SPECIFICATION
Device Name :
Type Name :
Spec. No. :
H04-004-07b
1
16
Power Integrated Module
7MBR100U4B120-50
MS6M 0961
MS6M0961
(RoHS compliant product)
K.Yamada
K.Muramatsu
T.Miyasaka
Feb. 02 06
M.Watanabe
Feb. 02 06
H04-004-06b
R e v i s e d R e c o r d s
2
16
Date Classi-
fication Ind. Content Applied
date Drawn Checked Checked Approved
Enactment Issued
date
MS6M0961
K.Yamada T.Miyasaka
Feb.-02-06 M.Watanabe
H04-004-03a
16
MS6M0961
3
2. Equivalent circuit
1. Outline Drawing ( Unit : mm )
23(N)
2(S) 3(T)1(R)
21(P) 22(P1)
7(B)
24(N1)
13(Gx)
19(Eu)
20
(Gu)
18
(Gv)
17(Ev)
4(U)
12(Gy) 11(Gz)
5(V)
15(Ew)
16
(Gw)
6(W)
10(En)
98
[ Converter ] [ Brake ] [ Inverter ] [ Thermistor ]
14(Gb)
(RoHS compliant product)
7MBR100U4B120-50
H04-004-03a
16
MS6M0961
4
3.Absolute Maximum Ratings ( at Tc= 25°C unless otherwise specified )
Tc=25°C
Tc=80°C
Tc=25°C
Tc=80°C
Tc=25°C
Tc=80°C
Tc=25°C
Tc=80°C
(*1) All terminals should be connected together when isolation test will be done.
(*2) Two thermistor terminals should be connected together, each other terminals should be connected together
and shorted to base plate when isolation test will be done.
(*3) Recommendable Value : 2.5~3.5 Nm (M5)
AIo
Converter
A2sI2tI2t (Non-Repetitive)
520
1352
Surge Current (Non-Repetitive) IFSM A
V
50Hz/60Hz
Average Output Current
Repetitive peak reverse Voltage VRRM 1600
sine wave 100
Repetitive peak reverse Voltage (Diode) V
Brake
Collector Power Dissipation Pc 1 device 205
VRRM
A
1200
Icp 1ms 100
70
W
Gate-Emitter voltage VGES ±20
35
Collector current
Ic
Continuous
Continuous
Tj=150°C, 10ms
half sine wave
VGES
AC : 1min.
1200
Ic
Icp
100
75
200
150
Items Symbols Conditions
VCES
Inverter
Collector-Emitter voltage
Gate-Emitter voltage
Collector current
Collector Power Dissipation
VAC
N m3.5
V
±20 V
1200 V
V
50
Junction temperature
-Ic 100
200
390
-Ic pulse
Pc
Tj
1 device
150
Screw
Torque -
Collector-Emitter voltage VCES
Tstg
Mounting (*3)
between terminal and copper base (*1)
between thermistor and others (*2)
Storage temperature
Isolation
voltage Viso
-40 ~ +125
Units
Maximum
Ratings
A
°C
W
1ms
1ms
2500
H04-004-03a
16
MS6M0961
5
4. Electrical characteristics ( at Tj= 25°C unless otherwise specified)
VGE=0V
UnitsItems Symbols Conditions Characteristics
min. typ. max.
Gate-Emitter
leakage current
Turn-off time
Turn-on time
Inverter
0.38
VGE(th)
Rg = 9.1 Ω
tf
toff
tr
tr (i)
VCE=10V,VGE=0V,f=1MHz
Vcc = 600V
Ic = 100A
VGE=±15V
0.41-
0.03-
IGES
Zero gate voltage
Collector current ICES
ton
CiesInput capacitance
Collector-Emitter
saturation voltage
VCE(sat)
(terminal)
VCE(sat)
(chip)
Gate-Emitter
threshold voltage
Reverse recovery time
Zero gate voltage
Collector current
Brake
Turn-off time
μsIF = 100A
- 5000 -
- 0.35
mA
-
VGE = 0V
2.35
2.90-
520
-
-
- 200
1.0-
-
-
Ω
T =100°C 465
-
V
2.40
-
2.10
VF
(chip)
Tj= 25°C -
Tj=125°C
IF = 100A
trr
2.60 2.85
2.60
- 2.95
-
-
-
-
1.00
μs
nF-
0.30
1.20
0.60
-
0.07
VCE = 0V -
4.5
2.45
- 2.10
-
8
VGE=±20V
-
-
-
VCE = 1200V
6.5
VGE = 0V
Ic = 100mA
VCE = 20V
-
0.13
nA
1.0 mA
200
V
-
8.5 V
2.85
-
2.35
Thermistor
Resistance R T = 25°C
B
495
B value K3305 3375 3450T = 25/50°C
IGES VCE = 0V
VCE = 1200V
ICES
Forward on voltage
VF
(terminal)
Tj=125°C
Tj= 25°C
Tj=125°C
Tj= 25°C
Tj=125°C
Ic = 100A
VGE=15V Tj= 25°C
nA
VGE=±20V
Tj= 25°C
V
- 2.00 2.40
- 2.35
Tj=125°C
- 2.25 2.65
- 2.60 -
VCE(sat)
(chip) Ic = 50A Tj= 25°C
Tj=125°C -
Turn-on time ton Vcc = 600V - 0.53 1.20
Collector-Emitter
saturation voltage
VCE(sat)
(terminal) VGE=15V
μs
tr Ic = 50A - 0.43 0.60
VGE=±15V 1.00
tf - 0.07 0.30
toff
Rg = 33 Ω
-
1.0 mAIRRM
- 1.55
VFM -
VR=1200V - -
Gate-Emitter
leakage current
chip - 1.40
Forward on voltage VGE=0V
IF = 100A
terminal
Reverse current
0.37
- 1.0 mA
Converter
Reverse current IRRM VR=1600V -
1.90 V
5. Thermal resistance characteristics
Brake IGBT
Converter Diode
(1device) (*4)
(*4) This is the value which is defined mounting on the additional cooling fin with thermal compound.
-
Contact Thermal resistance
Thermal resistance(1device) -
-
Rth(j-c)
Inverter IGBT 0.32
- - 0.58Inverter FWD
-
Units
min. typ. max.
°C/W
-
-
-
Items Symbols Conditions Characteristics
0.60
0.50
Rth(c-f) with Thermal Compound - 0.05
H04-004-03a
16
MS6M0961
6
6. Indication on module
7.Applicable category
This specification is applied to Power Integrated Module named 7MBR100U4B120-50 .
8.Storage and transportation notes
The module should be stored at a standard temperature of 5 to 35°C and humidity of 45 to 75% .
Be careful to solderability of the terminals if the module has passed over one
year from manufacturing date, under the above storage condition.
Store modules in a place with few temperature changes in order to avoid condensation on the
module surface.
Avoid exposure to corrosive gases and dust.
Avoid excessive external force on the module.
Store modules with unprocessed terminals.
Do not drop or otherwise shock the modules when transporting.
9. Definitions of switching time
10. Packing and Labeling
Display on the packing box
- Logo of production
- Type name
- Lot No
- Products quantity in a packing box
7MBR100U4B120-50
Lot.No. Place of manufacturing (code)
Logo of production
100A 1200V
L
V cc
Ic
VCE
RG
VGE
VGE
VCE
Ic
0V
0A
0V
10%
90%
10% 10%
90%
90%
0V
Ic
VCE
o n
t
r
t
r ( i )
t
o f f
t
f
t
r r
I
r r
t
H04-004-03a
16
MS6M0961
7
11. List of material (スト)
12. RoHS Directive Compliance(RoHS
 本PIMは富士電機デバイステクノロジーが発行しているRoHSに関する資料MS5F6209を適用する。
 日本語版(MS5F6212)は参考資料とする。
The document (MS5F6209) about RoHS that Fuji Electric Device Technology issued is applied to this Power
Integrated Module. The Japanese Edition(MS5F6212) is made into a reference grade.
No. Parts Material (main) Ref.
1 Base Plate Cu Ni plating
Ni plating (Internal)
Lead free solder plating (External)
3 Cover PPS resin UL 94V-0
4 Case PPS resin UL 94V-0
5 Isolation substrate Al2O3 + Cu
6 IGBT chip Silicon
7 Wiring Aluminum
8 Silicone Gel Silicone resin
9 Adhesive Silicone resin
10 Solder (Under chip) Sn/Ag base (Not drawn in above)
Solder
(Under Isolation substrate )
12 Label Paper (Not drawn in above)
13 FWD chip Silicon
14 Ring Fe Trivalent Chromate treatment
15 Thermistor Lead glass
(Not drawn in above)
2 Terminal
11 Sn/Ag base
Cu
(Total weight of soldering material(typ) : 8.9 g)
H04-004-03a
16
MS6M0961
8
13. Reliability test results
Reliability Test Items
Test
cate-
gories
Test items Test methods and conditions
Reference norms
EIAJ ED-4701
(Aug.-2001 edition)
Number
of
sample
Accept-
ance
number
1 Terminal Strength Pull force : 20N Test Method 401 5 ( 0 : 1 )
(Pull test) Test time : 10±1 sec. Method
2 Mounting Strength Screw torque : 2.5 ~ 3.5 Nm (M5) Test Method 402 5 ( 0 : 1 )
Test time : 10±1 sec. method
3 Vibration Range of frequency : 10 ~ 500Hz Test Method 403 5 ( 0 : 1 )
Sweeping time : 15 min. Reference 1
Acceleration :
100m/s
2
Condition code B
Sweeping direction : Each X,Y,Z axis
Test time : 6 hr. (2hr./direction)
4 Shock Maximum acceleration :
5000m/s
2
Test Method 404 5 ( 0 : 1 )
Pulse width : 1.0msec. Condition code B
Direction : Each X,Y,Z axis
Test time : 3 times/direction
5 Solderabitlity Solder temp. : 245±5 Test Method 303 5 ( 0 : 1 )
Immersion time : 5±0.5sec.
Test time : 1 time
Solder Alloy : Sn-Ag-Cu
Each terminal should be Immersed in solder
within 1~1.5mm from the body.
6 Resistance to Solder temp. : 260±5 Test Method 302 5 ( 0 : 1 )
Soldering Heat Immersion time : 10±1sec. Condition code A
Test time : 1 time
Each terminal should be Immersed in solder
within 1~1.5mm from the body.
1 High Temperature Storage temp. : 125±5 Test Method 201 5 ( 0 : 1 )
Storage Test duration : 1000hr.
2 Low Temperature Storage temp. : -40±5 Test Method 202 5 ( 0 : 1 )
Storage Test duration : 1000hr.
3 Temperature Storage temp. : 85±2 Test Method 103 5 ( 0 : 1 )
Humidity Relative humidity : 85±5% Test code C
Storage Test duration : 1000hr.
4 Unsaturated Test temp. : 120±2 Test Method 103 5 ( 0 : 1 )
Pressurized Vapor Test humidity : 85±5% Test code E
Test duration : 96hr.
5 Temperature Test Method 105 5 ( 0 : 1 )
Cycle Test temp. : Low temp. -40±5
High temp. 125 ±5
RT 5 ~ 35
Dwell time : High ~ RT ~ Low ~ RT
1hr. 0.5hr. 1hr. 0.5hr.
Number of cycles : 100 cycles
6 Thermal Shock
+0 Test Method 307 5 ( 0 : 1 )
Test temp. : High temp. 100
-5
method
+5 Condition code A
Low temp. 0
-0
Used liquid : Water with ice and boiling water
Dipping time : 5 min. par each temp.
Transfer time : 10 sec.
Number of cycles : 10 cycles
Mechanical Tests
Environment Tests
H04-004-03a
16
MS6M0961
9
Failure Criteria
Item Characteristic Symbol Failure criteria Unit Note
Lower limit Upper limit
Electrical Leakage current ICES - USL×2 mA
characteristic ±IGES - USL×2 A
Gate threshold voltage VGE(th) LSL×0.8 USL×1.2 mA
Saturation voltage VCE(sat) - USL×1.2 V
Forward voltage VF - USL×1.2 V
Thermal IGBT VGE - USL×1.2 mV
resistance or VCE
FWD VF - USL×1.2 mV
Isolation voltage Viso Broken insulation -
Visual Visual inspection
inspection Peeling - The visual sample -
Plating
and the others
LSL : Lower specified limit.
USL : Upper specified limit.
Note :
Each parameter measurement read-outs shall be made after stabilizing the components
at room ambient for 2 hours minimum, 24 hours maximum after removal from the tests.
And in case of the wetting tests, for example, moisture resistance tests, each component
shall be made wipe or dry completely before the measurement.
Each parameter measurement read-outs shall be made after stabilizing the components
at room ambient for 2 hours minimum, 24 hours maximum after removal from the tests.
And in case of the wetting tests, for example, moisture resistance tests, each component
shall be made wipe or dry completely before the measurement.
Test
cate-
gories
Test items Test methods and conditions
Reference norms
EIAJ ED-4701
(Aug.-2001 edition)
Number
of
sample
Accept-
ance
number
1 High temperature Test Method 101 5 ( 0 : 1 )
Reverse Bias Test temp. :
Ta = 125
±
5
(for Collector-Emitter)
(Tj
150
)
Bias Voltage : VC = 0.8×VCES
Bias Method : Applied DC voltage to C-E
VGE = 0V
Test duration : 1000hr.
2 High temperature Test Method 101 5 ( 0 : 1 )
Bias
(for gate)
Test temp. : Ta = 125±5
(Tj
150
)
Bias Voltage : VC = VGE = +20V or -20V
Bias Method : Applied DC voltage to G-E
VCE = 0V
Test duration : 1000hr.
3 Temperature Test Method 102 5 ( 0 : 1 )
Humidity Bias Test temp. : 85±2
o
CCondition code C
Relative humidity : 85±5%
Bias Voltage : VC = 0.8×VCES
Bias Method : Applied DC voltage to C-E
VGE = 0V
Test duration : 1000hr.
4 Intermitted ON time : 2 sec. Test Method 106 5 ( 0 : 1 )
Operating Life OFF time : 18 sec.
(Power cycle) Test temp. :
Tj=100±5 deg
( for IGBT )
Tj
150
, Ta=25±5
Number of cycles : 15000 cycles
Endurance Tests
H04-004-03a
16
MS6M0961
10
Reliability Test Results
Test
cate-
gories
Test items
Reference
norms
EIAJ ED-4701
(Aug.-2001 edition)
Number
of test
sample
Number
of
failure
sample
1 Terminal Strength Test Method 401 5 0
(Pull test) Method
2 Mounting Strength Test Method 402 5 0
method
3 Vibration Test Method 403 5 0
Condition code B
4 Shock Test Method 404 5 0
Condition code B
5 Solderability Test Method 303 5 0
6 Resistance to Soldering Heat Test Method 302 5 0
Condition code A
1 High Temperature Storage Test Method 201 5 0
2 Low Temperature Storage Test Method 202 5 0
3 Temperature Humidity Test Method 103 5 0
Storage Test code C
4 Unsaturated Test Method 103 5 0
Pressurized Vapor Test code E
5 Temperature Cycle Test Method 105 5 0
6 Thermal Shock Test Method 307 5 0
method
Condition code A
1 High temperature Reverse Bias Test Method 101 5 0
2 High temperature Bias Test Method 101 5 0
( for gate )
3 Temperature Humidity Bias Test Method 102 5 0
Condition code C
4 Intermitted Operating Life Test Method 106 5 0
(Power cycling)
( for IGBT )
Mechanical Tests
Environment Tests
Endurance Tests Environment Tests
H04-004-03a
16
MS6M0961
11
Vcc=600V Ic=100ATj= 25°CVGE=0V, f= 1MHz, Tj= 25°C
Capacitance vs. Collector-Emitter voltage (typ.) Dynamic Gate charge (typ.)
Tj= 25°C / chip
VGE=15V / chip Tj=25°C / chip
[ Inverter ] [ Inverter ]
Collector current vs. Collector-Emitter voltage (typ.)
Collector-Emitter voltage vs. Gate-Emitter voltage (typ.)
[ Inverter ] [ Inverter ]
[ Inverter ] [ Inverter ]
Tj= 125°C / chip
Collector current vs. Collector-Emitter voltage (typ.) Collector current vs. Collector-Emitter voltage (typ.)
0
50
100
150
200
0 1 2 3 4 5
Collector-Emitter voltage : VCE [V]
Collector current : Ic [A]
VGE=20V 15V
12V
10V
8V
0
50
100
150
200
0 1 2 3 4 5
Collector-Emitter voltage : VCE [V]
Collector current : Ic [A]
VGE=20V 15V 12V
10V
8V
0
50
100
150
200
0 1 2 3 4 5
Collector-Emitter voltage : VCE [V]
Collector current : Ic [A]
Tj=125°C
Tj=25°C
0
2
4
6
8
10
5 10 15 20 25
Gate-Emitter voltage : VGE [V]
Collector - Emitter voltage : VCE [ V ]
Ic=150A
Ic=75A
Ic=37.5A
0.1
1.0
10.0
100.0
0 10 20 30
Collector-Emitter voltage : VCE [V]
Capacitance : Cies, Coes, Cres [ nF ]
Cies
Coes
Cres
0 100 200 300 400
Gate charge : Qg [nC]
Collector-Emitter voltage : VCE [ 200V/div ]
Gate - Emitter voltage : VGE [ 5V/div ]
0
VGE
VCE
H04-004-03a
16
MS6M0961
12
+VGE=15V,-VGE <= 15V, RG >= 9.1Ω ,Tj <= 125°C
Switching loss vs. Collector current (typ.)
Vcc=600V, VGE=±15V, Rg=9.1Ω
Switching loss vs. Gate resistance (typ.)
[ Inverter ] [ Inverter ]
Vcc=600V, Ic=100A, VGE=±15V, Tj= 25°C
Switching time vs. Gate resistance (typ.)
Reverse bias safe operating area (max.)
Vcc=600V, Ic=100A, VGE=±15V, Tj= 125°C
[ Inverter ] [ Inverter ]
[ Inverter ] [ Inverter ]
Switching time vs. Collector current (typ.)
Vcc=600V, VGE=±15V, Rg=9.1Ω, Tj= 25°C
Switching time vs. Collector current (typ.)
Vcc=600V, VGE=±15V, Rg=9.1Ω, Tj=125°C
10
100
1000
10000
0 50 100 150
Collector current : Ic [A]
Switching time : ton, tr, toff, tf [ nsec ]
ton
10
100
1000
10000
0 50 100 150
Collector current : Ic [A]
Switching time : ton, tr, toff, tf [ nsec ]
10
100
1000
10000
1 10 100 1000
Gate resistance : Rg [Ω]
Switching time : ton, tr, toff, tf [ nsec ]
tr
tf
toff
ton
0
2
4
6
8
10
12
14
0 50 100 150
Collector current : Ic [A]
Eon(125°C)
Eon(25°C)
Eoff(125°C)
Err(125°C)
Err(25°C)
Eoff(25°C)
0
10
20
30
40
1 10 100 1000
Gate resistance : Rg [Ω]
Eoff
Err
Eon
Switching loss : Eon, Eoff, Err [mJ/pulse ]
0
50
100
150
200
250
0 400 800 1200
Collector-Emitter voltage : VCE [V]
Collector current : Ic [A]
toff
tr
tf
toff
tr
tf
ton
Switching loss : Eon, Eoff, Err [mJ/pulse ]
H04-004-03a
16
MS6M0961
13
Forward current vs. Forward on voltage (typ.)
Transient thermal resistance (max.) Temperature characteristic (typ.)
[ Inverter ] [ Inverter ]
[ Thermistor ]
Reverse recovery characteristics (typ.)
Vcc=600V, VGE=±15V, Rg=9.1Ω
Forward current vs. Forward on voltage (typ.)
chip
chip
[ Converter ]
0.1
1
10
100
-60 -40 -20 0 20 40 60 80 100 120 140 160 180
Resistance : R [kΩ]
Temperature [°C ]
0
20
40
60
80
100
120
0 1 2 3 4
Forward on voltage : VF [V]
Forward current : IF [A]
Tj=125°C
Tj=25°C
10
100
1000
0 25 50 75 100 125
Forward current : IF [A]
Reverse recovery current : Irr [ A ]
Reverse recovery time : trr [ nsec ]
trr (125°C)
0.010
0.100
1.000
0.001 0.010 0.100 1.000
Pulse width : Pw [sec]
Thermal resistanse : Rth(j-c) [ °C/W ]
FWD[Inverter]
IGBT[Brake]
IGBT[Inverter]
0
20
40
60
80
100
120
0.0 0.5 1.0 1.5 2.0 2.5
Forward on voltage : VFM [V]
Forward current : IF [A]
Tj=125°C
Tj=25°C
Conv. Diode
Irr (125°C)
Irr (25°C)
trr (25°C)
H04-004-03a
16
MS6M0961
14
Capacitance vs. Collector-Emitter voltage (typ.)
Vcc=600V Ic=50ATj= 25°CVGE=0V, f= 1MHz, Tj= 25°C
Dynamic Gate charge (typ.)
Tj= 25°C / chip
VGE=15V / chip Tj=25°C / chip
[ Brake ] [ Brake ]
Collector current vs. Collector-Emitter voltage (typ.)
Collector-Emitter voltage vs. Gate-Emitter voltage (typ.)
[ Brake ] [ Brake ]
[ Brake ] [ Brake ]
Tj= 125°C / chip
Collector current vs. Collector-Emitter voltage (typ.) Collector current vs. Collector-Emitter voltage (typ.)
0
10
20
30
40
50
60
70
80
0 1 2 3 4 5
Collector-Emitter voltage : VCE [V]
Collector current : Ic [A]
VGE=20V
15V 12V
10V
8V
0
10
20
30
40
50
60
70
80
0 1 2 3 4 5
Collector-Emitter voltage : VCE [V]
Collector current : Ic [A]
VGE=20V 15V 12V
10V
8V
0
10
20
30
40
50
60
70
80
0 1 2 3 4 5
Collector-Emitter voltage : VCE [V]
Collector current : Ic [A]
Tj=125°C
Tj=25°C
0
2
4
6
8
10
5 10 15 20 25
Gate-Emitter voltage : VGE [V]
Collector - Emitter voltage : VCE [ V ]
Ic=70A
Ic=35A
Ic=17.5A
0.1
1.0
10.0
0 10 20 30
Collector-Emitter voltage : VCE [V]
Cies
Coes
Cres
0 50 100 150 200
Gate charge : Qg [nC]
Collector-Emitter voltage : VCE [ 200V/div ]
Gate - Emitter voltage : VGE [ 5V/div ]
0
VGE
VCE
Capacitance : Cies,Coes,Cres [nF]
H04-004-03a
16
MS6M0961
15
Warnings
- This product shall be used within its absolute maximum rating (voltage, current, and temperature). This product
may be broken in case of using beyond the ratings. If Printed Circuit Board is not suitable, the main pin terminals
may have higher temperature than Tstg. Also the pin terminals shall be used within Tstg.
製品の絶対最大定格(電圧,電流,温度等)の範囲内で御使用下さい。絶対最大定格を超えて使用すると、素子が破壊する
場合があります。また、使用するプリント板が不適切な場合、主端子ピンの温度がTstg以上になることがあります。主端子ピン
もTstg範囲内でご使用下さい。
- Connect adequate fuse or protector of circuit between three-phase line and this product to prevent the equipment
from causing secondary destruction, such as fire, its spreading, or explosion.
万一の不慮の事故で素子が破壊した場合を考慮し、商用電源と本製品の間に適切な容量のヒューズ又はブレーカーを必ず
付けて火災,爆発,延焼等の2次破壊を防いでください。
-Use this product after realizing enough working on environment and considering of product's reliability life.
This product may be broken before target life of the system in case of using beyond the product's reliability life.
製品の使用環境を十分に把握し、製品の信頼性寿命が満足できるか検討の上、本製品を適用して下さい。製品の信頼性寿命
を超えて使用した場合、装置の目標寿命より前に素子が破壊する場合があります
-When electric power is connected to equipments, rush current will be flown through rectifying diode to charge
DC capacitor. Guaranteed value of the rush current is specified as I
2
t (non-repetitive), however frequent rush
current through the diode might make it's power cycle destruction occur because of the repetitive power.
In application which has such frequent rush current, well consideration to product life time (i.e. suppressing
the rush current) is necessary.
電源投入時に整流用ダイオードには、コンデンサーを充電する為の突入電流が流れます。この突入電流に対する保証値は
I2t(非繰返し)として表記されていますが、この突入電流が頻繁に流れるとI2t破壊とは別に整流用ダイオードの繰返し負荷に
よるパワーサイクル耐量破壊を起こす可能性があります。突入電流が頻繁に流れるようなアプリケーションでは、突入電流値
を抑えるなど、製品寿命に十分留意してご使用下さい。
-If the product had been used in the environment with acid, organic matter, and corrosive gas ( hydrogen sulfide,
sulfurous acid gas), the product's performance and appearance can not be ensured easily.
酸・有機物・腐食性ガス(硫化水素,亜硫酸ガス等)を含む環境下で使用された場合、製品機能・外観等の保証はできません。
-Use this product within the power cycle curve (Technical Rep.No. : MT5F12959). Power cycle capability is
classified to delta-Tj mode which is stated as above and delta-Tc mode. Delta-Tc mode is due to rise and down
of case temperature (Tc), and depends on cooling design of equipment which use this product. In application
which has such frequent rise and down of Tc, well consideration of product life time is necessary.
本製品は、パワーサイクル寿命カーブ以下で使用下さい(技術資料No.: MT5F12959)。パワーサイクル耐量にはこのΔTjによる
場合の他に、ΔTcによる場合があります。これはケース温度(Tc)の上昇下降による熱ストレスであり、本製品をご使用する際
の放熱設計に依存します。ケース温度の上昇下降が頻繁に起こる場合は、製品寿命に十分留意してご使用下さい。
-Never add mechanical stress to deform the main or control terminal. The deformed terminal may cause poor
contact problem.
主端子及び制御端子に応力を与えて変形させないで下さい。 端子の変形により、接触不良などを引き起こす場合があります
-Use this product with keeping the cooling fin's flatness between screw holes within 100um at 100mm and the
roughness within 10um. Also keep the tightening torque within the limits of this specification. Too large convex
of cooling fin may cause isolation breakdown and this may lead to a critical accident. On the other hand, too
large concave of cooling fin makes gap between this product and the fin bigger, then, thermal conductivity will
be worse and over heat destruction may occur.
冷却フィンはネジ取り付け位置間で平坦度を
100mm
100um
以下、表面の粗さは
10um
以下にして下さい。 過大な凸反り
があったりすると本品が絶縁破壊を起こし、重大事故に発展する場合があります。また、過大な凹反りやゆがみ等があると、
本製品と冷却フインの間に空隙が生じて放熱が悪くなり、熱破壊に繋がることがあります。
-In case of mounting this product on cooling fin, use thermal compound to secure thermal conductivity. If the
thermal compound amount was not enough or its applying method was not suitable, its spreading will not be
enough, then, thermal conductivity will be worse and thermal run away destruction may occur.
Confirm spreading state of the thermal compound when its applying to this product.
(Spreading state of the thermal compound can be confirmed by removing this product after mounting.)
素子を冷却フィンに取り付ける際には、熱伝導を確保するためのコンウンド等をご使用ください。又、塗布量が不足したり、
塗布方法が不適だったりすると、コンパウンドが十分に素子全体に広がらず、放熱悪化による熱破壊に繋がる事があります。
コンバウンドを塗布する際には、製品全面にコンパウンドが広がっている事を確認してください。
(実装した後に素子を取りはずすとコンパウンドの広がり具合を確認する事が出来ます。)
-It shall be confirmed that IGBT's operating locus of the turn-off voltage and current are within the RBSOA
specification. This product may be broken if the locus is out of the RBSOA.
ターンオフ電圧・電流の動作軌跡がRBSOA仕様内にあることを確認し下さい。RBSOAの範囲を超えて使用すると素子が破壊
する可能性があります
H04-004-03a
16
MS6M0961
16
Cautions
- Fuji Electric Device Technology is constantly making every endeavor to improve the product quality and reliability.
However, semiconductor products may rarely happen to fail or malfunction. To prevent accidents causing injury or
death, damage to property like by fire, and other social damage resulted from a failure or malfunction of
the Fuji Electric Device Technology semiconductor products, take some measures to keep safety such as redundant
design, spread-fire-preventive design, and malfunction-protective design.
富士電機デバイステクノロジーは絶えず製品の品質と信頼性の向上に努めています。しかし、半導体製品は故障が発生したり、
誤動作する場合があります。富士電機デバイステクノロジー製半導体製品の故障または誤動作が、結果として人身事故・火災
等による財産に対る損害や社会的な損害を起こさないように冗長設計・延焼防止設計・誤動作防止設計など安全確保
のための手段を講じて下さい。
-
The application examples described in this specification only explain typical ones that used the
Fuji Electric Device
Technology products. This specification never ensure to enforce the industrial property and other rights, nor license the
enforcement rights.
本仕様書に記載してある応用例は、富士電機デバイステクノロジー製品を使用した代表的な応用例を説明するものであり、
本仕様書によって工業所有権、その他権利の実施に対する障または実施権の許諾を行うものではありません。
- The product described in this specification is not designed nor made for being applied to the equipment or
systems used under life-threatening situations. When you consider applying the product of this specification
to particular used, such as vehicle-mounted units, shipboard equipment, aerospace equipment, medical devices,
atomic control systems and submarine relaying equipment or systems, please apply after confirmation
of this product to be satisfied about system construction and required reliability.
本仕様書に記載された製品は、人命にかかわるよな状況下で使用される機器あるいはシステムに用いられることを
目的として設計・製造されたものではありません。本仕様書製品を車両機器、船舶、航空宇宙、医療機器、原子力
制御、海底中継機器あるいはシステムなど、特殊用途へのご利用をご検討の際は、システム構成及び要求品質に
満足することをご確認の上、ご利用下さい。
If there is any unclear matter in this specification, please contact Fuji Electric Device Technology Co.,Ltd.
Warnings
-If excessive static electricity is applied to the control terminals, the devices may be broken. Implement some
countermeasures against static electricity.
制御端子に過大な静電気が印加された場合、素子が破壊する場合があります。取り扱い時は静電気対策を実施して下さい。
-Never add the excessive mechanical stress to the main or control terminals when the product is applied to
equipments. The module structure may be broken.
素子を装置に実装する際に、主端子や制御端子に過大な応力与えないで下さい。端子構造が破壊する可能性があります。
-In case of insufficient -VGE, erroneous turn-on of IGBT may occur. -VGE shall be set enough value to prevent
this malfunction. (Recommended value : -VGE = -15V)
逆バイアスゲート電圧-VGEが不足しますと誤点弧を起こす可能性があります。誤点弧を起こさない為に-VGEは十分な値で
設定して下さい。 (推奨値 : -VGE = -15V)
-In case of higher turn-on dv/dt of IGBT, erroneous turn-on of opposite arm IGBT may occur. Use this product in
the most suitable drive conditions, such as +VGE, -VGE, RG to prevent the malfunction.
ターンオン dv/dt が高いと対抗アームのIGBTが誤点弧を起こす能性があります。誤点弧を起こさない為の最適なドライブ
条件(+VGE, -VGE, RG等)でご使用下さい。
- This product may be broken by avalanche in case of VCE beyond maximum rating VCES is applied between
C-E terminals. Use this product within its absolute maximum voltage.
VCES
えた
電圧
印加
された
場合
アバランシェ
こして
素子破壊
する
場合
があります
VCE
絶対定格
範囲内
でご
使用下
さい