FQP50N06L N-Channel QFET(R) MOSFET 60 V, 52.4 A, 21 m Description Features This N-Channel enhancement mode power MOSFET is produced using Fairchild Semiconductor's proprietary planar stripe and DMOS technology. This advanced MOSFET technology has been especially tailored to reduce on-state resistance, and to provide superior switching performance and high avalanche energy strength. These devices are suitable for switched mode power supplies, audio amplifier, DC motor control, and variable switching power applications. * 52.4 A, 60 V, RDS(on) = 21 m (Max.) @ VGS = 10 V, ID = 26.2 A * Low Gate Charge (Typ. 24.5 nC) * Low Crss (Typ. 90 pF) * 100% Avalanche Tested * 175C Maximum Junction Temperature Rating D GD S G TO-220 S Absolute Maximum Ratings Symbol VDSS ID TC = 25C unless otherwise noted. Parameter Drain-Source Voltage - Continuous (TC = 25C) Drain Current - Continuous (TC = 100C) IDM Drain Current - Pulsed (Note 1) FQP50N06L 60 Unit V 52.4 A 37.1 A 210 A VGSS Gate-Source Voltage 20 V EAS Single Pulsed Avalanche Energy (Note 2) 990 mJ IAR Avalanche Current (Note 1) 52.4 A EAR Repetitive Avalanche Energy Peak Diode Recovery dv/dt Power Dissipation (TC = 25C) (Note 1) 12.1 7.0 121 0.81 -55 to +175 mJ V/ns W W/C C 300 C FQP50N06L 1.24 Unit C/W 62.5 C/W dv/dt PD TJ, TSTG TL (Note 3) - Derate above 25C Operating and Storage Temperature Range Maximum Lead Temperature for Soldering, 1/8" from Case for 5 seconds Thermal Characteristics Symbol RJC Parameter Thermal Resistance, Junction-to-Case, Max. RJA Thermal Resistance, Junction-to-Ambient, Max. (c)2001 Fairchild Semiconductor Corporation FQP50N06L Rev. C1 1 www.fairchildsemi.com FQP50N06L -- N-Channel QFET(R) MOSFET November 2013 Part Number FQP50N06L Top Mark FQP50N06L Package TO-220 Electrical Characteristics Symbol Packing Method Tube Reel Size N/A Tape Width N/A Quantity 50 units TC = 25C unless otherwise noted. Parameter Test Conditions Min Typ Max Unit Off Characteristics BVDSS Drain-Source Breakdown Voltage VGS = 0 V, ID = 250 A 60 -- -- V BVDSS / TJ Breakdown Voltage Temperature Coefficient ID = 250 A, Referenced to 25C -- 0.06 -- V/C VDS = 60 V, VGS = 0 V -- -- 1 A VDS = 48 V, TC = 150C -- -- 10 A IDSS IGSSF IGSSR Zero Gate Voltage Drain Current Gate-Body Leakage Current, Forward VGS = 20 V, VDS = 0 V -- -- 100 nA Gate-Body Leakage Current, Reverse VGS = -20 V, VDS = 0 V -- -- -100 nA On Characteristics VGS(th) Gate Threshold Voltage VDS = VGS, ID = 250 A 1.0 -- 2.5 V RDS(on) Static Drain-Source On-Resistance VGS = 10 V, ID = 26.2 A VGS = 5 V, ID =26.2 A --- 0.017 0.020 0.021 0.025 gFS Forward Transconductance VDS = 25 V, ID = 26.2 A -- 40 -- S VDS = 25 V, VGS = 0 V, f = 1.0 MHz -- 1250 1630 pF -- 445 580 pF -- 90 120 pF Dynamic Characteristics Ciss Input Capacitance Coss Output Capacitance Crss Reverse Transfer Capacitance Switching Characteristics td(on) Turn-On Delay Time tr Turn-On Rise Time td(off) Turn-Off Delay Time tf Turn-Off Fall Time Qg Total Gate Charge Qgs Gate-Source Charge Qgd Gate-Drain Charge VDD = 30 V, ID = 26.2 A, RG = 25 (Note 4) VDS = 48 V, ID = 52.4 A, VGS = 5 V (Note 4) -- 20 50 ns -- 380 770 ns -- 80 170 ns -- 145 300 ns -- 24.5 32 nC -- 6 -- nC -- 14.5 -- nC Drain-Source Diode Characteristics and Maximum Ratings IS Maximum Continuous Drain-Source Diode Forward Current -- -- 52.4 A ISM -- -- 210 A -- -- 1.5 V VGS = 0 V, IS = 52.4 A, dIF / dt = 100 A/s -- 65 -- ns -- 125 -- nC VSD Maximum Pulsed Drain-Source Diode Forward Current VGS = 0 V, IS = 52.4 A Drain-Source Diode Forward Voltage trr Reverse Recovery Time Qrr Reverse Recovery Charge Notes: 1. Repetitive Rating : Pulse width limited by maximum junction temperature. 2. L = 300 H, IAS = 52.4 A, VDD = 25 V, RG = 25 , starting TJ = 25C. 3. ISD 52.4 A, di/dt 300 A/s, VDD BVDSS, starting TJ = 25C. 4. Essentially independent of operating temperature. (c)2001 Fairchild Semiconductor Corporation FQP50N06L Rev. C1 2 www.fairchildsemi.com FQP50N06L -- N-Channel QFET(R) MOSFET Package Marking and Ordering Information VGS 10.0 V 8.0 V 6.0 V 5.0 V 4.5 V 4.0 V 3.5 V Bottom : 3.0 V Top : ID, Drain Current [A] 10 2 10 ID, Drain Current [A] 2 1 1 10 10 175 25 Notes : 1. 250s Pulse Test 2. TC = 25 Notes : 1. VDS = 25V 2. 250s Pulse Test -55 0 0 10 -1 10 0 10 1 10 0 10 2 4 6 8 10 VGS, Gate-Source Voltage [V] VDS, Drain-Source Voltage [V] Figure 1. On-Region Characteristics Figure 2. Transfer Characteristics 2 10 50 IDR, Reverse Drain Current [A] R DS(O N) [m ], Drain-Source On-Resistance 60 VGS = 10V 40 VGS = 5V 30 1 10 20 10 Note : TJ = 25 Notes : 1. VGS = 0V 2. 250s Pulse Test 25 175 0 0 25 50 75 100 125 150 175 200 0 10 ID, Drain Current [A] 0.2 1.0 1.2 1.4 1.6 12 Ciss = Cgs + Cgd (Cds = shorted) Coss = Cds + Cgd Crss = Cgd V G S , Gate-Source Voltage [V] Capacitance [pF] 0.8 Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature 3000 Coss Ciss Notes : 1. VGS = 0 V 2. f = 1 MHz 2000 1000 0.6 VSD, Source-Drain voltage [V] Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage 4000 0.4 Crss 10 VDS = 30V VDS = 48V 8 6 4 2 Note : ID = 52.4A 0 0 -1 10 0 0 10 20 30 40 50 QG, Total Gate Charge [nC] VDS, Drain-Source Voltage [V] Figure 5. Capacitance Characteristics (c)2001 Fairchild Semiconductor Corporation FQP50N06L Rev. C1 10 1 10 Figure 6. Gate Charge Characteristics 3 www.fairchildsemi.com FQP50N06L -- N-Channel QFET(R) MOSFET Typical Characteristics 2.5 RDS(ON), (Normalized) Drain-Source On-Resistance BVDSS, (Normalized) Drain-Source Breakdown Voltage 1.2 2.0 1.1 1.5 1.0 1.0 Notes : 1. VGS = 0 V 2. ID = 250 A 0.9 0.8 -100 -50 0 50 100 0.5 150 Notes : 1. VGS = 10 V 2. ID = 26.2 A 0.0 -100 200 -50 50 100 150 TJ, Junction Temperature [ C] TJ, Junction Temperature [ C] Figure 7. Breakdown Voltage Variation vs. Temperature Figure 8. On-Resistance Variation vs. Temperature 3 200 60 10 Operation in This Area is Limited by R DS(on) 50 ID, Drain Current [A] ID, Drain Current [A] 0 o o 100 s 2 10 1 ms 10 ms DC 1 10 Notes : 40 30 20 10 o 1. TC = 25 C o 2. TJ = 175 C 3. Single Pulse 0 10 -1 10 0 1 10 0 25 2 10 10 50 (t),Thermal Thermal Response ZZJC (t), Response [oC/W] JC Figure 9. Maximum Safe Operating Area 10 75 100 125 150 175 TC, Case Temperature [] VDS, Drain-Source Voltage [V] Figure 10. Maximum Drain Current vs. Case Temperature 0 D = 0 .5 0 .2 N otes : 1 . Z J C( t ) = 1 . 2 4 /W M a x . 2 . D u t y F a c t o r , D = t 1 /t 2 3 . T J M - T C = P D M * Z J C( t ) 0 .1 10 -1 0 .0 5 PDM 0 .0 2 t1 0 .0 1 s in g le p u ls e 10 t2 -2 10 -5 10 -4 10 -3 10 -2 10 -1 10 0 10 1 t 1 , S q u a r e W a v e P u ls e D u r a t io n [ s e c ] Figure 11. Transient Thermal Response Curve (c)2001 Fairchild Semiconductor Corporation FQP50N06L Rev. C1 4 www.fairchildsemi.com FQP50N06L -- N-Channel QFET(R) MOSFET Typical Characteristics (continued) 50K 200nF 12V FQP50N06L -- N-Channel QFET(R) MOSFET VGS Same Type as DUT Qg 10V 300nF VDS VGS Qgs Qgd DUT IG = const. 3mA Charge Figure 12. Gate Charge Test Circuit & Waveform VDS RG RL VDS 90% VDD VGS VGS DUT V 10V GS 10% td(on) tr td(off) t on tf t off Figure 13. Resistive Switching Test Circuit & Waveforms BVDSS 1 EAS = ---- L IAS2 -------------------2 BVDSS - VDD L VDS BVDSS IAS ID RG VDD V 10V GS GS ID (t) VDS (t) VDD DUT tp tp Time Figure 14. Unclamped Inductive Switching Test Circuit & Waveforms (c)2001 Fairchild Semiconductor Corporation FQP50N06L Rev. C1 5 www.fairchildsemi.com FQP50N06L -- N-Channel QFET(R) MOSFET DUT + VDS _ I SD L Driver RG VGS Same Type as DUT VDD * dv/dt controlled by RG * ISD controlled by pulse period Gate Pulse Width D = -------------------------Gate Pulse Period VGS ( Driver ) 10V IFM , Body Diode Forward Current I SD ( DUT ) di/dt IRM Body Diode Reverse Current VDS ( DUT ) Body Diode Recovery dv/dt VSD VDD Body Diode Forward Voltage Drop Figure 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms (c)2001 Fairchild Semiconductor Corporation FQP50N06L Rev. C1 6 www.fairchildsemi.com FQP50N06L -- N-Channel QFET(R) MOSFET Mechanical Dimensions Figure 16. TO220, Molded, 3-Lead, Jedec Variation AB Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products. Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TO220-003 (c)2001 Fairchild Semiconductor Corporation FQP50N06L Rev. C1 7 www.fairchildsemi.com tm *Trademarks of System General Corporation, used under license by Fairchild Semiconductor. DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used here in: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. ANTI-COUNTERFEITING POLICY Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Formative / In Design Datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary First Production Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. No Identification Needed Full Production Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. Obsolete Not In Production Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only. Rev. I66 (c)2001 Fairchild Semiconductor Corporation FQP50N06L Rev. C1 8 www.fairchildsemi.com FQP50N06L -- N-Channel QFET(R) MOSFET TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. AccuPowerTM Sync-LockTM F-PFSTM (R) AX-CAP(R)* FRFET(R) (R)* (R) SM Global Power Resource PowerTrench BitSiCTM GreenBridgeTM PowerXSTM Build it NowTM TinyBoost(R) Programmable Active DroopTM Green FPSTM CorePLUSTM TinyBuck(R) (R) QFET Green FPSTM e-SeriesTM CorePOWERTM TinyCalcTM QSTM GmaxTM CROSSVOLTTM TinyLogic(R) Quiet SeriesTM GTOTM CTLTM TINYOPTOTM RapidConfigureTM IntelliMAXTM Current Transfer LogicTM TinyPowerTM ISOPLANARTM DEUXPEED(R) TM TinyPWMTM Dual CoolTM Marking Small Speakers Sound Louder TinyWireTM Saving our world, 1mW/W/kW at a timeTM EcoSPARK(R) and BetterTM TranSiCTM EfficentMaxTM SignalWiseTM MegaBuckTM TriFault DetectTM ESBCTM SmartMaxTM MICROCOUPLERTM TRUECURRENT(R)* SMART STARTTM MicroFETTM (R) SerDesTM Solutions for Your SuccessTM MicroPakTM SPM(R) MicroPak2TM Fairchild(R) STEALTHTM MillerDriveTM Fairchild Semiconductor(R) UHC(R) SuperFET(R) MotionMaxTM FACT Quiet SeriesTM (R) Ultra FRFETTM SuperSOTTM-3 mWSaver FACT(R) UniFETTM OptoHiTTM SuperSOTTM-6 FAST(R) VCXTM OPTOLOGIC(R) SuperSOTTM-8 FastvCoreTM VisualMaxTM OPTOPLANAR(R) SupreMOS(R) FETBenchTM VoltagePlusTM SyncFETTM FPSTM XSTM Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: Fairchild Semiconductor: FQP50N06L