1/5
1N582x
July 2003 - Ed: 3A
LOW DROP POWER SCHOTTKY RECTIFIER
®
Axial Power Schottky rectifier suited for Switch
Mode Power Supplies and high frequency DC to
DC converters. Packaged in DO-201AD these
devices are intended for use in low voltage, high
frequency inverters, free wheeling, polarity
protection and small battery chargers.
DESCRIPTION
n
VERY SMALL CONDUCTION LOSSES
n
NEGLIGIBLE SWITCHING LOSSES
n
EXTREMELY FAST SWITCHING
n
LOW FORWARD VOLTAGE DROP
n
AVALANCHE CAPABILITY SPECIFIED
FEATURES AND BENEFITS
Symbol Parameter Value Unit
1N5820 1N5821 1N5822
VRRM Repetitive peak reverse voltage 20 30 40 V
IF(RMS) RMS forward current 10 A
IF(AV) Average forward current TL= 100°Cδ= 0.5 3A
T
L
= 110°Cδ= 0.5 33 A
I
FSM Surge non repetitive forward
current tp=10ms
Sinusoidal 80 A
PARM Repetitive peak avalanche
power tp = 1µs Tj = 25°C 1700 W
Tstg Storage temperature range - 65 to + 150 °C
Tj Maximum operating junction temperature * 150 °C
dV/dt Critical rate of rise of reverse voltage 10000 V/µs
ABSOLUTE RATINGS (limiting values)
IF(AV) 3A
V
RRM 40 V
Tj150°C
VF(max) 0.475 V
MAIN PRODUCTS CHARACTERISTICS
DO-201AD
*:
dPtot
dTj Rth j a
<
1
()
thermal runaway condition for a diode on its own heatsink
1N582x
2/5
Symbol Parameter Tests Conditions 1N5820 1N5821 1N5822 Unit
IR*Reverse leakage
current Tj=25°CV
R
=V
RRM 222mA
Tj = 100°C20 20 20 mA
VF*Forward voltage drop Tj = 25°CI
F
=3A 0.475 0.5 0.525 V
Tj=25°CI
F
= 9.4 A 0.85 0.9 0.95 V
Pulse test : * tp = 380 µs, δ<2%
To evaluate the conduction losses use the following equations :
P=0.33xI
F(AV) + 0.035 IF2(RMS ) for 1N5820 / 1N5821
P=0.33xI
F(AV) + 0.060 IF2(RMS ) for 1N5822
STATIC ELECTRICAL CHARACTERISTICS
Symbol Parameter Value Unit
Rth (j-a) Junction to ambient Lead length = 10 mm 80 °C/W
Rth (j-l) Junction to lead Lead length = 10 mm 25 °C/W
THERMAL RESISTANCES
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8 PF(av)(W)
IF(av) (A)
T
δ=tp/T tp
δ= 0.2 δ= 0.5
δ= 1
δ= 0.05 δ= 0.1
Fig. 1: Average forward power dissipation versus
average forward current (1N5820/1N5821).
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0 PF(av)(W)
IF(av) (A)
T
δ=tp/T tp
δ= 0.2 δ= 0.5
δ= 1
δ= 0.05
δ= 0.1
Fig. 2: Average forward power dissipation versus
average forward current (1N5822).
0
0.2
0.4
0.6
0.8
1
1.2
0 25 50 75 100 125 150
T (°C)
j
P(t)
P (25°C)
ARM p
ARM
Fig. 4: Normalized avalanche power derating
versus junction temperature.
0.001
0.01
0.10.01 1
0.1
10 100 1000
1
t (µs)
p
P(t)
P (1µs)
ARM p
ARM
Fig. 3: Normalized avalanche power derating
versus pulse duration.
1N582x
3/5
0 25 50 75 100 125 150
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
IF(av)(A)
Tamb(°C)
T
δ=tp/T tp
Rth(j-a)=80°C/W
Rth(j-a)=Rth(j-l)=25°C/W
Fig. 5-1: Average forward current versus ambient
temperature (δ=0.5) (1N5820/1N5821).
1E-3 1E-2 1E-1 1E+0
0
2
4
6
8
10
12
14
16 IM(A)
t(s)
Ta=100°C
Ta=75°C
Ta=25°C
IM
t
δ=0.5
Fig. 6-1: Non repetitive surge peak forward
current versus overload duration (maximum
values) (1N5820/1N5821).
1E-1 1E+0 1E+1 1E+2 1E+3
0.0
0.2
0.4
0.6
0.8
1.0 Zth(j-a)/Rth(j-a)
T
δ=tp/T tp
tp(s)
δ= 0.1
δ= 0.2
δ= 0.5
Single pulse
Fig. 7: Relative variation of thermal impedance
junction to ambient versus pulse duration (epoxy
printed circuit board, e(Cu)=35mm, recommended
pad layout).
0 25 50 75 100 125 150
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5 IF(av)(A)
Tamb(°C)
T
δ=tp/T tp
Rth(j-a)=80°C/W
Rth(j-a)=Rth(j-l)=25°C/W
Fig. 5-2: Average forward current versus ambient
temperature (δ=0.5) (1N5822).
1E-3 1E-2 1E-1 1E+0
0
1
2
3
4
5
6
7
8
9
10
11
12 IM(A)
t(s)
Ta=100°C
Ta=75°C
Ta=25°C
IM
t
δ=0.5
Fig. 6-2: Non repetitive surge peak forward
current versus overload duration (maximum
values) (1N5822).
12 5102040
10
100
600 C(pF)
VR(V)
1N5822
1N5820
1N5821
F=1MHz
Tj=25°C
Fig. 8: Junction capacitance versus reverse
voltage applied (typical values).
1N582x
4/5
0 5 10 15 20 25 30
1E-3
1E-2
1E-1
1E+0
1E+1
1E+2 IR(mA)
VR(V)
Tj=100°C
Tj=25°C
1N5820
1N5821
Tj=125°C
Fig. 9-1: Reverse leakage current versus reverse
voltage applied (typical values) (1N5820/1N5821).
0 5 10 15 20 25 30 35 40
1E-3
1E-2
1E-1
1E+0
1E+1
5E+1 IR(mA)
VR(V)
Tj=100°C
Tj=25°C
Tj=125°C
Fig. 9-2: Reverse leakage current versus reverse
voltage applied (typical values) (1N5822).
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
0.01
0.10
1.00
10.00
50.00 IFM(A)
VFM(V)
Tj=25°C
Tj=100°C
Tj=125°C
Fig. 10-1: Forward voltage drop versus forward
current (typical values) (1N5820/1N5821).
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0.01
0.10
1.00
10.00
50.00 IFM(A)
VFM(V)
Tj=25°C
Tj=100°C
Tj=125°C
Fig. 10-2: Forward voltage drop versus forward
current (typical values) (1N5822).
1 10 100 1000
0
20
40
60
80
100 IFSM(A)
Number of cycles
F=50Hz Tj initial=25°C
Fig. 11: Non repetitive surge peak forward current
versus number of cycles.
1N582x
5/5
Informationfurnishedisbelievedtobeaccurateandreliable.However,STMicroelectronicsassumesnoresponsibilityfortheconsequencesof
useofsuch information nor for any infringement of patentsorother rights of third parties which may resultfromits use. No license is granted by
implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied.
STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written
approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics
© 2003 STMicroelectronics - Printed in Italy - All rights reserved.
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany
Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore
Spain - Sweden - Switzerland - United Kingdom - United States.
http://www.st.com
Ordering type Marking Package Weight Base qty Delivery mode
1N582x Part number
cathode ring DO-201AD 1.12g 600 Ammopack
1N582xRL Part number
cathode ring DO-201AD 1.12g 1900 Tape & reel
n
EPOXY MEETS UL94,V0
PACKAGE MECHANICAL DATA
DO-201AD plastic
BA
EE
ØD ØD
ØC
B
note 2
note 1
note 1
REF.
DIMENSIONS
NOTESMillimeters Inches
Min. Max. Min. Max.
A 9.50 0.374 1 - The lead diameter D is not controlled over zone E
2 - The minimum axial length within which the device may be
placed with its leads bent at right angles is 0.59"(15 mm)
B 25.40 1.000
C 5.30 0.209
D 1.30 0.051
E 1.25 0.049