmi Vmi
VCC
GND
VOL
VOH
VOH VY
VOL + VY
~VCC
VCC, V Vmi, V
Vmo, V
VY
, V
tPLH, tPHL tPZL, tPLZ, tPZH, tPHZ
1.65 to 1.95 VCC/2 (VOH VOL)/2 VCC/2 0.15
2.3 to 2.7 VCC/2 (VOH VOL)/2 VCC/2 0.15
3.0 to 3.6 VCC/2 (VOH VOL)/2 VCC/2 0.3
4.5 to 5.5 VCC/2 (VOH VOL)/2 VCC/2 0.3
NL17SZ04
www.onsemi.com
7
DEVICE ORDERING INFORMATION
Device Packages Specific Device Code
Pin 1 Orientation
(See below) Shipping
NL17SZ04DFT2G SC88A L5 Q4 3000 / Tape & Reel
NLV17SZ04DFT2G SC88A L5 Q4 3000 / Tape & Reel
NL17SZ04DBVT1G
(In Development)
SC74A TBD Q4 3000 / Tape & Reel
NL17SZ04XV5T2G SOT553 L5 Q4 3000 / Tape & Reel
NL17SZ04P5T5G SOT953 5
(Rotated 90° CW)
Q2 4000 / Tape & Reel
NL17SZ04MU1TCG
(In Development)
UDFN6, 1.45 x 1.0 x 0.35P TBD Q4 3000 / Tape & Reel
NL17SZ04MU3TCG
(In Development)
UDFN6, 1.0 x 1.0 x 0.35P TBD Q4 3000 / Tape & Reel
For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
Pin 1 Orientation in Tape and Reel
NL17SZ04
www.onsemi.com
8
PACKAGE DIMENSIONS
NOTES:
1. DIMENSIONING AND TOLERANCING
PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. 419A01 OBSOLETE. NEW STANDARD
419A02.
4. DIMENSIONS A AND B DO NOT INCLUDE
MOLD FLASH, PROTRUSIONS, OR GATE
BURRS.
DIM
A
MIN MAX MIN MAX
MILLIMETERS
1.80 2.200.071 0.087
INCHES
B1.15 1.350.045 0.053
C0.80 1.100.031 0.043
D0.10 0.300.004 0.012
G0.65 BSC0.026 BSC
H--- 0.10---0.004
J0.10 0.250.004 0.010
K0.10 0.300.004 0.012
N0.20 REF0.008 REF
S2.00 2.200.079 0.087
B0.2 (0.008) MM
12 3
45
A
G
S
D 5 PL
H
C
N
J
K
B
SC88A (SC705/SOT353)
CASE 419A02
ISSUE L
ǒmm
inchesǓ
SCALE 20:1
0.65
0.025
0.65
0.025
0.50
0.0197
0.40
0.0157
1.9
0.0748
SOLDER FOOTPRINT*
*For additional information on our PbFree strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
NL17SZ04
www.onsemi.com
9
PACKAGE DIMENSIONS
SC74A
CASE 318BQ
ISSUE B
*For additional information on our PbFree strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
SOLDERING FOOTPRINT*
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME
Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH
THICKNESS. MINIMUM LEAD THICKNESS IS THE
MINIMUM THICKNESS OF BASE MATERIAL.
4. DIMENSIONS A AND B DO NOT INCLUDE MOLD
FLASH, PROTRUSIONS, OR GATE BURRS. MOLD
FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT
EXCEED 0.15 PER SIDE.
DIM MIN MAX
MILLIMETERS
D
E1
A0.90 1.10
b0.25 0.50
e0.95 BSC
A1 0.01 0.10
c0.10 0.26
L0.20 0.60
M0 10
E2.50 3.00
123
54
E
D
E1
b
A
c
__
0.20
5X
CAB
CSEATING
PLANE
L
M
DETAIL A
TOP VIEW
SIDE VIEW
A
B
END VIEW
1.35 1.65
2.85 3.15
2.40
0.70
5X
DIMENSIONS: MILLIMETERS
RECOMMENDED
0.95
PITCH
1.00
5X
e
A1
0.05
DETAIL A
NL17SZ04
www.onsemi.com
10
PACKAGE DIMENSIONS
SOT553, 5 LEAD
CASE 463B
ISSUE C
1.35
0.0531
0.5
0.0197
ǒmm
inchesǓ
SCALE 20:1
0.5
0.0197
1.0
0.0394
0.45
0.0177
0.3
0.0118
*For additional information on our PbFree strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
SOLDERING FOOTPRINT*
eM
0.08 (0.003) X
b5 PL
A
c
X
Y
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETERS
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH
THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM
THICKNESS OF BASE MATERIAL.
D
E
Y
12 3
45
L
HEDIM
A
MIN NOM MAX MIN
MILLIMETERS
0.50 0.55 0.60 0.020
INCHES
b0.17 0.22 0.27 0.007
c
D1.55 1.60 1.65 0.061
E1.15 1.20 1.25 0.045
e0.50 BSC
L0.10 0.20 0.30 0.004
0.022 0.024
0.009 0.011
0.063 0.065
0.047 0.049
0.008 0.012
NOM MAX
1.55 1.60 1.65 0.061 0.063 0.065
HE
0.08 0.13 0.18 0.003 0.005 0.007
0.020 BSC
NL17SZ04
www.onsemi.com
11
PACKAGE DIMENSIONS
SOT953
CASE 527AE
ISSUE E
*For additional information on our PbFree strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
SOLDERING FOOTPRINT*
E
D
C
A
HE
123
45
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME
Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD
FINISH. MINIMUM LEAD THICKNESS IS THE
MINIMUM THICKNESS OF THE BASE MATERIAL.
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD
FLASH, PROTRUSIONS, OR GATE BURRS.
DIM MIN NOM MAX
MILLIMETERS
A0.34 0.37 0.40
b0.10 0.15 0.20
C0.07 0.12 0.17
D0.95 1.00 1.05
E0.75 0.80 0.85
e0.35 BSC
L
0.95 1.00 1.05
HE
X
Y
PIN ONE
INDICATOR
b
5X
X0.08 Y
L
5X
L3
L2
e
5X
5X
L2 0.05 0.10 0.15
L3 −−− −−− 0.15
0.175 REF
TOP VIEW
SIDE VIEW
BOTTOM VIEW 1.20
DIMENSIONS: MILLIMETERS
0.20
5X
1
PACKAGE
OUTLINE
0.35
PITCH
0.35
5X
NL17SZ04
www.onsemi.com
12
PACKAGE DIMENSIONS
UDFN6, 1.45x1.0, 0.5P
CASE 517AQ
ISSUE O
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL
AND IS MEASURED BETWEEN 0.15 AND
0.30 mm FROM THE TERMINAL TIP.
ÉÉÉ
ÉÉÉ
A
B
E
D
BOTTOM VIEW
b
e
6X
0.10 B
0.05
AC
C
L6X
NOTE 3
0.10 C
PIN ONE
REFERENCE
TOP VIEW
0.10 C
6X
A
A1
0.05 C
0.05 C
CSEATING
PLANE
SIDE VIEW
13
46
DIM MIN MAX
MILLIMETERS
A0.45 0.55
A1 0.00 0.05
b0.20 0.30
D1.45 BSC
E1.00 BSC
e0.50 BSC
L0.30 0.40
L1 −−− 0.15
DIMENSIONS: MILLIMETERS
0.30
6X
1.24
0.53
PITCH
*For additional information on our PbFree strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
0.50
1
MOUNTING FOOTPRINT
PACKAGE
OUTLINE
L1
DETAIL A
L
OPTIONAL
CONSTRUCTIONS
L
ÉÉÉ
ÉÉÉ
ÉÉÉ
DETAIL B
MOLD CMPDEXPOSED Cu
OPTIONAL
CONSTRUCTIONS
A2 0.07 REF
6X
A2
DETAIL B
DETAIL A
NL17SZ04
www.onsemi.com
13
PACKAGE DIMENSIONS
ÉÉÉ
ÉÉÉ
UDFN6, 1x1, 0.35P
CASE 517BX
ISSUE O
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED
TERMINAL AND IS MEASURED BETWEEN
0.15 AND 0.20 MM FROM TERMINAL TIP.
4. PACKAGE DIMENSIONS EXCLUSIVE OF
BURRS AND MOLD FLASH.
6X
6X
*For additional information on our PbFree strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
SOLDERING FOOTPRINT*
DIMENSION: MILLIMETERS
RECOMMENDED
L1
DETAIL A
L
ALTERNATE TERMINAL
CONSTRUCTION
ÉÉ
ÉÉ
ÇÇ
DETAIL B
MOLD CMPDEXPOSED Cu
ALTERNATE
CONSTRUCTION
0.52
1.20
0.25
0.35
PITCH
PACKAGE
OUTLINE 1
DIM MIN MAX
MILLIMETERS
A0.50 0.65
A1 0.00 0.05
A3 0.13 REF
b0.17 0.23
D1.00 BSC
E1.00 BSC
e0.35
L0.20 0.40
L1 −−− 0.15
L3
L3 0.26 0.33
A B
E
D
BOTTOM VIEW
b
e
6X
L6X
NOTE 3
0.08 C
PIN ONE
REFERENCE
TOP VIEW
0.08 C
A
A1
0.05 C
0.05 C
CSEATING
PLANE
SIDE VIEW
13
46
2X
2X
A3
DETAIL B
A
M
0.07 BC
M
0.05 C
DETAIL A
NL17SZ04/D
ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent
coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This
literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
N. American Technical Support: 8002829855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 3036752175 or 8003443860 Toll Free USA/Canada
Fax: 3036752176 or 8003443867 Toll Free USA/Canada
Email: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative