Copyright © Cirrus Logic, Inc. 2008
(All Rights Reserved)
http://www.cirrus.com
114 dB, 192 kHz 8-Channel D/A Converter
Features
Advanced Multi-bit Delta Sigma Architecture
24-bit Conversion
Automatic Detection of Sample Rates up to
192 kHz
114 dB Dynamic Range
-100 dB THD+N
Direct Stream Digital Mode
Non-Decimating Volume Control
On-Chip 50 kHz Filter
Matched PCM and DSD Analog Output
Levels
Compatible with Industry-Standard Time
Division Multiplexed (TDM) Serial Interface
Selectable Digital Filters
Volume Control with 1/2-dB Step Size and Soft
Ramp
Low Clock-Jitter Sensitivity
+5 V Analog Supply, +2.5 V Digital Supply
Separate 1.8 to 5 V Logic Supplies for the
Control and Serial Ports
Description
The CS4385 is a complete 8-channel digital-to-analog
system. This D/A system includes digital de-emphasis,
half-dB step size volume control, ATAPI channel mix-
ing, selectable fast and slow digital interpolation filters
followed by an oversampled, mul ti-bit de lta sig ma mod-
ulator which includes mismatch-shaping technology
that eliminates distortion due to capacitor mismatch.
Following this stage is a multi-element switched capac-
itor stage and low-pass filter with differential analog
outputs.
The CS4385 also has a proprietary DSD processor
which allows for volume control and 50 kHz on-chip fil-
tering without an intermediate decimation stage. It also
offers an opti on al p ath fo r dir ect DSD conversion by di-
rectly using the multi-element switched ca pa citor array.
The CS4385 is available in a 48-pin LQFP package in
both Commercial (-40°C to +85°C) and Automotive
(-40°C to +105°C) grades. The CDB4385 Customer
Demonstration board is also available for device evalu-
ation and implementation suggestions. Please see
“Ordering Information” on p age 54 for complete details.
The CS4385 accepts PCM data at sample rates from
4 kHz to 216 kHz, DSD audio data, and delivers excel-
lent sound quality. These features are ideal for multi-
channel audio systems, including SACD players, A/V
receivers, digi ta l TV ’s, m ixing co ns ole s , e ffects proces-
sors, sound cards, and automotive audio systems.
Control Port Su pply = 1 .8 V to 5 V
Register/Hardware
Configuration Internal Voltage
Reference
Reset
Serial Interface
Level Translator
Level Translat or
TDM Serial
Audio Input
Digital Supply = 2.5 V
Hardware Mode or
I2C/SPI Software Mode
Control Data
Analog Supply = 5 V
Eight Channels
of Differential
Outputs
8
8
PCM Seria l
Audio Input
Volume
Controls Digital
Filters
Switch-Cap
DAC and
Analog Filters
Multi-bit ΔΣ
Modulators
DSD Audio
Input
DSD Processor
-Volume control
-50 kHz filter
Externa l Mute
Control Mute Signals
2
8
Serial Audio Port
Supply = 1.8 V to 5 V
FEB '08
DS671F2
CS4385
2DS671F2
CS4385
TABLE OF CONTENTS
1. PIN DESCRIPTION ...................................................................................................................... 6
2. CHARACTERISTICS AND SPECIFICATIONS ...................................................................................... 8
RECOMMENDED OPERATING CONDITIONS ..................................................................................... 8
ABSOLUTE MAXIMUM RATINGS ......................................................................................................... 8
DAC ANALOG CHARACTERISTICS - COMMERCIAL (-CQZ) ............................................................. 9
DAC ANALOG CHARACTERISTICS - AUTOMOTIVE (-DQZ) ............................................................ 10
POWER AND THERMAL CHARACTERISTICS .................................................................................. 11
COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE ...................................... 12
COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE (CONTINUED) .............. 13
DSD COMBINED DIGITAL & ON-CHIP ANALOG FILTER RESPONSE ............................................. 13
DIGITAL CHARACTERISTICS ............................................................................................................. 14
SWITCHING CHARACTERISTICS - PCM ........................................................................................... 15
SWITCHING CHARACTERISTICS - DSD ........................................................................................... 16
SWITCHING CHARACTE RISTIC S - CONTRO L PORT - I ²C FORMAT ........... ... .... ... ... ... ... .... ... ... ... ... 17
SWITCHING CHARACTE RISTIC S - CONTRO L PORT - SPI FORMAT ............................................. 18
3. TYPICAL CONNECTION DIAGRAM ................................................................................................... 19
4. APPLICATIONS ................................................................................................................................... 21
4.1 Master Clock ................................................................................................................................... 21
4.2 Mode Select .................................................................................................................................... 22
4.3 Digital Interface Formats ................................................................................................................ 23
4.3.1 OLM #1 ........... ................ .... ... ... ................ ... .... ................ ... ... ... ................. ... ... ...................... 24
4.3.2 OLM #2 ........... ................ .... ... ... ................ ... .... ................ ... ... ... ................. ... ... ...................... 24
4.3.3 OLM #3 ........... ................ .... ... ... ................ ... .... ................ ... ... ... ................. ... ... ...................... 25
4.3.4 OLM #4 ........... ................ .... ... ... ................ ... .... ................ ... ... ... ................. ... ... ...................... 25
4.3.5 TDM ................ ... .... ................ ... ... ... ................. ... ... ................ ... .... ... ................ ... ................... 26
4.4 Oversampling Modes ...................................................................................................................... 26
4.5 Interpolation Filter ........................................................................................................................... 26
4.6 De-Emphasis .................................................................................................................................. 27
4.7 ATAPI Specification ........................................................................................................................ 27
4.8 Direct Stream Digital (DSD) Mode .................................................................................................. 28
4.9 Grounding and Power Supply Arrangements . ... ................ .... ... ... ................ ... .... ................ ... ... ... ... 29
4.9.1 Capacitor Placement ............................................................................................................. 29
4.10 Analog Output and Filtering .......................................................................................................... 29
4.11 The MUTEC Outputs .................................................................................................................... 30
4.12 Recommended Power-Up Sequence ........................................................................................... 31
4.12.1 Hardware Mode ................................................................................................................... 31
4.12.2 Software Mode .................................................................................................................... 32
4.13 Recommended Procedure for Switching Operational Modes ....................................................... 32
4.14 Control Port Interface ................................................................................................................... 32
4.14.1 MAP Auto Increment . ... ....................................................................................................... 32
4.14.2 I²C Mode .......... .... ... ................ ... ... ................. ... ... ... ................ .... ... ................ ... ... ................ 32
4.14.2.1 I²C Write ......... ... .... ................ ... ... ................ .... ... ... ................ ... .... ................ ... ......... 33
4.14.2.2 I²C Read ..................... ... ... .... ................ ... ... ................ .... ... ... ................ ... .... ............ 33
4.14.3 SPI Mode ............................................................................................................................. 34
4.14.3.1 SPI Write ........ ... .... ................ ... ... ................ .... ... ... ................ ... .... ................ ... ......... 34
4.15 Memory Address Pointer (MAP) .................................................................................................. 34
4.15.1 INCR (Auto Map Increment Enable) . ... ...... ....... ...... ....... ...... ....... ...... ....... ... ...... ....... ...... ...... 34
4.15.2 MAP4-0 (Memory Address Pointer) . ................ ... ... .... ................ ... ... ................ ... .... ... ......... 34
5. REGISTER QUICK REFERENCE ....................................................................................................... 35
6. REGISTER DESCRIPTION .................................................................................................................. 37
6.1 Chip Revision (address 01h) ......................................................................................................... 37
6.1.1 Part Number ID (PART) [Read Only] .................................................................................... 37
DS671F2 3
CS4385
6.2 Mode Control 1 (address 02h) ........................................................................................................ 37
6.2.1 Control Port Enable (CPEN) .................................................................................................. 37
6.2.2 Freeze Controls (FREEZE) ................................................................................................... 37
6.2.3 PCM/DSD Selection (DSD/PCM) .......................................................................................... 38
6.2.4 DAC Pair Disable (DACx_DIS) ..............................................................................................38
6.2.5 Power Down (PDN) ............................ ... ... ................ .... ... ... ................ ... .... ................ ... ......... 38
6.3 PCM Control (address 03h) ............................................................................................................ 38
6.3.1 Digital Interface Format (DIF) ................................................................................................ 38
6.3.2 Functional Mode (FM) ........................................................................................................... 39
6.4 DSD Control (address 04h) ............................................................................................................ 39
6.4.1 DSD Mode Digital Interface Format (DSD_DIF) .... .......... ......... .......... ....... ......... .......... ......... 39
6.4.2 Direct DSD Conversion (DIR_DSD) ...................................................................................... 40
6.4.3 Static DSD Detect (STATIC_DSD) ........................................................................................ 40
6.4.4 Invalid DSD Detect (INVALID_DSD) ..................................................................................... 40
6.4.5 DSD Phase Modulation Mode Select (DSD_PM_MODE) ..... ....... ... ... ... .... ... ... ... ... .... ... ... ... ... 40
6.4.6 DSD Phase Modulation Mode Enable (DSD_PM_EN) ... ... ... ... .... ... ... ... .... ...... ... ... .... ... ... ... ... 40
6.5 Filter Control (address 05h) ............................................................................................................ 41
6.5.1 Interpolation Filter Select (FILT_SEL) ...................................................................................41
6.6 Invert Control (address 06h) ........................................................................................................... 41
6.6.1 Invert Signal Polarity (Inv_xx) ................................................................................................ 41
6.7 Group Control (address 07h) .......................................................................................................... 41
6.7.1 Mutec Pin Control (MUTEC) .................................................................................................. 41
6.7.2 Channel A Volume = Channel B Volume (Px_A=B) .............................................................. 42
6.7.3 Single Volume Control (SNGLVOL) ...................................................................................... 42
6.8 Ramp and Mute (address 08h) .................... ... ... ... .... ...... ... .... ... ... ... ... .... ... ... ... .... ... ... ... ... .... ............ 42
6.8.1 Soft Ramp and Zero Cross CONTROL (SZC) ...................................................................... 42
6.8.2 Soft Volume Ramp-Up after Error (RMP_UP) ....................................................................... 43
6.8.3 Soft Ramp-Down before Filter Mode Change (RMP_DN) ............ ... ... ... .... ... ... ... ... .... ... ...... ... 43
6.8.4 PCM Auto-Mute (PAMUTE) .................................................................................................. 43
6.8.5 DSD Auto-Mute (DAMUTE) ...................................................................................................44
6.8.6 MUTE Polarity and DETECT (MUTEP1:0) ............................................................................ 44
6.9 Mute Control (address 09h) ............................................................................................................ 44
6.9.1 Mute (MUTE_xx) ................................................................................................................... 44
6.10 Mixing Control (address 0Ah, 0Dh, 10h, 13h) .... .... ...... ... .... ... ... ... ... .... ... ... ... .... ... ... ... ... .... ...... ... ... 45
6.10.1 De-Emphasis Control (PX_DEM1:0) ................................................................................... 45
6.10.2 ATAPI Channel Mixing and Muting (ATAPI) ........................................................................ 45
6.11 Volume Control (address 0Bh, 0Ch, 0Eh, 0Fh, 11h, 12h, 14h, 15h) ............................................ 46
6.11.1 Digital Volume Control (xx_VOL7:0) ................................................................................... 46
6.12 PCM Clock Mode (address 16h) .................................................................................................. 47
6.12.1 Master Clock DIVIDE by 2 ENABLE (MCLKDIV) ................................................................ 47
7. FILTER PLOTS ..................................................................................................................................... 48
8. PARAMETER DEFINITIONS ................................................................................................................ 52
9. PACKAGE DIMENSIONS ................................................................................................................... 53
10. ORDERING INFORMATIO N ........... ................ ... ... ................ .... ... ... ................ ... .... ................ ... ......... 54
11. REFERENCES ... .... ... ... ... .... ................ ... ... ................ .... ... ... ................ ... .... ................ ... ...................... 54
12. REVISION HISTORY .. ... .... ... ... ................ ... .... ... ................ ... .... ... ................ ... ... ................................ 54
4DS671F2
CS4385
LIST OF FIGURES
Figure 1.Serial Audio Interface Timing ............... ....... ... ... .... ... ... ... .... ... ... ... ... .... ... ... ... .... ... ...... ... ................ 15
Figure 2.TDM Serial Audio Interface Timing ... .......................................................................................... 15
Figure 3.Direct Stream Digital - Serial Audio Input Timing ........................................................................ 16
Figure 4.Direct Stream Digital - Serial Audio Input Timing for Phase Modulation Mode ........................... 16
Figure 5.Control Port Timing - I²C Format . ... ................ ... .... ... ................ ... ... ................. ... ... ... ................... 17
Figure 6.Control Port Timing - SPI Format ... ... ... .... ...... ... .... ... ... ... .... ... ... ... ... .... ... ... ... .... ... ...... ... .... ............ 18
Figure 7.Typical Connection Diagram, Software Mode .......... .......... ............ ............. ............. ............. ......19
Figure 8.Typical Connection Diagram, Hardware ..................................................................................... 20
Figure 9.Format 0 - Left-Justified up to 24-bit Data .................................................................................. 23
Figure 10.Format 1 - I²S up to 24-bit Data ............. ... ... ... .... ... ................ ... ... ................. ... ... ... ................... 23
Figure 11.Format 2 - Right-Justified 16-bit Data ....................................................................................... 23
Figure 12.Format 3 - Right-Justified 24-bit Data ....................................................................................... 23
Figure 13.Format 4 - Right-Justified 20-bit Data ....................................................................................... 23
Figure 14.Format 5 - Right-Justified 18-bit Data ....................................................................................... 24
Figure 15.Format 8 - One-Line Mode 1 ..................................................................................................... 24
Figure 16.Format 9 - One-Line Mode 2 ..................................................................................................... 24
Figure 17.Format 10 - One-Line Mode 3 ................................................................................................... 25
Figure 18.Format 11 - One Line Mode 4 ............ ................. ... ... ................ ... .... ... ................ ... ... ................ 25
Figure 19.Format 12 - TDM Mode .......... ................ ... ... ... ................. ... ... ................ ... .... ............................ 26
Figure 20.De-Emphasis Curve ........... .... ... ... ... ................ .... ... ................ ... ... .... ................ ... ... ................... 27
Figure 21.ATAPI Block Diagram (x = channel pair 1, 2, 3, or 4) ............ ... ... .... ... ... ... .... ................ ... ... ...... 27
Figure 22.DSD Phase Modulation Mode Diagram .... ... ... ................. ... ... ................ ... .... ... ................ ... ... ...28
Figure 23.Full-Scale Output ............... .... ...... ... ... .... ... ... ... .... ... ... ... .... ... ... ... ... .... ...... ... .... ... ... ...................... 29
Figure 24.Recommended Output Filter ..................................................................................................... 30
Figure 25.Recommended Mute Circuitry .. ... ...... .... ... ... ... .... ... ... ... .... ... ... ... ... .... ... ... ....... ... ... ... ... .... ... . ........ 31
Figure 26.Control Port Timing, I²C Mode .................................................................................................. 33
Figure 27.Control Port Timing, SPI Mode ................................................................................................. 34
Figure 28.Single-Speed (fast) Stopband Rejection ................................................................................... 48
Figure 29.Single-Speed (fast) Transition Band ......................................................................................... 48
Figure 30.Single-Speed (fast) Transition Band (detail) ............................................................................. 48
Figure 31.Single-Speed (fast) Passband Ripple ....................................................................................... 48
Figure 32.Single-Speed (slow) Stopband Rejection ................................................................................. 48
Figure 33.Single-Speed (slow) Transition Band ........................................................................................ 48
Figure 34.Single-Speed (slow) Transition Band (detail) ............................................................................ 49
Figure 35.Single-Speed (slow) Passband Ripple ...................................................................................... 49
Figure 36.Double-Speed (fast) Stopband Rejection ................................................................................. 49
Figure 37.Double-Speed (fast) Transition Band ........................................................................................ 49
Figure 38.Double-Speed (fast) Transition Band (detail) ............................................................................ 49
Figure 39.Double-Speed (fast) Passband Ripple ...................................................................................... 49
Figure 40.Double-Speed (slow) Stopband Rejection ................ ... .... ................ ... ... ................ ... .... ... ......... 50
Figure 41.Double-Speed (slow) Transition Band ......... ... .... ... ... ... .... ................ ... ... ................ ... .... ... ......... 50
Figure 42.Double-Speed (slow) Transition Band (detail) .......... ................................................................ 50
Figure 43.Double-Speed (slow) Passband Ripple ....... ... .... ... ... ... .... ... ................ ... ... .... ................ ... ... ...... 50
Figure 44.Quad-Speed (fast) Stopband Rejection .............. ... ... ... .... ... ... ... ... .... ... ... ... .... ...... ... ... .... ... ... .. .... 50
Figure 45.Quad-Speed (fast) Transition Band ............................. .... ... ... ... ... .... ... ... ....... ... ... ... ... .... ... .. ....... 50
Figure 46.Quad-Speed (fast) Transition Band (det ail) . ................ .... ... ... ................ ... .... ................ ... ... ...... 51
Figure 47.Quad-Speed (fast) Passband Ripple ........................................................................................ 51
Figure 48.Quad-Speed (slow) Stopband Rejection ................................................................................... 51
Figure 49.Quad-Speed (slow) Transition Band ......................................................................................... 51
Figure 50.Quad-Speed (slow) Transition Band (detail) ............................................................................. 51
Figure 51.Quad-Speed (slow) Passband Ripple ....................................................................................... 51
DS671F2 5
CS4385
LIST OF TABLES
Table 1. Single-Speed Mode Standard Frequencies ................................................................................21
Table 2. Double-Speed Mode Standard Frequencies ............................................................................... 21
Table 3. Quad-Speed Mode Standard Frequencies . ... ... .... ... ................ ... ... .... ................ ... ... ................ ... 21
Table 4. PCM Digital Interface Format, Hardware Mode Options ............................................................. 22
Table 5. Mode Selection, Hardware Mode Options .................................................................................. 22
Table 6. Direct Stream Digital (DSD), Hardware Mode Options ............................................................... 22
Table 7. Digital Interface Formats - PCM Mode ........................................................................................ 39
Table 8. Digital Interface Formats - DSD Mode ........................................................................................ 39
Table 9. ATAPI Decode Table ........ ... .... ... ... ... ... ................. ... ... ... ................ .... ... ................ ... ... ................ 45
Table 10. Example Digital Volume Settings .............................................................................................. 46
6DS671F2
CS4385
1. PIN DESCRIPTION
Pin Name # Pin Description
VD 4 Digit al Power (Input) - Positive power supply for the digital section. Refer to the Recommended Oper-
ating Conditions for appropriate voltages.
GND 5
31 Ground (Input) - Ground reference. Should be connected to analog ground.
MCLK 6 Master Clock (Input) - Clock source for the delta-sigma modulator and digital filters. Tables 1-3 illus-
trate several standard audio sample rates and the required master clock frequency.
LRCK 7 Left Right Clock (Input) - Determines which channel, Left or Right, is currently active on the serial
audio data line. The frequency of the left/right clock must be at the audio sample rate, Fs.
SDIN1
SDIN2
SDIN3
SDIN4
8
11
13
14
Serial Audio Data Inp ut (Input) - Input for two’s complement serial audio data.
SCLK 9 Serial Clock (Input) - Serial clock for the serial audio interface.
VLC 18 Control Port Power (Input) - Determines the required signal level for the control port. Refer to the
Recommended Operating Conditions for appropriate voltages.
RST 19 Reset (Input) - The device enters a low power mode and all internal registers are reset to their default
settings when low .
FILT+ 20 Positive Voltage Reference (Output) - Positive reference voltage for the internal sampling circuits.
Requires the capacitive decoupling to analog ground, as shown in the Typical Co nnection Diagram.
VQ 21
Quiescent V oltage (Output) - Filter connection for internal quiescent voltage. VQ must be capacitively
coupled to analog ground, as shown in the Typical Connection Diagram. The nominal voltage level is
specified in the Analog Characteristics and Specifications section. VQ presents an appreciable source
impedance and any current drawn from this pin will alter device performance. However, VQ can be
used to bias the analog circuitry assuming there is no AC signal component and the DC current is less
than the maximum specified in the Analog Characteristics and Specifications section.
MUTEC1
MUTEC234 41
22
Mute Control (Output) - The Mute Control pins go high during power-up initialization, reset, muting,
power-down or if the master clock to left/right clock frequency ratio is incorrect. These pins are
intended to be used as a control for external mute circuits to prevent the clicks and pops that can
occur in any single supply system. The use of external mute circuit s are not mandatory but may be
desired for designs requiring the absolute minimum in extraneous clicks and po ps.
SDIN3
GND
AOUTB2-
AOUTA3+
AOUTB3-
AOUTB2+
VA
AOUTA3-
AOUTB3+
AOUTA4-
AOUTA4+
6
2
4
8
10
1
3
5
7
9
11
1213 14 15 16 17 18 19 20 21 22 23 24
31
35
33
29
27
36
34
32
30
28
26
25
48 47 46 45 44 43 42 41 40 39 38 37
MCLK
DSDB1
VD
SDIN1
M4(TST)
DSDA2
DSDA1
GND
SCLK
SDIN2
M3(TST)
LRCK
DSD_SCLK
DSDB3
DSDA3
DSDA4
CS4385
DSDB4
VLS
SDIN4
M2(SCL/CCLK)
M1(SDA/CDIN)
VLC
RST
FILT+
VQ
MUTEC234
AOUTB4-
AOUTB4+
M0(AD0/CS)
AOUTA2+
AOUTA2-
AOUTB1+
AOUTB1-
AOUTA1-
AOUTA1+
DSDB2
MUTEC1
DS671F2 7
CS4385
AOUTA1 +,-
AOUTB1 +,-
AOUTA2 +,-
AOUTB2 +,-
AOUTA3 +,-
AOUTB3 +,-
AOUTA4 +,-
AOUTB4 +,-
39, 40
38, 37
35, 36
34, 33
29, 30
28, 27
25, 26
24, 23
Differential Analog Outpu t (Output) - The full-scale differential analog output level is specified in the
Analog Characteristics specification table.
VA 32 Analog Power (Input) - Positive power supply for the analog section. Refer to the Recommended
Operating Conditions for appropriate voltages.
VLS 43 Serial Audio Interface Power (Input) - Determines the required signal level for the serial audio inter-
face. Refer to the Recommended Operating Conditions for approp riate voltages.
Software Mode Defi ni ti on s
SCL/CCLK 15 Serial Control Port Clock (Input) - Serial clock for the serial control port. Requires an external pull-
up resistor to the logic interface voltage in I²C® Mode as shown in the Typical Connection Diagram.
SDA/CDIN 16 Serial Control Data (Input/Output) - SDA is a data I/O line in I²C Mode and requires an external pull-
up resistor to the logic interface voltage, as shown in the Typical Connection Diagram. CDIN is th e
input data line for the control port interface in SPI Mode.
AD0/CS 17 Address Bit 0 (I²C) / Chip Select (SPI) (Input) - AD0 is a chip address pin in I²C Mode; CS is the chip
select signal for SPI format.
TST 10, 12 Test (Input) - These pins are not used in Software Mode and should not be left floating (connect to
ground).
Hardware Mode Definitions
M0
M1
M2
M3
M4
17
16
15
12
10
Mode Selection (Input) - Determines the operational mode of the device as detailed in
Tables 4 and 5.
DSD Definitions
DSD_SCLK 42 DSD Serial Clock (Input) - Serial clock for the Direct Stream Digital audio interface.
DSDA1
DSDB1
DSDA2
DSDB2
DSDA3
DSDB3
DSDA4
DSDB4
3
2
1
48
47
46
45
44
Direct Stream Digital Input (Input) - Input for Direct Stream Digital serial audio data.
Pin Name # Pin Description
8DS671F2
CS4385
2. CHARACTERISTICS AND SPECIFICATIONS
RECOMMENDED OPERATING CONDITIONS
GND = 0 V; all voltages with respect to ground.
ABSOLUTE MAXIMUM RATINGS
GND = 0 V; all voltages with respect to ground.
WARNING:Operation at or beyond these limits may result in permanent damage to the device. Normal operation
is not guaranteed at these extremes.
Parameters Symbol Min Typ Max Units
DC Power Supply Analog power
Digital internal power
Serial data port interfa c e p owe r
Control po rt interface p ow e r
VA
VD
VLS
VLC
4.75
2.37
1.71
1.71
5.0
2.5
5.0
5.0
5.25
2.63
5.25
5.25
V
V
V
V
Ambient Operating Temperature (Power Applied)
Commercial Grade (-CQZ)
Automotive Grade (-DQZ) TA-40
-40 -
-+ 85
+105 °C
°C
Parameters Symbol Min Max Units
DC Power Supply Analog power
Digital internal power
Serial data port interfa c e p owe r
Control po rt interface p ow e r
VA
VD
VLS
VLC
-0.3
-0.3
-0.3
-0.3
6.0
3.2
6.0
6.0
V
V
V
V
Input Current Any Pin Except Supplies Iin 10mA
Digital Input Voltage Serial data port interface
Control port interface VIND-S
VIND-C
-0.3
-0.3 VLS+ 0.4
VLC+ 0.4 V
V
Ambient Operating Temperature (Power Applied) Top -55 125 °C
Storage Temperature Tstg -65 150 °C
DS671F2 9
CS4385
DAC ANALOG CHARACTERISTICS - COMMERCIAL (-CQZ)
Test Conditions (unless otherwise specified): VA = VLS = VLC = 5 V; VD = 2.5 V; TA = 25°C; Full-scale 997 Hz
input sine wave (Note 1); Tested under max ac-load resistance; Valid with FILT+ and VQ capacitors as shown in
“Typical Connection Diagram” on page 19; Measurement Bandwidth 10 Hz to 20 kHz.
Notes: 1. One-half LSB of triangular PDF dither is added to data.
2. Performance limited by 16-bit quantization noise.
3. VFS is tested under load RL and includes attenuation due to ZOUT.
Parameters Symbol Min Typ Max Unit
Fs = 48 kHz, 96 kHz, 192 kHz and DSD
Dynamic Range 24-bit A-weighted
unweighted
16-bit A-weighted
(Note 2) unweighted
108
105
-
-
114
111
97
94
-
-
-
-
dB
dB
dB
dB
Total Harmonic Distortion + Noise 24-bit
0 dB
-20 dB
-60 dB
(Note 2) 16-bit 0 dB
-20 dB
-60 dB
THD+N
-
-
-
-
-
-
-100
-91
-51
-94
-74
-34
-94
-
-45
-
-
-
dB
dB
dB
dB
dB
dB
Idle Channel Noise / Signal-to-noise ratio A-weighted - 114 - dB
Interchannel Isolation (1 kHz) - 110 - dB
DC Accuracy
Interchannel Gain Mismatch - 0.1 - dB
Gain Drift - 100 - ppm/°
C
Analog Output
Full-Scale Differential- PCM, DSD processor
Output Voltage (Note 3) Direct DSD Mode VFS 1.28•VA
0.90•VA
1.32•VA
0.94•VA
1.36•VA
0.98•VA
Vpp
Vpp
Output Impedance ZOUT - 130 - Ω
Max DC Current draw from an AOUT pin IOUTmax -1.0-mA
Min AC-Load Resistance RL-3-kΩ
Max Load Capacitance CL- 100 - pF
Quiescent Voltage VQ - 50% VA-VDC
Max Current draw from VQ IQMAX -10-μA
10 DS671F2
CS4385
DAC ANALOG CHARACTERISTICS - AUTOMOTIVE (-DQZ)
Test Conditions (unless otherwise specified): VA = 4.75 to 5.25 V; VLS = 1.71 to 5.25 V; VLC = 1.71 to 5.25 V;
VD = 2.37 to 2.63 V; TA = -40°C to 85°C; Full-scale 997 Hz input sine wave (Note 1); Tested un de r m ax ac -lo ad
resistance; Valid with FILT+ and VQ capacitors as shown in “Typical Connection Diagram” on page 19; Measure-
ment Bandwidth 10 Hz to 20 kHz.
Parameters Symbol Min Typ Max Units
Fs = 48 kHz, 96 kHz, 192 kHz and DSD
Dynamic Range (Note 1) 24-bit A-weighted
unweighted
16-bit A-weighted
(Note 2) unweighted
105
102
-
-
114
111
97
94
-
-
-
-
dB
dB
dB
dB
Total Harmonic Distortion + Noise (Note 1)
24-bit 0 dB
-20 dB
-60 dB
(Note 2) 16-bit 0 dB
-20 dB
-60 dB
THD+N
-
-
-
-
-
-
-100
-91
-51
-94
-74
-34
-91
-
-42
-
-
-
dB
dB
dB
dB
dB
dB
Idle Channel Noise / Signal-to-noise ratio A-weighted - 114 - dB
Interchannel Isolation (1 kHz) - 110 - dB
DC Accuracy
Interchannel Gain Misma tch - 0.1 - dB
Gain Drift - 100 - ppm/°C
Analog Output
Full-Scale Differential- PCM, DSD processor
Output Voltage (Note 3) Direct DSD Mode VFS 1.28•VA
0.90•VA
1.32•VA
0.94•VA
1.36•VA
0.98•VA
Vpp
Vpp
Output Impedance ZOUT -130-Ω
Max DC Current draw from an AOUT pin IOUTmax -1.0 -mA
Min AC-Load Resistance RL-3 -kΩ
Max Load Capacitance CL-100 -pF
Quiescent Vo ltage VQ - 50% VA-VDC
Max Current draw from VQ IQMAX -10-μA
DS671F2 11
CS4385
POWER AND THERMAL CHARACTERISTICS
Notes: 4. Cur rent consumption increases with incr easing Fs within a given speed mod e and is signal dependent.
Max values are based on highest Fs and highest MCLK.
5. ILC measured with no external loading on the SDA pin.
6. Power-Down Mode is defined as RST pin = Low with all clock and data lines held static.
7. Valid with the recommended capacitor values on FILT+ and VQ as shown in Figures 7 and 8.
Parameters Symbol Min Typ Max Units
Power Supplies
Power Supply Current normal operation, VA= 5 V
(Note 4) VD= 2.5 V
(Note 5) Interface current, VLC=5 V
VLS=5 V
(Note 6) power-down state (all supplies)
IA
ID
ILC
ILS
Ipd
-
-
-
-
-
84
20
2
75
200
91
25
-
-
-
mA
mA
μA
μA
μA
Power Dissipation (Note 4) VA = 5V, VD = 2.5V
normal operation
(Note 6) power-down -
-470
1520
-mW
mW
Package Thermal Resistance multi-layer
dual-layer θJA
θJA
θJC
-
-
-
48
65
15
-
-
-
°C/Watt
°C/Watt
°C/Watt
Power Supply Rejection Ratio (Note 7) (1 kHz)
(60 Hz) PSRR -
-60
40 -
-dB
dB
12 DS671F2
CS4385
COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE
The filter charact er istic s ha ve be e n no rm a lized to th e sample rate (Fs) and can be referenced to the desired sam-
ple rate by multiplying the given characteristic by Fs. See Note 12.
Notes: 8. Slow roll-off interpolation filter is only available in Software Mode.
9. Response is clock-dependent and will scale with Fs.
10. For Single-Speed Mode, the Measurement Bandwidth is from stopband to 3 Fs.
For Double-Speed Mode, the Measurement Bandwidth is from stopband to 3 Fs.
For Quad-Speed Mode, the Measurement Bandwidth is from stopband to 1.34 Fs.
11. De-emphasis is available only in Single-Speed Mode; only 44.1 kHz De-emphasis is available in Hard-
ware Mode.
12. Amplitude vs. Frequency p lots of this data are available in Section 7. “Filter Plots” on page 48.
Parameter Fast Roll-Off Unit
Min Typ Max
Combined Digital and On-chip Analog Filter Response - Single-Speed Mode - 48 kHz
Passband (Note 9) to -0.01 dB corner
to -3 dB corner 0
0-
-.454
.499 Fs
Fs
Frequency Response 10 Hz to 20 kHz -0.01 - +0.01 dB
StopBand 0.547 - - Fs
StopBand Attenuation (Note 10) 102 - - dB
Group Delay - 10.4/Fs - s
De-emphasis Error (Note 11) Fs = 32 kHz
(Relative to 1 kHz) Fs = 44.1 kHz
Fs = 48 kHz
-
-
-
-
-
-
±0.36
±0.21
±0.14
dB
dB
dB
Combined Digital and On-chip Analog Filter Response - Double-Speed Mode - 96 kHz
Passband (Note 9) to -0.01 dB corner
to -3 dB corner 0
0-
-.430
.499 Fs
Fs
Frequency Response 10 Hz to 20 kHz -0.01 - +0.01 dB
StopBand .583 - - Fs
StopBand Attenuation (Note 10) 80 - - dB
Group Delay - 6.15/Fs - s
Combined Digital and On-chip Analog Filter Response - Quad-Speed Mode - 192 kHz
Passband (Note 9) to -0.01 dB corner
to -3 dB corner 0
0-
-.105
.490 Fs
Fs
Frequency Response 10 Hz to 20 kHz -0.01 - +0.01 dB
StopBand .635 - - Fs
StopBand Attenuation (Note 10) 90 - - dB
Group Delay - 7.1/Fs - s
DS671F2 13
CS4385
COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE
(CONTINUED)
DSD COMBINED DIGITAL & ON-CHIP ANALOG FILTER RESPONSE
Parameter Slow Roll-Off (Note 8) Unit
Min Typ Max
Single-Spe e d Mo d e - 48 kHz
Passband (Note 9) to -0.01 dB corner
to -3 dB corner 0
0-
-0.417
0.499 Fs
Fs
Frequency Response 10 Hz to 20 kHz -0.01 - +0.01 dB
StopBand .583 - - Fs
StopBand Attenuation (Note 10 ) 64 - - dB
Group Delay - 7.8/Fs - s
De-emphasis Error (Note 11) Fs = 32 kHz
(Relative to 1 kHz) Fs = 44.1 kHz
Fs = 48 kHz
-
-
-
-
-
-
±0.36
±0.21
±0.14
dB
dB
dB
Double-Speed Mode - 96 kHz
Passband (Note 9) to -0.01 dB corner
to -3 dB corner 0
0-
-.296
.499 Fs
Fs
Frequency Response 10 Hz to 20 kHz -0.01 - +0.01 dB
StopBand .792 - - Fs
StopBand Attenuation (Note 10 ) 70 - - dB
Group Delay - 5.4/Fs - s
Quad-Speed Mode - 192 kHz
Passband (Note 9) to -0.01 dB corner
to -3 dB corner 0
0-
-.104
.481 Fs
Fs
Frequency Response 10 Hz to 20 kHz -0.01 - +0.01 dB
StopBand .868 - - Fs
StopBand Attenuation (Note 10 ) 75 - - dB
Group Delay - 6.6/Fs - s
Parameter Min Typ Max Unit
DSD Processor Mode
Passband (Note 9) to -3 dB corner 0 - 50 kHz
Frequency Response 10 Hz to 20 kHz -0.05 - +0.05 dB
Roll-off 27 - - dB/Oct
Direct DSD Mode
Passband (Note 9) to -0.1 dB corner
to -3 dB corner 0
0-
-26.9
176.4 kHz
kHz
Frequency Response 10 Hz to 20 kHz -0.1 - 0 dB
14 DS671F2
CS4385
DIGITAL CHARACTERISTICS
Notes: 13. Any pin except supplies. Transient currents of up to ±100 mA on the input pins will not cause SCR latch-
up.
Parameters Symbol Min Typ Max Units
Input Leakage Current (Note 13) Iin --±10μA
Input Capacitance - 8 - pF
High-Level Input Voltage Serial I/O
Control I/O VIH
VIH
0.70•VLS
0.70•VLC
-
--
-V
V
Low-Level Input Voltage Serial I/O
Control I/O VIL
VIL
-
--
-0.30•VLS
0.30•VLC
V
V
Low-Level Output Voltage (IOL = -1.2 mA) Control I/O = 3.3 V, 5 V VOL - - 0.20•VLC V
Low-Level Output Voltage (IOL = -1.2 mA) Control I/O = 1.8 V, 2.5 V VOL - - 0.25•VLC V
MUTEC auto detect input high voltage VIH 0.70•VA--V
MUTEC auto detect input low voltage VIL - - 0.30•VAV
Maximum MUTEC Drive Current Imax -3-mA
MUTEC High-Level Output Voltage VOH -VA-V
MUTEC Low-Level Output Voltage VOL -0-V
DS671F2 15
CS4385
SWITCHING CHARACTERISTICS - PCM
Inputs: Logic 0 = GND, Logic 1 = VLS, CL = 20 pF.
Notes: 14. After powering up, RST should be held low until after the power supplies and clocks are settled.
15. See Tables 1 - 3 for suggested MCLK frequencies.
16. Not valid for TDM Mode.
17. MSB of CH1 is always the second SCLK rising edge following LRCK rising edge.
Parameters Symbol Min Max Units
RST pin Low Pulse Width (Note 14) 1-ms
MCLK Frequency 1.024 55.2 MHz
MCLK Duty Cycle (Note 15) 45 55 %
Input Sample Rate - LRCK (Manual selection) Single-Speed Mode
Double-Speed Mode
Quad-Speed Mode
Fs
Fs
Fs
4
50
100
54
108
216
kHz
kHz
kHz
Input Sample Rate - LRCK (Auto detect) Single-Speed Mode
Double-Speed Mode
Quad-Speed Mode
Fs
Fs
Fs
4
84
170
54
108
216
kHz
kHz
kHz
LRCK Duty Cycle (Note 16) 45 55 %
SCLK Duty Cycle 45 55 %
SCLK High Time tsckh 8-ns
SCLK Low Time tsckl 8-ns
LRCK Edge to SCLK Rising Edge tlcks 5-ns
SCLK Rising Edge to LRCK Falling Edge tlckd 5-ns
TDM LRCK hightime pulse (Note 17) tlpw 1/fSCLK 7/fSCLK ns
SDIN Setup Time Before SCLK Rising Edge tds 3-ns
SDIN Hold Time After SCLK Rising Edge tdh 5-ns
SDINx
tds
SCLK
LRCK
MSB
tdh
tsckh tsckl
tlcks
MSB-1
Figure 1. Serial Audio Interface Timing
sckh sckl
t
t
SDIN1
dh
t
ds
t
SCLK
LRCK
lcks
t
MSB MSB-1
lpw
t
lcks
t
lckd
t
Figure 2. TDM Serial Audio Interface Ti ming
16 DS671F2
CS4385
SWITCHING CHARACTERISTICS - DSD
Logic 0 = GND; Logic 1 = VLS; CL=20pF.
Parameter Symbol Min Typ Max Unit
MCLK Duty Cycle 40 - 60 %
DSD_SCLK Pulse Width Low tsclkl 160 - - ns
DSD_SCLK Pulse Width High tsclkh 160 - - ns
DSD_SCLK Frequency (64x Oversampled)
(128x Oversampled) 1.024
2.048 -
-3.2
6.4 MHz
MHz
DSD_A / _B valid to DSD_SCLK rising setup time tsdlrs 20 - - ns
DSD_SCLK rising to DSD_A or DSD_B hold time tsdh 20 - - ns
DSD clock to data transition (Phase Modulation Mode) tdpm -20 - 20 ns
sclkh
t
sclkl
t
DSDxx
DSD_SCLK
sdlrs
tsdh
t
Figure 3. Direct Stream Digital - Serial Audio Input Timing
dpm
t
DSDxx
DSD_SCLK
(64Fs)
DSD_SCLK
(128Fs)
dpm
t
Figure 4. Direct Stream Digital - Serial Audio Input Timing for Phase Modulation Mode
DS671F2 17
CS4385
SWITCHING CHARACTERISTICS - CONTROL PORT - I²C FORMAT
Inputs: Logic 0 = GND, Logic 1 = VLC, CL=20pF.
Notes: 18. Data must be held for sufficient time to bridge the transition time, tfc, of SCL.
Parameter Symbol Min Max Unit
SCL Clock Frequency fscl - 100 kHz
RST Rising Edge to Start tirs 500 - ns
Bus Free Time Between Transmissions tbuf 4.7 - µs
Start Condition Hold Time (prior to first clock pulse) thdst 4.0 - µs
Clock Low time tlow 4.7 - µs
Clock High Time thigh 4.0 - µs
Setup Time for Repeated Start Condition tsust 4.7 - µs
SDA Hold Time from SCL Falling (Note 18) thdd 0-µs
SDA Setup time to SCL Rising tsud 250 - ns
Rise T ime of SCL and SDA trc, trc -1µs
Fall Time SCL and SDA tfc, tfc -300ns
Setup Time for Stop Condition tsusp 4.7 - µs
Acknowledge Delay from SCL Falling tack 300 1000 ns
t
buf thdst
t
hdst
t
low
t
r
t
f
t
hdd
thigh
t
sud
t
sust
t
susp
Stop Start
Start
Stop
Repeated
SDA
SCL
t
irs
RST
Figure 5. Control Port Timing - I²C Format
18 DS671F2
CS4385
SWITCHING CHARACTERISTICS - CONTROL PORT - SPI FORMAT
Inputs: Logic 0 = GND, Logic 1 = VLC, CL=20pF.
Notes: 19. tspi is only needed before first falling edge of CS after RST rising edge . t spi = 0 at all other times.
20. Data must be held for sufficient time to bridge the transition time of CCLK.
21. For FSCK < 1 MHz.
Parameter Symbol Min Max Unit
CCLK Clock Frequency fsclk -6MHz
RST Rising Edge to CS Falling tsrs 500 - ns
CCLK Edge to CS Falling (Note 19) tspi 500 - ns
CS High Time Between Transmissions tcsh 1.0 - µs
CS Falling to CCLK Edge tcss 20 - ns
CCLK Low Time tscl 66 - ns
CCLK High Time tsch 66 - ns
CDIN to CCLK Rising Setup Time tdsu 40 - ns
CCLK Rising to DATA Hold Time (Note 20) tdh 15 - ns
Rise Time of CCLK and CDIN (Note 21) tr2 - 100 ns
Fall Time of CCLK and CDIN (Note 21) tf2 - 100 ns
tr2 tf2
tdsu t
dh
t
sch
tscl
CS
CCLK
CDIN
tcss t
csh
tspi
tsrs
RST
Figure 6. Control Port Timing - SPI Format
DS671F2 19
CS4385
3. TYPICAL CONNECTION DIAGRAM
VLS
MCLK
VD AOUTA1+
8
32
0.1 µF +1 µF
+2.5 V
SDIN1
9
1 µF 0.1 µF
+
+
20
21
FILT+
VQ
7
6
LRCK
SCLK
SDIN3
SDIN2
39
40
0.1 µF47 µF
VA
0.1 µF
+
1 µF
0.1 µF
+1.8 V to +5 V
+5 V
4
43
SDIN4
13
14
Analog Conditioning
and Muting
AOUTA1-
AOUTB1+ 38
37
Analog Conditioning
and Muting
AOUTB1-
AOUTA2+ 35
36
Analog Conditioning
and Muting
AOUTA2-
AOUTB2+ 34
33
Analog Conditioning
and Muting
AOUTB2-
AOUTA3+ 29
30
Analog Conditioning
and Muting
AOUTA3-
AOUTB3+ 28
27
Analog Conditioning
and Muting
AOUTB3-
AOUTA4+ 25
26
Analog Conditioning
and Muting
AOUTA4-
AOUTB4+ 24
23
Analog Conditioning
and Muting
AOUTB4-
MUTEC1 41
22
Mute
Drive
MUTEC234
11
Micro-
Controller
VLC
0.1 µF
+1.8 V to +5 V 18
2
48 DSDB2
3
42 DSD_SCLK
DSDA1
DSDB3
DSDA3
DSDA4
DSDB1
DSDA2
46
45
47
1
44 DSDB4
16
15 SCL/CCLK
SDA/CDIN
ADO/CS
RST
19
17
2 KΩ
2 KΩ
Note: Necessary for I2C
control port operation
Note*
CS4385
31
GND
GND
5
NoteTST: Pins 10, 12
TST*
DSD
Audio
Source
220 Ω
470 Ω
470 Ω
Digital
Audio
Source
PCM
Figure 7. Typical Connection Diagram, Software Mode
20 DS671F2
CS4385
VLS CS4385
MCLK
VD AOUTA1+
8
32
0.1 µF +1 µF
+2.5 V
SDIN1
9
1 µF 0.1 µF
+
+
20
21
FILT+
VQ
7
6
LRCK
SCLK
SDIN3
SDIN2
39
40
0.1 µF47 µF
VA
0.1 µF
+
1 µF
+1.8 V to +5 V
+5 V
4
43
SDIN4
13
14
Analog Conditioning
and Muting
AOUTA1-
AOUTB1+ 38
37 Analog Conditioning
and Muting
AOUTB1-
AOUTA2+ 35
36 Analog Conditioning
and Muting
AOUTA2-
AOUTB2+ 34
33 Analog Conditioning
and Muting
AOUTB2-
AOUTA3+ 29
30 Analog Conditioning
and Muting
AOUTA3-
AOUTB3+ 28
27 Analog Conditioning
and Muting
AOUTB3-
AOUTA4+ 25
26 Analog Conditioning
and Muting
AOUTA4-
AOUTB4+ 24
23 Analog Conditioning
and Muting
AOUTB4-
MUTEC234 22
41
Mute
Drive
MUTEC1
11
31
GND GND
5
Stand-Alone
Mode
Configuration
VLC
0.1 µF
+1 .8 V to +5 V 18
2
48 DSDB2
3
12 M3
DSDA1
DSDB3
DSDA3
DSDA4
DSDB1
DSDA2
46
45
47
1
44 DSDB4
16
15 M2
M1
M0
RST
19
17
Mute
Drive
42 DSD_SCLK
10 M4
220 Ω
470 Ω
Digital
Audio
Source
PCM
DSD
Audio
Source
470 Ω
0.1 µF
Optional
47 KΩ
Figure 8. Typical Connection Diagram, Hardware
DS671F2 21
CS4385
4. APPLICATIONS
The CS4385 serially accepts two’s complement formatted PCM data at standard audio sample rates including 48,
44.1 and 32 kHz in SSM, 96, 88.2 an d 64 kHz in DSM, and 192, 176.4 and 128 kHz in QSM. Audio d ata is input via
the serial data input pins (SDINx). The Left/Right Clock (LRCK) determines which channel is currently being input
on SDINx, and the Serial Clock (SCLK) clocks audio data into the input data buffer. For more information on serial
audio interfaces, see Cirrus Application Note AN282, “The 2-Channel Serial Audio Interface: A Tutor ial.”
The CS4385 can be configured in Hardware Mode by the M0, M1, M2, M3 and M4 pins and in Software Mode
through I²C or SPI.
4.1 Master Clock
MCLK/LRCK must be an integer ratio as shown in Tables 1 - 3. The LRCK frequency is equal to Fs, the
frequency at which words fo r each channel are input to the device. The MCLK-to-LRCK frequency ratio and
speed mode is detected automatically during the initialization sequence by countin g the number of MCLK
transitions during a single LRCK period and by detecting the absolute speed of MCLK. Internal dividers are
then set to generate the proper internal clocks. Tables 1 - 3 illustrate several standard audio sample rates
and the required MCLK and LRCK frequencies. Please note there is no required phase relationship, but
MCLK, LRCK and SCLK must be synchronous.
Table 1. Single-Speed Mode Standard Frequencies
Table 2. Double-Speed Mode S tandard Frequencies
Table 3. Quad-Speed Mode Standard Frequencies
Sample Rate
(kHz) MCLK (MHz)
256x 384x 512x 768x 1024x 1152x
32 8.1920 12.2880 16.3840 24.5760 32.7680 36.8640
44.1 11.2896 16.9344 22.5792 33.8688 45.1584
48 12.2880 18.4320 24.5760 36.8640 49.1520
= Denotes clock ratio and sample rate combinations which are NOT supported under auto speed-
mode detection. Please see “Switching Characteristics - PCM” on page 15.
Sample Rate
(kHz) MCLK (MHz)
128x 192x 256x 384x 512x
64 8.1920 12.2880 16.3840 24.5760 32.7680
88.2 11.2896 16.9344 22.5792 33.8688 45.1584
96 12.2880 18.4320 24.5760 36.8640 49.1520
= Denotes clock ratio and sample rate combinations which are NOT supported under auto speed-
mode detection. Please see “Switching Characteristics - PCM” on page 15.
Sample Rate
(kHz) MCLK (MHz)
64x 96x 128x 192x 256x
176.4 11.2896 16.9344 22.5792 33.8688 45.1584
192 12.2880 18.4320 24.5760 36.8640 49.1520
= Denotes clock ratio and sample rate combinations which are NOT supported under auto speed-
mode detection. Please see “Switching Characteristics - PCM” on page 15.
22 DS671F2
CS4385
4.2 Mode Select
In Hardware Mode, operatio n is determined by the Mode Select pins. The states of these pins are continu-
ally scanned for any changes; however, the mode should only be changed while the device is in reset
(RST pin low) to ensure proper switching from one mode to another. Th ese pins require con nection to sup-
ply or ground as outlined in Figure 8. For M0, M1, and M2, supply is VLC. For M3 and M4, supply is VLS.
Tables 4 - 6 show the decode of these pin s .
In Software Mode, the operational mode and data format are set in the FM and DIF registers. See “PCM
Control (address 03h)” on page 38.
Table 4. PCM Digital Interface Format, Hardw a re Mode Options
M1
(DIF1) M0
(DIF0) DESCRIPTION FORMAT FIGURE
0 0 Left-Justified, up to 24-bit data 0 9
0 1 I²S, up to 24-bit data 1 10
1 0 Right-Justified, 16-bit Data 2 11
1 1 Right-Justified, 24-bit Data 3 12
M4 M3 M2
(DEM) DESCRIPTION
0 0 0 Single-Speed without De-Emphasis (4 to 50 kHz sample rates)
0 0 1 Single-Speed with 44.1 kHz De-Emphasis; see Figure 20
0 1 0 Double-Speed (50 to 100 kHz sample rates)
0 1 1 Quad-Speed (100 to 200 kHz sample rates)
1 0 0 Auto Speed-Mode Detect (32 kHz to 200 kHz sample rates)
1 0 1 Auto Speed-Mode Detect with 44.1 kHz De-Emphasis; see Figure 20
1 1 X DSD Processor Mode (see Table 6 for details)
Table 5. Mode Selection, Hardware Mode Op tions
M2 M1 M0 DESCRIPTION
000
64x oversampled DSD data with a 4x MCLK to DSD data rate
001
64x oversampled DSD data with a 6x MCLK to DSD data rate
010
64x oversampled DSD data with a 8x MCLK to DSD data rate
011
64x oversampled DSD data with a 12x MCLK to DSD data rate
100
128x oversampled DSD data with a 2x MCLK to DSD data rate
101
128x oversampled DSD data with a 3x MCLK to DSD data rate
110
128x oversampled DSD data with a 4x MCLK to DSD data rate
111
128x oversampled DSD data with a 6x MCLK to DSD data rate
Table 6. Direct Stream Digital (DSD), Hardware Mode Options
DS671F2 23
CS4385
4.3 Digital Interface Formats
The serial port operates as a slave and supports the I²S, Left-Justified, Right-Justified, One-Line Mode
(OLM) and TDM digital interface formats with varying bit depths from 16 to 32, as shown in Figures 9-19.
Data is clocked into the DAC on the rising edge. OLM and TDM configurations are only supported in Soft-
ware Mode.
LRCK
SCLK
Left Channel Right Channel
SDINx +3 +2 +1+5 +4
-1 -2 -3 -4 -5 +3 +2 +1+5 +4
-1 -2 -3 -4
MSB LSB MSB LSB
Figure 9. Format 0 - Left-Justified up to 24-bit Data
LRCK
SCLK
Left Channel Right Channel
SDINx +3 +2 +1+5 +4
-1 -2 -3 -4 -5 +3 +2 +1+5 +4
-1 -2 -3 -4
MSB MSB
LSB LSB
Figure 10. Format 1 - I²S up to 24-bit Data
LRCK
SCLK
Left Channel Right Channel
SDINx 6543210987
15 14 13 12 11 10 6543210987
15 14 13 12 11 10
32 clocks
Figure 11. Format 2 - Right-Justified 16-bit Data
LRCK
SCLK
Left Channel
SDINx 65432107
23 22 21 20 19 18 65432107
23 22 21 20 19 18
32 clocks
0
Right Channel
Figure 12. Format 3 - Right-Justified 24-bit Data
LRCK
SCLK
Left Channel Right Channel
SDINx 6543210987
15 14 13 12 11 10
10 6543210987
15 14 13 12 11 10
17 16 17 16
32 clocks
19 18 19 18
Figure 13. Format 4 - Right-Justified 20-bit Data
24 DS671F2
CS4385
4.3.1 OLM #1
OLM #1 serial audio interface format operates in Single-, Double-, or Quad-Speed Mode and will slave to
SCLK at 128 Fs. Six channels of MSB first 20-bit PCM data are input on SDIN1. The last two channels
are input on SDIN4.
4.3.2 OLM #2
OLM #2 serial audio interface format operates in Single-, Double-, or Quad-Speed Mode and will slave to
SCLK at 256 Fs. Six channels of MSB first 24-bit PCM data are input on SDIN1. The last two channels
are input on SDIN4.
LRCK
SCLK
Left Channel Right Channel
SDINx 6543210987
15 14 13 12 11 10
10 6543210987
15 14 13 12 11 10
17 16 17 16
32 clocks
Figure 14. Format 5 - Right-Justified 18-bit Data
LRCK
SCLK LSBMSB
20 clks
64 clks 64 clks
LSBMSB LSBMSB LSBMSB LSBMSB LSBMSB MSB
DAC_A1
20 clks 20 clks 20 clks 20 clks 20 clks
Left Channel Right Channel
20 clks 20 clks
SDIN4
SDIN1 DAC_A2 DAC_A3
DAC_A4
DAC_B1
DAC_B4
DAC_B2 DAC_B3
Figure 15. Format 8 - One- Line Mode 1
LSBMSB
24 clks
128 clks
LSBMSB LSBMSB LSBMSB LSBMSB LSBMSB MSB
DAC_A1
24 clks 24 clks 24 clks 24 clks 24 clks
Left Channel Right Channel
24 clks 24 clks
128 clks
LRCK
SCLK
SDIN1
SDIN4 DAC_A4
DAC_A2 DAC_A3 DAC_B1 DAC_B2 DAC_B3
DAC_B4
Figure 16. Format 9 - One-Line Mode 2
DS671F2 25
CS4385
4.3.3 OLM #3
OLM #3 serial audio interface format operates in Single-, Double-, or Quad-Speed Mode and will slave to
SCLK at 256 Fs. Eight channels of MSB first 20-bit PCM data are input on SDIN1.
4.3.4 OLM #4
OLM #4 serial audio interface format operates in Single-, Double-, or Quad-Speed Mode and will slave to
SCLK at 256 Fs. Eight channels of MSB first 24-bit PCM data are input on SDIN1.
LSBMSB
20 clks
128 clks
LSBMSB LSBMSB LSBMSB LSBMSB LSBMSB MSB
DAC_A1
20 clks 20 clks 20 clks 20 clks 20 clks
Left Channel Right Channel
128 clks
LRCK
SCLK
SDIN1 DAC_A2 DAC_A3 DAC_B1 DAC_B2 DAC_B3
LSBMSB
20 clks
DAC_A4
LSBMSB
20 clks
DAC_B4
Figure 17. Format 10 - One-Line Mode 3
LSBMSB
24 clks
128 clks
LSBMSB LSBMSB LSBMSB LSBMSB LSBMSB MSB
DAC_A1
24 clks 24 clks 24 clks 24 clks 24 clks
Left Channel Right Channel
128 clks
LRCK
SCLK
SDIN1 DAC_A2 DAC_A3 DAC_B1 DAC_B2 DAC_B3
LSBMSB
24 clks
DAC_A4
LSBMSB
24 clks
DAC_B4
Figure 18. Format 11 - One Line Mode 4
26 DS671F2
CS4385
4.3.5 TDM
The TDM serial audio interface format operates in Single-, Double-, or Quad-Speed Mode and will slave
to SCLK at 256 Fs. Data is received most significant bit first on the first SCLK after an LRC K transition
and is valid on the rising edge of SCLK. LRCK identifies the start of a new frame and is eq ual to the sam-
ple rate, Fs. LRCK is samp led as valid o n the rising SCLK ed ge prec eding th e most significa nt bit of the
first data sample and must be held valid fo r one SCLK period. Each time slot is 32 bits wide, with the valid
data sample left-justified within the time slot with the remaining bits being zero-padded.
4.4 Oversampling Modes
The CS4385 operates in one o f three oversamplin g modes base d on the input sample ra te. Mode selection
is determined by the M4, M3 and M2 pins in Hardware Mod e or the FM bits in Software Mode . Single-Speed
mode supports input sample rates up to 50 kHz and uses a 128x oversampling ratio. Double-Speed Mode
supports input sample rates up to 100 kHz and uses an oversampling ratio of 64x. Quad-Speed Mode sup-
ports input sample rates up to 200 kHz and uses an oversampling ratio of 32x.
The auto-speed mode detect feature allows for the automatic selectio n of spee d m ode ba sed off o f th e in-
coming sample rate. This allows the CS43 85 to accept a wid e rang e of sampl e rate s with no exte rnal inter -
vention necessary. The auto- speed mode detect featu re is available in both hardware and Software Mode.
4.5 Interpolation Filter
To accommodate the increasingly complex requireme nts of digital audio systems, the CS4385 incorporates
selectable interpolation filters for each mode of operation. A “fast” and a “slow” roll-off filter is available in
each of Single, Double, and Qua d- Spee d mode s. Th ese filters h ave b een de signe d to acco mmodate a va-
riety of musical tastes and styles. The FILT_SEL bit is used to select which filter is used (see the “Filter
Plots” on page 48 fo r mo re details).
When in Hardware Mode, only the “fast” roll-off filter is available.
Filter specifications can be found in Section 1, and filter response plots can be found in Figures 28 to 51.
DAC_B3
LRCK
SCLK
LSBMSB LSBMSB LSBMSB LSBMSB LSBMSB
SDIN1
DAC_A1 DAC_B1 DAC_A3DAC_A2
256 clks
32 clks 32 clks 32 clks 32 clks 32 clks
LSBMSB
DAC_A4
32 clks
LSBMSB
DAC_B2
32 clks
LSBMSB
DAC_B4
32 clks
LSB
LSBMSB zero
Data
Figure 19. Format 12 - TDM Mode
DS671F2 27
CS4385
4.6 De-Emphasis
The CS4385 includes on-chip d igital de-emphasis filters. The de-emphasis fe ature is included to accommo-
date older audio recordings that utilize pre-emphasis equalization as a means of noise reduction. Figure 20
shows the de-emphasis curve. The frequency response of the de-emphasis curve will s cale proportionally
with changes in sample rate, Fs if the input sample rate does not match the coefficient which has been se-
lected.
In Software M o de th e r equir ed d e- em pha sis filter coefficient s for 32 kHz, 44.1 kH z, or 48 kHz are selected
via the de-emphasis control bits.
In Hardware Mode only the 44.1 kHz coefficient is available (enabled through the M2 pin) . If the input sam-
ple rate is not 44.1 kHz and de-emphasis has been selected then the corner frequencies of the de-emphasis
filter will be scaled by a factor of the actual Fs over 44,100.
4.7 ATAPI Specification
The CS4385 implements the channel-mixing functions of the ATAPI CD-ROM specification. The
ATAPI functions are applied per A-B pair. Refer to Table 9 on page 45 and Figure 21 for additional infor ma-
tion.
Gain
dB
-10dB
0dB
Frequency
T2 = 15 µs
T1=50 µs
F1 F2
3.183 k Hz 10.61 kHz
Figure 20. De-Emphasis Curve
ΣΣ
A Channel
Volume
Control AoutAx
AoutBx
Left Channel
Audio Data
Right Channel
Audio Data
BChannel
Volume
Control
MUTE
MUTE
SDINx
Figure 21. ATAPI Block Diagram (x = channel pair 1, 2, 3, or 4)
28 DS671F2
CS4385
4.8 Direct Stream Digital (DSD) Mode
In Software Mode, the DSD/PCM bits (Reg. 02h) are used to configure the device for DSD Mode. The
DSD_DIF bits (Reg 04h) then control the expected DSD rate and MCLK ratio.
The DIR_DSD bit (Reg 04h) selects between two proprietary methods for DSD-to-analog conversion. The
first method use s a decim at i on -f re e D SD pr ocessing tech niqu e wh ich allo ws for fe atu r es s uc h a s ma tched
PCM-level output, DSD volume control, and 50kHz on-chip filter. The second method sends the DSD data
directly to the on-chip switched-capacitor filter for conversion (without the above-mentioned features).
The DSD_PM_EN bit (Reg. 04h) selects Phase Modulation (data plus data inverted) as the style of data
input. In this mode, the DSD_PM_mode bit selects whether a 128Fs or 64x clock is used for phase modu-
lated 64x data (see Figure 22). Use of Phase Modulation Mode may not directly affect the performance of
the CS4385, but may lower the sensitivity to board-level routing of the DSD data signals.
The CS4385 can detect errors in the DSD data which does not comply with the SACD specification. The
STATIC_DSD and INVALID_DSD bits (Reg. 04h) a llow the CS4385 to alte r the incoming invalid DSD data .
Depending on the error, the data may either be attenuated or replaced with a muted DSD signal (the
MUTEC pins would be set according to the DAMUTE bit (Reg. 08h)).
More information for any of these register bits can be found in Section 7. “Filter Plots” on page 48.
The DSD input structure and analog outputs are designed to handle a nominal 0 dB-SACD (50% modulation
index) at full rated performa nce. Sign als of +3 dB-SACD may be applied for b rief per iods of time, however ;
performance at these levels is not guaranteed. If sustained +3 dB-SACD levels are required, th e digital vol-
ume control should be set to -3.0 dB. This same volume control register affects PCM output levels. There
is no need to change the volume control setting between PCM and DSD in order to have the 0dB output
levels match (both 0 dBFS and 0 dB-SACD will output at -3 dB in this case).
BCKA
(128Fs)
BCKD
(64Fs)
DSD_SCLK
DSDAx,
DSDBx
D1 D1
D1D0 D2
D2D0
DSD_SCLK
DSDAx,
DSDBx
BCKA
(64Fs)
DSD_SCLK
DSD Phase
Modulati on Mode
DSD Nor mal Mode
Not Used
Not Used
Not Used
Figure 22. DSD Phase Modulation Mode Diagram
DS671F2 29
CS4385
4.9 Grounding and Power Supply Arrangements
As with any high-resolution converter, the CS4385 requires careful attention to power supply and grounding
arrangements if its potential perfor mance is to be realized . The Typical Connection Dia gram shows the rec-
ommended power arrangements, with VA, VD, VLC, and VLS connected to clean supplies. If the ground
planes are split between d igital ground and analo g ground, the GND pins of the CS4385 should be connect-
ed to the analog ground plane.
All signals, especially clocks, should be kept away from the FILT+ and VQ pins in order to avoid unwanted
coupling into the DAC.
4.9.1 Capacitor Placement
Decoupling capacitors should be placed as close to the DAC as possible, with the low value ceramic ca-
pacitor being the closest. To further minimize impedance, these capacitors should b e located on the same
layer as the DAC. If desired, all supply pins with similar voltage ratings may be connected to the same
supply, but a decoupling capacitor should still be placed on each supply pin.
Notes: All decoupling capacitors should be referenced to ground.
The CDB4385 evaluation board demonstrates the optimum layout and power supply arrangements.
4.10 Analog Output and Filtering
The application note “Design Notes for a 2-Pole Filter with Differential Input” discusses the second-order
Butterworth filter and differential to single-ended converter which was implemented on the CS4385 evalua-
tion board, CDB4385, as seen in Figure 24. The CS4385 does not include phase or amplitude compensa-
tion for an external filter. Therefore, the DAC system phase and amplitude response will be dependent on
the external analog circuitry. The off-chip filter has been designed to at tenuate the ty pical full-scale outp ut
level to below 2 Vrms.
Figure 23 shows how the full-scale differential analog output level specification is derived.
AOUT+
AOUT-
Full-Scale Output Level= (AOUT+) - (AOUT-)= 6.6 Vpp
4.15 V
2.5 V
0.85 V
4.15 V
2.5 V
0.85 V
Figure 23. Full-Scale Output
30 DS671F2
CS4385
4.11 The MUTEC Outputs
The MUTEC1 and MUTEC234 pins have an auto-polarity detect feature. The MUTEC output pins are high
impedance at the time of reset. The external mute circuitry needs to be self-biased into an active state in
order to be muted during re set. Upon release of rese t, the CS4385 will detect the status of the MUTEC pins
(high or low) and will then select that state as the polarity to drive when the mutes become active. The ex-
ternal-bias voltage level that the MUTEC pins see at t he time of releas e of reset must me et the “MUTEC
auto-detect input high/low voltage” specifications as outlined in the Digital Characteri stics section.
Figure 25 shows a single example of both an active high and an active low mute dr ive circuit. In these de -
signs, the pull-up and pull-d own resistors have been especially chosen to meet t he input high/low threshold
when used with the MMUN2111 and MMUN2211 internal bias resistances of 10 kΩ. Use of the Mute Control
function is not mandatory, but recommended, for designs requiring the absolute minimum in extraneous
clicks and pops. Also, use of the Mute Control function can enable the system designer to achieve idle chan-
nel noise/signal-to-noise ratios which are only limited by the external mute circuit.
Figure 24. Recommended Output Filter
DS671F2 31
CS4385
4.12 Recommended Power-Up Sequence
4.12.1 Hardware Mode
1. Hold RST low until the power supplies and configura tion pins are stable, and the ma ster and left/right
clocks are locked to the appropriate frequencies, as discussed in Section 4.1. In this state, the
registers are reset to the default settings, FILT+ will remain low, and VQ will be connected to VA/2.
If RST can not be held low long enough the SDINx pins should remain static low until all other clocks
are stable, and if possible the RST should be toggled low again once the system is stable.
2. Bring RST high. The device will remain in a low power state with FILT+ low and will initiate the
Hardware power-up sequence after approximately 512 LRCK cycles in Single-Speed Mode (1024
LRCK cycles in Double-Speed Mode, and 2048 LRCK cycles in Quad-Speed Mode).
Figure 25. Recommended Mute Circuitry
32 DS671F2
CS4385
4.12.2 Software Mode
1. Hold RST low until the power supply is stable, and the master and left/right clocks are locked to the
appropriate frequencies, as discussed in Section 4.1. In this state, the registers are reset to the default
settings, FILT+ will remain low, and VQ will be connected to VA/2.
2. Bring RST high. The device will remain in a low power state with FILT+ low for 512 LRCK cycles in
Single-Speed Mode (1024 LRCK cycles in Double-Speed Mode, and 2048 LR CK cycles in Quad-
Speed Mode).
3. In order to reduce the chances of clicks and pops, perform a write to the CP_EN bit prior to the
completion of approximately 51 2 LRCK cycles in Single- Speed Mod e (1024 LRCK cycles in Doub le-
Speed Mode, and 2048 LRCK cycles in Quad-Speed Mode). The desired register settings can be
loaded while keeping the PDN bit set to 1. Set the RMP_UP and RMP_DN bits to 1; then set the
format and mode control bits to the desired settings.
If more than the stated range of LRCK cycles passes before CPEN bit is written, the chip will enter
Hardware Mod e and begin to operate with the M0-M4 as the mode settings. CPEN bit may be written
at anytime, even after the Har dware sequence has begun. It is advised that if the CPEN bit cannot be
set in time, the SDINx pins should remain static low ( this way no audio data can be converted
incorrectly by th e Hardware Mode settings).
4. Set the PDN bit to 0. This will initiate the power-up sequence, which lasts approximately 50 µs .
4.13 Recommended Procedure for Switching Operational Modes
For systems where the ab solute minimu m in clicks and po ps is required , it is recommende d that the MUTE
bits are set prio r to changing sig nificant DAC fu nctions (suc h as changin g sample rate s or clock sour ces).
The mute bits may then be released after clocks have settled and the proper modes have been set.
It is required to have the device held in reset if the minimum high/low time specs of MC LK cannot be met
during clock source changes.
4.14 Control Port Interface
The control port is used to load all the internal register settings in order to operate in Software Mode (see
Section 7. “Filter Plots” on page 48). The operation of the control port may be completely asynchronous with
the audio sample rate. However, to avoid potential interference problems, the control port pins should re-
main static if no operation is required.
The control port operates in one of two modes: I²C or SPI.
4.14.1 MAP Auto Increment
The device has MAP (memory address pointer) auto-increment capability enabled by the INCR bit (also
the MSB) of the MAP. If INCR is set to 0, MAP will stay constant for successive I²C writes or reads and
SPI writes. If INCR is set to 1, MAP will auto-increment after each byte is written, allowing block reads or
writes of successive registers.
4.14.2 I²C Mode
In the I²C Mode, data is clocked into and out of the bi -directional serial control data line, SDA, by the serial
control port clock, SCL (see Figure 26 for the clock to data relationship). There is no CS pin. The AD0 pin
enables the user to alter the chip address ( 001100[AD0 ][R/W]) and should be tied to VLC or GND, as re-
quired, before power ing up th e device. If t he device ever de tects a h igh-to-lo w transitio n on the AD0 /CS
pin after power-up, SPI Mode will be selected.
DS671F2 33
CS4385
4.14.2.1 I²C Writ e
To write to the device, follow the procedure below while adhe ring to the control port Switching Specifica-
tions in Section 1.
1. Initiate a START condition to the I²C bus followed by the address byte. The upper 6 bits must be
001100. The seventh bi t must match the se tting of the AD0 pin, and the eighth must be 0. The eig hth
bit of the address byte is the R/W bit.
2. Wait for an acknowledge (ACK) from the part, then write to the memory address pointer, MAP. This
byte points to the register to be written.
3. Wait for an acknowledge (ACK) from the part, then write the desired da ta to the register poin ted to by
the MAP.
4. If the INCR bit (see Section 4.14.1) is set to 1, repeat the previous step until all the desired registers
are written, then initiate a STOP condition to the bus.
5. If the INCR bit is set to 0 and further I²C writes to other register s are d esired, it is necessar y to initi ate
a repeated START condition and follow the procedure detailed from step 1. If no fu rther writes to other
registers are desired, initiate a STOP condition to the bus.
4.14.2.2 I²C Read
To read from the device, follow the procedure below while adhering to the control port Switching Specifi-
cations.
1. Initiate a START condition to the I²C bus followed by the address byte. The upper 6 bits must be
001100. The seventh bi t must match the se tting of the AD0 pin, and the eighth must be 1. The eig hth
bit of the address byte is the R/W bit.
2. After transmitting an acknowledge (ACK), the device will then transmit the contents of the register
pointed to by the MAP. The MAP register will contain the address of the last register written to the
MAP, or the default addre ss ( see Section 4.14.1) if an I²C read is the first operation perfor med on the
device.
3. Once the device has transmitted the contents of the register pointed to by the MAP, issue an ACK.
4. If the INCR bit is set to 1, the device will continue to transmit the contents of successive registers. Con-
tinue providin g a cloc k an d issue an ACK afte r each byte until all the desir ed re gis te rs a re re ad , th en
initiate a STOP condition to the bus.
5. If the INCR bit is set to 0 and further I²C reads from other registers are desired, it is necessary to initiate
a repeated START condition and follow the procedure detailed from steps 1 and 2 from the I²C Write
instructions followed by step 1 of the I²C Rea d section. If no furthe r reads from othe r registers are de-
sired, initiate a STOP condition to the bus.
SDA
SCL
001100 ADDR
AD0 R/W
Start
ACK DATA
1-8 ACK DATA
1-8 ACK
Stop
Note: If operation is a write, this byte contains the Memory Address Pointer, MAP.
Note 1
Figure 26. Control Port Timing, I²C Mode
34 DS671F2
CS4385
4.14.3 SPI Mode
In SPI Mode, data is clocked into the serial control data line, CDIN, by the serial control port clock, CCLK
(see Figure 27 for the clock to data relationship). There is no AD0 pin. Pin CS is the chip se lect signal and
is used to control SPI writes to the control port. When the device detects a high to low transition on the
AD0/CS pin after power-up, SPI Mode will be selected. All signals are inputs and data is clocked in on the
rising edge of CCLK.
4.14.3.1 SPI Write
To write to the device, follow the procedure below while adhering to the control port Switching Specifica-
tions in Section 1.
1. Bring CS low.
2. The address byte on the CDIN pin must then be 00110000.
3. Write to the memory address pointer, MAP. This byte points to the register to be written.
4. Write the desired data to the register pointed to by the MAP.
5. If the INCR bit (see Sectio n 4.14.1 ) is set to 1, repeat the previous step until all the desired registers
are written, then bring CS high.
6. I f the INC R bit is set to 0 and further SPI writes to other registers are desired, it is necessary to bring
CS high, and follow the procedure detailed from step 1. If no further writes to other registers are de-
sired, bring CS high.
4.15 Memory Address Pointer (MAP)
4.15.1 INCR (Auto Map Increment Enable)
Default = ‘0’
0 - Disabled
1 - Enabled
4.15.2 MAP4-0 (Memory Address Pointer)
Default = ‘00000’
76543210
INCR Reserved Reserved MAP4 MAP3 MAP2 MAP1 MAP0
00000000
MAP
MSB LSB
DATA
byte 1 byte n
R/W
MAP = Memory Address Pointer
ADDRESS
CHIP
CDIN
CCLK
CS
0011000
Figure 27. Control Port Timing, SPI Mode
DS671F2 35
CS4385
5. REGISTER QUICK REFERENCE
Addr Function 7 6 5 4 3 2 1 0
01h Chip Revision PART4 PART3 PART2 PART1 PART0 REV REV REV
default 0 0 0 0 1 x x x
02h Mode Control CPEN FREEZE DSD/PCM DAC4_DIS DAC3_DIS DAC2_DIS DAC1_DIS PDN
default 0 0 0 0 0 0 0 1
03h PCM Control DIF3 DIF2 DIF1 DIF0 Reserved Reserved FM1 FM0
default 0 0 0 0 0 0 1 1
04h DSD Control DSD_DIF2 DSD_DIF1 DSD_DIF0 DIR_DSD STATIC_D
SD INVALID_D
SD DSD_PM_
MD DSD_PM_
EN
default 0 0 0 0 1 0 0 0
05h Filter Control Reserved Reserved Reserved Reserved Reserved Reserved Reserved FILT_SEL
default 0 0 0 0 0 0 0 0
06h Invert Control INV_B4 INV_A4 INV_B3 INV_A3 INV_B2 INV_A2 INV_B1 INV_A1
default 0 0 0 0 0 0 0 0
07h Group Control Reserved MUTEC Reserved P1_A=B P2_A=B P3_A=B P4_A=B SNGLVOL
default 0 0 0 0 0 0 0 0
08h Ramp and Mute SZC1 SZC0 RMP_UP RMP_DN PAMUTE DAMUTE MUTE_P1 MUTE_P0
default 1 0 1 1 1 1 0 0
09h Mute Control MUTE_B4 MUTE_A4 MUTE_B3 MUTE_A3 MUTE_B2 MUTE_A2 MUTE_B1 MUTE_A1
default 0 0 0 0 0 0 0 0
0Ah Mixing Control
Pair 1 (AOUTx1) Reserved P1_DEM1 P1_DEM0 P1ATAPI4 P1ATAPI3 P1ATAPI2 P1ATAPI1 P1ATAPI0
default 0 0 0 0 1 0 0 1
0Bh Vol. Control A1 A1_VOL7 A1_VOL6 A1_VOL5 A1_VOL4 A1_VOL3 A1_VOL2 A1_VOL1 A1_VOL0
default 0 0 0 0 0 0 0 0
0Ch Vol. Control B1 B1_VOL7 B1_VOL6 B1_VOL5 B1_VOL4 B1_VOL3 B1_VOL2 B1_VOL1 B1_VOL0
default 0 0 0 0 0 0 0 0
0Dh Mixing Control
Pair 2 (AOUTx1) Reserved P2_DEM1 P2_DEM0 P2ATAPI4 P2ATAPI3 P2ATAPI2 P2ATAPI1 P2ATAPI0
default 0 0 0 0 1 0 0 1
0Eh Vol. Control A2 A2_VOL7 A2_VOL6 A2_VOL5 A2_VOL4 A2_VOL3 A2_VOL2 A2_VOL1 A2_VOL 0
default 0 0 0 0 0 0 0 0
0Fh Vol. Control B2 B2_VOL7 B2_VOL6 B2_VOL5 B2_VOL4 B2_VOL3 B2_VOL2 B2_VOL1 B2_VOL0
default 0 0 0 0 0 0 0 0
10h Mixing Control
Pair 3 (AOUTx1) Reserved P3_DEM1 P3_DEM0 P3ATAPI4 P3ATAPI3 P3ATAPI2 P3ATAPI1 P3ATAPI0
default 0 0 0 0 1 0 0 1
11h Vol. Control A3 A3_VOL7 A3_VOL6 A3_VOL5 A3_VOL4 A3_VOL3 A3_ VOL2 A3_VOL1 A3_VOL0
default 0 0 0 0 0 0 0 0
12h Vol. Control B3 B3_VOL7 B3_VOL6 B3_VOL5 B3_VOL4 B3_VOL3 B3_VOL2 B3_VOL1 B3_VOL0
default 0 0 0 0 0 0 0 0
13h Mixing Control
Pair 4 (AOUTx1) Reserved P4_DEM1 P4_DEM0 P4ATAPI4 P4ATAPI3 P4ATAPI2 P4ATAPI1 P4ATAPI0
default 0 0 0 0 1 0 0 1
36 DS671F2
CS4385
14h Vol. Control A4 A4_VOL7 A4_VOL6 A4_VOL5 A4_VOL4 A 4_VOL3 A4_VOL2 A4_VOL1 A4_VOL0
default00000000
15h Vol. Control B4 B4_VOL7 B4_VOL6 B4_VOL5 B4_VOL4 B 4_VOL3 B4_VOL2 B4_VOL1 B4_VOL0
default00000000
16h PCM clock mode Reserved Reserved MCLKDIV Reserved Reserved Reserved Reserved Reserved
default00000000
Addr Function 7 6 5 4 3 2 1 0
DS671F2 37
CS4385
6. REGISTER DESCRIPTION
Note: All registers are read/write in I²C Mode and write only in SPI, unless otherwise noted.
6.1 Chip Revision (address 01h)
6.1.1 Part Number ID (PART) [Read Only]
00001- CS4385
Revision ID (REV) [Read Only]
000 - Revision A0
001 - Revision B0
Function:
This read-only register can be used to identify the model and revision number of the device.
6.2 Mode Control 1 (address 02h)
6.2.1 Control Port Enable (CPEN)
Default = 0
0 - Disabled
1 - Enabled
Function:
This bit defaults to 0, allowing the device to power-up in Stand-Alone Mode. The Control Port Mode can
be accessed by setting this bit to 1. This will allow the operation of the device to be controlled by the reg-
isters, and the pin definitions will conform to Control Port Mode. To accomplish a clean power-up, the user
should write this bit within 10 ms following the release of Reset.
6.2.2 Freeze Controls (FREEZE)
Default = 0
0 - Disabled
1 - Enabled
Function:
This funct ion allow s modif ications to be m ade to t he reg isters w ithout the ch anges ta king ef fect un til the
FREEZE is disabled. To make multiple changes in the Control port registers take effect simultaneously,
enable the FREEZE Bit, make all register changes, then Disable the FREEZE bit.
76543210
PART4 PART3 PART2 PART1 PART0 REV2 REV1 REV0
00001- - -
76543210
CPEN FREEZE DSD/PCM DAC4_DIS DAC3_DIS DAC2_DIS DAC1_DIS PDN
00000001
38 DS671F2
CS4385
6.2.3 PCM/DSD Selection (DSD/PCM)
Default = 0
0 - PCM
1 - DSD
Function:
This function selects DSD or PCM Mode. The appropriate data and clocks should be present before
changing modes, or else MUTE should be selected.
6.2.4 DAC Pair Disable (DACx_DIS)
Default = 0
0 - DAC Pair x Enabled
1 - DAC Pair x Disabled
Function:
When the bit is set, the respective DAC channel pair (AOUTAx and AOUTBx) will remain in a reset state.
It is advised that chan ges to th ese bits be made wh ile the powe r-down (PDN) bit is ena bled to elimin ate
the possibility of audible artifacts.
Note: When the device is configured in TDM Mode by setting the DI F[3: 0] bit s t o 1100 (see Digital In-
terface Fo rm a t (D I F)), this function is not available and these bits must be set to 0 for proper operation.
6.2.5 Power Down (PDN)
Default = 1
0 - Disabled
1 - Enabled
Function:
The entire device will enter a low-power state when this function is enabled, and the contents of the control
registers are retained in this mode. The power-down bit defaults to ‘enabled’ on power-up and must be
disabled before normal operation in Control Port Mode can occur.
6.3 PCM Control (address 03h)
6.3.1 Digital Interface Format (DIF)
Default = 0000 - Format 0 (Left-Justified, up to 24-bit data)
Function:
These bits select the interface format for the serial audio input. The DSD/PCM bit determines whether
PCM or DSD Mode is selected.
The required re lationship between the Left/Right clock, serial clock and serial data is defined by the Digital
Interface Format and the options are detailed in Figures 9 through 19.
Note: While in PCM Mode, the DIF bits shou ld only be changed whe n the power- down (PDN) bi t is set
to ensure proper switching from one mode to another.
76543210
DIF3 DIF2 DIF1 DIF0 Reserved Reserved FM1 FM0
00000011
DS671F2 39
CS4385
6.3.2 Functional Mode (FM)
Default = 11
00 - Single-Speed Mode (4 to 50 kHz sample rates)
01 - Double-Speed Mode (50 to 100 kHz sample rates)
10 - Quad-Speed Mode (100 to 200 kHz sample rates)
11 - Auto Speed Mode detect (32 kHz to 200 kHz sample rates)
Function:
Selects the required range of input sample rates or Auto Speed Mode.
6.4 DSD Control (address 04h)
6.4.1 DSD Mode Digital Interface Format (DSD_DIF)
Default = 000 - Format 0 (64x oversampled DSD data with a 4x MCLK to DSD data rate)
Function:
The relationship between the oversampling ratio of the DSD audio data and the required Master clock-to-
DSD-data rate is defined by the Digital Interface Format pins.
The DSD/PCM bit determines whether PCM or DSD Mode is sel ected.
DIF3 DIF2 DIF1 DIF0 DESCRIPTION FORMAT
0 0 0 0 Left-Justified, up to 24-bit data 0
0 0 0 1 I²S, up to 24-bit data 1
0 0 1 0 Right-Justified, 16-bit data 2
0 0 1 1 Right-Justified, 24-bit data 3
0 1 0 0 Right-Justified, 20-bit data 4
0 1 0 1 Right-Justified, 18-bit data 5
1000
One-Line Mode 1, 24-bit Data +SDIN4 8
1001
One-Line Mode 2, 20-bit Data +SDIN4 9
1010
One-Line Mode 3, 24-bit 6-channel 10
1011
One-Line Mode 4, 20-bit 6-channel 11
1100TDM 12
X X X X All other combinations are Reserved
Table 7. Digital Interface Formats - PCM Mode
765 4 3 2 1 0
DSD_DIF2 DSD_DIF1 DSD_DIF0 DIR_DSD STATIC_DSD INVALID_DSD DSD_PM_MD DSD_PM_EN
000 0 1 1 0 0
DIF2 DIF1 DIFO DESCRIPTION
0 0 0 64x oversampled DSD data with a 4x MCLK to DSD data rate
0 0 1 64x oversampled DSD data with a 6x MCLK to DSD data rate
0 1 0 64x oversampled DSD data with a 8x MCLK to DSD data rate
0 1 1 64x oversampled DSD data with a 12x MCLK to DSD data rate
1 0 0 128x oversampled DSD data with a 2x MCLK to DSD data rate
1 0 1 128x oversampled DSD data with a 3x MCLK to DSD data rate
1 1 0 128x oversampled DSD data with a 4x MCLK to DSD data rate
1 1 1 128x oversampled DSD data with a 6x MCLK to DSD data rate
Table 8. Digital Interface Formats - DSD Mode
40 DS671F2
CS4385
6.4.2 Direct DSD Conversion (DIR_DSD)
Function:
When set to 0 (default), DSD input da ta is sent to the DSD processor for filtering and volum e control func-
tions.
When set to 1, DSD input data is sent directly to the switched capacitor DACs for a pure DSD conversion .
In this mode, the full-scale DSD and PCM levels will not be matched (see Section 1), the dynami c ra ng e
performance may be reduced, the volume control is inactive, and the 50 kHz low pass filter is not available
(see Section 1 for filter specifications).
6.4.3 Static DSD Detect (STATIC_DSD)
Function:
When set to 1 (defa ult), the DSD processor che cks for 28 consecutive zeroes or ones and, if detected,
sends a mute signal to the DACs. The MUTEC pins will eventually go active according to the DAMUTE
register.
When set to 0, this function is disabled.
6.4.4 Invalid DSD Detect (INVALID_DSD)
Function:
When set to 1, the DSD processor checks for greater than 24 out of 28 bits of the same value and, if de-
tected, will attenuate the data sent to the DACs. The MUTEC pins go active according to the DAMU TE
register.
When set to 0 (default), this function is disabled.
6.4.5 DSD Phase Modulation Mode Select (DSD_PM_MODE)
Function:
When set to 0 (default), the 128Fs (BCKA) clock should be input to DSD_SCLK for Phase Modulation
Mode. (See Figure 22 on page 28)
When set to 1, the 64Fs (BCKD) clock should be input to DSD_SCLK for Phase Modulation Mode.
6.4.6 DSD Phase Modulation Mode Enable (DSD_PM_EN)
Function:
When set to 1 , DSD phase modulation input mode is enabled, and the DSD_PM_MODE bit sh ould be set
accordingly.
When set to 0 (default), this function is disabled (DSD normal mode).
DS671F2 41
CS4385
6.5 Filter Control (address 05h)
6.5.1 Interpolation Filter Select (FILT_SEL)
Function:
When set to 0 (default), the Interpolation Filter has a fast roll-off.
When set to 1, the Interpolation Filter has a slow roll-off.
The specifications for each filter can be found in the Analog characteristics table, and response p lots can
be found in Figures 28 to 51.
6.6 Invert Control (address 06h)
6.6.1 Invert Signal Polarity (Inv_xx)
Function:
When set to 1, this bit inverts the signal polarity of channel xx.
When set to 0 (default), this function is disabled.
6.7 Group Control (address 07h)
6.7.1 Mutec Pin Control (MUTEC)
Default = 0
0 - Two Mute control signals
1 - Single mute control signal on MUTEC1
Function:
Selects how the internal mute signals are routed to the MUTEC1 and MUTEC234 pins. When set to ‘0’,
a logical AND of DAC pair 1 mute control signals are output on MUTEC1 and a logical AND of the mute
control signals of DAC pairs 2, 3, and 4 are output on MUTEC234. When set to ‘1’, a logical AND of all
DAC pair mute control signals is output on the MUTEC1 pin, MUTEC234 will remain static. For more in-
formation on th e use of the mute control fu nction see the MUTEC1 and MUTEC234 pins in Section 4.11.
76543210
Reserved Reserved Reserved Reserved Reserved Reserved Reserved FILT_SEL
00000000
76543210
INV_B4 INV_A4 INV_B3 INV_A3 INV_B2 INV_A2 INV_B1 INV_A1
00000000
76543210
Reserved MUTEC Reserved P1_A=B P2_A=B P3_A=B P4_A=B SNGLVOL
00000000
42 DS671F2
CS4385
6.7.2 Channel A Volume = Channel B Volume (Px_A=B)
Default = 0
0 - Disabled
1 - Enabled
Function:
The AOUTAx and AOUTBx volume levels are independently controlled by the A and the B Channel Vol-
ume Control Bytes when this function is disabled. The volume on both AOUTAx and AOUTBx are deter-
mined by the A Channel Attenuation and Volume Control Bytes (per A-B pair), and the B Channel Bytes
are ignored when this function is enabled.
6.7.3 Single Volume Control (SNGLVOL)
Default = 0
0 - Disabled
1 - Enabled
Function:
The individual channel volume levels are independently controlled by their respective Volume Control
Bytes when this function is disabled. The volume on all channels is determined by the A1 Channel Volume
Control Byte, and the other Volume Control Bytes are ignor ed when this function is enabled.
6.8 Ramp and Mute (address 08h)
6.8.1 Soft Ramp and Zero Cross CONTROL (SZC)
Default = 10
00 - Immediate Change
01 - Zero Cross
10 - Soft Ramp
11 - Soft Ramp on Zero Crossings
Function:
Immediate Change
When Immediate Change is selected, all level changes will take effect immediately in one step.
Zero Cross
Zero Cross Enable dictates that signal-level changes, either by attenuation changes or muting, will occur
on a signal zero crossing to minimize audible artifacts. The requested level change will occur after a tim-
eout period between 512 and 1024 sample periods (10.7 ms to 21.3 ms at 48 kHz sample rate) if the signal
does not encounter a zero crossing. The zero cross function is independently monitored and implemented
for each channel.
Soft Ramp
Soft Ramp allows level changes, both muting and attenuation, to be imp lemented by incrementa lly ramp-
ing, in 1/8 dB steps, from the current level to the new level at a rate of 1 dB per 8 left/right clock periods.
76543210
SZC1 SZC0 RMP_UP RMP_DN PAMUTE DAMUTE MUTE_P1 MUTE_P0
10111100
DS671F2 43
CS4385
Soft Ramp on Zero Crossing
Soft Ramp and Zero Cross Enable dictates that signal-level changes, either by attenuation changes or
muting, will occur in 1/8 dB steps and be implemented on a signal zero crossing. The 1/8 dB level change
will occur after a timeout period between 512 and 1024 sample periods (10.7 ms to 21.3 ms at 48 kHz
sample rate) if the signal does not encounter a zero crossing. The zero cross function is independently
monitored and implemented for each channel.
6.8.2 Soft Volume Ramp-Up after Error (RMP_UP)
Function:
An un-mute will be performed after executing an LRCK/MCLK ratio change or error, and after changing
the Functional Mode.
When set to 1 (default), this unmute is effected, similar to attenuation changes, by the Soft and Zero Cross
bits in the Volume and Mixing Control register.
When set to 0, an immediate unmute is performed in these instances.
Note: For best results, it is recommended that this feature be used in conjunction with the RMP_DN bit.
6.8.3 Soft Ramp-Down before Filter Mode Change (RMP_DN)
Function:
If either the FILT_SEL or DEM bits are changed the DAC will stop conversion for a period of time to
change its filter values. This bit selects how the data is effected prior to and after the change of the filter
values.
When set to 1 (default), a mute will be performed prior to executing a filter mode change and an un-mute
will be performed after executing the filter mode change. This mute and un-mute are effected, similar to
attenuation changes, by the Soft and Zero Cross bits in the Volume and Mixing Control register.
When set to 0, an immediate mute is performed prior to executing a filter mode change.
Note: For best results, it is recommended that this feature be used in conjunction with the RMP_UP bit.
6.8.4 P CM Auto-Mute (PAMUTE)
Function:
When set to 1 (default), the Digital-to-Analog converter output will mute following the reception of 8192
consecutive audio samples of static 0 or -1. A single sample of non-static data will release the mute. De-
tection and muting is done independently for each channel. The quiescent voltage on the output will be
retained and the Mute Control pin will go active during the mute period.
When set to 0, this function is disabled.
44 DS671F2
CS4385
6.8.5 DSD Auto-Mute (DAMUTE)
Function:
When set to 1 (default), the Digital-to-Analog converter output will mute following the reception of 256 re-
peated 8-bit DSD mute patterns (as defined in the SACD specification).
A single bit not fitting the repeated mute pattern (mentioned above) will release the mute. Detection and
muting is done independently for each channel. The quiescent voltage on the output will be retained, and
the Mute Control pin will go active during the mute period.
6.8.6 MUTE Polarity and DETECT (MUTEP1:0)
Default = 00
00 - Auto polarity detect, selected from MUTEC1 pin
01 - Reserved
10 - Active low mute polarity
11 - Active high mute polarity
Function:
Auto mute polar ity de te ct (0 0)
See Section 4.11 “The MUTEC Outputs” on page 30 for description.
Active low mute polarity (10)
When RST is low, the outputs are high impedance and will need to be biased active. Once reset has been
released and after this bit is set, the MUTEC output pins will be active low polarity.
Active high mute polar ity (1 1)
At reset time, the outputs are high impedance and will need to be biased active. Once reset has been
released and after this bit is set, the MUTEC output pins will be active high polarity.
6.9 Mute Control (address 09h)
6.9.1 Mute (MUTE_xx)
Default = 0
0 - Disabled
1 - Enabled
Function:
The Digital-to-Analog converter output will mute when enabled. The quiescent voltage on the output will
be retained. The muting function is affected, similarly to attenuation changes, by the Soft and Ze ro Cross
bits. The MUTE pins will go active during the mute period according to the MUTEC bit.
76543210
MUTE_B4 MUTE_A4 MUTE_B3 MUTE_A3 MUTE_B2 MUTE_A2 MUTE_B1 MUTE_A1
00000000
DS671F2 45
CS4385
6.10 Mixing Control (address 0Ah, 0Dh, 10h, 13h)
6.10.1 De-Emphasis Control (PX_DEM1:0)
Default = 00
00 - Disabled
01 - 44.1 kHz
10 - 48 kHz
11 - 32 kHz
Function:
Selects the appropriate digital filter to maintain the standard 15 μs/50 μs digital de-emphasis filter re-
sponse at 32, 44 .1 or 48 kHz sample rates. (see Figure 20)
De-emphasis is only available in Single-Speed Mode.
6.10.2 ATAPI Channel Mixing and Muting (ATAPI)
Default = 01001 - AOUTAx=aL, AOUTBx=bR (Stereo)
Function:
The CS4385 implements the channel-mixing functions of the ATAPI CD-ROM specification. The ATAPI
functions are applied per A-B pair. Refer to Table 9 and Figure 21 for additional information.
76543210
Reserved Px_DEM1 Px_DEM0 PxATAPI4 PxATAPI3 PxATAPI2 PxATAPI1 PxATAPI0
00001001
ATAPI4 ATAPI3 ATAPI2 ATAPI1 ATAPI0 AOUTAx AOUTBx
00000 MUTE MUTE
00001 MUTE bR
00010 MUTE bL
0 0 0 1 1 MUTE b[(L+R)/2]
00100 aR MUTE
00101 aR bR
00110 aR bL
00111 aR b[(L+R)/2]
01000 aL MUTE
01001 aL bR
01010 aL bL
0 1 0 1 1 aL b[(L+R)/2]
01100 a[(L+R)/2] MUTE
0 1 1 0 1 a[(L+R)/2] bR
0 1 1 1 0 a[(L+R)/2] bL
0 1 1 1 1 a[(L+R)/2] b[(L+R)/2]
10000 MUTE MUTE
10001 MUTE bR
10010 MUTE bL
Table 9. ATAPI Decode Table
46 DS671F2
CS4385
6.11 Volume Control (address 0Bh, 0Ch, 0Eh, 0Fh, 11h, 12h, 14h, 15h)
These eight registers provide individual volume and mute control for each of the eight channels.
The values for “xx” in the bit fields above are as follows:
Register address 0Bh - xx = A1
Register address 0Ch - xx = B1
Register address 0Eh - xx = A2
Register address 0Fh - xx = B2
Register address 11h - xx = A3
Register address 12h - xx = B3
Register address 14h - xx = A4
Register address 15h - xx = B4
6.11.1 Digital Volume Control (xx_VOL7:0)
Default = 00h (0 dB)
Function:
The Digital Volume Control registers allow independent control of the signal levels in 1/2 dB increments
from 0 to -127.5 dB. Volume settings are decoded as sho wn in Table 10. The volume changes are imple-
mented as dictated by the Soft and Zero Cross bits in the Power and Muting Control register. Note that
the values in the volume setting column in Table 10 are approximate. The actual attenuation is determined
by taking the decimal value of the volume register and multiplying by 6.02/12.
1 0 0 1 1 MUTE [(bL+aR)/2]
10100 aR MUTE
10101 aR bR
10110 aR bL
1 0 1 1 1 aR [(aL+bR)/2]
11000 aL MUTE
11001 aL bR
11010 aL bL
1 1 0 1 1 aL [(aL+bR)/2]
1 1 1 0 0 [(aL+bR)/2] MUTE
1 1 1 0 1 [(aL+bR)/2] bR
1 1 1 1 0 [(bL+aR)/2] bL
1 1 1 1 1 [(aL+bR)/2] [(aL+bR)/2]
76543210
xx_VOL7 xx_VOL6 xx_VOL5 xx_VOL4 xx_VOL3 xx_VOL2 xx_VOL1 xx_VOL0
00000000
Binary Code Decimal Value Volume Setting
00000000 0 0 dB
00000001 1 -0.5 dB
00000110 6 -3.0 dB
11111111 255 -127.5 dB
Table 10. Example Digital Volume Settings
ATAPI4 ATAPI3 ATAPI2 ATAPI1 ATAPI0 AOUTAx AOUTBx
Table 9. ATAPI Decode Table
DS671F2 47
CS4385
6.12 PCM Clock Mode (address 16h)
6.12.1 Master Clock DIVIDE by 2 ENABLE (MCLKDIV)
Function:
When set to 1, the MCLKDIV bit enables a circuit which divides the externally applied MCLK signal by 2
prior to all other internal circuitry.
When set to 0 (default), MCLK is unchanged.
76543210
Reserved Reserved MCLKDIV Reserved Reserved Reserved Reserved Reserved
00000000
48 DS671F2
CS4385
7. FILTER PLOTS
0.4 0.5 0.6 0.7 0.8 0.9
1
−120
−100
−80
−60
−40
−20
0
Frequency(normalized to Fs)
Amplitude (dB)
0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.
6
−120
−100
−80
−60
−40
−20
0
Frequency(normalized to Fs)
Amplitude (dB)
Figure 28. Single-Speed (fast) Stopband Rejectio n F igure 29. Single-Speed (fast) Transition Band
0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.5
5
−10
−9
−8
−7
−6
−5
−4
−3
−2
−1
0
Frequency(normalized to Fs)
Amplitude (dB)
00.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0.
5
−0.02
−0.015
−0.01
−0.005
0
0.005
0.01
0.015
0.02
Frequency(normalized to Fs)
Amplitude (dB)
Figure 30. Single-Speed (fast) Transition Band (detail) Figure 31. Single-Speed (fast) Passband Ripple
0.4 0.5 0.6 0.7 0.8 0.9
1
−120
−100
−80
−60
−40
−20
0
Frequency(normalized to Fs)
Amplitude (dB)
0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.
6
−120
−100
−80
−60
−40
−20
0
Frequency(normalized to Fs)
Amplitude (dB)
Figure 32. Single-Speed (slow) Stopband Reject ion Figure 33. Single-Speed (slow) Transition Band
DS671F2 49
CS4385
00.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0.
5
−0.02
−0.015
−0.01
−0.005
0
0.005
0.01
0.015
0.02
Frequency(normalized to Fs)
Amplitude (dB)
0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.5
−10
−9
−8
−7
−6
−5
−4
−3
−2
−1
0
Frequency(normalized to Fs)
Amplitude (dB)
Figure 34. Single-Speed (slow) Transition Band (detail) Figure 35. Single-Speed (slow) Passband Ripple
0.4 0.5 0.6 0.7 0.8 0.9
1
120
100
80
60
40
20
0
Frequency(normalized to Fs)
Amplitude (dB)
0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.
6
120
100
80
60
40
20
0
Frequency(normalized to Fs)
Amplitude (dB)
Figure 36. Double-Spee d (fas t) Stop ba n d Rejec t ion Figure 37. Double-Speed (fast) Transition Band
0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.5
5
10
9
8
7
6
5
4
3
2
1
0
Frequency(normalized to Fs)
Amplitude (dB)
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.
5
0.02
0.015
0.01
0.005
0
0.005
0.01
0.015
0.02
Frequency(normalized to Fs)
Amplitude (dB)
Figure 38. Double-Speed (fast) Tran sitio n Ban d (detail) Figure 39. Dou ble-Sp eed (fast) Passband Ripple
50 DS671F2
CS4385
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1
120
100
80
60
40
20
0
Frequency(normalized to Fs)
Amplitude (dB)
0.2 0.3 0.4 0.5 0.6 0.7 0.
8
120
100
80
60
40
20
0
Frequency(normalized to Fs)
Amplitude (dB)
Figure 40. Double-Speed (slow) Stopband Rejection Figure 41. Double-Speed (slow) Transition Band
0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.5
5
10
9
8
7
6
5
4
3
2
1
0
Frequency(normalized to Fs)
Amplitude (dB)
0 0.05 0.1 0.15 0.2 0.25 0.3 0.3
5
0.02
0.015
0.01
0.005
0
0.005
0.01
0.015
0.02
Frequency(normalized to Fs)
Amplitude (dB)
Figure 42. Doub le-Speed (slow) Transition Ba nd (detail) Figure 43. Double-Speed (slow) Passband Ripple
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1
120
100
80
60
40
20
0
Frequency(normalized to Fs)
Amplitude (dB)
0.2 0.3 0.4 0.5 0.6 0.7 0.
8
120
100
80
60
40
20
0
Frequency(normalized to Fs)
Amplitude (dB)
Figure 44. Quad-Speed (fast) Stopband Rejection Figure 45. Quad-Speed (fast) Transition Band
DS671F2 51
CS4385
0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.5
5
10
9
8
7
6
5
4
3
2
1
0
Frequency(normalized to Fs)
Amplitude (dB)
0 0.05 0.1 0.15 0.2 0.2
5
0.2
0.15
0.1
0.05
0
0.05
0.1
0.15
0.2
Frequency(normalized to Fs)
Amplitude (dB)
Figure 46. Quad-Speed (fast) Transition Band (detail) Figure 47. Quad-Speed (fast) Passband Ripple
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1
120
100
80
60
40
20
0
Frequency(normalized to Fs)
Amplitude (dB)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.
9
120
100
80
60
40
20
0
Frequency(normalized to Fs)
Amplitude (dB)
Figure 48. Quad-Speed (slow) Stopband Rejection Figure 49. Quad-Speed (slow) Transition Band
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.
9
120
100
80
60
40
20
0
Frequency(normalized to Fs)
Amplitude (dB)
0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.5
5
10
9
8
7
6
5
4
3
2
1
0
Frequency(normalized to Fs)
Amplitude (dB)
0 0.02 0.04 0.06 0.08 0.1 0.1
2
0.02
0.015
0.01
0.005
0
0.005
0.01
0.015
0.02
Frequency(normalized to Fs)
Amplitude (dB)
Figure 50. Quad-Speed (slow) Transition Ban d (detail) Figure 51. Quad-Speed (slow) Passband Ripple
52 DS671F2
CS4385
8. PARAMETER DEFINITIONS
Total Harmonic Distortion + Noise (THD+N)
The ratio of the rms value of the signal to the rm s sum of all other spectral components over the specified
bandwidth (typically 10 Hz to 20 kHz), including distortion components. Expressed in decibels.
Dynamic Range
The ratio of the full-scale rms value of the sig nal to the rms sum of all other spectral components over the
specified bandwidth. Dynamic range is a signal-to-noise measurement over the specified bandwidth
made with a -60 dBFS signal. 60 dB is then added to the resulting measurement to refer the measure-
ment to full scale. This technique ensures that the distortion components are below the noise level and
do not affect the measuremen t. This measurement techniqu e has been accepted by th e Audio Engineer -
ing Society, AES17-1991, and the Electronic Industries Association of Japan, EIAJ CP-307.
Interchannel Isolation
A measure of crosstalk between the left and right channels. Measured for each channel at the converter' s
output with all zeros to the input under test and a full-scale signal applied to the other channe l. Un its in
decibels.
Interchannel Gain Mismatch
The gain difference between left and right channels. Units in decibels.
Gain DriftThe change in gain value with temper at ur e. Units in pp m C.
DS671F2 53
CS4385
9. PACKAGE DIMENSIONS
INCHES MILLIMETERS
DIM MIN NOM MAX MIN NOM MAX
A --- 0.055 0.063 --- 1.40 1.60
A1 0.002 0.004 0.006 0.05 0.10 0.15
B 0.007 0.009 0.011 0.17 0.22 0.27
D 0.343 0.354 0.366 8.70 9.0 BSC 9.30
D1 0.272 0.28 0.280 6.90 7.0 BSC 7.10
E 0.343 0.354 0.366 8.70 9.0 BSC 9.30
E1 0.272 0.28 0.280 6.90 7.0 BSC 7.10
e* 0.016 0.020 0.024 0.40 0.50 BSC 0.60
L 0.018 0.24 0.030 0.45 0.60 0.75
µ 0.000° 7.000° 0.00° 7.00°
* Nominal pin pi tch is 0.50 mm
*Controlling dimension is mm.
*JEDEC Designation: MS022
48L LQFP PACKAGE DRAWING
E1
E
D1
D
1
eB
L
A1
A
54 DS671F2
CS4385
10.ORDERING INFORMATION
11.REFERENCES
1. How to Achieve O ptimum Per formance fr om Delta-Sigma A/D & D/A Converters, by Stev en Harris. Pape r
presented at the 93rd Convention of the Audio Engineering Society, October 1992.
2. CDB4385 data sheet, available at http://www.cirrus.com.
3. Design Notes for a 2-Pole Filter with Differential Input, by Steven Green. Cirrus Logic Application Note AN48
4. The I²C-Bus Specification: Versio n 2. 0, Philips Semiconductors, December 1998.
http://www.semiconductors.philips.com.
12.REVISION HISTORY
Product Description Package Pb-Free Grade Temp Range Container Order #
CS4385 114 dB, 192 kHz 8-chan-
nel D/A Converter 48-pin
LQFP YES Commercial -40°C to +85°C Tray CS4385-CQZ
Tape & Reel CS4385-CQZR
Automotive -40°C to +105°C Tray CS4385-DQZ
Tape & Reel CS4385-DQZR
CDB4385 CS4385 Evaluation Board - - - - CDB4385
Release Changes
PP3
Updated Guaranteed Ope r ati onal Temperature Range in “Recommended Operati ng Conditions” on page 8.
Updated VA, VLC, and VLS current cunsumption specs
Updated Fullscale output level
Updated Dynamic perforamn c e limits.
Removed VOH speci fication
Updated VOL specification
Updated TDM timing specs
F1
Updated “Recommended Operating Cond itions” on page 8
Updated “DAC Analog Characteristics - Commercial (-CQZ )” on page 9
Updated “DAC Analog Characteristics - Automotive (-DQZ)” on page 10
Updated “Power and Thermal Characteristics” on page 11
Updated Legal Information on page 55
F2
Updated “DAC Pair Disable (DACx_DIS)” on page 38
Updated “Digital Interface F ormat (DIF)” on page 38
Added PCM mode format changeable in reset only to “Mode Select” on page 22
Updated Package Thermal Resistance in “Power and Thermal Characteristics” on page 11
DS671F2 55
CS4385
Contacting Cirrus Logic Support
For all product questions and inquiries, contact a Cirrus Logic Sales Representative.
To find the one near e st to yo u, go to www.cirrus.com
IMPORTANT NOTICE
Cirrus Logic, Inc. and its sub sidiaries ("Cirrus") believe that the information con tained in this document is accurate and reliable. However, the information is subject
to chang e withou t noti ce and is provide d "AS I S" without warrant y of any kind (ex press or implie d). Cust omers are advised to obtain the latest version of relevant
information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sa le
supplied at the time of order acknowled gment, including th ose pertaining to warra nty, indemnification, and limitation of liability. No r esponsibility is assu med by Cirrus
for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of pate nts or other righ ts of thir d
parties. This docu m ent is the prop erty of Cirrus and by fu rnishing this information, Cirrus grants no license, express or implied under any paten ts, mask work rights,
copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained here in and gives con-
sent for copies to be made of the informa tion only for use with in yo ur o rga ni zatio n with resp ect to C irrus in te grated circuits or other products of Cirrus. This consent
does not extend to othe r co pying such as copying for ge ne ral distribution, adver tising or pro m o tion al p ur poses, or for creating any work for resa le.
CERTAIN APPLICAT IONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL I NJU RY, OR SEVERE P ROP-
ERTY OR EN VIRONMEN TAL DAMA GE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE
IN PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRIT-
ICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCT S IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK AND CIR-
RUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR PARTICULAR PURPOSE, WITH REGARD T O ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF TH E CUSTOMER OR CUSTOM-
ER’S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY
INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRI BUTORS AND OTHER AGENTS FROM ANY AND ALL LI ABILI TY, INCLUDING AT-
TORNEYS’ FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES.
Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks
or service marks of their resp ective owners.
I²C is a regis t er ed trademar k o f P h ilips Semiconduc to r.
SPI is a trademark of Mo toro la , Inc.