TAK CHEONG Licensed by ON Semiconductor, A trademark of semiconductor Components Industries, LLC for Zener Technology and Products. 500 mW DO-35 Hermetically Sealed Glass Zener Voltage Regulators Maximum Ratings (Note 1) Rating Symbol Value Units Maximum Steady State Power Dissipation @TL75, Lead Length = 3/8" PD 500 mW 4.0 mW/ -65 to +200 C Derate Above 75 Operating and Storage Temperature Range TJ, Tstg AXIAL LEAD DO35 Note 1: Some part number series have lower JEDEC registered ratings. Specification Features: Zener Voltage Range = 2.4V to 200V ESD Rating of Clas 3 (>6 KV) per Human Body Model DO-35 Package (DO-204AH) Double Slug Type Construction Metallurgical Bonded Construction Cathode Anode Specification Features: Case : Double slug type, hermetically sealed glass Finish : All external surfaces are corrosion resistant and leads are readily solderable Polarity : Cathode indicated by polarity band Mounting: Any L 79C xxx Maximum Lead Temperature for Soldering Purposes 230, 1/16" from the case for 10 seconds L 79Cxxx = Logo = BZX79Cxxx Device Code Ordering Information Device Package Quantity BZX79Cxxx Axial Lead 3000 Units / Box BZX79CxxxRL Axial Lead 5000 Units / Tape & Reel BZX79CxxxRL2* Axial Lead 5000 Units / Tape & Reel BZX79CxxxRR1 ! Lead Form 3000 Units / Radial Tape & Reel BZX79CxxxRR2 i Lead Form 3000 Units / Radial Tape & Reel BZX79CxxxTA Axial Lead 5000 Units / Tape & Ammo BZX79CxxxTA2* Axial Lead 5000 Units / Tape & Ammo BZX79CxxxRA1 ! Axial Lead 3000 Units / Radial Tape & Ammo BZX79CxxxRA2 i Axial Lead 3000 Units / Radial Tape & Ammo * The "2" suffix refer to 26mm tape spacing. ! "1": Polarity band up with cathode lead off first. i "2": Polarity band down with cathode lead off first. Devices listed in bold italic are Tak Cheong Preferred devices. Preferred devices are recommended choices for future use and best overall value. December 2005 / B http://takcheong.com 1 BZX79C2V4 through BZX79C200 Series (R) BZX79C2V4 through BZX79C200 Series ELECTRICAL CHARACTERIZATION (TA = 25C unless I otherwise noted, VF = 1.5V max @ IF = 100mA for all types) Symbol Parameter IF VZ Reverse Zener Voltage @ IZT IZT Reverse Current ZZT Maximum Zener Impedance @ IZT VBR VZ VR Temperature Coefficient of VBR (Typical) IR Reverse Leakage Current @ VR VR Reverse Voltage IF Forward Current VF Forward Voltage @ IF C Capacitance (Typical) IR IZT V VF Zener Voltage Regulator ELECTRICAL CHARACTERIZATION (TA = 25C unless otherwise noted, VF = 1.5V max @ IF = 100mA for all types) VZ @ IZT (Volts) (Note 3.) Device Device (Note 2.) Marking Min Max BZX79C2V4 79C2V4 2.2 BZX79C2V7 79C2V7 2.5 BZX79C3V0 79C3V0 BZX79C3V3 79C3V3 BZX79C3V6 Max Zener C Impedance IZT @ IZT IR @ V R VZ =0, VBR Leakage Current (Note 4.) (mV/) F=1.0MHz () IZT (mA) (uA) (Volts) Min Max (pF) 2.6 100 5 100 1 -3.5 0 255 2.9 100 5 75 1 -3.5 0 230 2.8 3.2 95 5 50 1 -3.5 0 215 3.1 3.5 95 5 25 1 -3.5 0 200 79C3V6 3.4 3.8 90 5 15 1 -3.5 0 185 BZX79C3V9 79C3V9 3.7 4.1 90 5 10 1 -3.5 0.3 175 BZX79C4V3 79C4V3 4 4.6 90 5 5 1 -3.5 1 160 BZX79C4V7 79C4V7 4.4 5 80 5 3 2 -3.5 0.2 130 BZX79C5V1 79C5V1 4.8 5.4 60 5 2 2 -2.7 1.2 110 BZX79C5V6 79C5V6 5.2 6 40 5 1 2 -2 2.5 95 BZX79C6V2 79C6V2 5.8 6.6 10 5 3 4 0.4 3.7 90 BZX79C6V8 79C6V8 6.4 7.2 15 5 2 4 1.2 4.5 85 BZX79C7V5 79C7V5 7 7.9 15 5 1 5 2.5 5.3 80 BZX79C8V2 79C8V2 7.7 8.7 15 5 0.7 5 3.2 6.2 75 BZX79C9V1 79C9V1 8.5 9.6 15 5 0.5 6 3.8 7 70 BZX79C10 79C10 9.4 10.6 20 5 0.2 7 4.5 8 70 BZX79C11 79C11 10.4 11.6 20 5 0.1 8 5.4 9 65 BZX79C12 79C12 11.4 12.7 25 5 0.1 8 6 10 65 BZX79C13 79C13 12.4 14.1 30 5 0.1 8 7 11 60 BZX79C15 79C15 13.8 15.6 30 5 0.05 10.5 9.2 13 55 2. TOLERANCE AND VOLTAGE DESIGNATION Tolerance designation - the type numbers listed have zener voltage min/max limits as shown. 3. REVERSE ZENER VOLTAGE (VZ) Reverse zener voltage is measured under pulse conditions such at TJ is no more than 2 above TA. 4. ZENER IMPEDANCE (ZZ) DERIVATION ZZT and ZZK are measured by dividing the AC voltage drop across the device by the AC current applied. The specified limits are for IZ(AC) = 0.1 IZ(DC) with AC frequency = 60Hz. http://takcheong.com 2 BZX79C2V4 through BZX79C200 Series ELECTRICAL CHARACTERISTICS (TA = 25C unless otherwise noted. VF = 1.5 V Max @ IF = 100mA for all types) Symbol Parameter VZ Reverse Zener Voltage @ IZT IZT Reverse Zener Current ZZT Maximum Zener Impedance @ IZT VBR Temperature Coefficient of VBR (Typical) IR Reverse Leakage Current @ VR VR Reverse Voltage IF Forward Current VF Forward Voltage @ IF C Capacitance (Typical) ELECTRICAL CHARACTERISTICS (TA = 25c unless otherwise noted, VF = 1.5 V Max @ IF = 100mA for all types) Max Zener Impedance VZ @ IZT Device C (Volts) (Note 4) (Note 3.) ZZT @ IZT IZT Leakage Current VBR VZ = 0, IR @ VR (mV/C) F = 1.0MHz (Note 2.) Device Marking Min Max ) ( (mA) A) ( (Volts) Min Max (pF) BZX79C2V4 79C2V4 2.2 2.6 100 5 100 1 -3.5 0 255 BZX79C2V7 79C2V7 2.5 2.9 100 5 75 1 -3.5 0 230 BZX79C3V0 79C3V0 2.8 3.2 95 5 50 1 -3.5 0 215 BZX79C3V3 79C3V3 3.1 3.5 95 5 25 1 -3.5 0 200 BZX7C3V6 7C3V6 3.4 3.8 90 5 15 1 -3.5 0 185 BZX79C3V9 79C3V9 3.7 4.1 90 5 10 1 -3.5 0.3 175 BZX79C4V3 79C4V3 4 4.6 90 5 5 1 -3.5 1 160 BZX79C4V7 79C4V7 4.4 5 80 5 3 2 -3.5 0.2 130 BZX79C5V1 79C5V1 4.8 5.4 60 5 2 2 -2.7 1.2 110 BZX79C5V6 79C5V6 5.2 6 40 5 1 2 -2 2.5 95 BZX79C6V2 79C6V2 5.8 6.6 10 5 3 4 0.4 3.7 90 BZX79C6V8 79C6V8 6.4 7.2 15 5 2 4 1.2 4.5 85 BZX79C7V5 79C7V5 7 7.9 15 5 1 5 2.5 5.3 8 BZX79C8V2 79C8V2 7.7 8.7 15 5 0.7 5 3.2 6.2 75 BZX79C9V1 79C9V1 8.5 9.6 15 5 0.5 6 3.8 7 70 BZX79C10 79C10 9.4 10.6 20 5 0.2 7 4.5 8 70 BZX79C11 79C11 10.4 11.6 20 5 0.1 8 5.4 9 65 BZX79C12 79C12 11.4 12.7 25 5 0.1 8 6 10 65 BZX79C13 79C13 12.4 14.1 30 5 0.1 8 7 11 60 BZX79C15 79C15 13.8 15.6 30 5 0.05 10.5 9.2 13 55 2. TOLERANCE AND VOLTAGE DESIGNATION Tolerance designation - the type numbers listed have zener voltage min/max limits as shown. 3. REVERSE ZENER VOLTAGE (VZ) Reverse zener voltage is measured under pulse conditions such that TJ is no more than 2C above TA. 4. ZENER IMPEDANCE (ZZ) DERIVATION ZZT and ZZK are measured by dividing the AC voltage drop across the device by the AC current applied. The specified limits are for IZ(AC) = 0.1 IZ(DC) with AC frequency = 60Hz. http://www.takcheong.com 2 BZX79C2V4 through BZX79C200 Series ELECTRICAL CHARACTERISTICS (TA = 25c unless otherwise noted, VF = 1.5 V Max @ IF = 100mA for all types) Max Zener Impedance VZ @ IZT Device C (Volts) (Note 4) (Note 3.) ZZT @ IZT IZT Leakage Current VBR VZ = 0, IR @ VR (mV/C) F = 1.0MHz (Note 2.) Device Marking Min Max ) ( (mA) A) ( (Volts) Min Max (pF) BZX79C16 79C16 15.3 17.1 40 5 0.05 11.2 10.4 14 52 BZX79C18 79C18 16.8 19.1 45 5 0.05 12.6 12.9 16 47 BZX79C20 79C20 18.8 21.2 55 5 0.05 14 14.4 18 36 BZX79C22 79C22 20.8 23.3 55 5 0.05 15.4 16.4 20 34 BZX79C24 79C24 22.8 25.6 70 5 0.05 16.8 18.4 22 33 BZX79C27 79C27 25.1 28.9 80 2 0.05 18.9 23.5 30 BZX79C30 79C30 28 32 80 2 0.05 21 26 27 BZX79C33 79C33 31 35 80 2 0.05 23.1 29 25 BZX79C36 79C36 34 38 90 2 0.05 25.2 31 23 BZX79C39 79C39 37 41 130 2 0.05 27.3 34 21 BZX79C43 79C43 40 46 150 2 0.05 30.1 37 21 BZX79C47 79C47 44 50 170 2 0.05 32.9 40 19 BZX79C51 79C51 48 54 180 2 0.05 35.7 44 19 BZX79C56 79C56 52 60 200 2 0.05 39.2 47 18 BZX79C62 79C62 58 66 215 2 0.05 43.4 51 17 BZX79C68 79C68 64 72 240 2 0.05 47.6 56 17 BZX79C75 79C75 70 79 255 2 0.05 52.5 60 16.5 BZX79C82 79C82 77 87 280 2 0.1 62 46 95 29 BZX79C91 79C91 85 96 300 2 0.1 69 51 107 28 BZX79C100 79C100 94 106 500 1 0.1 76 57 119 27 BZX79C110 79C110 104 116 650 1 0.1 84 63 131 26 BZX79C120 79C120 114 127 800 1 0.1 91 69 144 24 BZX79C130 79C130 124 141 950 1 0.1 99 75 158 23 BZX79C150 79C150 138 156 1250 1 0.1 114 87 185 21 BZX79C160 79C160 153 171 1400 1 0.1 122 93 200 20 BZX79C180 79C180 168 191 1700 1 0.1 137 105 228 18 BZX79C200 79C200 188 212 2000 1 0.1 152 120 255 17 2. TOLERANCE AND VOLTAGE DESIGNATION Tolerance designation - the type numbers listed have zener voltage min/max limits as shown. 3. REVERSE ZENER VOLTAGE (VZ) Reverse zener voltage is measured under pulse conditions such that TJ is no more than 2C above TA. 4. ZENER IMPEDANCE (ZZ) DERIVATION ZZT and ZZK are measured by dividing the AC voltage drop across the device by the AC current applied. The specified limits are for IZ(AC) = 0.1 IZ(DC) with AC frequency = 60Hz. http://www.takcheong.com 3 BZX79C2V4 through BZX79C200 Series 0.7 HEAT SINKS P D , MAXIMUM STEADY STATE POWER DISSIPATION (WATTS) 0.6 0.5 0.4 3/8" 3/8" 0.3 0.2 0.1 0 0 20 40 60 80 100 120 140 160 T L , LEAD TEMPERATURE (C) Figure 1. Steady State Power Derating http://www.takcheong.com 4 180 200 BZX79C2V4 through BZX79C200 Series Since the actual voltage available from a given zener diode is temperature dependent, it is necessary to determine junction temperature under any set of operating conditions in order to calculate its value. The following procedure is recommended: Lead Temperature, TL, should be determined from: TL = LAPD + TA. LA is the lead-to-ambient thermal resistance (C/W) and PD is the power dissipation. The value for LA will vary and depends on the device mounting method. LA is generally 30 to 40C/W for the various clips and tie points in common use and for printed circuit board wiring. The temperature of the lead can also be measured using a thermocouple placed on the lead as close as possible to the tie point. The thermal mass connected to the tie point is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of TL, the junction temperature may be determined by: JL, JUNCTION TO LEAD THERMAL RESISTANCE ( C/W) APPLICATION NOTE - ZENER VOLTAGE L 2.4-60 V 200 62-200 V 100 0 0 0.2 0.4 1000 7000 5000 0.6 0.8 1 TYPICAL LEAKAGE CURRENT AT 80% OF NOMINAL BREAKDOWN VOLTAGE 2000 1000 700 500 200 TJL = JLPD. 100 70 50 I R , LEAKAGE CURRENT ( A) VZ, the zener voltage temperature coefficient, is found from Figures 4 and 5. Under high power-pulse operation, the zener voltage will vary with time and may also be affected significantly by the zener resistance. For best regulation, keep current excursions as low as possible. Surge limitations are given in Figure 7. They are lower than would be expected by considering only junction temperature, as current crowding effects cause temperatures to be extremely high in small spots, resulting in device degradation should the limits of Figure 7 be exceeded. L 300 Figure 2. Typical Thermal Resistance TJL is the increase in junction temperature above the lead temperature and may be found from Figure 2 for dc power: V = VZTJ. 400 L , LEAD LENGTH TO HEAT SINK (INCH) TJ = TL + TJL. For worst-case design, using expected limits of IZ, limits of PD and the extremes of TJ(TJ) may be estimated. Changes in voltage, VZ, can then be found from: 500 20 10 7 5 2 1 0.7 0.5 +125C 0.2 0.1 0.07 0.05 0.02 0.01 0.007 0.005 +25C 0.002 0.001 3 4 5 6 7 8 9 10 11 12 VZ , NOMINAL ZENER VOLTAGE (VOLTS) Figure 3. Typical Leakage Current http://www.takcheong.com 5 13 14 15 BZX79C2V4 through BZX79C200 Series TEMPERATURE COEFFICIENTS TEMPERATURE COEFFICIENT (mV/ C) +12 +10 +8 +6 +4 +2 RANGE VZ @ IZT (NOTE 2) 0 -2 VZ , VZ , TEMPERA TURE COEFFICIENT (mV/ C) (-55 C to +150 C temperature range; 90% of the units are in the ranges indicated.) -4 2 4 3 5 6 7 8 10 9 11 100 70 50 30 20 5 3 2 1 10 12 20 TEMPERATURE COEFFICIENT (mV/C) 160 140 VZ @ IZT (NOTE 2) VZ , TEMPERA TURE COEFFICIENT (mV/C) VZ , 180 100 140 150 160 170 70 100 180 190 +6 VZ @ IZ TA= 25 C +4 +2 20mA 0 0.01mA 1mA -2 NOTE: BELOW 3 VOLTS AND ABOVE 8 VOL TS NOTE: CHANGES IN ZENER CURRENT DO NOT NOTE: AFFECT TEMPERATURE COEFFICIENTS -4 3 200 6 5 4 8 7 V Z , ZENER VOLTAGE (VOLTS) V Z , ZENER VOLTAGE (VOLTS) Figure 4c. Range for Units 120 to 200 Volts Figure 5. Effect of Zener Current 1000 100 TA = 25 C 70 500 T= 25 C 50 0V BIAS 0 BIAS C, CAP ACIT ANCE (pF) 200 C, CAP ACIT ANCE (pF) 50 Figure 4b. Range for Units 12 to 100 Volts 200 130 30 V Z , ZENER VOLTAGE (VOLTS) Figure 4a. Range for Units to 12 Volts 120 (NOTE 2) 7 V Z , ZENER VOLTAGE (VOLTS) 120 VZ @ IZ RANGE 10 100 1V BIAS 50 20 10 50% OF V Z BIAS 5 30 20 1 VOLT BIAS 10 7 50% OF V BIAS 5 3 2 2 1 1 1 2 5 10 20 50 100 120 140 Figure 6a. Typical Capacitance 2.4-100 Volts 160 180 190 200 V Z, ZENER VOLTAGE (VOLTS) V Z, ZENER VOLTAGE (VOLTS) Figure 6b. Typical Capacitance 120-200 Volts http://www.takcheong.com 6 220 BZX79C2V4 through BZX79C200 Series Ppk , PEAK SURGE POWER (WATTS) 100 70 50 RECT ANGULAR WAVEFORM T J = 25C PRIOR TO INITIAL PULSE 11V-91V NONREPETITIVE 30 5% DUTY CYCLE 1.8V-10V NONREPETITIVE 20 10 10% DUTY CYCLE 7 5 20% DUTY CYCLE 3 2 1 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10 20 50 100 200 500 1000 PW, PULSE WIDTH (ms) Figure 7a. Maximum Surge Power 1.8-91 Volts 1000 RECT ANGULAR WAVEFORM, TJ = 25 C 300 200 100 70 50 100-200 VOLTS NONREPETITIVE 30 20 10 7 5 3 2 1 0.01 T J = 25C iZ (rms) = 0.1 Iz(dc) VZ = 2.7V f = 60 Hz 200 47V 100 27V 50 20 6.2V 10 5 2 1 0.1 1 10 100 0.1 1000 0.2 0.5 1 2 5 10 20 PW, PULSE WIDTH (ms) IZ , ZENER CURRENT (mA) Figure 7b. Maximum Surge Power DO-35 100-200Volts Figure 8. Effect of Zener Current on Zener Impedance 1000 700 500 Z Z , DYNAMIC IMPEDANCE (OHMS) Z Z , DYNAMIC IMPEDANCE (OHMS) 500 TJ = 25C 200 100 70 50 5mA 20 20mA 100 MAXIMUM 500 f = 60Hz IZ = 1mA 50 1000 iZ (rms) = 0.1 IZ (dc) I F , FOR WARD CURRENT (mA) Ppk , PEAK SURGE POWER (WATTS) 1000 700 500 10 7 5 2 MINIMUM 200 100 50 75 C 20 10 25 C 5 150 C 0 C 2 1 1 1 2 3 5 7 10 20 30 50 70 100 0.4 0.5 V Z , ZENER VOLTAGE (VOLTS) 0.6 0.7 0.8 0.9 1 V F , FOR WARD VOLTAGE (VOLTS) Figure 9. Effect of Zener Voltage on Zener Impedance Figure 10. Typical Forward Characteristics http://www.takcheong.com 7 1.1 BZX79C2V4 through BZX79C200 Series 20 10 I Z , ZENER CURRENT (mA) TA = 25C 1 0.1 0.01 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 29 30 V Z , ZENER VOLTAGE (VOLTS) Figure 1 1. Zener Voltage versus Zener Current - VZ = 1 thru 16 Volts 10 I Z , ZENER CURRENT (mA) TA = 25C 1 0.1 0.01 15 16 17 18 19 20 21 22 23 24 25 26 27 V Z , ZENER VOLTAGE (VOLTS) Figure 12. Zener Voltage versus Zener Current - VZ = 15 thru 30 Volts http://www.takcheong.com 8 28 BZX79C2V4 through BZX79C200 Series I Z , ZENER CURRENT (mA) 10 TA = 25 1 0.1 0.01 30 35 40 45 50 55 60 65 70 75 80 85 95 100 105 240 250 260 90 V Z , ZENER VOLTAGE (VOLTS) Figure 13. Zener Voltage versus Zener Current - VZ = 30 thru 105 Volts I Z , ZENER CURRENT (mA) 10 1 0.1 0.01 110 120 130 140 150 160 170 180 190 200 210 220 230 V Z , ZENER VOLTAGE (VOLTS) Figure 14. Zener Voltage versus Zener Current - VZ = 110 thru 220 Volts http://www.takcheong.com 9