VIN
FBCOMP
VCC
OUT
RT
UVLO GND
CS
SS
LM5022
L1 D1
Q1
C1
C2R1
CF
CSS
CO
CIN
RT
RUV1
RUV2
RFB1
RFB2
RSNS
VIN VO
CCS
RS1
LM5022
www.ti.com
SNVS480F JANUARY 2007REVISED MARCH 2013
LM5022 60V Low Side Controller for Boost and SEPIC
Check for Samples: LM5022
1FEATURES DESCRIPTION
The LM5022 is a high voltage low-side N-channel
2 Internal 60V Startup Regulator MOSFET controller ideal for use in boost and SEPIC
1A Peak MOSFET Gate Driver regulators. It contains all of the features needed to
VIN Range 6V to 60V implement single ended primary topologies. Output
voltage regulation is based on current-mode control,
Duty Cycle Limit of 90% which eases the design of loop compensation while
Programmable UVLO with Hysteresis providing inherent input voltage feed-forward. The
Cycle-by-Cycle Current Limit LM5022 includes a start-up regulator that operates
over a wide input range of 6V to 60V. The PWM
External Synchronizable (AC-coupled) controller is designed for high speed capability
Single Resistor Oscillator Frequency Set including an oscillator frequency range up to 2 MHz
Slope Compensation and total propagation delays less than 100 ns.
Additional features include an error amplifier,
Adjustable Soft-start precision reference, line under-voltage lockout, cycle-
VSSOP-10 Package by-cycle current limit, slope compensation, soft-start,
external synchronization capability and thermal
APPLICATIONS shutdown. The LM5022 is available in the VSSOP-10
Boost Converter package.
SEPIC Converter
Typical Application
1Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
2All trademarks are the property of their respective owners.
PRODUCTION DATA information is current as of publication date. Copyright © 2007–2013, Texas Instruments Incorporated
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
VIN
1
CS
2SS
3FB
4
RT 8
VCC 7
COMP
6
UVLO
5
9
10
OUT GND
LM5022
SNVS480F JANUARY 2007REVISED MARCH 2013
www.ti.com
Connection Diagram
Figure 1. 10-Lead VSSOP Package
See Package Number DGS0010A
PIN DESCRIPTIONS
Pins Name Description Application Information
1 VIN Source input voltage Input to the start-up regulator. Operates from 6V to 60V.
Inverting input to the internal voltage error amplifier. The non-
2 FB Feedback pin inverting input of the error amplifier connects to a 1.25V
reference.
Error amplifier output and PWM The control loop compensation components connect between this
3 COMP comparator input pin and the FB pin.
Output of the internal, high voltage linear This pin should be bypassed to the GND pin with a ceramic
4 VCC regulator. capacitor.
5 OUT Output of MOSFET gate driver Connect this pin to the gate of the external MOSFET. The gate
driver has a 1A peak current capability.
6 GND System ground Set the start-up and shutdown levels by connecting this pin to the
7 UVLO Input Under-Voltage Lock-out input voltage through a resistor divider. A 20 µA current source
provides hysteresis.
Current Sense input Input for the switch current used for current mode control and for
8 CS current limiting.
An external resistor connected from this pin to GND sets the
Oscillator frequency adjust pin and
9 RT/SYNC oscillator frequency. This pin can also accept an AC-coupled input
synchronization input for synchronization from an external clock.
An external capacitor placed from this pin to ground will be
10 SS Soft-start pin charged by a 10 µA current source, creating a ramp voltage to
control the regulator start-up.
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam
during storage or handling to prevent electrostatic damage to the MOS gates.
2Submit Documentation Feedback Copyright © 2007–2013, Texas Instruments Incorporated
Product Folder Links: LM5022
LM5022
www.ti.com
SNVS480F JANUARY 2007REVISED MARCH 2013
Absolute Maximum Ratings (1)(2)
VIN to GND -0.3V to 65V
VCC to GND -0.3V to 16V
RT/SYNC to GND -0.3V to 5.5V
OUT to GND -1.5V for < 100 ns
All other pins to GND -0.3V to 7V
Power Dissipation Internally Limited
Junction Temperature 150°C
Storage Temperature -65°C to +150°C
Soldering Information
Vapor Phase (60 sec.) 215°C
Infrared (15 sec.) 220°C
ESD Rating
Human Body Model (3) 2 kV
(1) Absolute Maximum Ratings are limits beyond which damage to the device may occur. The Recommended Operating Limits define the
conditions within which the device is intended to be functional. For specifications and test conditions, see the Electrical Characteristics.
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and
specifications.
(3) The human body model is a 100 pF capacitor discharged through a 1.5kresistor into each pin.
Operating Ranges (1)
Supply Voltage 6V to 60V
External Volatge at VCC 7.5V to 14V
Junction Temperature Range -40°C to +125°C
(1) Device thermal limitations may limit usable range.
Copyright © 2007–2013, Texas Instruments Incorporated Submit Documentation Feedback 3
Product Folder Links: LM5022
LM5022
SNVS480F JANUARY 2007REVISED MARCH 2013
www.ti.com
Electrical Characteristics (1)
Limits in standard type are for TJ= 25°C only; limits in boldface type apply over the junction temperature (TJ) range of -40°C
to +125°C. Minimum and Maximum limits are specified through test, design, or statistical correlation. Typical values represent
the most likely parametric norm at TJ= 25°C, and are provided for reference purposes only. VIN = 24V and RT= 27.4 k
unless otherwise indicated.
Parameter Test Conditions Min Typ Max Units
SYSTEM PARAMETERS
VFB FB Pin Voltage -40°C TJ125°C 1.225 1.250 1.275 V
START-UP REGULATOR
VCC Regulation 9V VIN 60V, ICC = 1 mA 6.6 77.4
VCC(2) V
6V VIN < 9V, VCC Pin Open 5
VCC Regulation Circuit
OUT Pin Capacitance = 0 3.5 4
ICC Supply Current mA
VCC = 10V
ICC-LIM VCC Current Limit VCC = 0V, ((3),(2))15 35 mA
ICC = 0 mA, fSW < 200 kHz 200
VIN - VCC Dropout Voltage Across Bypass Switch mV
6V VIN 8.5V
VBYP-HI Bypass Switch Turn-off Threshold VIN increasing 8.7 V
VBYP-HYS Bypass Switch Threshold Hysteresis VIN Decreasing 260 mV
VIN = 6.0V 58
VCC Pin Output Impedance
ZVCC VIN = 8.0V 53
0 mA ICC 5 mA VIN = 24.0V 1.6
VCC-HI VCC Pin UVLO Rising Threshold 5 V
VCC-HYS VCC Pin UVLO Falling Hysteresis 300 mV
IVIN Start-up Regulator Leakage VIN = 60V 150 500 µA
IIN-SD Shutdown Current VUVLO = 0V, VCC = Open Circuit 350 450 µA
ERROR AMPLIFIER
GBW Gain Bandwidth 4 MHz
ADC DC Gain 75 dB
VFB = 1.5V 517
ICOMP COMP Pin Current Sink Capability mA
VCOMP = 1V
UVLO
VSD Shutdown Threshold 1.22 1.25 1.28 V
Shutdown 16 20 24
ISD-HYS µA
Hysteresis Current Source
CURRENT LIMIT
CS steps from 0V to 0.6V 30
tLIM-DLY Delay from ILIM to Output ns
OUT transitions to 90% of VCC
VCS Current Limit Threshold Voltage 0.45 0.5 0.55 V
tBLK Leading Edge Blanking Time 65 ns
RCS CS Pin Sink Impedance Blanking active 40 75
SOFT-START
ISS Soft-start Current Source 710 13 µA
VSS-OFF Soft-start to COMP Offset 0.35 0.55 0.75 V
(1) Min and Max limits are 100% production tested at 25°C. Limits over the operating temperature range are specified through correlation
using Statistical Quality Control (SQC) methods. Limits are used to calculate Average Outgoing Quality Level (AOQL).
(2) VCC provides bias for the internal gate drive and control circuits.
(3) Device thermal limitations may limit usable range.
4Submit Documentation Feedback Copyright © 2007–2013, Texas Instruments Incorporated
Product Folder Links: LM5022
LM5022
www.ti.com
SNVS480F JANUARY 2007REVISED MARCH 2013
Electrical Characteristics (1) (continued)
Limits in standard type are for TJ= 25°C only; limits in boldface type apply over the junction temperature (TJ) range of -40°C
to +125°C. Minimum and Maximum limits are specified through test, design, or statistical correlation. Typical values represent
the most likely parametric norm at TJ= 25°C, and are provided for reference purposes only. VIN = 24V and RT= 27.4 k
unless otherwise indicated.
Parameter Test Conditions Min Typ Max Units
OSCILLATOR
RT to GND = 84.5 k(4)170 200 230 kHz
fSW RT to GND = 27.4 k(4) 525 600 675 kHz
RT to GND = 16.2 k(4) 865 990 1115 kHz
VSYNC-HI Synchronization Rising Threshold 3.8 V
PWM COMPARATOR
VCOMP = 2V 25
tCOMP-DLY Delay from COMP to OUT Transition ns
CS stepped from 0V to 0.4V
DMIN Minimum Duty Cycle VCOMP = 0V 0 %
DMAX Maximum Duty Cycle 90 95 %
APWM COMP to PWM Comparator Gain 0.33 V/V
VCOMP-OC COMP Pin Open Circuit Voltage VFB = 0V 4.3 5.2 6.1 V
ICOMP-SC COMP Pin Short Circuit Current VCOMP = 0V, VFB = 1.5V 0.6 1.1 1.5 mA
SLOPE COMPENSATION
VSLOPE Slope Compensation Amplitude 80 105 130 mV
MOSFET DRIVER
VSAT-HI Output High Saturation Voltage (VCC IOUT = 50 mA 0.25 0.75 V
VOUT)
VSAT-LO Output Low Saturation Voltage (VOUT) IOUT = 100 mA 0.25 0.75 V
tRISE OUT Pin Rise Time OUT Pin load = 1 nF 18 ns
tFALL OUT Pin Fall Time OUT Pin load = 1 nF 15 ns
THERMAL CHARACTERISTICS
TSD Thermal Shutdown Threshold 165 °C
TSD-HYS Thermal Shutdown Hysteresis 25 °C
θJA Junction to Ambient Thermal Resistance DGS0010A Package 200 °C/W
(4) Specification applies to the oscillator frequency.
Copyright © 2007–2013, Texas Instruments Incorporated Submit Documentation Feedback 5
Product Folder Links: LM5022
LM5022
SNVS480F JANUARY 2007REVISED MARCH 2013
www.ti.com
Typical Performance Characteristics
Efficiency, VO= 40V, Example Circuit BOM VFB vs. Temp (VIN = 24V)
Figure 2. Figure 3.
VFB vs. VIN (TA= 25°C) VCC vs. VIN (TA= 25°C)
Figure 4. Figure 5.
Max Duty Cycle vs. fSW (TA= 25°C) fSW vs. Temperature (RT= 16.2 k)
Figure 6. Figure 7.
6Submit Documentation Feedback Copyright © 2007–2013, Texas Instruments Incorporated
Product Folder Links: LM5022
LM5022
www.ti.com
SNVS480F JANUARY 2007REVISED MARCH 2013
Typical Performance Characteristics (continued)
RTvs. fSW (TA= 25°C) SS vs. Temperature
Figure 8. Figure 9.
OUT Pin tRISE vs. Gate Capacitance OUT Pin tFALL vs. Gate Capacitance
Figure 10. Figure 11.
Copyright © 2007–2013, Texas Instruments Incorporated Submit Documentation Feedback 7
Product Folder Links: LM5022
LOGIC
OSC
VCC
LOGIC
OUT
7V SERIES
REGULATOR REFERENCE
DRIVER
RT/SYNC
CLK
ENABLE
5V
1.25V
SQ
RQ
UVLO
HYSTERESIS
(20 PA)
UVLO +
-
1.25V
Max Duty
Limit
10 PA
SS
CS 0.5V
PWM
45 PA
0
2 k:
5k
5V
1.4V
100 k:
50 k:
COMP 1.25V
SS
+
-
+
-
CLK + LEB
SS
BYPASS
SWITCH
(6V to 8.7V)
GND
FB
VIN
LM5022
SNVS480F JANUARY 2007REVISED MARCH 2013
www.ti.com
Block Diagram
8Submit Documentation Feedback Copyright © 2007–2013, Texas Instruments Incorporated
Product Folder Links: LM5022
VIN
FBCOMP
VCC
OUT
RT
UVLO GND
CS
SS
LM5022
L1 D1
Q1
C1
C2R1
CF
CSS
CO1,2
CIN1,2
RT
RUV1
RUV2
RFB1
RFB2
RSNS
VIN = 9V to 16V VO = 40V
CCS
RS1
CINX
RS2
COX
LM5022
www.ti.com
SNVS480F JANUARY 2007REVISED MARCH 2013
Example Circuit
Figure 12. Design Example Schematic
APPLICATIONS INFORMATION
OVERVIEW
The LM5022 is a low-side N-channel MOSFET controller that contains all of the features needed to implement
single ended power converter topologies. The LM5022 includes a high-voltage startup regulator that operates
over a wide input range of 6V to 60V. The PWM controller is designed for high speed capability including an
oscillator frequency range up to 2 MHz and total propagation delays less than 100 ns. Additional features include
an error amplifier, precision reference, input under-voltage lockout, cycle-by-cycle current limit, slope
compensation, soft-start, oscillator sync capability and thermal shutdown.
The LM5022 is designed for current-mode control power converters that require a single drive output, such as
boost and SEPIC topologies. The LM5022 provides all of the advantages of current-mode control including input
voltage feed-forward, cycle-by-cycle current limiting and simplified loop compensation.
HIGH VOLTAGE START-UP REGULATOR
The LM5022 contains an internal high-voltage startup regulator that allows the VIN pin to be connected directly to
line voltages as high as 60V. The regulator output is internally current limited to 35 mA (typical). When power is
applied, the regulator is enabled and sources current into an external capacitor, CF, connected to the VCC pin.
The recommended capacitance range for CFis 0.1 µF to 100 µF. When the voltage on the VCC pin reaches the
rising threshold of 5V, the controller output is enabled. The controller will remain enabled until VCC falls below
4.7V. In applications using a transformer, an auxiliary winding can be connected through a diode to the VCC pin.
This winding should raise the VCC pin voltage to above 7.5V to shut off the internal startup regulator. Powering
VCC from an auxiliary winding improves conversion efficiency while reducing the power dissipated in the
controller. The capacitance of CFmust be high enough that it maintains the VCC voltage greater than the VCC
UVLO falling threshold (4.7V) during the initial start-up. During a fault condition when the converter auxiliary
winding is inactive, external current draw on the VCC line should be limited such that the power dissipated in the
start-up regulator does not exceed the maximum power dissipation capability of the controller.
An external start-up or other bias rail can be used instead of the internal start-up regulator by connecting the
VCC and the VIN pins together and feeding the external bias voltage (7.5V to 14V) to the two pins.
Copyright © 2007–2013, Texas Instruments Incorporated Submit Documentation Feedback 9
Product Folder Links: LM5022
VIN
GND
UVLO
LM5022
VIN
ON/OFF
RUV2
RUV1
2N7000 or
Equivalent
LM5022
SNVS480F JANUARY 2007REVISED MARCH 2013
www.ti.com
INPUT UNDER-VOLTAGE DETECTOR
The LM5022 contains an input Under Voltage Lock Out (UVLO) circuit. UVLO is programmed by connecting the
UVLO pin to the center point of an external voltage divider from VIN to GND. The resistor divider must be
designed such that the voltage at the UVLO pin is greater than 1.25V when VIN is in the desired operating
range. If the under voltage threshold is not met, all functions of the controller are disabled and the controller
remains in a low power standby state. UVLO hysteresis is accomplished with an internal 20 µA current source
that is switched on or off into the impedance of the set-point divider. When the UVLO threshold is exceeded, the
current source is activated to instantly raise the voltage at the UVLO pin. When the UVLO pin voltage falls below
the 1.25V threshold the current source is turned off, causing the voltage at the UVLO pin to fall. The UVLO pin
can also be used to implement a remote enable / disable function. If an external transistor pulls the UVLO pin
below the 1.25V threshold, the converter will be disabled. This external shutdown method is shown in Figure 13.
Figure 13. Enable/Disable Using UVLO
ERROR AMPLIFIER
An internal high gain error amplifier is provided within the LM5022. The amplifier’s non-inverting input is internally
set to a fixed reference voltage of 1.25V. The inverting input is connected to the FB pin. In non-isolated
applications such as the boost converter the output voltage, VO, is connected to the FB pin through a resistor
divider. The control loop compensation components are connected between the COMP and FB pins. For most
isolated applications the error amplifier function is implemented on the secondary side of the converter and the
internal error amplifier is not used. The internal error amplifier is configured as an open drain output and can be
disabled by connecting the FB pin to ground. An internal 5 kpull-up resistor between a 5V reference and
COMP can be used as the pull-up for an opto-coupler in isolated applications.
CURRENT SENSING AND CURRENT LIMITING
The LM5022 provides a cycle-by-cycle over current protection function. Current limit is accomplished by an
internal current sense comparator. If the voltage at the current sense comparator input exceeds 0.5V, the
MOSFET gate drive will be immediately terminated. A small RC filter, located near the controller, is
recommended to filter noise from the current sense signal. The CS input has an internal MOSFET which
discharges the CS pin capacitance at the conclusion of every cycle. The discharge device remains on an
additional 65 ns after the beginning of the new cycle to attenuate leading edge ringing on the current sense
signal.
10 Submit Documentation Feedback Copyright © 2007–2013, Texas Instruments Incorporated
Product Folder Links: LM5022
RT/SYNC
LM5022
EXTERNAL
CLOCK CSS
100 pF
120 ns
(Typical)
EXTERNAL
CLOCK
OUT PIN
RT
15 ns to 150 ns
( )
8
SW
T PS 11
SW
1 8 10 f
R A
f 5.77 10
-
-
- ´ ´
= ´
´ ´
LM5022
www.ti.com
SNVS480F JANUARY 2007REVISED MARCH 2013
The LM5022 current sense and PWM comparators are very fast, and may respond to short duration noise
pulses. Layout considerations are critical for the current sense filter and sense resistor. The capacitor associated
with the CS filter must be located very close to the device and connected directly to the pins of the controller (CS
and GND). If a current sense transformer is used, both leads of the transformer secondary should be routed to
the sense resistor and the current sense filter network. The current sense resistor can be located between the
source of the primary power MOSFET and power ground, but it must be a low inductance type. When designing
with a current sense resistor all of the noise sensitive low-power ground connections should be connected
together locally to the controller and a single connection should be made to the high current power ground
(sense resistor ground point).
OSCILLATOR, SHUTDOWN AND SYNC
A single external resistor, RT, connected between the RT/SYNC and GND pins sets the LM5022 oscillator
frequency. To set the switching frequency, fSW, RTcan be calculated from:
where
fSW is in Hz
RTis in Ω(1)
The LM5022 can also be synchronized to an external clock. The external clock must have a higher frequency
than the free running oscillator frequency set by the RTresistor. The clock signal should be capacitively coupled
into the RT/SYNC pin with a 100 pF capacitor as shown in Figure 14. A peak voltage level greater than 3.8V at
the RT/SYNC pin is required for detection of the sync pulse. The sync pulse width should be set between 15 ns
to 150 ns by the external components. The RTresistor is always required, whether the oscillator is free running
or externally synchronized. The voltage at the RT/SYNC pin is internally regulated to 2V, and the typical delay
from a logic high at the RT/SYNC pin to the rise of the OUT pin voltage is 120 ns. RTshould be located very
close to the device and connected directly to the pins of the controller (RT/SYNC and GND).
Figure 14. Sync Operation
Copyright © 2007–2013, Texas Instruments Incorporated Submit Documentation Feedback 11
Product Folder Links: LM5022
0
45 PA
2 k:
LM5022
ISW
RS2
RS1
RSNS CSNS
CS
VCL
+
-
0.5V Current
Limit
LM5022
SNVS480F JANUARY 2007REVISED MARCH 2013
www.ti.com
PWM COMPARATOR AND SLOPE COMPENSATION
The PWM comparator compares the current ramp signal with the error voltage derived from the error amplifier
output. The error amplifier output voltage at the COMP pin is offset by 1.4V and then further attenuated by a 3:1
resistor divider. The PWM comparator polarity is such that 0V on the COMP pin will result in a zero duty cycle at
the controller output. For duty cycles greater than 50%, current mode control circuits can experience sub-
harmonic oscillation. By adding an additional fixed-slope voltage ramp signal (slope compensation) this
oscillation can be avoided. Proper slope compensation damps the double pole associated with current mode
control (see CONTROL LOOP COMPENSATION) and eases the design of the control loop compensator. The
LM5022 generates the slope compensation with a sawtooth-waveform current source with a slope of 45 µA x fSW,
generated by the clock. (See Figure 15) This current flows through an internal 2 kresistor to create a minimum
compensation ramp with a slope of 100 mV x fSW (typical). The slope of the compensation ramp increases when
external resistance is added for filtering the current sense (RS1) or in the position RS2. As shown in Figure 15 and
the block diagram, the sensed current slope and the compensation slope add together to create the signal used
for current limiting and for the control loop itself.
Figure 15. Slope Compensation
In peak current mode control the optimal slope compensation is proportional to the slope of the inductor current
during the power switch off-time. For boost converters the inductor current slope while the MOSFET is off is (VO-
VIN) / L. This relationship is combined with the requirements to set the peak current limit and is used to select
RSNS and RS2 in Design Considerations.
SOFT-START
The soft-start feature allows the power converter output to gradually reach the initial steady state output voltage,
thereby reducing start-up stresses and current surges. At power on, after the VCC and input under-voltage
lockout thresholds are satisfied, an internal 10 µA current source charges an external capacitor connected to the
SS pin. The capacitor voltage will ramp up slowly and will limit the COMP pin voltage and the switch current.
MOSFET GATE DRIVER
The LM5022 provides an internal gate driver through the OUT pin that can source and sink a peak current of 1A
to control external, ground-referenced N-channel MOSFETs.
THERMAL SHUTDOWN
Internal thermal shutdown circuitry is provided to protect the LM5022 in the event that the maximum junction
temperature is exceeded. When activated, typically at 165°C, the controller is forced into a low power standby
state, disabling the output driver and the VCC regulator. After the temperature is reduced (typical hysteresis is
25°C) the VCC regulator will be re-enabled and the LM5022 will perform a soft-start.
Design Considerations
The most common circuit controlled by the LM5022 is a non-isolated boost regulator. The boost regulator steps
up the input voltage and has a duty ratio D of:
12 Submit Documentation Feedback Copyright © 2007–2013, Texas Instruments Incorporated
Product Folder Links: LM5022
IO
1-D
2
PC = D x x RDSON x 1.3
LM5022
www.ti.com
SNVS480F JANUARY 2007REVISED MARCH 2013
where
VDis the forward voltage drop of the output diode (2)
The following is a design procedure for selecting all the components for the boost converter circuit shown in
Figure 12. The application is "in-cabin" automotive, meaning that the operating ambient temperature ranges from
-20°C to 85°C. This circuit operates in continuous conduction mode (CCM), where inductor current stays above
0A at all times, and delivers an output voltage of 40.0V ±2% at a maximum output current of 0.5A. Additionally,
the regulator must be able to handle a load transient of up to 0.5A while keeping VOwithin ±4%. The voltage
input comes from the battery/alternator system of an automobile, where the standard range 9V to 16V and
transients of up to 32V must not cause any malfunction.
SWITCHING FREQUENCY
The selection of switching frequency is based on the tradeoffs between size, cost, and efficiency. In general, a
lower frequency means larger, more expensive inductors and capacitors will be needed. A higher switching
frequency generally results in a smaller but less efficient solution, as the power MOSFET gate capacitances must
be charged and discharged more often in a given amount of time. For this application, a frequency of 500 kHz
was selected as a good compromise between the size of the inductor and efficiency. PCB area and component
height are restricted in this application. Following the equation given for RTin Applications Information, a 33.2 k
1% resistor should be used to switch at 500 kHz.
MOSFET
Selection of the power MOSFET is governed by tradeoffs between cost, size, and efficiency. Breaking down the
losses in the MOSFET is one way to determine relative efficiencies between different devices. For this example,
the SO-8 package provides a balance of a small footprint with good efficiency.
Losses in the MOSFET can be broken down into conduction loss, gate charging loss, and switching loss.
Conduction, or I2R loss, PC, is approximately:
(3)
The factor 1.3 accounts for the increase in MOSFET on resistance due to heating. Alternatively, the factor of 1.3
can be ignored and the maximum on resistance of the MOSFET can be used.
Gate charging loss, PG, results from the current required to charge and discharge the gate capacitance of the
power MOSFET and is approximated as:
PG= VCC x QGx fSW (4)
QGis the total gate charge of the MOSFET. Gate charge loss differs from conduction and switching losses
because the actual dissipation occurs in the LM5022 and not in the MOSFET itself. If no external bias is applied
to the VCC pin, additional loss in the LM5022 IC occurs as the MOSFET driving current flows through the VCC
regulator. This loss, PVCC, is estimated as:
PVCC = (VIN VCC) x QGx fSW (5)
Copyright © 2007–2013, Texas Instruments Incorporated Submit Documentation Feedback 13
Product Folder Links: LM5022
L1 = VIN x D
fSW x 'iL
LM5022
SNVS480F JANUARY 2007REVISED MARCH 2013
www.ti.com
Switching loss, PSW, occurs during the brief transition period as the MOSFET turns on and off. During the
transition period both current and voltage are present in the channel of the MOSFET. The loss can be
approximated as:
PSW = 0.5 x VIN x [IO/ (1 D)] x (tR+ tF) x fSW
where
tRis the rise time of the MOSFET
tFis the fall time of the MOSFET (6)
For this example, the maximum drain-to-source voltage applied across the MOSFET is VOplus the ringing due to
parasitic inductance and capacitance. The maximum drive voltage at the gate of the high side MOSFET is VCC,
or 7V typical. The MOSFET selected must be able to withstand 40V plus any ringing from drain to source, and
be able to handle at least 7V plus ringing from gate to source. A minimum voltage rating of 50VD-S and 10VG-S
MOSFET will be used. Comparing the losses in a spreadsheet leads to a 60VD-S rated MOSFET in SO-8 with an
RDSON of 22 m(the maximum vallue is 31 m), a gate charge of 27 nC, and rise and falls times of 10 ns and
12 ns, respectively.
OUTPUT DIODE
The boost regulator requires an output diode D1 (see Figure 12) to carrying the inductor current during the
MOSFET off-time. The most efficient choice for D1 is a Schottky diode due to low forward drop and near-zero
reverse recovery time. D1 must be rated to handle the maximum output voltage plus any switching node ringing
when the MOSFET is on. In practice, all switching converters have some ringing at the switching node due to the
diode parasitic capacitance and the lead inductance. D1 must also be rated to handle the average output current,
IO.
The overall converter efficiency becomes more dependent on the selection of D1 at low duty cycles, where the
boost diode carries the load current for an increasing percentage of the time. This power dissipation can be
calculating by checking the typical diode forward voltage, VD, from the I-V curve on the diode's datasheet and
then multiplying it by IO. Diode datasheets will also provide a typical junction-to-ambient thermal resistance, θJA,
which can be used to estimate the operating die temperature of the Schottky. Multiplying the power dissipation
(PD= IOx VD) by θJA gives the temperature rise. The diode case size can then be selected to maintain the
Schottky diode temperature below the operational maximum.
In this example a Schottky diode rated to 60V and 1A will be suitable, as the maximum diode current will be
0.5A. A small case such as SOD-123 can be used if a small footprint is critical. Larger case sizes generally have
lower θJA and lower forward voltage drop, so for better efficiency the larger SMA case size will be used.
BOOST INDUCTOR
The first criterion for selecting an inductor is the inductance itself. In fixed-frequency boost converters this value
is based on the desired peak-to-peak ripple current, ΔiL, which flows in the inductor along with the average
inductor current, IL. For a boost converter in CCM ILis greater than the average output current, IO. The two
currents are related by the following expression:
IL= IO/ (1 D) (7)
As with switching frequency, the inductance used is a tradeoff between size and cost. Larger inductance means
lower input ripple current, however because the inductor is connected to the output during the off-time only there
is a limit to the reduction in output ripple voltage. Lower inductance results in smaller, less expensive magnetics.
An inductance that gives a ripple current of 30% to 50% of ILis a good starting point for a CCM boost converter.
Minimum inductance should be calculated at the extremes of input voltage to find the operating condition with the
highest requirement:
(8)
By calculating in terms of amperes, volts, and megahertz, the inductance value will come out in micro henries.
In order to ensure that the boost regulator operates in CCM a second equation is needed, and must also be
evaluated at the corners of input voltage to find the minimum inductance required:
14 Submit Documentation Feedback Copyright © 2007–2013, Texas Instruments Incorporated
Product Folder Links: LM5022
'iL = VIN x D
fSW x L
L2-VIN(MAX) = 0.6 x 0.4 x 16
0.5 x 0.5 = 15.4 PH
L1-VIN(MAX) = 16 x 0.6
0.5 x 0.5 = 38.4 PH
L2-VIN(MIN) = 0.78 x 0.22 x 9
0.5 x 0.5 = 6.2 PH
L1-VIN(MIN) = 9 x 0.78
0.5 x 0.92 = 15.3 PH
L2 = D(1-D) x VIN
IO x fSW
LM5022
www.ti.com
SNVS480F JANUARY 2007REVISED MARCH 2013
(9)
By calculating in terms of volts, amps and megahertz the inductance value will come out in µH.
For this design ΔiLwill be set to 40% of the maximum IL. Duty cycle is evaluated first at VIN(MIN) and at VIN(MAX).
Second, the average inductor current is evaluated at the two input voltages. Third, the inductor ripple current is
determined. Finally, the inductance can be calculated, and a standard inductor value selected that meets all the
criteria.
Inductance for Minimum Input Voltage
DVIN(MIN) = (40 9.0 + 0.5) / (40 + 0.5) = 78% IL-VIN(MIN) = 0.5 / (1 0.78) = 2.3A ΔiL= 0.4 x 2.3A = 0.92A (10)
(11)
(12)
Inductance for Maximum Input Voltage
DVIN(MAX) = (40 - 16 + 0.5) / (40 + 0.5) = 60% IL-VIN(MIAX) = 0.5 / (1 0.6) = 1.25A ΔiL= 0.4 x 1.25A = 0.5A (13)
(14)
(15)
Maximum average inductor current occurs at VIN(MIN), and the corresponding inductor ripple current is 0.92AP-P.
Selecting an inductance that exceeds the ripple current requirement at VIN(MIN) and the requirement to stay in
CCM for VIN(MAX) provides a tradeoff that allows smaller magnetics at the cost of higher ripple current at
maximum input voltage. For this example, a 33 µH inductor will satisfy these requirements.
The second criterion for selecting an inductor is the peak current carrying capability. This is the level above
which the inductor will saturate. In saturation the inductance can drop off severely, resulting in higher peak
current that may overheat the inductor or push the converter into current limit. In a boost converter, peak current,
IPK, is equal to the maximum average inductor current plus one half of the ripple current. First, the current ripple
must be determined under the conditions that give maximum average inductor current:
(16)
Maximum average inductor current occurs at VIN(MIN). Using the selected inductance of 33 µH yields the
following:
ΔiL= (9 x 0.78) / (0.5 x 33) = 425 mAP-P (17)
The highest peak inductor current over all operating conditions is therefore:
IPK = IL+ 0.5 x ΔiL= 2.3 + 0.213 = 2.51A (18)
Copyright © 2007–2013, Texas Instruments Incorporated Submit Documentation Feedback 15
Product Folder Links: LM5022
ID
VOÂvO
LM5022
SNVS480F JANUARY 2007REVISED MARCH 2013
www.ti.com
Hence an inductor must be selected that has a peak current rating greater than 2.5A and an average current
rating greater than 2.3A. One possibility is an off-the-shelf 33 µH ±20% inductor that can handle a peak current
of 3.2A and an average current of 3.4A. Finally, the inductor current ripple is recalculated at the maximum input
voltage:
ΔiL-VIN(MAX) = (16 x 0.6) / (0.5 x 33) = 0.58AP-P (19)
OUTPUT CAPACITOR
The output capacitor in a boost regulator supplies current to the load during the MOSFET on-time and also filters
the AC portion of the load current during the off-time. This capacitor determines the steady state output voltage
ripple, ΔVO, a critical parameter for all voltage regulators. Output capacitors are selected based on their
capacitance, CO, their equivalent series resistance (ESR) and their RMS or AC current rating.
The magnitude of ΔVOis comprised of three parts, and in steady state the ripple voltage during the on-time is
equal to the ripple voltage during the off-time. For simplicity the analysis will be performed for the MOSFET
turning off (off-time) only. The first part of the ripple voltage is the surge created as the output diode D1 turns on.
At this point inductor/diode current is at the peak value, and the ripple voltage increase can be calculated as:
ΔVO1 = IPK x ESR (20)
The second portion of the ripple voltage is the increase due to the charging of COthrough the output diode. This
portion can be approximated as:
ΔVO2 = (IO/ CO) x (D / fSW) (21)
The final portion of the ripple voltage is a decrease due to the flow of the diode/inductor current through the
output capacitor’s ESR. This decrease can be calculated as:
ΔVO3 =ΔiLx ESR (22)
The total change in output voltage is then:
ΔVO=ΔVO1 +ΔVO2 -ΔVO3 (23)
The combination of two positive terms and one negative term may yield an output voltage ripple with a net rise or
a net fall during the converter off-time. The ESR of the output capacitor(s) has a strong influence on the slope
and direction of ΔVO. Capacitors with high ESR such as tantalum and aluminum electrolytic create an output
voltage ripple that is dominated by ΔVO1 and ΔVO3, with a shape shown in Figure 16. Ceramic capacitors, in
contrast, have very low ESR and lower capacitance. The shape of the output ripple voltage is dominated by
ΔVO2, with a shape shown in Figure 17.
Figure 16. ΔVOUsing High ESR Capacitors
16 Submit Documentation Feedback Copyright © 2007–2013, Texas Instruments Incorporated
Product Folder Links: LM5022
IO-RMS = 1.13 x IL x D x (1 - D)
ID
VOÂvO
LM5022
www.ti.com
SNVS480F JANUARY 2007REVISED MARCH 2013
Figure 17. ΔVOUsing Low ESR Capacitors
For this example the small size and high temperature rating of ceramic capacitors make them a good choice.
The output ripple voltage waveform of Figure 17 is assumed, and the capacitance will be selected first. The
desired ΔVOis ±2% of 40V, or 0.8VP-P. Beginning with the calculation for ΔVO2, the required minimum
capacitance is:
CO-MIN = (IO/ΔVO) x (DMAX / fSW) CO-MIN = (0.5 / 0.8) x (0.77 / 5 x 105) = 0.96 µF (24)
The next higher standard 20% capacitor value is 1.0 µF, however to provide margin for component tolerance and
load transients two capacitors rated 4.7 µF each will be used. Ceramic capacitors rated 4.7 µF ±20% are
available from many manufacturers. The minimum quality dielectric that is suitable for switching power supply
output capacitors is X5R, while X7R (or better) is preferred. Careful attention must be paid to the DC voltage
rating and case size, as ceramic capacitors can lose 60% or more of their rated capacitance at the maximum DC
voltage. This is the reason that ceramic capacitors are often de-rated to 50% of their capacitance at their working
voltage. The output capacitors for this example will have a 100V rating in a 2220 case size.
The typical ESR of the selected capacitors is 3 meach, and in parallel is approximately 1.5 m. The worst-
case value for ΔVO1 occurs during the peak current at minimum input voltage:
ΔVO1 = 2.5 x 0.0015 = 4 mV (25)
The worst-case capacitor charging ripple occurs at maximum duty cycle:
ΔVO2 = (0.5 / 9.4 x 10-6) x (0.77 / 5 x 105) = 82 mV (26)
Finally, the worst-case value for ΔVO3 occurs when inductor ripple current is highest, at maximum input voltage:
ΔVO3 = 0.58 x 0.0015 = 1 mV (negligible) (27)
The output voltage ripple can be estimated by summing the three terms:
ΔVO= 4 mV + 82 mV - 1 mV = 85 mV (28)
The RMS current through the output capacitor(s) can be estimated using the following, worst-case equation:
(29)
The highest RMS current occurs at minimum input voltage. For this example the maximum output capacitor RMS
current is:
IO-RMS(MAX) = 1.13 x 2.3 x (0.78 x 0.22)0.5 = 1.08ARMS (30)
These 2220 case size devices are capable of sustaining RMS currents of over 3A each, making them more than
adequate for this application.
VCC DECOUPLING CAPACITOR
The VCC pin should be decoupled with a ceramic capacitor placed as close as possible to the VCC and GND
pins of the LM5022. The decoupling capacitor should have a minimum X5R or X7R type dielectric to ensure that
the capacitance remains stable over voltage and temperature, and be rated to a minimum of 470 nF. One good
choice is a 1.0 µF device with X7R dielectric and 1206 case size rated to 25V.
Copyright © 2007–2013, Texas Instruments Incorporated Submit Documentation Feedback 17
Product Folder Links: LM5022
CMIN =2 x 1P x 40 x 0.5
92 x 0.1 = 4.9 PF
CMIN = 2 x LS x VO x IO
VIN2 x RS
ESRMIN = (1-D)x'vIN
2 x ISTEP
LM5022
SNVS480F JANUARY 2007REVISED MARCH 2013
www.ti.com
INPUT CAPACITOR
The input capacitors to a boost regulator control the input voltage ripple, ΔVIN, hold up the input voltage during
load transients, and prevent impedance mismatch (also called power supply interaction) between the LM5022
and the inductance of the input leads. Selection of input capacitors is based on their capacitance, ESR, and RMS
current rating. The minimum value of ESR can be selected based on the maximum output current transient,
ISTEP, using the following expression:
(31)
For this example the maximum load step is equal to the load current, or 0.5A. The maximum permissable ΔVIN
during load transients is 4%P-P.ΔVIN and duty cycle are taken at minimum input voltage to give the worst-case
value:
ESRMIN = [(1 0.77) x 0.36] / (2 x 0.5) = 83 m(32)
The minimum input capacitance can be selected based on ΔVIN, based on the drop in VIN during a load transient,
or based on prevention of power supply interaction. In general, the requirement for greatest capacitance comes
from the power supply interaction. The inductance and resistance of the input source must be estimated, and if
this information is not available, they can be assumed to be 1 µH and 0.1, respectively. Minimum capacitance
is then estimated as:
(33)
As with ESR, the worst-case, highest minimum capacitance calculation comes at the minimum input voltage.
Using the default estimates for LSand RS, minimum capacitance is:
(34)
The next highest standard 20% capacitor value is 6.8 µF, but because the actual input source impedance and
resistance are not known, two 4.7 µF capacitors will be used. In general, doubling the calculated value of input
capacitance provides a good safety margin. The final calculation is for the RMS current. For boost converters
operating in CCM this can be estimated as:
IRMS = 0.29 x ΔiL(MAX) (35)
From the inductor section, maximum inductor ripple current is 0.58A, hence the input capacitor(s) must be rated
to handle 0.29 x 0.58 = 170 mARMS.
The input capacitors can be ceramic, tantalum, aluminum, or almost any type, however the low capacitance
requirement makes ceramic capacitors particularly attractive. As with the output capacitors, the minimum quality
dielectric used should X5R, with X7R or better preferred. The voltage rating for input capacitors need not be as
conservative as the output capacitors, as the need for capacitance decreases as input voltage increases. For this
example, the capacitor selected will be 4.7 µF ±20%, rated to 50V, in the 1812 case size. The RMS current
rating of these capacitors is over 2A each, more than enough for this application.
CURRENT SENSE FILTER
Parasitic circuit capacitance, inductance and gate drive current create a spike in the current sense voltage at the
point where Q1 turns on. In order to prevent this spike from terminating the on-time prematurely, every circuit
should have a low-pass filter that consists of CCS and RS1, shown in Figure 12. The time constant of this filter
should be long enough to reduce the parasitic spike without significantly affecting the shape of the actual current
sense voltage. The recommended range for RS1 is between 10and 500, and the recommended range for CCS
is between 100 pF and 2.2 nF. For this example, the values of RS1 and CCS will be 100and 1 nF, respectively.
18 Submit Documentation Feedback Copyright © 2007–2013, Texas Instruments Incorporated
Product Folder Links: LM5022
RS2 = 0.5 - 3 x 0.1
45P x 0.78 - 2000 - 100 = 3598:
RS2 = VCL - IILIM x RSNS
45P x D - 2000 - RS1
IO
1-D
2
PCS = x RSNS x D
RSNS = 33 x 0.5 x 0.5
(40 - 9) x 3 x 0.78 + 33 x 0.5 x 3 = 0.068:
RSNS = L x fSW x VCL
(VO ± VIN) x 3 x D + L x fSW x ILIM
LM5022
www.ti.com
SNVS480F JANUARY 2007REVISED MARCH 2013
RSNS, RS2 AND CURRENT LIMIT
The current sensing resistor RSNS is used for steady state regulation of the inductor current and to sense over-
current conditions. The slope compensation resistor is used to ensure control loop stability, and both resistors
affect the current limit threshold. The RSNS value selected must be low enough to keep the power dissipation to a
minimum, yet high enough to provide good signal-to-noise ratio for the current sensing circuitry. RSNS, and RS2
should be set so that the current limit comparator, with a threshold of 0.5V, trips before the sensed current
exceeds the peak current rating of the inductor, without limiting the output power in steady state.
For this example the peak current, at VIN(MIN), is 2.5A, while the inductor itself is rated to 3.2A. The threshold for
current limit, ILIM, is set slightly between these two values to account for tolerance of the circuit components, at a
level of 3.0A. The required resistor calculation must take into account both the switch current through RSNS and
the compensation ramp current flowing through the internal 2 k, RS1 and RS2 resistors. RSNS should be selected
first because it is a power resistor with more limited selection. The following equation should be evaluated at
VIN(MIN), when duty cycle is highest:
(36)
where
L is in µH
fSW in MHz (37)
The closest 5% value is 100 m. Power dissipation in RSNS can be estimated by calculating the average current.
The worst-case average current through RSNS occurs at minimum input voltage/maximum duty cycle and can be
calculated as:
(38)
PCS = [(0.5 / 0.22)2x 0.1] x 0.78 = 0.4W (39)
For this example a 0.1±1%, thick-film chip resistor in a 1210 case size rated to 0.5W will be used.
With RSNS selected, RS2 can be determined using the following expression:
(40)
(41)
The closest 1% tolerance value is 3.57 k.
CONTROL LOOP COMPENSATION
The LM5022 uses peak current-mode PWM control to correct changes in output voltage due to line and load
transients. Peak current-mode provides inherent cycle-by-cycle current limiting, improved line transient response,
and easier control loop compensation.
The control loop is comprised of two parts. The first is the power stage, which consists of the pulse width
modulator, output filter, and the load. The second part is the error amplifier, which is an op-amp configured as an
inverting amplifier. Figure 18 shows the regulator control loop components.
Copyright © 2007–2013, Texas Instruments Incorporated Submit Documentation Feedback 19
Product Folder Links: LM5022
ZLEP = 1
0.5 x (RO + ESR) x CO
ZZESR = 1
RC x CO
APS = (1 - D) x RO
2 x RSNS
ZESR RHP
PS PS 2
2
LEP n n n
s s
1 1
G A
s s s
1 1 Q
æ öæ ö
+ -
ç ÷ç ÷
w w
è ø
è ø
= ´ æ ö
æ öç ÷
+ + +
ç ÷ç ÷
w ´ w w
è øè ø
+
-
+
D
+
-
+
-
VREF +
-
C1
C2 R1
L
CO
RO
VIN
RC
RFB2
RFB1
RSNS
LM5022
SNVS480F JANUARY 2007REVISED MARCH 2013
www.ti.com
Figure 18. Power Stage and Error Amplifier
One popular method for selecting the compensation components is to create Bode plots of gain and phase for
the power stage and error amplifier. Combined, they make the overall bandwidth and phase margin of the
regulator easy to determine. Software tools such as Excel, MathCAD, and Matlab are useful for observing how
changes in compensation or the power stage affect system gain and phase.
The power stage in a CCM peak current mode boost converter consists of the DC gain, APS, a single low
frequency pole, fLFP, the ESR zero, fZESR, a right-half plane zero, fRHP, and a double pole resulting from the
sampling of the peak current. The power stage transfer function (also called the Control-to-Output transfer
function) can be written:
where
the DC gain is defined as: (42)
where (43)
RO= VO/ IO(44)
The system ESR zero is:
(45)
The low frequency pole is:
(46)
The right-half plane zero is:
20 Submit Documentation Feedback Copyright © 2007–2013, Texas Instruments Incorporated
Product Folder Links: LM5022
100 1k 10k 100k 1M
FREQUENCY (Hz)
-30
-15
0
15
30
45
60
POWER STAGE GAIN (dB)
1
S
Qn = -D + 0.5 + (1 - D) Se
Sn
ZRHP =
RO x VIN
VO
2
L
LM5022
www.ti.com
SNVS480F JANUARY 2007REVISED MARCH 2013
(47)
The sampling double pole quality factor is:
(48)
The sampling double corner frequency is:
ωn=πx fSW (49)
The natural inductor current slope is:
Sn= RSNS x VIN / L (50)
The external ramp slope is:
Se= 45 µA x (2000 + RS1 + RS2)] x fSW (51)
In the equation for APS, DC gain is highest when input voltage and output current are at the maximum. In this the
example those conditions are VIN = 16V and IO= 500 mA.
DC gain is 44 dB. The low frequency pole fP= 2πωPis at 423Hz, the ESR zero fZ= 2πωZis at 5.6 MHz, and the
right-half plane zero fRHP = 2πωRHP is at 61 kHz. The sampling double-pole occurs at one-half of the switching
frequency. Proper selection of slope compensation (via RS2) is most evident the sampling double pole. A well-
selected RS2 value eliminates peaking in the gain and reduces the rate of change of the phase lag. Gain and
phase plots for the power stage are shown in Figure 19.
Figure 19. Power Stage Gain and Phase
Copyright © 2007–2013, Texas Instruments Incorporated Submit Documentation Feedback 21
Product Folder Links: LM5022
GEA ==s x R1 x C2 +1
s x R1 x C1 x C2
C1 + C2
s+1
ZF
ZI
1
RFB2 (C1 + C2) x
100 1k 10k 100k 1M
FREQUENCY (Hz)
-180
-120
-60
0
60
120
180
POWER STAGE PHASE (°)
LM5022
SNVS480F JANUARY 2007REVISED MARCH 2013
www.ti.com
Figure 20. Power Stage Gain and Phase
The single pole causes a roll-off in the gain of -20 dB/decade at lower frequency. The combination of the RHP
zero and sampling double pole maintain the slope out to beyond the switching frequency. The phase tends
towards -90° at lower frequency but then increases to -180° and beyond from the RHP zero and the sampling
double pole. The effect of the ESR zero is not seen because its frequency is several decades above the
switching frequency. The combination of increasing gain and decreasing phase makes converters with RHP
zeroes difficult to compensate. Setting the overall control loop bandwidth to 1/3 to 1/10 of the RHP zero
frequency minimizes these negative effects, but requires a compromise in the control loop bandwidth. If this loop
were left uncompensated, the bandwidth would be 89 kHz and the phase margin -54°. The converter would
oscillate, and therefore is compensated using the error amplifier and a few passive components.
The transfer function of the compensation block, GEA, can be derived by treating the error amplifier as an
inverting op-amp with input impedance ZIand feedback impedance ZF. The majority of applications will require a
Type II, or two-pole one-zero amplifier, shown in Figure 18. The LaPlace domain transfer function for this Type II
network is given by the following:
(52)
Many techniques exist for selecting the compensation component values. The following method is based upon
setting the mid-band gain of the error amplifier transfer function first and then positioning the compensation zero
and pole:
1. Determine the desired control loop bandwidth: The control loop bandwidth, f0dB, is the point at which the
total control loop gain (H = GPS x GEA) is equal to 0 dB. For this example, a low bandwidth of 10 kHz, or
approximately 1/6th of the RHP zero frequency, is chosen because of the wide variation in input voltage.
2. Determine the gain of the power stage at f0dB:This value, A, can be read graphically from the gain plot of
GPS or calculated by replacing the ‘s’ terms in GPS with ‘2πf0dB’. For this example the gain at 10 kHz is
approximately 16 dB.
3. Calculate the negative of A and convert it to a linear gain: By setting the mid-band gain of the error
amplifier to the negative of the power stage gain at f0dB, the control loop gain will equal 0 dB at that
frequency. For this example, -16 dB = 0.15V/V.
4. Select the resistance of the top feedback divider resistor RFB2:This value is arbitrary, however selecting
a resistance between 10 kand 100 kwill lead to practical values of R1, C1 and C2. For this example,
RFB2 = 20 k1%.
5. SetR1=AxRFB2:For this example: R1 = 0.15 x 20000 = 3 k
6. Select a frequency for the compensation zero, fZ1:The suggested placement for this zero is at the low
frequency pole of the power stage, fLFP =ωLFP / 2π. For this example, fZ1 = fLFP = 423Hz
7. Set
22 Submit Documentation Feedback Copyright © 2007–2013, Texas Instruments Incorporated
Product Folder Links: LM5022
100 1k 10k 100k 1M
FREQUENCY (Hz)
-40
-32.5
-25
-17.5
-10
-2.5
5
ERROR AMP GAIN (dB)
100 1k 10k 100k 1M
FREQUENCY (Hz)
-180
-120
-60
0
60
120
180
ERROR AMP PHASE (°)
GEA-ACTUAL = GEA x OPG
1 + GEA x OPG
OPG =2S x GBW
2S x GBW
ADC
s +
C1 = C2
2S x C2 x R1 x fP1 -1:
C2 = 1
2S x R1 x fZ1 :
LM5022
www.ti.com
SNVS480F JANUARY 2007REVISED MARCH 2013
For this example, C2 = 125 nF
8. Select a frequency for the compensation pole, fP1:The suggested placement for this pole is at one-fifth of
the switching frequency. For this example, fP1 = 100 kHz
9. Set
For this example, C1 = 530 pF
10. Plug the closest 1% tolerance values for RFB2 and R1, then the closest 10% values for C1 and C2 into
GEA and model the error amp: The open-loop gain and bandwidth of the LM5022’s internal error amplifier
are 75 dB and 4 MHz, respectively. Their effect on GEA can be modeled using the following expression:
ADC is a linear gain, the linear equivalent of 75 dB is approximately 5600V/V. C1 = 560 pF 10%, C2 = 120 nF
10%, R1 = 3.01 k1%
11. Plot or evaluate the actual error amplifier transfer function:
Figure 21. Error Amplifier Gain and Phase Figure 22. Error Amplifier Gain and Phase
12. Plot or evaluate the complete control loop transfer function: The complete control loop transfer function
is obtained by multiplying the power stage and error amplifier functions together. The bandwidth and phase
margin can then be read graphically or evaluated numerically.
Copyright © 2007–2013, Texas Instruments Incorporated Submit Documentation Feedback 23
Product Folder Links: LM5022
K = PO
PO + Ptotal-loss
100 1k 10k 100k 1M
FREQUENCY (Hz)
-180
-120
-60
0
60
120
180
OVERALL LOOP PHASE (°)
100 1k 10k 100k 1M
FREQUENCY (Hz)
-60
-40
-20
0
20
40
60
OVERALL LOOP GAIN (dB)
LM5022
SNVS480F JANUARY 2007REVISED MARCH 2013
www.ti.com
Figure 23. Overall Loop Gain and Phase Figure 24. Overall Loop Gain and Phase
The bandwidth of this example circuit at VIN = 16V is 10.5 kHz, with a phase margin of 66°.
13. Re-evaluate at the corners of input voltage and output current: Boost converters exhibit significant
change in their loop response when VIN and IOchange. With the compensation fixed, the total control loop gain
and phase should be checked to ensure a minimum phase margin of 45° over both line and load.
Efficiency Calculations
A reasonable estimation for the efficiency of a boost regulator controlled by the LM5022 can be obtained by
adding together the loss is each current carrying element and using the equation:
(53)
The following shows an efficiency calculation to complement the circuit design from Design Considerations.
Output power for this circuit is 40V x 0.5A = 20W. Input voltage is assumed to be 13.8V, and the calculations
used assume that the converter runs in CCM. Duty cycle for VIN = 13.8V is 66%, and the average inductor
current is 1.5A.
CHIP OPERATING LOSS
This term accounts for the current drawn at the VIN pin. This current, IIN, drives the logic circuitry and the power
MOSFETs. The gate driving loss term from MOSFET is included in the chip operating loss. For the LM5022, IIN is
equal to the steady state operating current, ICC, plus the MOSFET driving current, IGC. Power is lost as this
current passes through the internal linear regulator of the LM5022.
IGC = QGX fSW IGC = 27 nC x 500 kHz = 13.5 mA (54)
ICC is typically 3.5 mA, taken from the Electrical Characteristics table. Chip Operating Loss is then:
PQ= VIN X (IQ+ IGC) PQ= 13.8 X (3.5m + 13.5m) = 235 mW (55)
MOSFET SWITCHING LOSS
PSW = 0.5 x VIN x ILx (tR+ tF) x fSW PSW = 0.5 x 13.8 x 1.5 x (10 ns + 12 ns) x 5 x 105= 114 mW (56)
MOSFET AND RSNS CONDUCTION LOSS
PC= D x (IL2x (RDSON x 1.3 + RSNS)) PC= 0.66 x (1.52x (0.029 + 0.1)) = 192 mW (57)
OUTPUT DIODE LOSS
The average output diode current is equal to IO, or 0.5A. The estimated forward drop, VD, is 0.5V. The output
diode loss is therefore:
PD1 = IOx VDPD1 = 0.5 x 0.5 = 0.25W (58)
24 Submit Documentation Feedback Copyright © 2007–2013, Texas Instruments Incorporated
Product Folder Links: LM5022
PCIN = IIN-RMS2 x ESR
n
LM5022
www.ti.com
SNVS480F JANUARY 2007REVISED MARCH 2013
INPUT CAPACITOR LOSS
This term represents the loss as input ripple current passes through the ESR of the input capacitor bank. In this
equation ‘n’ is the number of capacitors in parallel. The 4.7 µF input capacitors selected have a combined ESR
of approximately 1.5 m, and ΔiLfor a 13.8V input is 0.55A:
(59)
IIN-RMS = 0.29 x ΔiL= 0.29 x 0.55 = 0.16A PCIN = [0.162x 0.0015] / 2 = 0.02 mW (negligible) (60)
OUTPUT CAPACITOR LOSS
This term is calculated using the same method as the input capacitor loss, substituting the output capacitor RMS
current for VIN = 13.8V. The output capacitors' combined ESR is also approximately 1.5 m.
IO-RMS = 1.13 x 1.5 x (0.66 x 0.34)0.5 = 0.8A PCO = [0.8 x 0.0015] / 2 = 0.6 mW (61)
BOOST INDUCTOR LOSS
The typical DCR of the selected inductor is 40 m.
PDCR = IL2x DCR PDCR = 1.52x 0.04 = 90 mW (62)
Core loss in the inductor is estimated to be equal to the DCR loss, adding an additional 90 mW to the total
inductor loss.
TOTAL LOSS
PLOSS = Sum of All Loss Terms = 972 mW (63)
EFFICIENCY
η= 20 / (20 + 0.972) = 95% (64)
Layout Considerations
To produce an optimal power solution with the LM5022, good layout and design of the PCB are as important as
the component selection. The following are several guidelines to aid in creating a good layout.
FILTER CAPACITORS
The low-value ceramic filter capacitors are most effective when the inductance of the current loops that they filter
is minimized. Place CINX as close as possible to the VIN and GND pins of the LM5022. Place COX close to the
load, and CFnext to the VCC and GND pins of the LM5022.
SENSE LINES
The top of RSNS should be connected to the CS pin with a separate trace made as short as possible. Route this
trace away from the inductor and the switch node (where D1, Q1, and L1 connect). For the voltage loop, keep
RFB1/2 close to the LM5022 and run a trace from as close as possible to the positive side of COX to RFB2. As with
the CS line, the FB line should be routed away from the inductor and the switch node. These measures minimize
the length of high impedance lines and reduce noise pickup.
COMPACT LAYOUT
Parasitic inductance can be reduced by keeping the power path components close together and keeping the
area of the loops that high currents travel small. Short, thick traces or copper pours (shapes) are best. In
particular, the switch node should be just large enough to connect all the components together without excessive
heating from the current it carries. The LM5022 (boost converter) operates in two distinct cycles whose high
current paths are shown in Figure 25:
Copyright © 2007–2013, Texas Instruments Incorporated Submit Documentation Feedback 25
Product Folder Links: LM5022
+
-
LM5022
SNVS480F JANUARY 2007REVISED MARCH 2013
www.ti.com
Figure 25. Boost Converter Current Loops
The dark grey, inner loops represents the high current paths during the MOSFET on-time. The light grey, outer
loop represents the high current path during the off-time.
26 Submit Documentation Feedback Copyright © 2007–2013, Texas Instruments Incorporated
Product Folder Links: LM5022
LM5022
www.ti.com
SNVS480F JANUARY 2007REVISED MARCH 2013
GROUND PLANE AND SHAPE ROUTING
The diagram of Figure 25 is also useful for analyzing the flow of continuous current vs. the flow of pulsating
currents. The circuit paths with current flow during both the on-time and off-time are considered to be continuous
current, while those that carry current during the on-time or off-time only are pulsating currents. Preference in
routing should be given to the pulsating current paths, as these are the portions of the circuit most likely to emit
EMI. The ground plane of a PCB is a conductor and return path, and it is susceptible to noise injection just as
any other circuit path. The continuous current paths on the ground net can be routed on the system ground plane
with less risk of injecting noise into other circuits. The path between the input source, input capacitor and the
MOSFET and the path between the output capacitor and the load are examples of continuous current paths. In
contrast, the path between the grounded side of the power switch and the negative output capacitor terminal
carries a large pulsating current. This path should be routed with a short, thick shape, preferably on the
component side of the PCB. Multiple vias in parallel should be used right at the negative pads of the input and
output capacitors to connect the component side shapes to the ground plane. Vias should not be placed directly
at the grounded side of the MOSFET (or RSNS) as they tend to inject noise into the ground plane. A second
pulsating current loop that is often ignored but must be kept small is the gate drive loop formed by the OUT and
VCC pins, Q1, RSNS and capacitor CF.
Table 1. BOM for Example Circuit
ID Part Number Type Size Parameters Qty Vendor
U1 LM5022 Low-Side Controller VSSOP-10 60V 1 NSC
Q1 Si4850EY MOSFET SO-8 60V, 31m, 27nC 1 Vishay
D1 CMSH2-60M Schottky Diode SMA 60V, 2A 1 Central Semi
L1 SLF12575T-M3R2 Inductor 12.5 x 12.5 x 7.5 mm 33µH, 3.2A, 40m1 TDK
Cin1, Cin2 C4532X7R1H475M Capacitor 1812 4.7µF, 50V, 3m2 TDK
Co1, Co2 C5750X7R2A475M Capacitor 2220 4.7µF,100V, 3m2 TDK
Cf C2012X7R1E105K Capacitor 0805 1µF, 25V 1 TDK
Cinx C2012X7R2A104M Capacitor 0805 100nF, 100V 2 TDK
Cox
C1 VJ0805A561KXXAT Capacitor 0805 560pF 10% 1 Vishay
C2 VJ0805Y124KXXAT Capacitor 0805 120nF 10% 1 Vishay
Css VJ0805Y103KXXAT Capacitor 0805 10nF 10% 1 Vishay
Ccs VJ0805Y102KXXAT Capacitor 0805 1nF 10% 1 Vishay
R1 CRCW08053011F Resistor 0805 3.01k1% 1 Vishay
Rfb1 CRCW08056490F Resistor 0805 6491% 1 Vishay
Rfb2 CRCW08052002F Resistor 0805 20k1% 1 Vishay
Rs1 CRCW0805101J Resistor 0805 1005% 1 Vishay
Rs2 CRCW08053571F Resistor 0805 3.57k1% 1 Vishay
Rsns ERJL14KF10C Resistor 1210 100m, 1%, 0.5W 1 Panasonic
Rt CRCW08053322F Resistor 0805 33.2k1% 1 Vishay
Ruv1 CRCW08052611F Resistor 0805 2.61k1% 1 Vishay
Ruv2 CRCW08051002F Resistor 0805 10k1% 1 Vishay
Copyright © 2007–2013, Texas Instruments Incorporated Submit Documentation Feedback 27
Product Folder Links: LM5022
LM5022
SNVS480F JANUARY 2007REVISED MARCH 2013
www.ti.com
REVISION HISTORY
Changes from Revision E (March 2013) to Revision F Page
Changed layout of National Data Sheet to TI format .......................................................................................................... 27
28 Submit Documentation Feedback Copyright © 2007–2013, Texas Instruments Incorporated
Product Folder Links: LM5022
PACKAGE OPTION ADDENDUM
www.ti.com 1-Nov-2013
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status
(1)
Package Type Package
Drawing Pins Package
Qty Eco Plan
(2)
Lead/Ball Finish
(6)
MSL Peak Temp
(3)
Op Temp (°C) Device Marking
(4/5)
Samples
LM5022MM NRND VSSOP DGS 10 1000 TBD Call TI Call TI -40 to 125 5022
LM5022MM/NOPB ACTIVE VSSOP DGS 10 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 5022
LM5022MME/NOPB ACTIVE VSSOP DGS 10 250 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 5022
LM5022MMX/NOPB ACTIVE VSSOP DGS 10 3500 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 5022
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
PACKAGE OPTION ADDENDUM
www.ti.com 1-Nov-2013
Addendum-Page 2
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device Package
Type Package
Drawing Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm) B0
(mm) K0
(mm) P1
(mm) W
(mm) Pin1
Quadrant
LM5022MM VSSOP DGS 10 1000 178.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1
LM5022MM/NOPB VSSOP DGS 10 1000 178.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1
LM5022MME/NOPB VSSOP DGS 10 250 178.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1
LM5022MMX/NOPB VSSOP DGS 10 3500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1
PACKAGE MATERIALS INFORMATION
www.ti.com 11-Oct-2013
Pack Materials-Page 1
*All dimensions are nominal
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
LM5022MM VSSOP DGS 10 1000 210.0 185.0 35.0
LM5022MM/NOPB VSSOP DGS 10 1000 210.0 185.0 35.0
LM5022MME/NOPB VSSOP DGS 10 250 210.0 185.0 35.0
LM5022MMX/NOPB VSSOP DGS 10 3500 367.0 367.0 35.0
PACKAGE MATERIALS INFORMATION
www.ti.com 11-Oct-2013
Pack Materials-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated