AR
C
HIVE INF
O
RMATI
O
N
ARCHIVE INFORMATION
1
MRF15090MOTOROLA RF DEVICE DATA
The RF Line
 
  
Designed for 26 volts microwave large–signal, common emitter, class A and
class AB linear amplifier applications in industrial and commercial FM/AM
equipment operating in the range 1400–1600 MHz.
Specified 26 Volts, 1490 MHz, Class AB Characteristics
Output Power — 90 Watts (PEP)
Gain — 7.5 dB Min @ 90 Watts (PEP)
Collector Efficiency — 30% Min @ 90 Watts (PEP)
Intermodulation Distortion — –28 dBc Max @ 90 Watts (PEP)
Third Order Intercept Point — 56.5 dBm Typ @ 1490 MHz, VCE = 24 Vdc,
IC = 5 Adc
Characterized with Series Equivalent Large–Signal Parameters from
1400–1600 MHz
Characterized with Small–Signal S–Parameters from 1000–2000 MHz
Silicon Nitride Passivated
100% Tested for Load Mismatch Stress at All Phase Angles with 3:1 Load
VSWR @ 28 Vdc, and Rated Output Power
Gold Metallized, Emitter Ballasted for Long Life and Resistance to
Metal Migration
Circuit board photomaster available upon request by contacting
RF Tactical Marketing in Phoenix, AZ.
MAXIMUM RATINGS
Rating Symbol Value Unit
Collector–Emitter Voltage VCEO 25 Vdc
Collector–Emitter Voltage VCES 60 Vdc
Emitter–Base Voltage VEBO 4 Vdc
Collector–Current — Continuous @ TJ(max) = 150°C IC15 Adc
Total Device Dissipation @ TC = 25°C
Derate above 25°C
PD250
1.43
Watts
W/°C
Storage Temperature Range Tstg 65 to +150 °C
THERMAL CHARACTERISTICS
Characteristic Symbol Max Unit
Thermal Resistance, Junction to Case RθJC 0.70 °C/W
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted.)
Characteristic Symbol Min Typ Max Unit
OFF CHARACTERISTICS
Collector–Emitter Breakdown Voltage
(IC = 50 mAdc, IB = 0)
V(BR)CEO 25 28 Vdc
Collector–Emitter Breakdown Voltage
(IC = 50 mAdc, VBE = 0)
V(BR)CES 60 65 Vdc
Collector–Emitter Breakdown Voltage
(IC = 50 mAdc, RBE = 100 )
V(BR)CER 30 Vdc
(continued)
Order this document
by MRF15090/D

SEMICONDUCTOR TECHNICAL DATA

90 W, 1.5 GHz
RF POWER TRANSISTOR
NPN SILICON
CASE 375A–01, STYLE 1
Motorola, Inc. 1998
REV 7
AR
C
HIVE INF
O
RMATI
O
N
ARCHIVE INFORMATION
MRF15090
2
MOTOROLA RF DEVICE DATA
ELECTRICAL CHARACTERISTICS — continued (TC = 25°C unless otherwise noted.)
Characteristic Symbol Min Typ Max Unit
OFF CHARACTERISTICS — continued
Emitter–Base Breakdown Voltage
(IE = 5 mAdc, IC = 0)
V(BR)EBO 4 4.8 Vdc
Collector Cutoff Current
(VCE = 30 Vdc, VBE = 0)
ICES 10 mAdc
ON CHARACTERISTICS
DC Current Gain
(ICE = 1 Adc, VCE = 5 Vdc)
hFE 20 40 80
DYNAMIC CHARACTERISTICS
Output Capacitance
(VCB = 26 Vdc, IE = 0, f = 1 MHz) –
For Information Only. This Part Is Collector Matched.
Cob 52 pF
FUNCTIONAL TESTS (Figure 12)
Common–Emitter Amplifier Power Gain
(VCC = 26 Vdc, Pout = 90 W (PEP), ICQ = 250 mA,
f1 = 1490 MHz, f2 = 1490.1 MHz)
Gpe 7.5 8.3 dB
Collector Efficiency
(VCC = 26 Vdc, Pout = 90 W (PEP), ICQ = 250 mA,
f1 = 1490 MHz, f2 = 1490.1 MHz)
η30 36 %
Intermodulation Distortion
(VCC = 26 Vdc, Pout = 90 W (PEP), ICQ = 250 mA,
f1 = 1490 MHz, f2 = 1490.1 MHz)
IMD –32 –28 dBc
Input Return Loss
(VCC = 26 Vdc, Pout = 90 W (PEP), ICQ = 250 mA,
f1 = 1490 MHz, f2 = 1490.1 MHz)
IRL 12 15 dB
Load Mismatch
(VCC = 28 Vdc, Pout = 90 W (PEP), ICQ = 250 mA,
f1 = 1490 MHz, f2 = 1490.1 MHz, Load VSWR = 3:1, All Phase
Angles at Frequency of Test)
ψ
No Degradation in Output Power
AR
C
HIVE INF
O
RMATI
O
N
ARCHIVE INFORMATION
3
MRF15090MOTOROLA RF DEVICE DATA
TYPICAL CHARACTERISTICS
 


  
  
!"#$ %"
&
!" &

Figure 1. Output Power & Power Gain
versus Input Power
&
!" '%  %%

(
)
(

Figure 2. Output Power versus Frequency
&
&))
* +', -./
&)(
(
)

&) & & &

'%'%%%
&) &
'%'%%%
&
01
(1
(1
21

&) & &) &(&)
  
  
*& &)0 -./
* &)01& -./
23
η


  
*& &)0 -./
* &)01& -./
 & 
2 
 
 
  
*& &)0 -./
* &)01& -./
& 
 
 
 2 
&
Figure 3. Intermodulation Distortion
versus Output Power
45
 '%'%  %% 
45
45
)
45)
456
Figure 4. Performance in Broadband Circuit
&
&))
* +', -./
&)(
(
)
&  ( &)
-7%-7'8%7%%
Figure 5. Intermodulation Distortion
versus Output Power
45
1&
 '%'%  %% 
45
45 &
45)
456
Figure 6. Power Gain versus Output Power
 '%'%  %% 
&
&
&
& & &
&) &
1&
6
)
2
(
0
&
0
2
6
&
&) &&)
45
45
45)
456
-7%-7'8%7%%
3
69 99


)
6
&
&1
1
1
61
'%
η88%
++,:
  
  
* &)0 -./ !"#$ %"
 0 
  
  
&1
AR
C
HIVE INF
O
RMATI
O
N
ARCHIVE INFORMATION
MRF15090
4
MOTOROLA RF DEVICE DATA
TYPICAL CHARACTERISTICS
69 99
+";";$
 ) 
1 
*& &)0 -./
* &)01& -./

45)
&
!" '%  


6
&
 6
)
& 6
 '%'%

45
456
4&
) ) 
  
*& &)0 -./
* &)01& -./
-7


0
 88% '8, 8% 
1

2
(
 ) &( (
(1
21
4&
4&
45
45
456
456
45)
-7%-7'8%7%%
&
&2
&
&0
&(
Figure 7. Class A Third Order Intercept Point Figure 8. Power Gain and Intermodulation
Distortion versus Supply Voltage
-%++%.'<-=5
%> &2°
%*$;"# 2°
%*$;"# &°
(
Figure 9. DC Safe Operating Area
&
 88% 8% 
(
)
(
Figure 10. MTBF Factor versus
Junction Temperature
&)
%> >'% %-%' °
&( )& 
88%'%
& &  )&& )
The graph above displays calculated MTBF in hours x ampere2
emitter current. Life tests at elevated temperatures have correlated
to better than ±10% of the theoretical prediction for metal failure.
Divide MTBF Factor by IC2 for MTBF in a particular application.
9;?@"8!!
-%+ 8!!
AR
C
HIVE INF
O
RMATI
O
N
ARCHIVE INFORMATION
5
MRF15090MOTOROLA RF DEVICE DATA
Figure 11. Input and Output Impedances with Circuit Tuned for Maximum Gain @ Pout = 90 Watts (PEP),
VCC = 26 Volts, ICQ = 250 mA, and Driven by Two Equal Amplitude Tones with Separation of 100 KHz
f
(MHz)
Zin
()
ZOL*
()
1400
1450
1500
1550
3.28 + j9.07
4.55 + j11.4
3.85 + j10.4
5.45 + j11.9
4.62 + j2.23
4.35 + j3.41
4.08 + j3.60
3.80 + j3.78
1600 6.20 + j12.2 3.55 + j3.84
Zin = Input impedance is a balanced base to
base measurement.
ZOL* = Conjugate of optimum load impedance
collector to collector into which the device
operates at a given output power, bias
current, voltage and frequency.
A!"
A8B
* &1) ./
&1
&1
&1)
&1
A &
* &1) ./
&1)
&1
&1
&1
Table 1. Common Emitter S–Parameters (for One Side of Push–Pull MRF15090) at VCE = 24 Vdc, IC = 2.5 Adc
f
S11 S21 S12 S22
f
MHz |S11|∠φ |S21|∠φ |S12|∠φ |S22|∠φ
1000
1050
1100
1150
1200
1250
1300
1350
1400
1450
1500
1550
1600
1650
1700
1750
1800
1850
1900
1950
2000
0.999
0.999
0.994
0.992
0.994
0.986
0.982
0.973
0.957
0.938
0.903
0.857
0.821
0.837
0.872
0.901
0.920
0.940
0.954
0.965
0.971
172
171
170
170
169
168
167
166
164
163
162
163
165
169
170
170
170
169
169
168
167
0.164
0.179
0.196
0.216
0.241
0.269
0.306
0.351
0.408
0.483
0.571
0.651
0.673
0.623
0.529
0.437
0.363
0.309
0.265
0.232
0.205
108
103
97
92
86
80
73
66
56
44
29
10
–14
–37
–56
–70
–81
–90
–98
–104
–110
0.006
0.007
0.007
0.008
0.008
0.009
0.010
0.011
0.012
0.013
0.014
0.014
0.013
0.011
0.009
0.008
0.007
0.008
0.008
0.009
0.010
72
69
66
63
62
57
51
45
33
22
7
–13
–40
–67
–104
–138
–165
173
150
139
132
0.957
0.956
0.948
0.940
0.935
0.924
0.915
0.905
0.888
0.876
0.859
0.855
0.877
0.902
0.922
0.931
0.932
0.930
0.932
0.930
0.929
173
172
172
171
171
170
170
170
170
170
171
173
174
174
173
172
171
170
169
169
168
AR
C
HIVE INF
O
RMATI
O
N
ARCHIVE INFORMATION
MRF15090
6
MOTOROLA RF DEVICE DATA
&
Figure 12. Class AB Test Fixture Electrical Schematic
B1, B2, B3, B4 Ferrite Bead, Ferroxcube
C1 2.7 pF, B Case Chip Capacitor, ATC
C2 0.6–4.0 pF, Variable Capacitor, Johanson
C3, C4, C23, C24 18 pF, B Case Chip Capacitor, ATC
C5, C6, C22, C25 51 pF, Chip Capacitor, Murata Erie
C7, C8, C20, C21 1800 pF, Chip Capacitor, Kemit
C9, C10, C11 100 µF, Electrolytic Capacitor, Mallory
C12 5.1 pF, A Case Chip Capacitor, ATC
C13, C14, C18, C19 0.1 µF, Chip Capacitor, Kemit
C15 1.1 pF, B Case Chip Capacitor, ATC
C16, C17 470 µF, Electrolytic Capacitor, Mallory
C26 0.3 pF, B Case Chip Capacitor, ATC
D1 Diode, Motorola (MUR5120T3)
D2 Light Emitting Diode, Industrial Devices
L1 1 Turn, 24 AWG, 0.042 ID Choke
L2, L3, L8, L9 3 Turn, 20 AWG, 0.126ID Choke
L4, L5, L6, L7 12 Turns, 22 AWG, 0.140 ID Choke
L10 3 Turns, 24 AWG, 0.046ID Choke
N1, N2 Type N Flange Mount RF Connector, Omni Spectra
Q1, Q3 Transistor, NPN, Motorola (MJD47)
Q2 Transistor PNP Motorola (BD136)
R1, R2, R7, R8 10 , 1/2 W, Resistor
R3 150 , 1/2 W, Resistor
R4 2 x 66 , 1/8 W, Chip Resistors in Parallel, Rohm
R5 93 , 1/8 W, Chip Resistor, Rohm
R6 22 K, 1/8 W, Chip Resistor, Rohm
TL1 to TL10 See Photomaster
Board Glass Teflon, Arlon GX–0300–55–22, εr = 2.55
&
+ "
8& 
%8&
%8&
%8
%8)
%82
%8
&
&

)
86
(
8
6
8
 &
2 &
8)
& &6
&& &)
&2 &0
82
(
7'%

C


C
C!;D
0
&

7&
6
) 6

7
& &(
8
2 

6
8(
)
80
6
%8(
%80

 8&
;<
;$"
)

;$" &
;< &
%86
%8

+ 

E
E
E
E
E
AR
C
HIVE INF
O
RMATI
O
N
ARCHIVE INFORMATION
7
MRF15090MOTOROLA RF DEVICE DATA
&
+ " 
+ 
Figure 13. Class A Test Fixture Electrical Schematic
B1, B2, B5, B6 Long Bead, Fair Rite
B3, B4, B7, B8 Short Bead, Fair Rite
C1, C2, C3, C4 100 µF, Electrolytic Capacitor, Mallory
C5, C6, C17, C18 0.1 µF, Chip Capacitor, Kemit
C7, C8, C21, C22 18 pF, B Case Chip Capacitor, ATC
C9, C10, C20, C23 51 pF, Chip Capacitor, Murata Erie
C11, C12, C19, C24 1800 pF, Chip Capacitor, Kemit
C13 4.3 pF, B Case Chip Capacitor, ATC
C14 2.0 pF, B Case Chip Capacitor, ATC
C15, C16 470 µF, Electrolytic Capacitor, Mallory
C25 0.6–4 pF Variable Capacitor, Johanson
L1 3 Turns, 24 AWG, 0.046 ID Choke
L2, L3, L4, L5 3 Turns, 20 AWG, 0.126 ID Choke
L6 2 Turns, 24 AWG, 0.042 ID Choke
N1, N2 Type N Flange Mount RF Connector, Omni Spectra
Q1, Q2 Transistor NPN Motorola (BD135)
Q3, Q4 Transistor PNP Motorola (BD136)
R1, R6 250 , 1/8 W, Chip Resistor, Rohm
R2, R5 500 , 1/4 W, Potentiometer, State of the Art
R3, R4 4.7 , 1/8 W, Chip Resistor, Rohm
R7, R8 2 x 4.7 K, 1/8 W, Chip Resistors
in Parallel, Rohm
R9, R14 1.0 , 10 W, Resistor, Dale
R10, R13 38 , 1 W, Resistor
R11, R12 75 , 1/8 W, Chip Resistor, Rohm
R15, R16 2 x 10 , 1/8 W, Chip Resistors in Parallel, Rohm
R17, R18, R19, R20 4 x 38 , 1/8 W, Chip Resistors in Parallel, Rohm
Board Glass Teflon, Arlon GX–0300–55–22, εr = 2.55
8&
%8&
%8&
%8
%8)
%82
%8
&)
&6
(
86
2
8
0
&

7'%


2
8)

8
& %8(
%80
6
 8
;<
;$"
(
;$" &
;< &
%8
6
%8
&2
&0
 &0
&

&( )
)
&(
)


6
&2
6
&

&
&
&
&&

&)
&6
&
(
)


)

D$F

D$F
&
6 2
& 0
&
6
&&
&
&

E
E
E
E
E
E
MRF15090
8
MOTOROLA RF DEVICE DATA
PACKAGE DIMENSIONS
CASE 375A–01
ISSUE O
%G
&1 7- 7 %8  
,&)1- &0(1
1 %88 7-G .1
%,8 &G
 &1 88%
1 88%
61 
)1 
1 -%%
12
34
5
D
Q
G
L
R
K
2 PL
–B–
–T–
-
-
11& %
E
H
F
C
SEATING
PLANE
A
N
DIM MIN MAX MIN MAX
MILLIMETERSINCHES
A&166 &16 66120 6)10
B162 160 01 &16
C1&( 1 )12 1&
D16 16) (1&6 (1)
E1 12 &1 &122
F1) 1 1&& 1&
G&1& 210)
H1( 102 1( 1)
K1( 1 &)126 &12
L1)6 &&1
N1() 1(2 &1) 16
Q1&&( 1&6 61 616
R160 1)& 010& &1)&
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury
or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.
Mfax is a trademark of Motorola, Inc.
How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; JAPAN: Motorola Japan Ltd.; SPD, Strategic Planning Office, 141,
P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan. 81–3–5487–8488
Customer Focus Center: 1–800–521–6274
Mfax: RMFAX0@email.sps.mot.com – TOUCHTONE 1–602–244–6609 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
Motorola Fax Back System – US & Canada ONLY 1–800–774–1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
– http://sps.motorola.com/mfax/
HOME PAGE: http://motorola.com/sps/
MRF15090/D