REF102 REF 102 REF 102 SBVS022B - SEPTEMBER 2000 - REVISED JUNE 2009 10V Precision Voltage Reference FEATURES APPLICATIONS +10V 0.0025V OUTPUT VERY LOW DRIFT: 2.5ppm/C max EXCELLENT STABILITY: 5ppm/1000hr typ EXCELLENT LINE REGULATION: 1ppm/V max EXCELLENT LOAD REGULATION: 10ppm/mA max LOW NOISE: 5VPP typ, 0.1Hz to 10Hz PRECISION-CALIBRATED VOLTAGE STANDARD D/A AND A/D CONVERTER REFERENCE PRECISION CURRENT REFERENCE ACCURATE COMPARATOR THRESHOLD REFERENCE DIGITAL VOLTMETER TEST EQUIPMENT PC-BASED INSTRUMENTATION WIDE SUPPLY RANGE: 11.4VDC to 36VDC LOW QUIESCENT CURRENT: 1.4mA max PACKAGE OPTIONS: PLASTIC DIP, SO-8 DESCRIPTION V+ Trim 5 The REF102 is a precision 10V voltage reference. The drift is laser-trimmed to 2.5ppm/C max C-grade over the industrial temperature range. The REF102 achieves its precision without a heater. This results in low power, fast warm-up, excellent stability, and low noise. The output voltage is extremely insensitive to both line and load variations and can be externally adjusted with minimal effect on drift and stability. Single-supply operation from 11.4V to 36V and excellent overall specifications make the REF102 an ideal choice for demanding instrumentation and system reference applications. R5 2 50k R2 R3 14k R1 8k - 22k 6 A1 VOUT + R6 7k R4 DZ1 8 4k 4 Noise Common Reduction Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners. Copyright (c) 2000-2009, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. www.ti.com ABSOLUTE MAXIMUM RATINGS(1) Input Voltage ...................................................................................... +40V Operating Temperature P, U ................................................................................. -25C to +85C Storage Temperature Range P, U ............................................................................... -40C to +125C Short-Circuit Protection to Common or V+ .............................. Continuous NOTE: (1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. ELECTROSTATIC DISCHARGE SENSITIVITY This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. PACKAGE/ORDERING INFORMATION(1) PRODUCT MAX INITIAL ERROR (mV) MAX DRIFT (PPM/C) PACKAGE-LEAD PACKAGE DESIGNATOR PACKAGE MARKING REF102AU REF102AP 10 10 10 10 SO-8 DIP-8 D P REF102AU REF102AP REF102BU REF102BP 5 5 5 5 SO-8 DIP-8 D P REF102BU REF102BP REF102CU REF102CP 2.5 2.5 2.5 2.5 SO-8 DIP-8 D P REF102CU REF102CP NOTE: (1) For the most current package and ordering information, see the Package Option Addendum at the end of this data sheet, or see the TI website at www.ti.com. PIN CONFIGURATIONS Top View DIP, SO NC 1 8 Noise Reduction V+ 2 7 NC NC 3 6 VOUT Com 4 5 Trim NC = Not Connected 2 REF102 www.ti.com SBVS022B ELECTRICAL CHARACTERISTICS At TA = +25C and VS = +15V power supply, unless otherwise noted. REF102A PARAMETER OUTPUT VOLTAGE Initial vs Temperature (1) vs Supply (Line Regulation) vs Output Current (Load Regulation) vs Time M Package P, U Packages (2) Trim Range (3) Capacitive Load, max NOISE CONDITIONS MIN TA = 25C 9.99 TYP REF102B MAX MIN 10.01 10 9.995 TYP REF102C MAX MIN 10.005 5 9.9975 TYP MAX UNITS 10.0025 2.5 V ppm/C VS = 11.4V to 36V 2 1 1 ppm/V IL = 0mA to +10mA IL = 0mA to -5mA TA = +25C 20 40 10 20 10 20 ppm/mA ppm/mA 5 20 3 0.1Hz to 10Hz OUTPUT CURRENT 5 +11.4 QUIESCENT CURRENT IOUT = 0 WARM-UP TIME (4) To 0.1% TEMPERATURE RANGE Specification REF102A, B, C +36 VPP mA 15 +85 +1.4 -25 ppm/1000hr ppm/1000hr % pF 1000 +10, -5 INPUT VOLTAGE RANGE V mA s C Specifications same as REF102A. NOTES: (1) The box method is used to specify output voltage drift vs temperature; see the Discussion of Performance section. (2) Typically 5ppm/1000hrs after 168hr powered stabilization. (3) Trimming the offset voltage affects drift slightly. See Installation and Operating Instructions for details. (4) With noise reduction pin floating. See Typical Characteristics for details. REF102 SBVS022B www.ti.com 3 TYPICAL CHARACTERISTICS At TA = +25C, VS = +15V, unless otherwise noted. POWER TURN-ON RESPONSE with 1F CN POWER TURN-ON RESPONSE VOUT VOUT VIN VIN Time (10ms/div) Time (5s/div) Power Turn-On Power Turn-On POWER SUPPLY REJECTION vs FREQUENCY LOAD REGULATION +1.5 120 Output Voltage Change (mV) Power Supply Rejection (dB) 130 110 100 90 80 70 +1.0 +0.5 0 -0.5 -1.0 -1.5 60 1 100 1k 10k -5 0 1.6 Quiescent Current (mA) Output Voltage Change (V) +10 QUIESCENT CURRENT vs TEMPERATURE RESPONSE TO THERMAL SHOCK +600 +300 0 -300 REF102C Immersed in +85C Fluorinert Bath TA = +25C -600 1.4 1.2 1.0 TA = +85C 0.8 0 15 30 45 -75 60 -50 -25 0 +25 +50 +75 +100 +125 Temperature (C) Time (s) 4 +5 Output Current (mA) Frequency (Hz) REF102 www.ti.com SBVS022B TYPICAL CHARACTERISTICS (Cont.) At TA = +25C, VS = +15V, unless otherwise noted. TYPICAL REF102 REFERENCE NOISE 20 2k Oscilloscope Noise Voltage (V) 6 4 - 2 100F DUT 0 15.8k -2 2F Gain = 100V/V f -3dB = 0.1Hz and 10Hz -4 -6 8k OPA227 + Noise Test Circuit. Low Frequency Noise (1s/div) (See Noise Test Circuit) Refer to the diagram on the first page of this data sheet. The 10V output is derived from a compensated buried zener diode DZ1, op amp A1, and resistor network R1 - R6. Approximately 8.2V is applied to the non-inverting input of A1 by DZ1. R1, R2, and R3 are laser-trimmed to produce an exact 10V output. The zener bias current is established from the regulated output voltage through R4. R5 allows user-trimming of the output voltage by providing for small external adjustment of the amplifier gain. Because the temperature coefficient (TCR) of of R5 closely matches the TCR of R1, R2 and R3 , the voltage trim has minimal effect on the reference drift. The output voltage noise of the REF102 is dominated by the noise of the zener diode. A capacitor can be connected between the Noise Reduction pin and ground to form a lowpass filter with R6 and roll off the high-frequency noise of the zener. REF102 is specified by the more commonly-used box method. The box is formed by the high and low specification temperatures and a diagonal, the slope of which is equal to the maximum specified drift. Since the shape of the actual drift curve is not known, the vertical position of the box is not known, either. It is, however, bounded by VUPPER BOUND and VLOWER BOUND (see Figure 1). Figure 1 uses the REF102CU as an example. It has a drift specification of 2.5ppm/C maximum and a specification temperature range of -25C to +85C. The box height, V1 to V2, is 2.75mV. REF102CU VUPPER BOUND +10.00275 Output Voltage (V) THEORY OF OPERATION DISCUSSION OF PERFORMANCE 2.75mV Worst-case VOUT for REF102CU VNOMINAL +10.0000 V2 +9.99725 The REF102 is designed for applications requiring a precision voltage reference where both the initial value at room temperature and the drift over temperature are of importance to the user. Two basic methods of specifying voltage reference drift versus temperature are in common usage in the industry--the butterfly method and the box method. The REF102CU VLOWER BOUND -25 0 +25 +50 Temperature (C) +85 FIGURE 1. REF102CU Output Voltage Drift. REF102 SBVS022B V1 www.ti.com 5 INSTALLATION AND OPERATING INSTRUCTIONS BASIC CIRCUIT CONNECTION Figure 2 shows the proper connection of the REF102. To achieve the specified performance, pay careful attention to layout. A low resistance star configuration will reduce voltage errors, noise pickup, and noise coupled from the power supply. Commons should be connected as indicated, being sure to minimize interconnection resistances. used. The circuit in Figure 3 has a minimum trim range of 300mV. The circuit in Figure 4 has less range but provides higher resolution. The mismatch in TCR between RS and the internal resistors can introduce some slight drift. This effect is minimized if RS is kept significantly larger than the 50k internal resistor. A TCR of 100ppm/C is normally sufficient. V+ + 1F Tantalum 2 VOUT 6 (1) 2 V+ (2) REF102 VTRIM 5 6 + 1F Tantalum REF102 RL 1 RL 2 RL 3 20k Output Voltage Adjust +10V 4 Minimum range (300mV) and minimal degradation of drift. 4 (1) (2) FIGURE 3. REF102 Optional Output Voltage Adjust. NOTES: (1) Lead resistances here of up to a few ohms have negligible effect on performance. (2) A resistance of 0.1 in series with these leads will cause a 1mV error when the load current is at its maximum of 10mA. This results in a 0.01% error of 10V. V+ + 1F Tantalum 2 FIGURE 2. REF102 Installation. VOUT 6 OPTIONAL OUTPUT VOLTAGE ADJUSTMENT REF102 Optional output voltage adjustment circuits are shown in Figures 3 and 4. Trimming the output voltage will change the voltage drift by approximately 0.008ppm/C per mV of trimmed voltage. In the circuit in Figure 3, any mismatch in TCR between the two sections of the potentiometer will also affect drift, but the effect of the TCR is reduced by a factor of five by the internal resistor divider. A high quality potentiometer, with good mechanical stability, such as a cermet, should be VTRIM 5 RS 1M 20k Output Voltage Adjust +10V 4 Higher resolution, reduced range (typically 25mV). FIGURE 4. REF102 Optional Output Voltage, Fine Adjust. 6 REF102 www.ti.com SBVS022B APPLICATIONS INFORMATION OPTIONAL NOISE REDUCTION The high-frequency noise of the REF102 is dominated by the zener diode noise. This noise can be greatly reduced by connecting a capacitor between the Noise Reduction pin and ground. The capacitor forms a low-pass filter with R6 (refer to the figure on page 1) and attenuates the high-frequency noise generated by the zener. Figure 5 shows the effect of a 1F noise reduction capacitor on the high-frequency noise of the REF102. R6 is typically 7k so the filter has a -3dB frequency of about 22Hz. The result is a reduction in noise from about 800VPP to under 200VPP. If further noise reduction is required, use the circuit in Figure 14. High accuracy, extremely low drift, outstanding stability, and low cost make the REF102 an ideal choice for all instrumentation and system reference applications. Figures 6 through 14 show a variety of useful application circuits. V+ (1.4V to 26V) 2 6 REF102 1.4mA < (5V -IL) RS 4 IL RS NO CN -15V < 5.4mA -10V Out V+ (1.4V to 26V) 2 a) Resistor Biased -10V Reference R1 2k REF102 6 10V C1 1000pF CN = 1F 4 OPA227 FIGURE 5. Effect of 1F Noise Reduction Capacitor on Broadband Noise (f-3dB = 1MHz) -10V Out b) Precision -10V Reference. See SBVA008 for more detail. FIGURE 6. -10V Reference Using a) Resistor or b) OPA227. REF102 SBVS022B www.ti.com 7 V+ V+ V+ 2 220 - 6 REF102 2N2905 +10V OPA227 + 2 IL 2 R1 = VCC - 10V IL (TYP) 6 REF102 4 6 +10V +10V REF102 IL IL 4 a) -20mA < IL < +20mA (OPA227 also improves transient immunity) 4 b) -5mA < IL < +100mA c) IL (MAX) = IL (TYP) +10mA IL (MIN) = IL (TYP) -5mA FIGURE 7. +10V Reference With Output Current Boosted to: a) 20mA, b) +100mA, and c) IL (TYP) +10mA, -5A. +15V 28mA 357 1/2W 2 28.5mA 6 +5V 350 Strain Gauge Bridge REF102 5 4 RG - INA126 2 10 6 - 8 V OUT x100 + OPA227 + 3 -5V 357 1/2W -15V FIGURE 8. Strain Gauge Conditioner for 350 Bridge. V+ 2 V+ 2 6 REF102 5 2 25k 25k REF102 +10V Out -10V Out R 4 4 3 1 6 25k - I OUT OPA277 + LOAD 25k INA105 IOUT = FIGURE 9. 10V Reference. 10V , R 1k R Can be connected to ground or -VS . See SBVA001 for more details and ISINK Circuit. See SBVA007 for more details. 8 6 FIGURE 10. Positive Precision Current Source. REF102 www.ti.com SBVS022B 31.4V to 56V 2 V+ 2 +30V 6 REF102 6 +10V REF102 INA105 2 4 2 5 4 REF102 +20V 6 - 6 3 +5V + 4 2 1 REF102 +10V 6 FIGURE 13. +5V and +10V Reference. 4 V+ 2 NOTES: (1) REF102s can be stacked to obtain voltages in multiples of 10V. (2) The supply voltage should be between 10n + 1.4 and 10n + 26, where n is the number of REF102s. (3) Output current of each REF102 must not exceed its rated output current of +10, -5mA. This includes the current delivered to the lower REF102. 6 REF102 (1) 2k VOUT 1 R2 2k FIGURE 11. Stacked References. 4 C2 V+ V+ 1F 2 2 - 2 6 6 REF102 +5V REF102 (2) Out 2k VOUT 2 2 OPA227 3 + R1 1k +10V C1 INA105 VREF 1F 4 5 4 -5V Out V+ VREF = (V01 + V02 ... VOUT N) 2 - N 6 6 + REF102 (N) VOUT N 2k eN = 5VPP (f = 0.1Hz to 1MHz) N See SBVA002 for more details. 1 3 FIGURE 12. 5V Reference. 4 FIGURE 14. Precision Voltage Reference with Extremely Low Noise. REF102 SBVS022B www.ti.com 9 Revision History DATE REVISION PAGE 6/09 B 2 SECTION DESCRIPTION Absolute Maximum Ratings Deleted lead temperature rating. Package/Ordering Information Changed Package Ordering Information table. NOTE: Page numbers for previous revisions may differ from page numbers in the current version. 10 REF102 www.ti.com SBVS022B PACKAGE OPTION ADDENDUM www.ti.com 11-Jun-2009 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty REF102AM OBSOLETE TO-99 LMC 8 TBD Call TI REF102AP ACTIVE PDIP P 8 50 Green (RoHS & no Sb/Br) CU NIPDAU N / A for Pkg Type REF102APG4 ACTIVE PDIP P 8 50 Green (RoHS & no Sb/Br) CU NIPDAU N / A for Pkg Type REF102AU ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR REF102AU/2K5 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR REF102AU/2K5G4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR REF102AUG4 ACTIVE SOIC D 8 CU NIPDAU Level-2-260C-1 YEAR REF102BM OBSOLETE TO-99 LMC 8 REF102BP ACTIVE PDIP P REF102BPG4 ACTIVE PDIP REF102BU ACTIVE REF102BUG4 Lead/Ball Finish MSL Peak Temp (3) Call TI 75 Green (RoHS & no Sb/Br) TBD Call TI 8 50 Green (RoHS & no Sb/Br) CU NIPDAU N / A for Pkg Type P 8 50 Green (RoHS & no Sb/Br) CU NIPDAU N / A for Pkg Type SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR REF102CM OBSOLETE TO-99 LMC 8 TBD Call TI REF102CP ACTIVE PDIP P 8 50 Green (RoHS & no Sb/Br) CU NIPDAU N / A for Pkg Type REF102CPG4 ACTIVE PDIP P 8 50 Green (RoHS & no Sb/Br) CU NIPDAU N / A for Pkg Type REF102CU ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR REF102CU/2K5 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR REF102CUG4 ACTIVE SOIC D 8 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR REF102RM OBSOLETE TO-99 LMC 8 TBD Call TI Call TI REF102SM OBSOLETE TO-99 LMC 8 TBD Call TI Call TI 75 Call TI Call TI (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and Addendum-Page 1 PACKAGE OPTION ADDENDUM www.ti.com 11-Jun-2009 package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2 PACKAGE MATERIALS INFORMATION www.ti.com 14-Jul-2012 TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Package Pins Type Drawing SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant REF102AU/2K5 SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 REF102CU/2K5 SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 Pack Materials-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com 14-Jul-2012 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) REF102AU/2K5 SOIC D 8 2500 367.0 367.0 35.0 REF102CU/2K5 SOIC D 8 2500 367.0 367.0 35.0 Pack Materials-Page 2 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP(R) Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright (c) 2012, Texas Instruments Incorporated