This is information on a product in full production.
August 2017 DocID022799 Rev 13 1/136
STM32L15xCC STM32L15xRC
STM32L15xUC STM32L15xVC
Ultra-low-power 32-bit MCU ARM®-based Cortex®-M3,
256KB Flash, 32KB SRAM, 8KB EEPROM, LCD, USB, ADC, DAC
Datasheet - production data
Features
Ultra-low-power platform
1.65 V to 3.6 V power supply
-40 °C to 105 °C temperature range
0.29µA Standby mode (3 wakeup pins)
1.15 µA Standby mode + RTC
0.44 µA Stop mode (16 wakeup lines)
1.4 µA Stop mode + RTC
8.6 µA Low-power run mode
185 µA/MHz Run mode
10 nA ultra-low I/O leakage
8 µs wakeup time
Core: ARM® Cortex®-M3 32-bit CPU
From 32 kHz up to 32 MHz max
1.25 DMIPS/MHz (Dhrystone 2.1)
Memory protection unit
Reset and supply management
Low-power, ultrasafe BOR (brownout reset)
with 5 selectable thresholds
Ultra-low-power POR/PDR
Programmable voltage detector (PVD)
Clock sources
1 to 24 MHz crystal oscillator
32 kHz oscillator for RTC with calibration
High Speed Internal 16 MHz
factory-trimmed RC (+/- 1%)
Internal Low-power 37 kHz RC
Internal multispeed low-power 65 kHz to
4.2 MHz PLL for CPU clock and USB
(48 MHz)
Pre-programmed bootloader
USB and USART supported
Development support
Serial wire debug supported
JTAG and trace supported
Up to 83 fast I/Os (70 I/Os 5V tolerant), all
mappable on 16 external interrupt vectors
Memories
256 Kbytes of Flash memory with ECC
32 Kbytes of RAM
8 Kbytes of true EEPROM with ECC
128-byte backup register
LCD Driver (except STM32L151xC devices) up
to 8x40 segments, contrast adjustment,
blinking mode, step-up converter
Rich analog peripherals (down to 1.8 V)
2x operational amplifiers
12-bit ADC 1Msps up to 25 channels
12-bit DAC 2 channels with output buffers
2x ultra-low-power-comparators
(window mode and wake up capability)
DMA controller 12x channels
9x peripheral communication interfaces
1x USB 2.0 (internal 48 MHz PLL)
3x USARTs
Up to 8x SPIs (2x I2S, 3x 16 Mbit/s)
2x I2Cs (SMBus/PMBus)
11x timers: 1x 32-bit, 6x 16-bit with up to 4
IC/OC/PWM channels, 2x 16-bit basic timers,
2x watchdog timers (independent and window)
Up to 23 capacitive sensing channels
CRC calculation unit, 96-bit unique ID
Table 1. Device summary
Reference Part number
STM32L151CC
STM32L151RC(1)
STM32L151UC
STM32L151VC(1)
1. For sales types ending with “A” and STM32L15xxC products
in WLCSP64 package, please refer to STM32L15xxC/C-A
datasheet.
STM32L151CCT6, STM32L151CCU6
STM32L151RCT6
STM32L151UCY6
STM32L151VCT6, STM32L151VCH6
STM32L152CC
STM32L152RC(1)
STM32L152UC
STM32L152VC(1)
STM32L152CCT6, STM32L152CCU6
STM32L152RCT6
STM32L152UCY6
STM32L152VCT6, STM32L152VCH6
LQFP100 (14 × 14 mm)
LQFP64 (10 × 10 mm)
LQFP48 (7 x 7 mm)
UFBGA100
(7 x 7 mm)
WLCSP63
(0.4 mm pitch)
UFQFPN48
(7x7 mm)
www.st.com
Contents STM32L151xC STM32L152xC
2/136 DocID022799 Rev 13
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
2.2 Ultra-low-power device continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Shared peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 Common system strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.4 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 ARM® Cortex®-M3 core with MPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Reset and supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.4 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5 Low-power real-time clock and backup registers . . . . . . . . . . . . . . . . . . . 23
3.6 GPIOs (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.7 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.8 DMA (direct memory access) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.9 LCD (liquid crystal display) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.10 ADC (analog-to-digital converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.10.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.10.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.11 DAC (digital-to-analog converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.12 Operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.13 Ultra-low-power comparators and reference voltage . . . . . . . . . . . . . . . . 27
3.14 System configuration controller and routing interface . . . . . . . . . . . . . . . 27
3.15 Touch sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
DocID022799 Rev 13 3/136
STM32L151xC STM32L152xC Contents
4
3.16 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.16.1 General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM9, TIM10 and
TIM11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.16.2 Basic timers (TIM6 and TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.16.3 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.16.4 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.16.5 Window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.17 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.17.1 I²C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.17.2 Universal synchronous/asynchronous receiver transmitter (USART) . . 30
3.17.3 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.17.4 Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.17.5 Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.18 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 30
3.19 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.19.1 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.19.2 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4 Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.1.7 Optional LCD power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.1.8 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3.2 Embedded reset and power control block characteristics . . . . . . . . . . . 57
6.3.3 Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Contents STM32L151xC STM32L152xC
4/136 DocID022799 Rev 13
6.3.4 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3.5 Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.3.6 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.3.7 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3.8 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3.9 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3.10 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3.11 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3.12 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3.13 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.3.14 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3.15 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.3.16 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.3.17 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.3.18 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3.19 Operational amplifier characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3.20 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.3.21 Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.3.22 LCD controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.1 LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package
information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110
7.2 LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package
information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113
7.3 LQFP48, 7 x 7 mm, 48-pin low-profile quad flat package
information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116
7.4 UFQFPN48 7 x 7 mm, 0.5 mm pitch, package information . . . . . . . . . . .119
7.5 UFBGA100, 7 x 7 mm, 100-ball ultra thin, fine pitch ball grid
array package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.6 WLCSP63, 0.400 mm pitch wafer level chip size package
information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.7 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.7.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
8 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
9 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
DocID022799 Rev 13 5/136
STM32L151xC STM32L152xC List of tables
6
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Ultra-low-power STM32L151xC and STM32L152xC device features
and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 3. Functionalities depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . 15
Table 4. CPU frequency range depending on dynamic voltage scaling . . . . . . . . . . . . . . . . . . . . . . 16
Table 5. Functionalities depending on the working mode (from Run/active down to
standby) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 6. VLCD rail decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 7. Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 8. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 9. STM32L151xC and STM32L152xC pin definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 10. Alternate function input/output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 11. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 12. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 13. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 14. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 15. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 16. Embedded internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 17. Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 18. Current consumption in Run mode, code with data processing running from Flash. . . . . . 61
Table 19. Current consumption in Run mode, code with data processing running from RAM . . . . . . 62
Table 20. Current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 21. Current consumption in Low-power run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 22. Current consumption in Low-power sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 23. Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 24. Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . . 68
Table 25. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 26. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 27. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 28. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 29. HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 30. LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 31. HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 32. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 33. MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 34. PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 35. RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 36. Flash memory and data EEPROM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 37. Flash memory and data EEPROM endurance and retention . . . . . . . . . . . . . . . . . . . . . . . 81
Table 38. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 39. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 40. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 41. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 42. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 43. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 44. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 45. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table 46. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
List of tables STM32L151xC STM32L152xC
6/136 DocID022799 Rev 13
Table 47. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 48. I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 49. SCL frequency (fPCLK1= 32 MHz, VDD = VDD_I2C = 3.3 V). . . . . . . . . . . . . . . . . . . . . . . . 91
Table 50. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 51. USB startup time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 52. USB DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 53. USB: full speed electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 54. I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Table 55. ADC clock frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 56. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 57. ADC accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 58. Maximum source impedance RAIN max . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 59. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table 60. Operational amplifier characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Table 61. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table 62. Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table 63. Comparator 1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table 64. Comparator 2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Table 65. LCD controller characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table 66. LQPF100, 14 x 14 mm, 100-pin low-profile quad flat package mechanical data . . . . . . . 110
Table 67. LQFP64, 10 x 10 mm 64-pin low-profile quad flat package mechanical data. . . . . . . . . . 113
Table 68. LQFP48, 7 x 7 mm, 48-pin low-profile quad flat package mechanical data . . . . . . . . . . . 117
Table 69. UFQFPN48 – ultra thin fine pitch quad flat pack no-lead 7 × 7 mm,
0.5 mm pitch package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Table 70. UFBGA100, 7 x 7 mm, 0.5 mm pitch package mechanical data . . . . . . . . . . . . . . . . . . . 122
Table 71. UFBGA100, 7 x 7 mm, 0.50 mm pitch, recommended PCB design rules . . . . . . . . . . . . 123
Table 72. WLCSP63, 0.400 mm pitch wafer level chip size package mechanical data . . . . . . . . . . 126
Table 73. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Table 74. STM32L151xC and STM32L152xC ordering information scheme . . . . . . . . . . . . . . . . . . 130
Table 75. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
DocID022799 Rev 13 7/136
STM32L151xC STM32L152xC List of figures
8
List of figures
Figure 1. Ultra-low-power STM32L151xC and STM32L152xC block diagram . . . . . . . . . . . . . . . . . 13
Figure 2. Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 3. STM32L15xVC UFBGA100 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 4. STM32L15xVC LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 5. STM32L15xRC LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 6. STM32L15xUC WLCSP63 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 7. STM32L15xCC UFQFPN48 pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 8. STM32L15xCC LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 9. Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 10. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 11. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 12. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 13. Optional LCD power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 14. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 15. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 16. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 17. HSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 18. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 19. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Figure 20. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Figure 21. I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Figure 22. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Figure 23. SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Figure 24. SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Figure 25. USB timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Figure 26. I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Figure 27. I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Figure 28. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Figure 29. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Figure 30. Maximum dynamic current consumption on VREF+ supply pin during ADC
conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Figure 31. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Figure 32. LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 110
Figure 33. LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Figure 34. LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package top view example . . . . . . 112
Figure 35. LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . 113
Figure 36. LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Figure 37. LQFP64 10 x 10 mm, 64-pin low-profile quad flat package top view example . . . . . . . . . 115
Figure 38. LQFP48, 7 x 7 mm, 48-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . 116
Figure 39. LQFP48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Figure 40. LQFP48 package top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Figure 41. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Figure 42. UFQFPN48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Figure 43. UFQFPN48 package top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Figure 44. UFBGA100, 7 x 7 mm, 0.5 mm pitch package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Figure 45. UFBGA100, 7 x 7 mm, 0.5 mm pitch, package recommended footprint. . . . . . . . . . . . . . 123
List of figures STM32L151xC STM32L152xC
8/136 DocID022799 Rev 13
Figure 46. UFBGA100, 7 x 7 mm, 0.5 mm pitch, package top view example . . . . . . . . . . . . . . . . . . 124
Figure 47. WLCSP63, 0.400 mm pitch wafer level chip size package outline . . . . . . . . . . . . . . . . . . 125
Figure 48. WLCSP63 device marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Figure 49. Thermal resistance suffix 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Figure 50. Thermal resistance suffix 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
DocID022799 Rev 13 9/136
STM32L151xC STM32L152xC Introduction
51
1 Introduction
This datasheet provides the ordering information and mechanical device characteristics of
the STM32L151xC and STM32L152xC ultra-low-power ARM® Cortex®-M3 based
microcontroller product line with a Flash memory of 256 Kbytes.
The ultra-low-power STM32L151xC and STM32L152xC family includes devices in 6
different package types: from 48 pins to 100 pins. Depending on the device chosen,
different sets of peripherals are included, the description below gives an overview of the
complete range of peripherals proposed in this family.
These features make the ultra-low-power STM32L151xC and STM32L152xC
microcontroller family suitable for a wide range of applications:
Medical and handheld equipment
Application control and user interface
PC peripherals, gaming, GPS and sport equipment
Alarm systems, wired and wireless sensors, video intercom
Utility metering
This STM32L151xC and STM32L152xC datasheet should be read in conjunction with the
STM32L1xxxx reference manual (RM0038). The application note “Getting started with
STM32L1xxxx hardware development” (AN3216) gives a hardware implementation
overview. Both documents are available from the STMicroelectronics website www.st.com.
For information on the ARM® Cortex®-M3 core please refer to the ARM® Cortex®-M3
technical reference manual, available from the www.arm.com website. Figure 1 shows the
general block diagram of the device family.
Description STM32L151xC STM32L152xC
10/136 DocID022799 Rev 13
2 Description
The ultra-low-power STM32L151xC and STM32L152xC devices incorporate the
connectivity power of the universal serial bus (USB) with the high-performance ARM®
Cortex®-M3 32-bit RISC core operating at a frequency of 32 MHz (33.3 DMIPS), a memory
protection unit (MPU), high-speed embedded memories (Flash memory up to 256 Kbytes
and RAM up to 32 Kbytes) and an extensive range of enhanced I/Os and peripherals
connected to two APB buses.
The STM32L151xC and STM32L152xC devices offer two operational amplifiers, one 12-bit
ADC, two DACs, two ultra-low-power comparators, one general-purpose 32-bit timer, six
general-purpose 16-bit timers and two basic timers, which can be used as time bases.
Moreover, the STM32L151xC and STM32L152xC devices contain standard and advanced
communication interfaces: up to two I2Cs, three SPIs, two I2S, three USARTs and an USB.
The STM32L151xC and STM32L152xC devices offer up to 23 capacitive sensing channels
to simply add a touch sensing functionality to any application.
They also include a real-time clock and a set of backup registers that remain powered in
Standby mode.
Finally, the integrated LCD controller (except STM32L151xC devices) has a built-in LCD
voltage generator that allows to drive up to 8 multiplexed LCDs with the contrast
independent of the supply voltage.
The ultra-low-power STM32L151xC and STM32L152xC devices operate from a 1.8 to 3.6 V
power supply (down to 1.65 V at power down) with BOR and from a 1.65 to 3.6 V power
supply without BOR option. They are available in the -40 to +85 °C and -40 to +105 °C
temperature ranges. A comprehensive set of power-saving modes allows the design of low-
power applications.
DocID022799 Rev 13 11/136
STM32L151xC STM32L152xC Description
51
2.1 Device overview
Table 2. Ultra-low-power STM32L151xC and STM32L152xC device features
and peripheral counts
Peripheral STM32L15xCC STM32L15xUC
STM32L15xRC STM32L15xVC
Flash (Kbytes) 256
Data EEPROM (Kbytes) 8
RAM (Kbytes) 32
Timers
32 bit 1
General-
purpose 6
Basic 2
Communica
tion interfaces
SPI 8(3)(1)
1. 5 SPIs are USART configured in synchronous mode emulating SPI master.
I2S2
I2C2
USART 3
USB 1
GPIOs 37 51 83
Operation amplifiers 2
12-bit synchronized ADC
Number of channels
1
14
1
21
1
25
12-bit DAC
Number of channels
2
2
LCD (2)
COM x SEG
2. STM32L152xx devices only.
1
4x18
1
4x32 or 8x28
1
4x44 or 8x40
Comparators 2
Capacitive sensing channels 16 23
Max. CPU frequency 32 MHz
Operating voltage 1.8 V to 3.6 V (down to 1.65 V at power-down) with BOR option
1.65 V to 3.6 V without BOR option
Operating temperatures Ambient operating temperature: -40 °C to 85 °C / -40 °C to 105 °C
Junction temperature: –40 to + 110 °C
Packages LQFP48,
UFQFPN48
LQFP64,
WLCSP63
LQFP100,
UFBGA100
Description STM32L151xC STM32L152xC
12/136 DocID022799 Rev 13
2.2 Ultra-low-power device continuum
The ultra-low-power family offers a large choice of cores and features. From proprietary 8-
bit to up to Cortex-M3, including the Cortex-M0+, the STM32Lx series are the best choice to
answer the user needs, in terms of ultra-low-power features. The STM32 ultra-low-power
series are the best fit, for instance, for gas/water meter, keyboard/mouse or fitness and
healthcare, wearable applications. Several built-in features like LCD drivers, dual-bank
memory, Low-power run mode, op-amp, AES 128-bit, DAC, USB crystal-less and many
others will clearly allow to build very cost-optimized applications by reducing BOM.
Note: STMicroelectronics as a reliable and long-term manufacturer ensures as much as possible
the pin-to-pin compatibility between any STM8Lxxxxx and STM32Lxxxxx devices and
between any of the STM32Lx and STM32Fx series. Thanks to this unprecedented
scalability, the old applications can be upgraded to respond to the latest market features and
efficiency demand.
2.2.1 Performance
All the families incorporate highly energy-efficient cores with both Harvard architecture and
pipelined execution: advanced STM8 core for STM8L families and ARM Cortex-M3 core for
STM32L family. In addition specific care for the design architecture has been taken to
optimize the mA/DMIPS and mA/MHz ratios.
This allows the ultra-low-power performance to range from 5 up to 33.3 DMIPs.
2.2.2 Shared peripherals
STM8L15xxx, STM32L15xxx and STM32L162xx share identical peripherals which ensure a
very easy migration from one family to another:
Analog peripherals: ADC, DAC and comparators
Digital peripherals: RTC and some communication interfaces
2.2.3 Common system strategy.
To offer flexibility and optimize performance, the STM8L15xxx, STM32L15xxx and
STM32L162xx family uses a common architecture:
Same power supply range from 1.65 V to 3.6 V
Architecture optimized to reach ultra-low consumption both in low-power modes and
Run mode
Fast startup strategy from low-power modes
Flexible system clock
Ultrasafe reset: same reset strategy including power-on reset, power-down reset,
brownout reset and programmable voltage detector
2.2.4 Features
ST ultra-low-power continuum also lies in feature compatibility:
More than 15 packages with pin count from 20 to 144 pins and size down to 3 x 3 mm
Memory density ranging from 2 to 512 Kbytes
DocID022799 Rev 13 13/136
STM32L151xC STM32L152xC Functional overview
51
3 Functional overview
Figure 1. Ultra-low-power STM32L151xC and STM32L152xC block diagram
-7',
1-7567
[ [EL W
,QWHUIDFH
((ð
#9''$
ELW'$&
),),
ELW'$&
038
9UHI
57&B287
3'5
*HQHUDOSXUSRVH
WLPHUV
[
75$&(&.75$&('75$&('75$&('75$&('
SEXV
&DSVHQV
6XSSO\
PRQLWRULQJ
#9''$
#9''$
#9''$
#9''$
6XSSO\PRQLWRULQJ
06Y9
3//
&ORFN
0JPW
9,13
9,10
9287
9,13
9,10
9287
$+%$3% $+%$3%
((3520ELWV
.%352*5$0
.%'$7$
.%%227
-&7.6:&/.
-7066:'$7
*3'0$FKDQQHOV
*3'0$FKDQQHOV
6\VWHP
65$0.
-7'2
0&38
%25%JDS
39'
*3&RPS
*3,23257+
*3,23257(
*3,23257'
*3,23257&
*3,23257%
*3,23257$
$V$)
-7$*6:
'EXV
,EXV
3'5
;7$/26&
0+]
;7$/N+]
%DFNXS
5HJ
57&9
$:8
5&+6,
5&06,
5&/6,
%DFNXSLQWHUIDFH
9''$
966$
7,0(5
7,0(5
7,0(5
23$03
23$03
,&
,&
63,,6
63,,6
86$57
86$57
7,0(56ELWV
7,0(5
7,0(5
7,0(5
/&'%RRVWHU
#9''
#9''
9''&25(
$+%3&/.
$3%3&/.
+&/.
)&/. :'*.
6WDQGE\
LQWHUIDFH
7UDFH&RQWUROOHU(70
92/75(*
26&B,1
26&B287
26&B,1
26&B287
7$03(5
9/&' 9WR9
&KDQQHOV
&KDQQHOV
&KDQQHOV
&KDQQHOV
ͺKhdϭĂƐ&
ͺKhdϮĂƐ&
5;7;&76576
6PDUW&DUGDV$)
5;7;&76576
6PDUW&DUGDV$)
026,0,626&.166:6&.
0&.6'DV$)
026,0,626&.166:6&.
0&.6'DV$)
6&/6'$
$V$)
6&/6'$60%XV30%XV
$V$)
86%B'3
86%B'0
3[
6(*[
&20[
/&
&DSVHQVLQJ
/&'[
86%)6GHYLFH
$3%)PD[ 0+]
7,0(5
7,0(5
:LQ:$7&+'2*
86%65$0%
$3%)PD[ 0+]
/&
7HPSVHQVRU
ELW$'&
86$57
63,
(;7,7
:.83
383'
%25
,QW
)PD[0+]
19,&
&203[B,1[
3$>@
$)
3+>@
3%>@
3&>@
3'>@
3(>@
FKDQQHOV
FKDQQHO
FKDQQHO
026,0,62
6&.166DV$)
5;7;&76576
6PDUW&DUGDV$)
$)
9''5()B$'&
9665()B$'&
$+%)PD[ 0+]
%XV0DWUL[06
EZ^d
9'' 9WR9
9VV
#9''
9/&'
32:(5
REO
Functional overview STM32L151xC STM32L152xC
14/136 DocID022799 Rev 13
3.1 Low-power modes
The ultra-low-power STM32L151xC and STM32L152xC devices support dynamic voltage
scaling to optimize its power consumption in run mode. The voltage from the internal low-
drop regulator that supplies the logic can be adjusted according to the system’s maximum
operating frequency and the external voltage supply.
There are three power consumption ranges:
Range 1 (VDD range limited to 1.71 V - 3.6 V), with the CPU running at up to 32 MHz
Range 2 (full VDD range), with a maximum CPU frequency of 16 MHz
Range 3 (full VDD range), with a maximum CPU frequency limited to 4 MHz (generated
only with the multispeed internal RC oscillator clock source)
Seven low-power modes are provided to achieve the best compromise between low-power
consumption, short startup time and available wakeup sources:
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs. Sleep mode power consumption at
16 MHz is about 1 mA with all peripherals off.
Low-power run mode
This mode is achieved with the multispeed internal (MSI) RC oscillator set to the MSI
range 0 or MSI range 1 clock range (maximum 131 kHz), execution from SRAM or
Flash memory, and internal regulator in low-power mode to minimize the regulator's
operating current. In low-power run mode, the clock frequency and the number of
enabled peripherals are both limited.
Low-power sleep mode
This mode is achieved by entering Sleep mode with the internal voltage regulator in
Low-power mode to minimize the regulator’s operating current. In Low-power sleep
mode, both the clock frequency and the number of enabled peripherals are limited; a
typical example would be to have a timer running at 32 kHz.
When wakeup is triggered by an event or an interrupt, the system reverts to the run
mode with the regulator on.
Stop mode with RTC
Stop mode achieves the lowest power consumption while retaining the RAM and
register contents and real time clock. All clocks in the VCORE domain are stopped, the
PLL, MSI RC, HSI RC and HSE crystal oscillators are disabled. The LSE or LSI is still
running. The voltage regulator is in the low-power mode.
The device can be woken up from Stop mode by any of the EXTI line, in 8 µs. The EXTI
line source can be one of the 16 external lines. It can be the PVD output, the
Comparator 1 event or Comparator 2 event (if internal reference voltage is on), it can
be the RTC alarm(s), the USB wakeup, the RTC tamper events, the RTC timestamp
event or the RTC wakeup.
DocID022799 Rev 13 15/136
STM32L151xC STM32L152xC Functional overview
51
Stop mode without RTC
Stop mode achieves the lowest power consumption while retaining the RAM and
register contents. All clocks are stopped, the PLL, MSI RC, HSI and LSI RC, LSE and
HSE crystal oscillators are disabled. The voltage regulator is in the low-power mode.
The device can be woken up from Stop mode by any of the EXTI line, in 8 µs. The EXTI
line source can be one of the 16 external lines. It can be the PVD output, the
Comparator 1 event or Comparator 2 event (if internal reference voltage is on). It can
also be wakened by the USB wakeup.
Standby mode with RTC
Standby mode is used to achieve the lowest power consumption and real time clock.
The internal voltage regulator is switched off so that the entire VCORE domain is
powered off. The PLL, MSI RC, HSI RC and HSE crystal oscillators are also switched
off. The LSE or LSI is still running. After entering Standby mode, the RAM and register
contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG,
RTC, LSI, LSE Crystal 32K osc, RCC_CSR).
The device exits Standby mode in 60 µs when an external reset (NRST pin), an IWDG
reset, a rising edge on one of the three WKUP pins, RTC alarm (Alarm A or Alarm B),
RTC tamper event, RTC timestamp event or RTC Wakeup event occurs.
Standby mode without RTC
Standby mode is used to achieve the lowest power consumption. The internal voltage
regulator is switched off so that the entire VCORE domain is powered off. The PLL, MSI
RC, HSI and LSI RC, HSE and LSE crystal oscillators are also switched off. After
entering Standby mode, the RAM and register contents are lost except for registers in
the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32K osc,
RCC_CSR).
The device exits Standby mode in 60 µs when an external reset (NRST pin) or a rising
edge on one of the three WKUP pin occurs.
Note: The RTC, the IWDG, and the corresponding clock sources are not stopped automatically by
entering Stop or Standby mode.
Table 3. Functionalities depending on the operating power supply range
Functionalities depending on the operating power supply
range(1)
Operating power supply
range
DAC and ADC
operation USB Dynamic voltage scaling
range
VDD= VDDA = 1.65 to 1.71 V Not functional Not functional Range 2 or Range 3
VDD=VDDA= 1.71 to 1.8 V(2) Not functional Not functional Range 1, Range 2 or
Range 3
VDD=VDDA= 1.8 to 2.0 V(2) Conversion time up
to 500 Ksps Not functional Range 1, Range 2 or
Range 3
Functional overview STM32L151xC STM32L152xC
16/136 DocID022799 Rev 13
VDD=VDDA = 2.0 to 2.4 V Conversion time up
to 500 Ksps Functional(3) Range 1, Range 2 or
Range 3
VDD=VDDA = 2.4 to 3.6 V Conversion time up
to 1 Msps Functional(3) Range 1, Range 2 or
Range 3
1. The GPIO speed also depends from VDD voltage and the user has to refer to Table 45: I/O AC
characteristics for more information about I/O speed.
2. CPU frequency changes from initial to final must respect “FCPU initial < 4*FCPU final” to limit VCORE drop
due to current consumption peak when frequency increases. It must also respect 5 µs delay between two
changes. For example to switch from 4.2 MHz to 32 MHz, the user can switch from 4.2 MHz to 16 MHz,
wait 5 µs, then switch from 16 MHz to 32 MHz.
3. Should be USB compliant from I/O voltage standpoint, the minimum VDD is 3.0 V.
Table 4. CPU frequency range depending on dynamic voltage scaling
CPU frequency range Dynamic voltage scaling range
16 MHz to 32 MHz (1ws)
32 kHz to 16 MHz (0ws) Range 1
8 MHz to 16 MHz (1ws)
32 kHz to 8 MHz (0ws) Range 2
2.1MHz to 4.2 MHz (1ws)
32 kHz to 2.1 MHz (0ws) Range 3
Table 3. Functionalities depending on the operating power supply range (continued)
Functionalities depending on the operating power supply
range(1)
Operating power supply
range
DAC and ADC
operation USB Dynamic voltage scaling
range
DocID022799 Rev 13 17/136
STM32L151xC STM32L152xC Functional overview
51
Table 5. Functionalities depending on the working mode (from Run/active down to
standby)
Ips Run/Active Sleep
Low-
power
Run
Low-
power
Sleep
Stop Standby
Wakeup
capability
Wakeup
capability
CPU Y -- Y -- -- -- -- --
Flash Y Y Y Y -- -- -- --
RAM Y Y Y Y Y -- -- --
Backup Registers Y Y Y Y Y -- Y --
EEPROM Y Y Y Y Y -- -- --
Brown-out rest
(BOR) YYYYYYY--
DMA Y Y Y Y -- -- -- --
Programmable
Voltage Detector
(PVD)
YYYYYYY--
Power On Reset
(POR) YYYYYYY--
Power Down Rest
(PDR) YYYYY--Y--
High Speed
Internal (HSI) Y Y -- -- -- -- -- --
High Speed
External (HSE) Y Y -- -- -- -- -- --
Low Speed Internal
(LSI) YYYYY--Y--
Low Speed
External (LSE) YYYYY--Y--
Multi-Speed
Internal (MSI) Y Y Y Y -- -- -- --
Inter-Connect
Controller Y Y Y Y -- -- -- --
RTC Y Y Y Y Y Y Y --
RTC Tamper Y Y Y Y Y Y Y Y
Auto WakeUp
(AWU) YYYYYYYY
LCD Y Y Y Y Y -- -- --
USB Y Y -- -- -- Y -- --
USART Y Y Y Y Y (1) -- --
SPI Y Y Y Y -- -- -- --
I2C Y Y -- -- -- (1) -- --
Functional overview STM32L151xC STM32L152xC
18/136 DocID022799 Rev 13
3.2 ARM® Cortex®-M3 core with MPU
The ARM® Cortex®-M3 processor is the industry leading processor for embedded systems.
It has been developed to provide a low-cost platform that meets the needs of MCU
implementation, with a reduced pin count and low-power consumption, while delivering
outstanding computational performance and an advanced system response to interrupts.
The ARM® Cortex®-M3 32-bit RISC processor features exceptional code-efficiency,
delivering the high-performance expected from an ARM core in the memory size usually
associated with 8- and 16-bit devices.
ADC Y Y -- -- -- -- -- --
DAC Y Y Y Y Y -- -- --
Tempsensor Y Y Y Y Y -- -- --
OP amp Y Y Y Y Y -- -- --
Comparators Y Y Y Y Y Y -- --
16-bit and 32-bit
Timers Y Y Y Y -- -- -- --
IWDG Y Y Y Y Y Y Y Y
WWDG Y Y Y Y -- -- -- --
Touch sensing Y Y -- -- -- -- -- --
Systic Timer Y Y Y Y -- -- --
GPIOs Y Y Y Y Y Y -- 3 pins
Wakeup time to
Run mode 0 µs 0.4 µs 3 µs 46 µs < 8 µs 58 µs
Consumption
VDD=1.8 to 3.6 V
(Typ)
Down to 185
µA/MHz (from
Flash)
Down to 34.5
µA/MHz (from
Flash)
Down to
8.6 µA
Down to
4.4 µA
0.43 µA
(no RTC)
VDD=1.8V
0.29 µA
(no RTC)
VDD=1.8V
1.15 µA
(with RTC)
VDD=1.8V
0.9 µA
(with RTC)
VDD=1.8V
0.44 µA
(no RTC)
VDD=3.0V
0.29 µA
(no RTC)
VDD=3.0V
1.4 µA
(with RTC)
VDD=3.0V
1.15 µA
(with RTC)
VDD=3.0V
1. The startup on communication line wakes the CPU which was made possible by an EXTI, this induces a delay before
entering run mode.
Table 5. Functionalities depending on the working mode (from Run/active down to
standby) (continued)
Ips Run/Active Sleep
Low-
power
Run
Low-
power
Sleep
Stop Standby
Wakeup
capability
Wakeup
capability
DocID022799 Rev 13 19/136
STM32L151xC STM32L152xC Functional overview
51
The memory protection unit (MPU) improves system reliability by defining the memory
attributes (such as read/write access permissions) for different memory regions. It provides
up to eight different regions and an optional predefined background region.
Owing to its embedded ARM core, the STM32L151xC and STM32L152xC devices are
compatible with all ARM tools and software.
Nested vectored interrupt controller (NVIC)
The ultra-low-power STM32L151xC and STM32L152xC devices embed a nested vectored
interrupt controller able to handle up to 53 maskable interrupt channels (not including the 16
interrupt lines of ARM® Cortex®-M3) and 16 priority levels.
Closely coupled NVIC gives low-latency interrupt processing
Interrupt entry vector table address passed directly to the core
Closely coupled NVIC core interface
Allows early processing of interrupts
Processing of late arriving, higher-priority interrupts
Support for tail-chaining
Processor state automatically saved on interrupt entry, and restored on interrupt exit,
with no instruction overhead
This hardware block provides flexible interrupt management features with minimal interrupt
latency.
3.3 Reset and supply management
3.3.1 Power supply schemes
VDD = 1.65 to 3.6 V: external power supply for I/Os and the internal regulator. Provided
externally through VDD pins.
VSSA, VDDA = 1.65 to 3.6 V: external analog power supplies for ADC, reset blocks, RCs
and PLL (minimum voltage to be applied to VDDA is 1.8 V when the ADC is used). VDDA
and VSSA must be connected to VDD and VSS, respectively.
3.3.2 Power supply supervisor
The device has an integrated ZEROPOWER power-on reset (POR)/power-down reset
(PDR) that can be coupled with a brownout reset (BOR) circuitry.
The device exists in two versions:
The version with BOR activated at power-on operates between 1.8 V and 3.6 V.
The other version without BOR operates between 1.65 V and 3.6 V.
After the VDD threshold is reached (1.65 V or 1.8 V depending on the BOR which is active or
not at power-on), the option byte loading process starts, either to confirm or modify default
thresholds, or to disable the BOR permanently: in this case, the VDD min value becomes
1.65 V (whatever the version, BOR active or not, at power-on).
When BOR is active at power-on, it ensures proper operation starting from 1.8 V whatever
the power ramp-up phase before it reaches 1.8 V. When BOR is not active at power-up, the
power ramp-up should guarantee that 1.65 V is reached on VDD at least 1 ms after it exits
the POR area.
Functional overview STM32L151xC STM32L152xC
20/136 DocID022799 Rev 13
Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To
reduce the power consumption in Stop mode, it is possible to automatically switch off the
internal reference voltage (VREFINT) in Stop mode. The device remains in reset mode when
VDD is below a specified threshold, VPOR/PDR or VBOR, without the need for any external
reset circuit.
Note: The start-up time at power-on is typically 3.3 ms when BOR is active at power-up, the start-
up time at power-on can be decreased down to 1 ms typically for devices with BOR inactive
at power-up.
The device features an embedded programmable voltage detector (PVD) that monitors the
VDD/VDDA power supply and compares it to the VPVD threshold. This PVD offers 7 different
levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An
interrupt can be generated when VDD/VDDA drops below the VPVD threshold and/or when
VDD/VDDA is higher than the VPVD threshold. The interrupt service routine can then generate
a warning message and/or put the MCU into a safe state. The PVD is enabled by software.
3.3.3 Voltage regulator
The regulator has three operation modes: main (MR), low-power (LPR) and power down.
MR is used in Run mode (nominal regulation)
LPR is used in the Low-power run, Low-power sleep and Stop modes
Power down is used in Standby mode. The regulator output is high impedance, the
kernel circuitry is powered down, inducing zero consumption but the contents of the
registers and RAM are lost except for the standby circuitry (wakeup logic, IWDG, RTC,
LSI, LSE crystal 32K osc, RCC_CSR).
3.3.4 Boot modes
At startup, boot pins are used to select one of three boot options:
Boot from Flash memory
Boot from System memory
Boot from embedded RAM
The boot loader is located in System memory. It is used to reprogram the Flash memory by
using USART1, USART2 or USB. See Application note “STM32 microcontroller system
memory boot mode” (AN2606) for details.
DocID022799 Rev 13 21/136
STM32L151xC STM32L152xC Functional overview
51
3.4 Clock management
The clock controller distributes the clocks coming from different oscillators to the core and
the peripherals. It also manages clock gating for low-power modes and ensures clock
robustness. It features:
Clock prescaler: to get the best trade-off between speed and current consumption, the
clock frequency to the CPU and peripherals can be adjusted by a programmable
prescaler.
Safe clock switching: clock sources can be changed safely on the fly in run mode
through a configuration register.
Clock management: to reduce power consumption, the clock controller can stop the
clock to the core, individual peripherals or memory.
System clock source: three different clock sources can be used to drive the master
clock SYSCLK:
1-24 MHz high-speed external crystal (HSE), that can supply a PLL
16 MHz high-speed internal RC oscillator (HSI), trimmable by software, that can
supply a PLL
Multispeed internal RC oscillator (MSI), trimmable by software, able to generate 7
frequencies (65 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.1 MHz, 4.2 MHz).
When a 32.768 kHz clock source is available in the system (LSE), the MSI
frequency can be trimmed by software down to a ±0.5% accuracy.
Auxiliary clock source: two ultra-low-power clock sources that can be used to drive
the LCD controller and the real-time clock:
32.768 kHz low-speed external crystal (LSE)
37 kHz low-speed internal RC (LSI), also used to drive the independent watchdog.
The LSI clock can be measured using the high-speed internal RC oscillator for
greater precision.
RTC and LCD clock sources: the LSI, LSE or HSE sources can be chosen to clock
the RTC and the LCD, whatever the system clock.
USB clock source: the embedded PLL has a dedicated 48 MHz clock output to supply
the USB interface.
Startup clock: after reset, the microcontroller restarts by default with an internal 2 MHz
clock (MSI). The prescaler ratio and clock source can be changed by the application
program as soon as the code execution starts.
Clock security system (CSS): this feature can be enabled by software. If a HSE clock
failure occurs, the master clock is automatically switched to HSI and a software
interrupt is generated if enabled.
Clock-out capability (MCO: microcontroller clock output): it outputs one of the
internal clocks for external use by the application.
Several prescalers allow the configuration of the AHB frequency, each APB (APB1 and
APB2) domains. The maximum frequency of the AHB and the APB domains is 32 MHz. See
Figure 2 for details on the clock tree.
Functional overview STM32L151xC STM32L152xC
22/136 DocID022799 Rev 13
Figure 2. Clock tree
-36
,3)2#
,3%/3#
(3)2#
(3%
/3#
6
6
$$#/2%
6
LEVELSHIFTERS
LEVELSHIFTERS
0,,
8
6
LEVELSHIFTERS
,3%TEMPO
-(ZCLOCK
DETECTOR
6
,3
7ATCHDOG
CK?PLLIN
SOURCE
CONTROL
#LOCK
7ATCHDOG
ENABLE
24#ENABLE
CK?HSI
CK?HSE
(3%PRESENTORNOT
,3)TEMPO
CK?PLL
!("
PRESCALER

!0"

!0"

CK?USB6CO6COMUSTBEAT-(Z
 #+?4)-393
#+?#05
#+?&#,+
#+?072
#+?53"
#+?4)-4'/
#+?!0"
#+?!0"
USBENANDNOTDEEPSLEEP
TIMERENANDNOTDEEPSLEEP
APBPERIPHENANDNOTDEEPSLEEP
APBPERIPHENANDNOTDEEPSLEEP
NOTSLEEPOR
DEEPSLEEP
NOTSLEEPOR
DEEPSLEEP
NOTDEEPSLEEP
NOTDEEPSLEEP
3TANDBYSUPPLIEDVOLTAGEDOMAIN
3YSTEM
CLOCK
-#/
IF!0"PRESCX
ELSE X

CK?LSE
#+?,#$

-(Z
6
$$#/2%
6
$$#/2%
6
$$#/2%

,#$ENABLE
-3)2#
6
6
$$#/2%
LEVELSHIFTERS
CK?MSI
CK?LSI
#+?!$#
!$#ENABLE
,3 ,3 ,3 ,3
,3
,3

PRESCALER PRESCALER
2ADIO3LEEP4IMER
24#
2ADIO3LEEP4IMERENABLE
DocID022799 Rev 13 23/136
STM32L151xC STM32L152xC Functional overview
51
3.5 Low-power real-time clock and backup registers
The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain
the sub-second, second, minute, hour (12/24 hour), week day, date, month, year, in BCD
(binary-coded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the
month are made automatically. The RTC provides two programmable alarms and
programmable periodic interrupts with wakeup from Stop and Standby modes.
The programmable wakeup time ranges from 120 µs to 36 hours.
The RTC can be calibrated with an external 512 Hz output, and a digital compensation
circuit helps reduce drift due to crystal deviation.
The RTC can also be automatically corrected with a 50/60Hz stable powerline.
The RTC calendar can be updated on the fly down to sub second precision, which enables
network system synchronization.
A time stamp can record an external event occurrence, and generates an interrupt.
There are thirty-two 32-bit backup registers provided to store 128 bytes of user application
data. They are cleared in case of tamper detection.
Three pins can be used to detect tamper events. A change on one of these pins can reset
backup register and generate an interrupt. To prevent false tamper event, like ESD event,
these three tamper inputs can be digitally filtered.
3.6 GPIOs (general-purpose inputs/outputs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the
GPIO pins are shared with digital or analog alternate functions, and can be individually
remapped using dedicated AFIO registers. All GPIOs are high current capable. The
alternate function configuration of I/Os can be locked if needed following a specific
sequence in order to avoid spurious writing to the I/O registers. The I/O controller is
connected to the AHB with a toggling speed of up to 16 MHz.
External interrupt/event controller (EXTI)
The external interrupt/event controller consists of 24 edge detector lines used to generate
interrupt/event requests. Each line can be individually configured to select the trigger event
(rising edge, falling edge, both) and can be masked independently. A pending register
maintains the status of the interrupt requests. The EXTI can detect an external line with a
pulse width shorter than the Internal APB2 clock period. Up to 83 GPIOs can be connected
to the 16 external interrupt lines. The 8 other lines are connected to RTC, PVD, USB,
comparator events or capacitive sensing acquisition.
Functional overview STM32L151xC STM32L152xC
24/136 DocID022799 Rev 13
3.7 Memories
The STM32L151xC and STM32L152xC devices have the following features:
32 Kbytes of embedded RAM accessed (read/write) at CPU clock speed with 0 wait
states. With the enhanced bus matrix, operating the RAM does not lead to any
performance penalty during accesses to the system bus (AHB and APB buses).
The non-volatile memory is divided into three arrays:
256 Kbytes of embedded Flash program memory
8 Kbytes of data EEPROM
Options bytes
The options bytes are used to write-protect or read-out protect the memory (with 4
Kbytes granularity) and/or readout-protect the whole memory with the following
options:
Level 0: no readout protection
Level 1: memory readout protection, the Flash memory cannot be read from or
written to if either debug features are connected or boot in RAM is selected
Level 2: chip readout protection, debug features (ARM Cortex-M3 JTAG and serial
wire) and boot in RAM selection disabled (JTAG fuse)
The whole non-volatile memory embeds the error correction code (ECC) feature.
The user area of the Flash memory can be protected against Dbus read access by
PCROP feature (see RM0038 for details).
3.8 DMA (direct memory access)
The flexible 12-channel, general-purpose DMA is able to manage memory-to-memory,
peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports
circular buffer management, avoiding the generation of interrupts when the controller
reaches the end of the buffer.
Each channel is connected to dedicated hardware DMA requests, with software trigger
support for each channel. Configuration is done by software and transfer sizes between
source and destination are independent.
The DMA can be used with the main peripherals: SPI, I2C, USART, general-purpose timers,
DAC and ADC.
DocID022799 Rev 13 25/136
STM32L151xC STM32L152xC Functional overview
51
3.9 LCD (liquid crystal display)
The LCD drives up to 8 common terminals and 44 segment terminals to drive up to 320
pixels.
Internal step-up converter to guarantee functionality and contrast control irrespective of
VDD. This converter can be deactivated, in which case the VLCD pin is used to provide
the voltage to the LCD
Supports static, 1/2, 1/3, 1/4 and 1/8 duty
Supports static, 1/2, 1/3 and 1/4 bias
Phase inversion to reduce power consumption and EMI
Up to 8 pixels can be programmed to blink
Unneeded segments and common pins can be used as general I/O pins
LCD RAM can be updated at any time owing to a double-buffer
The LCD controller can operate in Stop mode
VLCD rail decoupling capability
3.10 ADC (analog-to-digital converter)
A 12-bit analog-to-digital converters is embedded into STM32L151xC and STM32L152xC
devices with up to 25 external channels, performing conversions in single-shot or scan
mode. In scan mode, automatic conversion is performed on a selected group of analog
inputs with up to 24 external channels in a group.
The ADC can be served by the DMA controller.
An analog watchdog feature allows very precise monitoring of the converted voltage of one,
some or all scanned channels. An interrupt is generated when the converted voltage is
outside the programmed thresholds.
The events generated by the general-purpose timers (TIMx) can be internally connected to
the ADC start triggers, to allow the application to synchronize A/D conversions and timers.
An injection mode allows high priority conversions to be done by interrupting a scan mode
which runs in as a background task.
The ADC includes a specific low-power mode. The converter is able to operate at maximum
speed even if the CPU is operating at a very low frequency and has an auto-shutdown
function. The ADC’s runtime and analog front-end current consumption are thus minimized
whatever the MCU operating mode.
Table 6. VLCD rail decoupling
Bias
Pin
1/2 1/3 1/4
VLCDRAIL1 1/2 VLCD 2/3 VLCD 1/2 VLCD PB2
VLCDRAIL2 N/A 1/3 VLCD 1/4 VLCD PB12 PE11
VLCDRAIL3 N/A N/A 3/4 VLCD PB0 PE12
Functional overview STM32L151xC STM32L152xC
26/136 DocID022799 Rev 13
3.10.1 Temperature sensor
The temperature sensor (TS) generates a voltage VSENSE that varies linearly with
temperature.
The temperature sensor is internally connected to the ADC_IN16 input channel which is
used to convert the sensor output voltage into a digital value.
The sensor provides good linearity but it has to be calibrated to obtain good overall
accuracy of the temperature measurement. As the offset of the temperature sensor varies
from chip to chip due to process variation, the uncalibrated internal temperature sensor is
suitable for applications that detect temperature changes only.
To improve the accuracy of the temperature sensor measurement, each device is
individually factory-calibrated by ST. The temperature sensor factory calibration data are
stored by ST in the system memory area, accessible in read-only mode. See Table 61:
Temperature sensor calibration values.
3.10.2 Internal voltage reference (VREFINT)
The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the
ADC and Comparators. VREFINT is internally connected to the ADC_IN17 input channel. It
enables accurate monitoring of the VDD value (when no external voltage, VREF+, is
available for ADC). The precise voltage of VREFINT is individually measured for each part by
ST during production test and stored in the system memory area. It is accessible in read-
only mode. See Table 16: Embedded internal reference voltage calibration values.
3.11 DAC (digital-to-analog converter)
The two 12-bit buffered DAC channels can be used to convert two digital signals into two
analog voltage signal outputs. The chosen design structure is composed of integrated
resistor strings and an amplifier in non-inverting configuration.
This dual digital Interface supports the following features:
Two DAC converters: one for each output channel
8-bit or 12-bit monotonic output
Left or right data alignment in 12-bit mode
Synchronized update capability
Noise-wave generation
Triangular-wave generation
Dual DAC channels, independent or simultaneous conversions
DMA capability for each channel (including the underrun interrupt)
External triggers for conversion
Input reference voltage VREF+
Eight DAC trigger inputs are used in the STM32L151xC and STM32L152xC devices. The
DAC channels are triggered through the timer update outputs that are also connected to
different DMA channels.
DocID022799 Rev 13 27/136
STM32L151xC STM32L152xC Functional overview
51
3.12 Operational amplifier
The STM32L151xC and STM32L152xC devices embed two operational amplifiers with
external or internal follower routing capability (or even amplifier and filter capability with
external components). When one operational amplifier is selected, one external ADC
channel is used to enable output measurement.
The operational amplifiers feature:
Low input bias current
Low offset voltage
Low-power mode
Rail-to-rail input
3.13 Ultra-low-power comparators and reference voltage
The STM32L151xC and STM32L152xC devices embed two comparators sharing the same
current bias and reference voltage. The reference voltage can be internal or external
(coming from an I/O).
One comparator with fixed threshold
One comparator with rail-to-rail inputs, fast or slow mode. The threshold can be one of
the following:
DAC output
External I/O
Internal reference voltage (VREFINT) or a sub-multiple (1/4, 1/2, 3/4)
Both comparators can wake up from Stop mode, and be combined into a window
comparator.
The internal reference voltage is available externally via a low-power / low-current output
buffer (driving current capability of 1 µA typical).
3.14 System configuration controller and routing interface
The system configuration controller provides the capability to remap some alternate
functions on different I/O ports.
The highly flexible routing interface allows the application firmware to control the routing of
different I/Os to the TIM2, TIM3 and TIM4 timer input captures. It also controls the routing of
internal analog signals to ADC1, COMP1 and COMP2 and the internal reference voltage
VREFINT
.
3.15 Touch sensing
The STM32L151xC and STM32L152xC devices provide a simple solution for adding
capacitive sensing functionality to any application. These devices offer up to 23 capacitive
sensing channels distributed over 10 analog I/O groups. Both software and timer capacitive
sensing acquisition modes are supported.
Capacitive sensing technology is able to detect the presence of a finger near a sensor which
is protected from direct touch by a dielectric (glass, plastic...). The capacitive variation
Functional overview STM32L151xC STM32L152xC
28/136 DocID022799 Rev 13
introduced by the finger (or any conductive object) is measured using a proven
implementation based on a surface charge transfer acquisition principle. It consists of
charging the sensor capacitance and then transferring a part of the accumulated charges
into a sampling capacitor until the voltage across this capacitor has reached a specific
threshold. The capacitive sensing acquisition only requires few external components to
operate. This acquisition is managed directly by the GPIOs, timers and analog I/O groups
(see Section 3.14: System configuration controller and routing interface).
Reliable touch sensing functionality can be quickly and easily implemented using the free
STM32L1xx STMTouch touch sensing firmware library.
3.16 Timers and watchdogs
The ultra-low-power STM32L151xC and STM32L152xC devices include seven general-
purpose timers, two basic timers, and two watchdog timers.
Table 7 compares the features of the general-purpose and basic timers.
3.16.1 General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM9, TIM10 and
TIM11)
There are seven synchronizable general-purpose timers embedded in the STM32L151xC
and STM32L152xC devices (see Table 7 for differences).
TIM2, TIM3, TIM4, TIM5
TIM2, TIM3, TIM4 are based on 16-bit auto-reload up/down counter. TIM5 is based on a 32-
bit auto-reload up/down counter. They include a 16-bit prescaler. They feature four
independent channels each for input capture/output compare, PWM or one-pulse mode
output. This gives up to 16 input captures/output compares/PWMs on the largest packages.
TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together or with the TIM10,
TIM11 and TIM9 general-purpose timers via the Timer Link feature for synchronization or
event chaining. Their counter can be frozen in debug mode. Any of the general-purpose
timers can be used to generate PWM outputs.
Table 7. Timer feature comparison
Timer Counter
resolution Counter type Prescaler factor
DMA
request
generation
Capture/compare
channels
Complementary
outputs
TIM2,
TIM3,
TIM4
16-bit Up, down,
up/down
Any integer between
1 and 65536 Yes 4 No
TIM5 32-bit Up, down,
up/down
Any integer between
1 and 65536 Yes 4 No
TIM9 16-bit Up, down,
up/down
Any integer between
1 and 65536 No 2 No
TIM10,
TIM11 16-bit Up Any integer between
1 and 65536 No 1 No
TIM6,
TIM7 16-bit Up Any integer between
1 and 65536 Yes 0 No
DocID022799 Rev 13 29/136
STM32L151xC STM32L152xC Functional overview
51
TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation.
These timers are capable of handling quadrature (incremental) encoder signals and the
digital outputs from 1 to 3 hall-effect sensors.
TIM10, TIM11 and TIM9
TIM10 and TIM11 are based on a 16-bit auto-reload upcounter. TIM9 is based on a 16-bit
auto-reload up/down counter. They include a 16-bit prescaler. TIM10 and TIM11 feature one
independent channel, whereas TIM9 has two independent channels for input capture/output
compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3,
TIM4, TIM5 full-featured general-purpose timers.
They can also be used as simple time bases and be clocked by the LSE clock source
(32.768 kHz) to provide time bases independent from the main CPU clock.
3.16.2 Basic timers (TIM6 and TIM7)
These timers are mainly used for DAC trigger generation. They can also be used as generic
16-bit time bases.
3.16.3 SysTick timer
This timer is dedicated to the OS, but could also be used as a standard downcounter. It is
based on a 24-bit downcounter with autoreload capability and a programmable clock
source. It features a maskable system interrupt generation when the counter reaches 0.
3.16.4 Independent watchdog (IWDG)
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 37 kHz internal RC and, as it operates independently of the
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog
to reset the device when a problem occurs, or as a free-running timer for application timeout
management. It is hardware- or software-configurable through the option bytes. The counter
can be frozen in debug mode.
3.16.5 Window watchdog (WWDG)
The window watchdog is based on a 7-bit downcounter that can be set as free-running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from
the main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.
3.17 Communication interfaces
3.17.1 I²C bus
Up to two I²C bus interfaces can operate in multimaster and slave modes. They can support
standard and fast modes.
They support dual slave addressing (7-bit only) and both 7- and 10-bit addressing in master
mode. A hardware CRC generation/verification is embedded.
They can be served by DMA and they support SM Bus 2.0/PM Bus.
Functional overview STM32L151xC STM32L152xC
30/136 DocID022799 Rev 13
3.17.2 Universal synchronous/asynchronous receiver transmitter (USART)
The three USART interfaces are able to communicate at speeds of up to 4 Mbit/s. They
support IrDA SIR ENDEC and have LIN Master/Slave capability. The three USARTs provide
hardware management of the CTS and RTS signals and are ISO 7816 compliant.
All USART interfaces can be served by the DMA controller.
3.17.3 Serial peripheral interface (SPI)
Up to three SPIs are able to communicate at up to 16 Mbits/s in slave and master modes in
full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode
frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC
generation/verification supports basic SD Card/MMC modes.
The SPIs can be served by the DMA controller.
3.17.4 Inter-integrated sound (I2S)
Two standard I2S interfaces (multiplexed with SPI2 and SPI3) are available. They can
operate in master or slave mode, and can be configured to operate with a 16-/32-bit
resolution as input or output channels. Audio sampling frequencies from 8 kHz up to 192
kHz are supported. When either or both of the I2S interfaces is/are configured in master
mode, the master clock can be output to the external DAC/CODEC at 256 times the
sampling frequency.
The I2Ss can be served by the DMA controller.
3.17.5 Universal serial bus (USB)
The STM32L151xC and STM32L152xC devices embed a USB device peripheral
compatible with the USB full-speed 12 Mbit/s. The USB interface implements a full-speed
(12 Mbit/s) function interface. It has software-configurable endpoint setting and supports
suspend/resume. The dedicated 48 MHz clock is generated from the internal main PLL (the
clock source must use a HSE crystal oscillator).
3.18 CRC (cyclic redundancy check) calculation unit
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit
data word and a fixed generator polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at link-
time and stored at a given memory location.
DocID022799 Rev 13 31/136
STM32L151xC STM32L152xC Functional overview
51
3.19 Development support
3.19.1 Serial wire JTAG debug port (SWJ-DP)
The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
The JTAG JTMS and JTCK pins are shared with SWDAT and SWCLK, respectively, and a
specific sequence on the JTMS pin is used to switch between JTAG-DP and SW-DP.
The JTAG port can be permanently disabled with a JTAG fuse.
3.19.2 Embedded Trace Macrocell™
The ARM® Embedded Trace Macrocell provides a greater visibility of the instruction and
data flow inside the CPU core by streaming compressed data at a very high rate from the
STM32L151xC and STM32L152xC device through a small number of ETM pins to an
external hardware trace port analyzer (TPA) device. The TPA is connected to a host
computer using USB, Ethernet, or any other high-speed channel. Real-time instruction and
data flow activity can be recorded and then formatted for display on the host computer
running debugger software. TPA hardware is commercially available from common
development tool vendors. It operates with third party debugger software tools.
Pin descriptions STM32L151xC STM32L152xC
32/136 DocID022799 Rev 13
4 Pin descriptions
Figure 3. STM32L15xVC UFBGA100 ballout
1. This figure shows the package top view.
AIF
$
%
(
'
&
)
*
+
-
.
/
0
3(
26&B,1
3&
26&B287
3&
3&
:.83
3(
26&B287
3&
966$
95()
95()
9''$
3(
3(
3(
3(
:8.3
9/&'
966B
9''B
1567
3&
3&
3$
:.83
3$
3%
3(
3%
966B
966B
9''B
3&
3$
3$
3$
%227
3%
9''B
3$
3$
3$
3'
3%
3%
3&
3&
3%
3'
3'
3%
3%
3%
3'
3(
3(
3%
3'
3'
3'
3(
3(
3$
3'
3'
3'
3(
3(
3$
3&
3&
3&
3$
3'
3'
3%
3%
3(
3$
3&
3+
3$
3&
3'
3'
3%
3%
3(
966B
9''B
3$
3$
3$
3&
3&
3'
3'
3%
3%
3(
966B
9''B
 
3+
3+
26&B,1
DocID022799 Rev 13 33/136
STM32L151xC STM32L152xC Pin descriptions
51
Figure 4. STM32L15xVC LQFP100 pinout
1. This figure shows the package top view.


































































6$$?
633?
0(
0!
0!
0!
0!
0#
0#
0#
0#
0$
0$
0$
0$
0$
0$
0$
0$
0"
0"
0"
0"
0!
633?
6$$?
0!
0!
0!
0!
0#
0#
0"
0"
0"
0%
0%
0%
0%
0%
0%
0%
0%
0%
0"
0"
633?
6$$?
6$$?
633?
0%
0%
0"
0"
"//4
0"
0"
0"
0"
0"
0$
0$
0$
0$
0$
0$
0$
0$
0#
0#
0#
0!
0!

























0%
0%
0%
0%
0%7+50
6,#$
0#7+50
0#/3#?).
0#/3#?/54
633?
6$$?
0(/3#?).
0(/3#?/54
.234
0#
0#
0#
0#
633!
62%&
62%&
6$$!
0! 7 + 5 0
0!
0!
AIC
,1&0
0!
0!
Pin descriptions STM32L151xC STM32L152xC
34/136 DocID022799 Rev 13
Figure 5. STM32L15xRC LQFP64 pinout
1. This figure shows the package top view.
             
















             











6,#$
0#7+50
0#/3#?).
0#/3#?/54
0(/3#?).
0(/3#?/54
.234
0#
0#
0#
0#
633!
6$$!
0! 7 + 5 0
0!
0!
6$$?
633?
0"
0"
"//4
0"
0"
0"
0"
0"
0$
0#
0#
0#
0!
0!
6$$?

633?

0!
0!
0!
0!
0!
0!
0#
0#
0#
0#
0"
0"
0"
0"
0!
633?
6$$?
0!
0!
0!
0!
0#
0#
0"
0"
0"
0"
0"
633?
6$$?
,1&0
AIC
DocID022799 Rev 13 35/136
STM32L151xC STM32L152xC Pin descriptions
51
Figure 6. STM32L15xUC WLCSP63 ballout
1. This figure shows the package top view.
-36
!
"
%
$
#
&
'
(
633?
0#
0#
0!
6$$?
0!
0!
6$$?
0!
0#
0"
0"
0"
0#
0#
0!
0!
0"
0"
0"
0$
0#
0!
0!
0!
0"
0"
0"
633
"//4
0"
633?
6$$?
0"
0#
0!
0#
.234
6,#$
0#
6$$!
0(
0#
0#
0(
0!
0#
0"
0"
0!
0#
0!
0" 0#
0#
633!
*
633? 0" 0" 0# 0! 0! 0!
Pin descriptions STM32L151xC STM32L152xC
36/136 DocID022799 Rev 13
Figure 7. STM32L15xCC UFQFPN48 pinout
1. This figure shows the package top view.
633?
"//4
0"
0"
0"
0"
0"
0!
0!
        
 6$$?
 633?
 0!
5&1&0.
 0!
633!
 0!
6$$!
 0!
0!7+50
 0!
0!
 0!
0!

6$$?
        
0!
0!
0!
0!
0!
0"
0"
0"
633?
AID






  
  
0"
0"
0"
0"
0"
0"
6
,#$
0#7+50
0#/3#?).
0#/3#?/54
0(/3#?).
0(/3#?/54
.234
0"
0"
6$$?
DocID022799 Rev 13 37/136
STM32L151xC STM32L152xC Pin descriptions
51
Figure 8. STM32L15xCC LQFP48 pinout
1. This figure shows the package top view.
      













        
   
9''B
966B
3%
3%
3%
3%
3%
3%
3%
/4)3
069
3&:.83
3&26&B,1
3&26&B287
3+26&B,1
3+26&B287
1567
966$
9''$
3$:.83
3$
3$
9/&'
9''B
966B
3$
3$
3$
3$
3$
3$
3%
3%
3%
3%



%227
3$
3$
3$
3$
3$
3$
3%
3%
3%
3%
3%
3$
966B
9''B



Pin descriptions STM32L151xC STM32L152xC
38/136 DocID022799 Rev 13
Table 8. Legend/abbreviations used in the pinout table
Name Abbreviation Definition
Pin name Unless otherwise specified in brackets below the pin name, the pin function
during and after reset is the same as the actual pin name
Pin type
S Supply pin
I Input only pin
I/O Input / output pin
I/O structure
FT 5 V tolerant I/O
TC Standard 3.3 V I/O
B Dedicated BOOT0 pin
RST Bidirectional reset pin with embedded weak pull-up resistor
Notes Unless otherwise specified by a note, all I/Os are set as floating inputs during
and after reset
Pin
functions
Alternate
functions Functions selected through GPIOx_AFR registers
Additional
functions Functions directly selected/enabled through peripheral registers
Table 9. STM32L151xC and STM32L152xC pin definitions
Pins
Pin name
Pin type(1)
I / O Structure
Main
function(2)
(after
reset)
Pin functions
UFBGA100
LQFP100
LQFP64
WLCSP63
LQFP48 or UFQFPN48
Alternate functions Additional functions
B2 1 - - - PE2 I/O FT PE2 TIM3_ETR/LCD_SEG38
/TRACECLK -
A1 2 - - - PE3 I/O FT PE3 TIM3_CH1/LCD_SEG39
/TRACED0 -
B1 3 - - - PE4 I/O FT PE4 TIM3_CH2/TRACED1 -
C2 4 - - - PE5 I/O FT PE5 TIM9_CH1/TRACED2 -
D2 5 - - - PE6-
WKUP3 I/O FT PE6 TIM9_CH2/ TRACED3 WKUP3/
RTC_TAMP3
E2 6 1 C7 1 VLCD(3) S- V
LCD --
DocID022799 Rev 13 39/136
STM32L151xC STM32L152xC Pin descriptions
51
C1 7 2 D5 2 PC13-
WKUP2 I/O FT PC13 -
WKUP2/
RTC_TAMP1/
RTC_TS/RTC_OUT
D1 8 3 D7 3 PC14-
OSC32_IN(4) I/O TC PC14 - OSC32_IN
E1 9 4 D6 4 PC15-
OSC32_OUT I/O TC PC15 - OSC32_OUT
F2 10 - - - VSS_5 S- V
SS_5 --
G2 11 - - - VDD_5 S- V
DD_5 --
F1 12 5 F6 5 PH0-
OSC_IN(5) I/O TC PH0 - OSC_IN
G1 13 6 F7 6 PH1-
OSC_OUT(5) I/O TC PH1 - OSC_OUT
H2 14 7 E7 7 NRST I/O RST NRST - -
H1 15 8 E6 - PC0 I/O FT PC0 LCD_SEG18 ADC_IN10/
COMP1_INP
J2 16 9 E5 - PC1 I/O FT PC1 LCD_SEG19 ADC_IN11/
COMP1_INP
J3 17 10 G7 - PC2 I/O FT PC2 LCD_SEG20 ADC_IN12/
COMP1_INP
K2 18 11 G6 - PC3 I/O TC PC3 LCD_SEG21 ADC_IN13/
COMP1_INP
J1 19 12 F5 8 VSSA S- V
SSA --
K1 20 - - - VREF- S- V
REF- --
L1 21 - - - VREF+ S- V
REF+ --
M1 22 13 H7 9 VDDA S- V
DDA --
L2 23 14 E4 10 PA0-WKUP1 I/O FT PA0
TIM2_CH1_ETR/
TIM5_CH1/
USART2_CTS
WKUP1/
RTC_TAMP2/
ADC_IN0/
COMP1_INP
Table 9. STM32L151xC and STM32L152xC pin definitions (continued)
Pins
Pin name
Pin type(1)
I / O Structure
Main
function(2)
(after
reset)
Pin functions
UFBGA100
LQFP100
LQFP64
WLCSP63
LQFP48 or UFQFPN48
Alternate functions Additional functions
Pin descriptions STM32L151xC STM32L152xC
40/136 DocID022799 Rev 13
M2 24 15 G5 11 PA1 I/O FT PA1
TIM2_CH2/TIM5_CH2/
USART2_RTS/
LCD_SEG0
ADC_IN1/
COMP1_INP/
OPAMP1_VINP
K3 25 16 H6 12 PA2 I/O FT PA2
TIM2_CH3/TIM5_CH3/
TIM9_CH1/USART2_TX
/LCD_SEG1
ADC_IN2/
COMP1_INP/
OPAMP1_VINM
L3 26 17 J7 13 PA3 I/O TC PA3
TIM2_CH4/TIM5_CH4/
TIM9_CH2/USART2_RX
/LCD_SEG2
ADC_IN3/
COMP1_INP/
OPAMP1_VOUT
E3 27 18 - - VSS_4 S- V
SS_4 --
H3 28 19 - - VDD_4 S- V
DD_4 --
M3 29 20 J6 14 PA4 I/O TC PA4
SPI1_NSS/SPI3_NSS/
I2S3_WS/
USART2_CK
ADC_IN4/
DAC_OUT1/
COMP1_INP
K4 30 21 H4 15 PA5 I/O TC PA5 TIM2_CH1_ETR/
SPI1_SCK
ADC_IN5/
DAC_OUT2/
COMP1_INP
L4 31 22 G4 16 PA6 I/O FT PA6 TIM3_CH1/TIM10_CH1/
SPI1_MISO/LCD_SEG3
ADC_IN6/
COMP1_INP/
OPAMP2_VINP
M4 32 23 J5 17 PA7 I/O FT PA7 TIM3_CH2/TIM11_CH1/
SPI1_MOSI/LCD_SEG4
ADC_IN7/
COMP1_INP/
OPAMP2_VINM
K5 33 24 F4 - PC4 I/O FT PC4 LCD_SEG22 ADC_IN14/
COMP1_INP
L5 34 25 J4 - PC5 I/O FT PC5 LCD_SEG23 ADC_IN15/
COMP1_INP
M5 35 26 J3 18 PB0 I/O TC PB0 TIM3_CH3/LCD_SEG5
ADC_IN8/
COMP1_INP/
OPAMP2_VOUT/
VLCDRAIL3/
VREF_OUT
Table 9. STM32L151xC and STM32L152xC pin definitions (continued)
Pins
Pin name
Pin type(1)
I / O Structure
Main
function(2)
(after
reset)
Pin functions
UFBGA100
LQFP100
LQFP64
WLCSP63
LQFP48 or UFQFPN48
Alternate functions Additional functions
DocID022799 Rev 13 41/136
STM32L151xC STM32L152xC Pin descriptions
51
M6 36 27 H3 19 PB1 I/O FT PB1 TIM3_CH4/LCD_SEG6
ADC_IN9/
COMP1_INP/
VREF_OUT
L6 37 28 G3 20 PB2 I/O FT PB2
/BOOT1 BOOT1 VLCDRAIL1/
ADCIN0b
M7 38 - - - PE7 I/O TC PE7 - ADC_IN22/
COMP1_INP
L7 39 - - - PE8 I/O TC PE8 - ADC_IN23/
COMP1_INP
M8 40 - - - PE9 - TC PE9 TIM2_CH1_ETR/
TIM5_ETR
ADC_IN24/
COMP1_INP
L8 41 - - - PE10 I/O TC PE10 TIM2_CH2 ADC_IN25/
COMP1_INP
M9 42 - - - PE11 I/O FT PE11 TIM2_CH3 VLCDRAIL2
L9 43 - - - PE12 I/O FT PE12 TIM2_CH4/SPI1_NSS VLCDRAIL3
M10 44 - - - PE13 I/O FT PE13 SPI1_SCK -
M11 45 - - - PE14 I/O FT PE14 SPI1_MISO -
M12 46 - - - PE15 I/O FT PE15 SPI1_MOSI -
L10 47 29 J2 21 PB10 I/O FT PB10
TIM2_CH3/I2C2_SCL/
USART3_TX/
LCD_SEG10
-
L11 48 30 H2 22 PB11 I/O FT PB11
TIM2_CH4/I2C2_SDA/
USART3_RX/
LCD_SEG11
-
---H5- V
SS S- V
SS --
F12 49 31 J1 23 VSS_1 S- V
SS_1 --
G12 50 32 H1 24 VDD_1 S- V
DD_1 --
Table 9. STM32L151xC and STM32L152xC pin definitions (continued)
Pins
Pin name
Pin type(1)
I / O Structure
Main
function(2)
(after
reset)
Pin functions
UFBGA100
LQFP100
LQFP64
WLCSP63
LQFP48 or UFQFPN48
Alternate functions Additional functions
Pin descriptions STM32L151xC STM32L152xC
42/136 DocID022799 Rev 13
L12 51 33 G2 25 PB12 I/O FT PB12
TIM10_CH1
/I2C2_SMBA/
SPI2_NSS/I2S2_WS/
USART3_CK/
LCD_SEG12
ADC_IN18/
COMP1_INP/
VLCDRAIL2
K12 52 34 G1 26 PB13 I/O FT PB13
TIM9_CH1/SPI2_SCK/
I2S2_CK/
USART3_CTS/
LCD_SEG13
ADC_IN19/
COMP1_INP
K11 53 35 F3 27 PB14 I/O FT PB14
TIM9_CH2/SPI2_MISO/
USART3_RTS/
LCD_SEG14
ADC_IN20/
COMP1_INP
K10 54 36 F2 28 PB15 I/O FT PB15 TIM11_CH1/SPI2_MOSI
/I2S2_SD/LCD_SEG15
ADC_IN21/
COMP1_INP/
RTC_REFIN
K9 55 - - - PD8 I/O FT PD8 USART3_TX/
LCD_SEG28 -
K8 56 - - - PD9 I/O FT PD9 USART3_RX/
LCD_SEG29 -
J12 57 - - - PD10 I/O FT PD10 USART3_CK/
LCD_SEG30 -
J11 58 - - - PD11 I/O FT PD11 USART3_CTS/
LCD_SEG31 -
J10 59 - - - PD12 I/O FT PD12
TIM4_CH1/
USART3_RTS/
LCD_SEG32
-
H12 60 - - - PD13 I/O FT PD13 TIM4_CH2/LCD_SEG33 -
H11 61 - - - PD14 I/O FT PD14 TIM4_CH3/LCD_SEG34 -
H10 62 - - - PD15 I/O FT PD15 TIM4_CH4/LCD_SEG35 -
E12 63 37 F1 - PC6 I/O FT PC6 TIM3_CH1/I2S2_MCK/
LCD_SEG24 -
Table 9. STM32L151xC and STM32L152xC pin definitions (continued)
Pins
Pin name
Pin type(1)
I / O Structure
Main
function(2)
(after
reset)
Pin functions
UFBGA100
LQFP100
LQFP64
WLCSP63
LQFP48 or UFQFPN48
Alternate functions Additional functions
DocID022799 Rev 13 43/136
STM32L151xC STM32L152xC Pin descriptions
51
E11 64 38 E1 - PC7 I/O FT PC7 TIM3_CH2/I2S3_MCK/
LCD_SEG25 -
E10 65 39 D1 - PC8 I/O FT PC8 TIM3_CH3/LCD_SEG26 -
D12 66 40 E2 - PC9 I/O FT PC9 TIM3_CH4/LCD_SEG27 -
D11 67 41 E3 29 PA8 I/O FT PA8 USART1_CK/MCO/
LCD_COM0 -
D10 68 42 C1 30 PA9 I/O FT PA9 USART1_TX/
LCD_COM1 -
C12 69 43 D2 31 PA10 I/O FT PA10 USART1_RX/
LCD_COM2 -
B12 70 44 B1 32 PA11 I/O FT PA11 USART1_CTS/
SPI1_MISO USB_DM
A12 71 45 D3 33 PA12 I/O FT PA12 USART1_RTS/
SPI1_MOSI USB_DP
A11 72 46 C2 34 PA13 I/O FT JTMS-
SWDIO JTMS-SWDIO -
C11 73 - - - PH2 I/O FT PH2 - -
F11 74 47 A1 35 VSS_2 S- V
SS_2 --
G11 75 48 B2 36 VDD_2 S- V
DD_2 --
A10 76 49 C3 37 PA14 I/O FT JTCK-
SWCLK JTCK-SWCLK -
A9 77 50 A2 38 PA15 I/O FT JTDI
TIM2_CH1_ETR/
SPI1_NSS/
SPI3_NSS/I2S3_WS/
LCD_SEG17/JTDI
-
B11 78 51 B3 - PC10 I/O FT PC10
SPI3_SCK/I2S3_CK/
USART3_TX/
LCD_SEG28/
LCD_SEG40/
LCD_COM4
-
Table 9. STM32L151xC and STM32L152xC pin definitions (continued)
Pins
Pin name
Pin type(1)
I / O Structure
Main
function(2)
(after
reset)
Pin functions
UFBGA100
LQFP100
LQFP64
WLCSP63
LQFP48 or UFQFPN48
Alternate functions Additional functions
Pin descriptions STM32L151xC STM32L152xC
44/136 DocID022799 Rev 13
C10 79 52 A3 - PC11 I/O FT PC11
SPI3_MISO/
USART3_RX/
LCD_SEG29/
LCD_SEG41/
LCD_COM5
-
B10 80 53 B4 - PC12 I/O FT PC12
SPI3_MOSI/I2S3_SD/
USART3_CK/
LCD_SEG30/
LCD_SEG42/
LCD_COM6
-
C9 81 - - - PD0 I/O FT PD0 TIM9_CH1/SPI2_NSS/
I2S2_WS -
B9 82 - - - PD1 I/O FT PD1 SPI2_SCK/I2S2_CK -
C8 83 54 A4 - PD2 I/O FT PD2
TIM3_ETR/LCD_SEG31
/LCD_SEG43/
LCD_COM7
-
B8 84 - - - PD3 I/O FT PD3 SPI2_MISO/
USART2_CTS -
B7 85 - - - PD4 I/O FT PD4 SPI2_MOSI/I2S2_SD/
USART2_RTS -
A6 86 - - PD5 I/O FT PD5 USART2_TX -
B6 87 - - - PD6 I/O FT PD6 USART2_RX -
A5 88 - - - PD7 I/O FT PD7 TIM9_CH2/USART2_CK -
A8 89 55 C4 39 PB3 I/O FT JTDO
TIM2_CH2/SPI1_SCK/
SPI3_SCK/I2S3_CK/
LCD_SEG7/JTDO
COMP2_INM
A7 90 56 D4 40 PB4 I/O FT NJTRST
TIM3_CH1/SPI1_MISO/
SPI3_MISO/LCD_SEG8
/NJTRST
COMP2_INP
C5 91 57 A5 41 PB5 I/O FT PB5
TIM3_CH2/I2C1_SMBA/
SPI1_MOSI/SPI3_MOSI
/I2S3_SD/LCD_SEG9
COMP2_INP
Table 9. STM32L151xC and STM32L152xC pin definitions (continued)
Pins
Pin name
Pin type(1)
I / O Structure
Main
function(2)
(after
reset)
Pin functions
UFBGA100
LQFP100
LQFP64
WLCSP63
LQFP48 or UFQFPN48
Alternate functions Additional functions
DocID022799 Rev 13 45/136
STM32L151xC STM32L152xC Pin descriptions
51
B5 92 58 B5 42 PB6 I/O FT PB6 TIM4_CH1/I2C1_SCL/
USART1_TX COMP2_INP
B4 93 59 C5 43 PB7 I/O FT PB7 TIM4_CH2/I2C1_SDA/
USART1_RX COMP2_INP/PVD_IN
A4 94 60 A6 44 BOOT0 I B BOOT0 - -
A3 95 61 B6 45 PB8 I/O FT PB8 TIM4_CH3/TIM10_CH1/
I2C1_SCL/LCD_SEG16 -
B3 96 62 C6 46 PB9 I/O FT PB9 TIM4_CH4/TIM11_CH1/
I2C1_SDA/LCD_COM3 -
C3 97 - - - PE0 I/O FT PE0 TIM4_ETR/TIM10_CH1/
LCD_SEG36 -
A2 98 - - - PE1 I/O FT PE1 TIM11_CH1/
LCD_SEG37 -
D3 99 63 A7 47 VSS_3 S- V
SS_3 --
C4 100 64 B7 48 VDD_3 S- V
DD_3 --
1. I = input, O = output, S = supply.
2. Function availability depends on the chosen device.
3. Applicable to STM32L152xC devices only. In STM32L151xC devices, this pin should be connected to VDD.
4. The PC14 and PC15 I/Os are only configured as OSC32_IN/OSC32_OUT when the LSE oscillator is ON (by setting the
LSEON bit in the RCC_CSR register). The LSE oscillator pins OSC32_IN/OSC32_OUT can be used as general-purpose
PH0/PH1 I/Os, respectively, when the LSE oscillator is off (after reset, the LSE oscillator is off). The LSE has priority over
the GPIO function. For more details, refer to Using the OSC32_IN/OSC32_OUT pins as GPIO PC14/PC15 port pins
section in the STM32L151xx, STM32L152xx and STM32L162xx reference manual (RM0038).
5. The PH0 and PH1 I/Os are only configured as OSC_IN/OSC_OUT when the HSE oscillator is ON (by setting the HSEON
bit in the RCC_CR register). The HSE oscillator pins OSC_IN/OSC_OUT can be used as general-purpose PH0/PH1 I/Os,
respectively, when the HSE oscillator is off ( after reset, the HSE oscillator is off ). The HSE has priority over the GPIO
function.
Table 9. STM32L151xC and STM32L152xC pin definitions (continued)
Pins
Pin name
Pin type(1)
I / O Structure
Main
function(2)
(after
reset)
Pin functions
UFBGA100
LQFP100
LQFP64
WLCSP63
LQFP48 or UFQFPN48
Alternate functions Additional functions
DocID022799 Rev 13 51/136
STM32L151xC STM32L152xC Memory mapping
51
5 Memory mapping
Figure 9. Memory map
RESERVED
#2#
4)-
2ESERVED
4)-
4)-
24#
77$'
)7$'
30)
53!24
53!24
393#&'
4)-
4)-
RESE RVE D
!$#
53!24
RESERVED
30)
30)
)#
072
4)-
)#
RESERVED
%84)
RESERVED
2##
&LASH)NTERF ACE
RESERVED
$-!
53"2EG ISTERS
0ERIPHERALS
32!-
O# RTEX -)NTERNAL
0ER I P HER ALS
-36
BYTE 53"
4)-
4)-
,#$
4)-
X
X
X
X#
$!#
X
0ORT!
0ORT"
0ORT#
0ORT$
0ORT%
0ORT(
X
X
X
X#
X
X
#/-02)
&LASHMEMORY
3YSTEMMEMORY
!LIASEDTO&LASHORSYSTEM
MEMORYDEPENDINGON
"//4PINS
$ATA %%02/-
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
.ON
VOLATILE
MEMORY
RESERVED
/PTION BYTE
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
$-!
X&&
X
X
X
X#
X
X
X
X
X#
X
X
X
X
X
X
X
X#
X
X
X
X
X#
X
X
X
X
X#
X
X
X#
X
X
X
X#
X
X
X
X#
X
X#
X
X
X
X&&&
X&&
X&&
X&&
X&&
X
X
X
X
X
X&&&&&&&&
X%
X%
X#
X!
X
X
X
X
X
Electrical characteristics STM32L151xC STM32L152xC
52/136 DocID022799 Rev 13
6 Electrical characteristics
6.1 Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
6.1.1 Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes. Based on characterization, the minimum and maximum
values refer to sample tests and represent the mean value plus or minus three times the
standard deviation (mean ±3σ).
6.1.2 Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.6 V (for the
1.65 V VDD 3.6 V voltage range). They are given only as design guidelines and are not
tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean ±2σ).
6.1.3 Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
6.1.4 Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 10.
6.1.5 Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 11.
Figure 10. Pin loading conditions Figure 11. Pin input voltage
DLF
& S)
0&8SLQ
DLG
0&8SLQ
9,1
DocID022799 Rev 13 53/136
STM32L151xC STM32L152xC Electrical characteristics
109
6.1.6 Power supply scheme
Figure 12. Power supply scheme
069
$QDORJ
26&3//&203
«
9''
*3,2V
287
,1 .HUQHOORJLF
&38
'LJLWDO
0HPRULHV
6WDQGE\SRZHUFLUFXLWU\
/6(57&:DNHXS
ORJLF57&EDFNXS
UHJLVWHUV
1îQ)
î)
5HJXODWRU
966
9''$
95()
95()
966$
$'&
'$&
/HYHOVKLIWHU
,2
/RJLF
9''
Q)
)
95()
Q)
)
9''$
1±QXPEHURI
9''966SDLUV
Electrical characteristics STM32L151xC STM32L152xC
54/136 DocID022799 Rev 13
6.1.7 Optional LCD power supply scheme
Figure 13. Optional LCD power supply scheme
1. Option 1: LCD power supply is provided by a dedicated VLCD supply source, VSEL switch is open.
2. Option 2: LCD power supply is provided by the internal step-up converter, VSEL switch is closed, an
external capacitance is needed for correct behavior of this converter.
6.1.8 Current consumption measurement
Figure 14. Current consumption measurement scheme
069
9''1
1[Q)
[)
6WHSXS
&RQYHUWHU
9661
9''

Q)
9/&'
9/&'UDLO
9/&'UDLO
9/&'UDLO
9/&'
3%RU3(
3%
3%RU3(
&(;7
&UDLO
/&'
96(/
&UDLO &UDLO
2SWLRQ
2SWLRQ
1[Q)
[)
1[966
1[9''
966$
Q)
)
$
95()
95()
9''$
9/&'
069
DocID022799 Rev 13 55/136
STM32L151xC STM32L152xC Electrical characteristics
109
6.2 Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 11: Voltage characteristics,
Table 12: Current characteristics, and Table 13: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
Table 11. Voltage characteristics
Symbol Ratings Min Max Unit
VDD–VSS
External main supply voltage
(including VDDA and VDD)(1) –0.3 4.0
V
VIN(2) Input voltage on five-volt tolerant pin VSS 0.3 VDD+4.0
Input voltage on any other pin VSS 0.3 4.0
|ΔVDDx| Variations between different VDD power pins - 50 mV
|VSSX VSS| Variations between all different ground pins(3) -50
VREF+ –VDDA Allowed voltage difference for VREF+ > VDDA -0.4V
VESD(HBM)
Electrostatic discharge voltage
(human body model) see Section 6.3.11
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the
permitted range.
2. VIN maximum must always be respected. Refer to Table 12 for maximum allowed injected current values.
3. Include VREF- pin.
Table 12. Current characteristics
Symbol Ratings Max. Unit
IVDD(Σ)Total current into sum of all VDD_x power lines (source)(1) 100
mA
IVSS(Σ)(2) Total current out of sum of all VSS_x ground lines (sink)(1) 100
IVDD(PIN) Maximum current into each VDD_x power pin (source)(1) 70
IVSS(PIN) Maximum current out of each VSS_x ground pin (sink)(1) -70
IIO
Output current sunk by any I/O and control pin 25
Output current sourced by any I/O and control pin - 25
ΣIIO(PIN)
Total output current sunk by sum of all IOs and control pins(2) 60
Total output current sourced by sum of all IOs and control pins(2) -60
IINJ(PIN) (3) Injected current on five-volt tolerant I/O(4), RST and B pins -5/+0
Injected current on any other pin (5) ± 5
ΣIINJ(PIN) Total injected current (sum of all I/O and control pins)(6) ± 25
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the
permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be
sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.
3. Negative injection disturbs the analog performance of the device. See note in Section 6.3.17.
Electrical characteristics STM32L151xC STM32L152xC
56/136 DocID022799 Rev 13
6.3 Operating conditions
6.3.1 General operating conditions
4. Positive current injection is not possible on these I/Os. A negative injection is induced by VIN<VSS. IINJ(PIN) must never be
exceeded. Refer to Table 11 for maximum allowed input voltage values.
5. A positive injection is induced by VIN > VDD while a negative injection is induced by VIN < VSS. IINJ(PIN) must never be
exceeded. Refer to Table 11: Voltage characteristics for the maximum allowed input voltage values.
6. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and
negative injected currents (instantaneous values).
Table 13. Thermal characteristics
Symbol Ratings Value Unit
TSTG Storage temperature range –65 to +150 °C
TJMaximum junction temperature 150 °C
Table 14. General operating conditions
Symbol Parameter Conditions Min Max Unit
fHCLK Internal AHB clock frequency - 0 32
MHzfPCLK1 Internal APB1 clock frequency - 0 32
fPCLK2 Internal APB2 clock frequency - 0 32
VDD Standard operating voltage
BOR detector disabled 1.65 3.6
V
BOR detector enabled, at
power on 1.8 3.6
BOR detector disabled, after
power on 1.65 3.6
VDDA(1)
Analog operating voltage
(ADC and DAC not used) Must be the same voltage as
VDD(2)
1.65 3.6
V
Analog operating voltage
(ADC or DAC used) 1.8 3.6
VIN I/O input voltage
FT pins; 2.0 V VDD -0.3 5.5(3)
V
FT pins; VDD < 2.0 V -0.3 5.25(3)
BOOT0 pin 0 5.5
Any other pin -0.3 VDD+0.3
PD
Power dissipation at TA = 85 °C for
suffix 6 or TA = 105 °C for suffix 7(4)
LQFP48 package - 364
mW
LQFP100 package - 465
LQFP64 package - 435
UFQFPN48 package - 625
UFBGA100 - 339
WLCSP63 package - 408
DocID022799 Rev 13 57/136
STM32L151xC STM32L152xC Electrical characteristics
109
6.3.2 Embedded reset and power control block characteristics
The parameters given in the following table are derived from the tests performed under the
conditions summarized in Table 14.
TA
Ambient temperature for 6 suffix version Maximum power dissipation(5) –40 85 °C
Ambient temperature for 7 suffix version Maximum power dissipation –40 105
TJ Junction temperature range 6 suffix version –40 105 °C
7 suffix version –40 110
1. When the ADC is used, refer to Table 56: ADC characteristics.
2. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and
VDDA can be tolerated during power-up and up to 140 mV in operation.
3. To sustain a voltage higher than VDD+0.3V, the internal pull-up/pull-down resistors must be disabled.
4. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJ max (see Table 73: Thermal characteristics
on page 128).
5. In low-power dissipation state, TA can be extended to -40°C to 105°C temperature range as long as TJ does not exceed TJ
max (see Table 73: Thermal characteristics on page 128).
Table 14. General operating conditions (continued)
Symbol Parameter Conditions Min Max Unit
Table 15. Embedded reset and power control block characteristics
Symbol Parameter Conditions Min Typ Max Unit
tVDD(1)
VDD rise time rate BOR detector enabled 0 -
µs/V
BOR detector disabled 0 - 1000
VDD fall time rate BOR detector enabled 20 -
BOR detector disabled 0 - 1000
TRSTTEMPO(1) Reset temporization VDD rising, BOR enabled - 2 3.3 ms
VDD rising, BOR disabled(2) 0.4 0.7 1.6
VPOR/PDR
Power on/power down reset
threshold
Falling edge 1 1.5 1.65
V
Rising edge 1.3 1.5 1.65
VBOR0 Brown-out reset threshold 0 Falling edge 1.67 1.7 1.74
Rising edge 1.69 1.76 1.8
VBOR1 Brown-out reset threshold 1 Falling edge 1.87 1.93 1.97
Rising edge 1.96 2.03 2.07
VBOR2 Brown-out reset threshold 2 Falling edge 2.22 2.30 2.35
Rising edge 2.31 2.41 2.44
Electrical characteristics STM32L151xC STM32L152xC
58/136 DocID022799 Rev 13
VBOR3 Brown-out reset threshold 3 Falling edge 2.45 2.55 2.6
V
Rising edge 2.54 2.66 2.7
VBOR4 Brown-out reset threshold 4 Falling edge 2.68 2.8 2.85
Rising edge 2.78 2.9 2.95
VPVD0
Programmable voltage detector
threshold 0
Falling edge 1.8 1.85 1.88
Rising edge 1.88 1.94 1.99
VPVD1 PVD threshold 1 Falling edge 1.98 2.04 2.09
Rising edge 2.08 2.14 2.18
VPVD2 PVD threshold 2 Falling edge 2.20 2.24 2.28
Rising edge 2.28 2.34 2.38
VPVD3 PVD threshold 3 Falling edge 2.39 2.44 2.48
Rising edge 2.47 2.54 2.58
VPVD4 PVD threshold 4 Falling edge 2.57 2.64 2.69
Rising edge 2.68 2.74 2.79
VPVD5 PVD threshold 5 Falling edge 2.77 2.83 2.88
Rising edge 2.87 2.94 2.99
VPVD6 PVD threshold 6 Falling edge 2.97 3.05 3.09
Rising edge 3.08 3.15 3.20
Vhyst Hysteresis voltage
BOR0 threshold - 40 -
mV
All BOR and PVD
thresholds excepting BOR0 - 100 -
1. Guaranteed by characterization results.
2. Valid for device version without BOR at power up. Please see option “D” in Ordering information scheme for more details.
Table 15. Embedded reset and power control block characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
DocID022799 Rev 13 59/136
STM32L151xC STM32L152xC Electrical characteristics
109
6.3.3 Embedded internal reference voltage
The parameters given in Table 17 are based on characterization results, unless otherwise
specified.
Table 16. Embedded internal reference voltage calibration values
Calibration value name Description Memory address
VREFINT_CAL
Raw data acquired at
temperature of 30 °C ±5 °C
VDDA= 3 V ±10 mV
0x1FF8 00F8 - 0x1FF8 00F9
Table 17. Embedded internal reference voltage
Symbol Parameter Conditions Min Typ Max Unit
VREFINT out (1) Internal reference voltage – 40 °C < TJ < +110 °C 1.202 1.224 1.242 V
IREFINT
Internal reference current
consumption --1.42.3µA
TVREFINT Internal reference startup time - - 2 3 ms
VVREF_MEAS
VDDA and VREF+ voltage during
VREFINT factory measure -2.9933.01V
AVREF_MEAS
Accuracy of factory-measured VREF
value(2)
Including uncertainties
due to ADC and
VDDA/VREF+ values
-- ±5mV
TCoeff(3) Temperature coefficient –40 °C < TJ < +110 °C - 25 100 ppm/°
C
ACoeff(3) Long-term stability 1000 hours, T= 25 °C - - 1000 ppm
VDDCoeff(3) Voltage coefficient 3.0 V < VDDA < 3.6 V - - 2000 ppm/V
TS_vrefint(3) ADC sampling time when reading
the internal reference voltage -4--µs
TADC_BUF(3) (4) Startup time of reference voltage
buffer for ADC ---10µs
IBUF_ADC(3) Consumption of reference voltage
buffer for ADC - - 13.5 25 µA
IVREF_OUT(3) VREF_OUT output current (5) ---1µA
CVREF_OUT(3) VREF_OUT output load - - - 50 pF
ILPBUF(3) Consumption of reference voltage
buffer for VREF_OUT and COMP - - 730 1200 nA
VREFINT_DIV1(3) 1/4 reference voltage - 24 25 26 %
VREFIN
T
VREFINT_DIV2(3) 1/2 reference voltage - 49 50 51
VREFINT_DIV3(3) 3/4 reference voltage - 74 75 76
1. Guaranteed by test in production.
2. The internal VREF value is individually measured in production and stored in dedicated EEPROM bytes.
3. Guaranteed by characterization results.
4. Shortest sampling time can be determined in the application by multiple iterations.
Electrical characteristics STM32L151xC STM32L152xC
60/136 DocID022799 Rev 13
6.3.4 Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, temperature, I/O pin loading, device software configuration, operating
frequencies, I/O pin switching rate, program location in memory and executed binary code.
The current consumption is measured as described in Figure 14: Current consumption
measurement scheme.
All Run-mode current consumption measurements given in this section are performed with a
reduced code that gives a consumption equivalent to the Dhrystone 2.1 code, unless
otherwise specified. The current consumption values are derived from tests performed
under ambient temperature TA = 25 °C and VDD supply voltage conditions summarized in
Table 14: General operating conditions, unless otherwise specified.
The MCU is placed under the following conditions:
All I/O pins are configured in analog input mode
All peripherals are disabled except when explicitly mentioned.
The Flash memory access time, 64-bit access and prefetch is adjusted depending on
fHCLK frequency and voltage range to provide the best CPU performance.
When the peripherals are enabled fAPB1 = fAPB2 = fAHB.
When PLL is ON, the PLL inputs are equal to HSI = 16 MHz (if internal clock is used) or
HSE = 16 MHz (if HSE bypass mode is used).
The HSE user clock applied to OSCI_IN input follows the characteristic specified in
Table 27: High-speed external user clock characteristics.
For maximum current consumption VDD = VDDA = 3.6 V is applied to all supply pins.
For typical current consumption VDD = VDDA = 3.0 V is applied to all supply pins if not
specified otherwise.
5. To guarantee less than 1% VREF_OUT deviation.
DocID022799 Rev 13 61/136
STM32L151xC STM32L152xC Electrical characteristics
109
Table 18. Current consumption in Run mode, code with data processing running from Flash
Symbol Parameter Conditions fHCLK Typ Max(1) Unit
IDD
(Run
from
Flash)
Supply
current in
Run mode,
code
executed
from Flash
fHSE = fHCLK up to 16
MHz included, fHSE =
fHCLK/2 above 16 MHz
(PLL ON)(2)
Range 3, VCORE=1.2 V
VOS[1:0] = 11
1 MHz 215 400
µA2 MHz 400 600
4 MHz 725 960
Range 2, VCORE=1.5 V
VOS[1:0] = 10
4 MHz 0.915 1.1
mA
8 MHz 1.75 2.1
16 MHz 3.4 3.9
Range 1, VCORE=1.8 V
VOS[1:0] = 01
8 MHz 2.1 2.8
16 MHz 4.2 4.9
32 MHz 8.25 9.4
HSI clock source (16
MHz)
Range 2, VCORE=1.5 V
VOS[1:0] = 10 16 MHz 3.5 4
Range 1, VCORE=1.8 V
VOS[1:0] = 01 32 MHz 8.2 9.6
MSI clock, 65 kHz
Range 3, VCORE=1.2 V
VOS[1:0] = 11
65 kHz 40.5 110
µAMSI clock, 524 kHz 524 kHz 125 190
MSI clock, 4.2 MHz 4.2 MHz 775 900
1. Guaranteed by characterization results, unless otherwise specified.
2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).
Electrical characteristics STM32L151xC STM32L152xC
62/136 DocID022799 Rev 13
Table 19. Current consumption in Run mode, code with data processing running from RAM
Symbol Parameter Conditions fHCLK Typ Max(1) Unit
IDD (Run
from
RAM)
Supply current in
Run mode, code
executed from
RAM, Flash
switched off
fHSE = fHCLK
up to 16 MHz,
included
fHSE = fHCLK/2 above
16 MHz
(PLL ON)(2)
Range 3,
VCORE=1.2 V VOS[1:0]
= 11
1 MHz 185 240
µA2 MHz 345 410
4 MHz 645 880(3)
Range 2,
VCORE=1.5 V VOS[1:0]
= 10
4 MHz 0.755 1.4
mA
8 MHz 1.5 2.1
16 MHz 33.5
Range 1,
VCORE=1.8 V
VOS[1:0] = 01
8 MHz 1.8 2.8
16 MHz 3.6 4.1
32 MHz 7.15 8.3
HSI clock source (16
MHz)
Range 2,
VCORE=1.5 V VOS[1:0]
= 10
16 MHz 2.95 3.5
Range 1,
VCORE=1.8 V VOS[1:0]
= 01
32 MHz 7.15 8.4
MSI clock, 65 kHz Range 3,
VCORE=1.2 V VOS[1:0]
= 11
65 kHz 38.5 85
µAMSI clock, 524 kHz 524 kHz 110 160
MSI clock, 4.2 MHz 4.2 MHz 690 810
1. Guaranteed by characterization results, unless otherwise specified.
2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).
3. Guaranteed by test in production.
DocID022799 Rev 13 63/136
STM32L151xC STM32L152xC Electrical characteristics
109
Table 20. Current consumption in Sleep mode
Symbol Parameter Conditions fHCLK Typ Max(1) Unit
IDD (Sleep)
Supply current
in Sleep
mode, Flash
OFF
fHSE = fHCLK up to
16 MHz included,
fHSE = fHCLK/2
above 16 MHz (PLL
ON)(2)
Range 3,
VCORE=1.2 V
VOS[1:0] = 11
1 MHz 50 130
µA
2 MHz 78.5 195
4 MHz 140 310
Range 2,
VCORE=1.5 V
VOS[1:0] = 10
4 MHz 165 310
8 MHz 310 440
16 MHz 590 830
Range 1,
VCORE=1.8 V
VOS[1:0] = 01
8 MHz 350 550
16 MHz 680 990
32 MHz 1600 2100
HSI clock source
(16 MHz)
Range 2,
VCORE=1.5 V
VOS[1:0] = 10
16 MHz 640 890
Range 1,
VCORE=1.8 V
VOS[1:0] = 01
32 MHz 1600 2200
MSI clock, 65 kHz Range 3,
VCORE=1.2 V
VOS[1:0] = 11
65 kHz 19 60
MSI clock, 524 kHz 524 kHz 33 99
MSI clock, 4.2 MHz 4.2 MHz 145 210
Supply current
in Sleep
mode, Flash
ON
fHSE = fHCLK up to
16 MHz included,
fHSE = fHCLK/2
above 16 MHz (PLL
ON)(2)
Range 3,
VCORE=1.2 V
VOS[1:0] = 11
1 MHz 60.5 130
2 MHz 89.5 190
4 MHz 150 320
Range 2,
VCORE=1.5 V
VOS[1:0] = 10
4 MHz 180 320
8 MHz 320 460
16 MHz 605 840
Range 1,
VCORE=1.8 V
VOS[1:0] = 01
8 MHz 380 540
16 MHz 695 1000
32 MHz 1600 2100
HSI clock source
(16 MHz)
Range 2,
VCORE=1.5 V
VOS[1:0] = 10
16 MHz 650 910
Range 1,
VCORE=1.8 V
VOS[1:0] = 01
32 MHz 1600 2200
Supply current
in Sleep
mode, Flash
ON
MSI clock, 65 kHz Range 3,
VCORE=1.2V
VOS[1:0] = 11
65 kHz 30 90
MSI clock, 524 kHz 524 kHz 44 96
MSI clock, 4.2 MHz 4.2 MHz 155 220
1. Guaranteed by characterization results, unless otherwise specified.
2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register)
Electrical characteristics STM32L151xC STM32L152xC
64/136 DocID022799 Rev 13
Table 21. Current consumption in Low-power run mode
Symbol Parameter Conditions Typ Max(1) Unit
IDD (LP
Run)
Supply
current in
Low-power
run mode
All
peripherals
OFF, code
executed
from RAM,
Flash
switched
OFF, VDD
from 1.65 V
to 3.6 V
MSI clock, 65 kHz
fHCLK = 32 kHz
TA = -40 °C to 25 °C 8.6 12
µA
TA = 85 °C 19 25
TA = 105 °C 35 47
MSI clock, 65 kHz
fHCLK = 65 kHz
TA =-40 °C to 25 °C 14 16
TA = 85 °C 24 29
TA = 105 °C 40 51
MSI clock, 131 kHz
fHCLK = 131 kHz
TA = -40 °C to 25 °C 26 29
TA = 55 °C 28 31
TA = 85 °C 36 42
TA = 105 °C 52 64
All
peripherals
OFF, code
executed
from Flash,
VDD from
1.65 V to
3.6 V
MSI clock, 65 kHz
fHCLK = 32 kHz
TA = -40 °C to 25 °C 20 24
TA = 85 °C 32 37
TA = 105 °C 49 61
MSI clock, 65 kHz
fHCLK = 65 kHz
TA = -40 °C to 25 °C 26 30
TA = 85 °C 38 44
TA = 105 °C 55 67
MSI clock, 131 kHz
fHCLK = 131 kHz
TA = -40 °C to 25 °C 41 46
TA = 55 °C 44 50
TA = 85 °C 56 87
TA = 105 °C 73 110
IDD max
(LP Run)
Max allowed
current in
Low-power
run mode
VDD from
1.65 V to
3.6 V
- - - 200
1. Guaranteed by characterization results, unless otherwise specified.
DocID022799 Rev 13 65/136
STM32L151xC STM32L152xC Electrical characteristics
109
Table 22. Current consumption in Low-power sleep mode
Symbol Parameter Conditions Typ Max(1) Unit
IDD
(LP Sleep)
Supply
current in
Low-power
sleep mode
All peripherals
OFF, VDD from
1.65 V to 3.6 V
MSI clock, 65 kHz
fHCLK = 32 kHz
Flash OFF
TA = -40 °C to 25 °C 4.4 -
µA
MSI clock, 65 kHz
fHCLK = 32 kHz
Flash ON
TA = -40 °C to 25 °C 14 16
TA = 85 °C 19 23
TA = 105 °C 27 33
MSI clock, 65 kHz
fHCLK = 65 kHz,
Flash ON
TA = -40 °C to 25 °C 15 17
TA = 85 °C 20 23
TA = 105 °C 28 33
MSI clock, 131 kHz
fHCLK = 131 kHz,
Flash ON
TA = -40 °C to 25 °C 17 19
TA = 55 °C 18 21
TA = 85 °C 22 25
TA = 105 °C 30 35
TIM9 and
USART1
enabled, Flash
ON, VDD from
1.65 V to 3.6 V
MSI clock, 65 kHz
fHCLK = 32 kHz
TA = -40 °C to 25 °C 14 16
TA = 85 °C 19 22
TA = 105 °C 27 32
MSI clock, 65 kHz
fHCLK = 65 kHz
TA = -40 °C to 25 °C 15 17
TA = 85 °C 20 23
TA = 105 °C 28 33
MSI clock, 131 kHz
fHCLK = 131 kHz
TA = -40 °C to 25 °C 17 19
TA = 55 °C 18 21
TA = 85 °C 22 25
TA = 105 °C 30 36
IDD max
(LP Sleep)
Max
allowed
current in
Low-power
sleep mode
VDD from 1.65 V
to 3.6 V ---200
1. Guaranteed by characterization results, unless otherwise specified.
Electrical characteristics STM32L151xC STM32L152xC
66/136 DocID022799 Rev 13
Table 23. Typical and maximum current consumptions in Stop mode
Symbol Parameter Conditions Typ Max(1) Unit
IDD (Stop
with RTC)
Supply current in
Stop mode with RTC
enabled
RTC clocked by LSI
or LSE external clock
(32.768kHz),
regulator in LP mode,
HSI and HSE OFF
(no independent
watchdog)
LCD
OFF
TA = -40°C to 25°C
VDD = 1.8 V 1.15 -
µA
TA = -40°C to 25°C 1.4 -
TA = 55°C 2 -
TA= 85°C 3.4 10
TA = 105°C 6.35 23
LCD
ON
(static
duty)(2)
TA = -40°C to 25°C 1.55 6
TA = 55°C 2.15 7
TA= 85°C 3.55 12
TA = 105°C 6.3 27
LCD
ON (1/8
duty)(3)
TA = -40°C to 25°C 3.9 10
TA = 55°C 4.65 11
TA= 85°C 6.25 16
TA = 105°C 9.1 44
RTC clocked by LSE
external quartz
(32.768kHz),
regulator in LP mode,
HSI and HSE OFF
(no independent
watchdog(4)
LCD
OFF
TA = -40°C to 25°C 1.5 -
TA = 55°C 2.15 -
TA= 85°C 3.7 -
TA = 105°C 6.75 -
LCD
ON
(static
duty)(2)
TA = -40°C to 25°C 1.6 -
TA = 55°C 2.3 -
TA= 85°C 3.8 -
TA = 105°C 6.85 -
LCD
ON (1/8
duty)(3)
TA = -40°C to 25°C 4 -
TA = 55°C 4.85 -
TA= 85°C 6.5 -
TA = 105°C 9.1 -
LCD
OFF
TA = -40°C to 25°C
VDD = 1.8V 1.2 -
TA = -40°C to 25°C
VDD = 3.0V 1.5 -
TA = -40°C to 25°C
VDD = 3.6V 1.75 -
DocID022799 Rev 13 67/136
STM32L151xC STM32L152xC Electrical characteristics
109
IDD (Stop)
Supply current in
Stop mode (RTC
disabled)
Regulator in LP mode, HSI and
HSE OFF, independent
watchdog and LSI enabled
TA = -40°C to 25°C 1.8 2.2
µA
Regulator in LP mode, LSI, HSI
and HSE OFF (no independent
watchdog)
TA = -40°C to 25°C 0.435 1
TA = 55°C 0.99 3
TA= 85°C 2.4 9
TA = 105°C 5.5 22(5)
IDD
(WU from
Stop)
Supply current during
wakeup from Stop
mode
MSI = 4.2 MHz
TA = -40°C to 25°C
2-
mAMSI = 1.05 MHz 1.45 -
MSI = 65 kHz(6) 1.45 -
1. Guaranteed by characterization results, unless otherwise specified.
2. LCD enabled with external VLCD, static duty, division ratio = 256, all pixels active, no LCD connected.
3. LCD enabled with external VLCD, 1/8 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD connected.
4. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF
loading capacitors.
5. Guaranteed by test in production.
6. When MSI = 64 kHz, the RMS current is measured over the first 15 µs following the wakeup event. For the remaining part
of the wakeup period, the current corresponds the Run mode current.
Table 23. Typical and maximum current consumptions in Stop mode (continued)
Symbol Parameter Conditions Typ Max(1) Unit
Electrical characteristics STM32L151xC STM32L152xC
68/136 DocID022799 Rev 13
On-chip peripheral current consumption
The current consumption of the on-chip peripherals is given in the following table. The MCU
is placed under the following conditions:
all I/O pins are in input mode with a static value at VDD or VSS (no load)
all peripherals are disabled unless otherwise mentioned
the given value is calculated by measuring the current consumption
with all peripherals clocked off
with only one peripheral clocked on
Table 24. Typical and maximum current consumptions in Standby mode
Symbol Parameter Conditions Typ Max(1) Unit
IDD
(Standby
with RTC)
Supply current in
Standby mode with RTC
enabled
RTC clocked by LSI (no
independent watchdog)
TA = -40 °C to 25 °C
VDD = 1.8 V 0.905 -
µA
TA = -40 °C to 25 °C 1.15 1.9
TA = 55 °C 1.5 2.2
TA= 85 °C 1.75 4
TA = 105 °C 2.1 8.3(2)
RTC clocked by LSE
external quartz (no
independent
watchdog)(3)
TA = -40 °C to 25 °C
VDD = 1.8 V 0.98 -
TA = -40 °C to 25 °C 1.3 -
TA = 55 °C 1.7 -
TA= 85 °C 2.05 -
TA = 105 °C 2.45 -
IDD
(Standby)
Supply current in
Standby mode (RTC
disabled)
Independent watchdog
and LSI enabled TA = -40 °C to 25 °C 1 1.7
Independent watchdog
and LSI OFF
TA = -40 °C to 25 °C 0.29 0.6
TA = 55 °C 0.345 0.9
TA = 85 °C 0.575 2.75
TA = 105 °C 1.45 7(2)
IDD
(WU from
Standby)
Supply current during
wakeup time from
Standby mode
-T
A = -40 °C to 25 °C 1 - mA
1. Guaranteed by characterization results, unless otherwise specified.
2. Guaranteed by test in production.
3. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8pF
loading capacitors.
DocID022799 Rev 13 69/136
STM32L151xC STM32L152xC Electrical characteristics
109
Table 25. Peripheral current consumption(1)
Peripheral
Typical consumption, VDD = 3.0 V, TA = 25 °C
Unit
Range 1,
VCORE=
1.8 V
VOS[1:0] =
01
Range 2,
VCORE=
1.5 V
VOS[1:0] =
10
Range 3,
VCORE=
1.2 V
VOS[1:0] =
11
Low-power
sleep and
run
APB1
TIM2 11.2 8.9 7.0 8.9
µA/MHz
(fHCLK)
TIM3 11.2 9.0 7.1 9.0
TIM4 12.9 10.4 8.2 10.4
TIM5 14.4 11.5 9.0 11.5
TIM6 4.0 3.1 2.4 3.1
TIM7 3.8 3.0 2.3 3.0
LCD 5.8 4.6 3.6 4.6
WWDG 2.9 2.3 1.8 2.3
SPI2 6.5 5.2 4.1 5.2
SPI3 5.9 4.6 3.6 4.6
USART2 8.8 7.0 5.5 7.0
USART3 8.4 6.8 5.3 6.8
I2C1 7.3 5.8 4.6 5.8
I2C2 7.9 6.3 5.0 6.3
USB 13.3 10.6 8.3 10.6
PWR 2.8 2.2 1.8 2.2
DAC 6.1 4.9 3.9 4.9
COMP 4.8 3.8 3.0 3.8
Electrical characteristics STM32L151xC STM32L152xC
70/136 DocID022799 Rev 13
APB2
SYSCFG &
RI 2.6 2.0 1.6 2.0
µA/MHz
(fHCLK)
TIM9 7.9 6.4 5.0 6.4
TIM10 5.9 4.7 3.8 4.7
TIM11 5.9 4.6 3.7 4.6
ADC(2) 10.5 8.3 6.6 8.3
SPI1 4.3 3.4 2.8 3.4
USART1 8.8 7.1 5.6 7.1
AHB
GPIOA 4.3 3.3 2.6 3.3
GPIOB 4.3 3.5 2.8 3.5
GPIOC 4.0 3.2 2.5 3.2
GPIOD 4.1 3.3 2.5 3.3
GPIOE 4.2 3.4 2.7 3.4
GPIOH 3.7 3.0 2.3 3.0
CRC 0.8 0.6 0.5 0.6
FLASH 11.1 9.4 8 -(3)
DMA1 15.6 12.7 10 12.7
DMA2 16.3 13.4 10.5 13.4
All enabled 187 154 120 144.6
IDD (RTC) 0.4
µA
IDD (LCD) 3.1
IDD (ADC)(4) 1450
IDD (DAC)(5) 340
IDD (COMP1) 0.16
IDD (COMP2)
Slow mode 2
Fast mode 5
IDD (PVD / BOR)(6) 2.6
IDD (IWDG) 0.25
1. Data based on differential IDD measurement between all peripherals OFF an one peripheral with clock
enabled, in the following conditions: fHCLK = 32 MHz (range 1), fHCLK = 16 MHz (range 2), fHCLK = 4 MHz
(range 3), fHCLK = 64kHz (Low-power run/sleep), fAPB1 = fHCLK, fAPB2 = fHCLK, default prescaler value for
each peripheral. The CPU is in Sleep mode in both cases. No I/O pins toggling.
2. HSI oscillator is OFF for this measure.
Table 25. Peripheral current consumption(1) (continued)
Peripheral
Typical consumption, VDD = 3.0 V, TA = 25 °C
Unit
Range 1,
VCORE=
1.8 V
VOS[1:0] =
01
Range 2,
VCORE=
1.5 V
VOS[1:0] =
10
Range 3,
VCORE=
1.2 V
VOS[1:0] =
11
Low-power
sleep and
run
DocID022799 Rev 13 71/136
STM32L151xC STM32L152xC Electrical characteristics
109
6.3.5 Wakeup time from low-power mode
The wakeup times given in the following table are measured with the MSI RC oscillator. The
clock source used to wake up the device depends on the current operating mode:
Sleep mode: the clock source is the clock that was set before entering Sleep mode
Stop mode: the clock source is the MSI oscillator in the range configured before
entering Stop mode
Standby mode: the clock source is the MSI oscillator running at 2.1 MHz
All timings are derived from tests performed under the conditions summarized in Table 14.
3. In Low-power sleep and run mode, the Flash memory must always be in power-down mode.
4. Data based on a differential IDD measurement between ADC in reset configuration and continuous ADC
conversion (HSI consumption not included).
5. Data based on a differential IDD measurement between DAC in reset configuration and continuous DAC
conversion of VDD/2. DAC is in buffered mode, output is left floating.
6. Including supply current of internal reference voltage.
Table 26. Low-power mode wakeup timings
Symbol Parameter Conditions Typ Max(1)
1. Guaranteed by characterization, unless otherwise specified
Unit
tWUSLEEP Wakeup from Sleep mode fHCLK = 32 MHz 0.4 -
µs
tWUSLEEP_LP
Wakeup from Low-power sleep
mode, fHCLK = 262 kHz
fHCLK = 262 kHz
Flash enabled 46 -
fHCLK = 262 kHz
Flash switched OFF 46 -
tWUSTOP
Wakeup from Stop mode,
regulator in Run mode
ULP bit = 1 and FWU bit = 1
fHCLK = fMSI = 4.2 MHz 8.2 -
Wakeup from Stop mode,
regulator in low-power mode
ULP bit = 1 and FWU bit = 1
fHCLK = fMSI = 4.2 MHz
Voltage range 1 and 2 7.7 8.9
fHCLK = fMSI = 4.2 MHz
Voltage range 3 8.2 13.1
fHCLK = fMSI = 2.1 MHz 10.2 13.4
fHCLK = fMSI = 1.05 MHz 16 20
fHCLK = fMSI = 524 kHz 31 37
fHCLK = fMSI = 262 kHz 57 66
fHCLK = fMSI = 131 kHz 112 123
fHCLK = MSI = 65 kHz 221 236
tWUSTDBY
Wakeup from Standby mode
ULP bit = 1 and FWU bit = 1 fHCLK = MSI = 2.1 MHz 58 104
Wakeup from Standby mode
FWU bit = 0 fHCLK = MSI = 2.1 MHz 2.6 3.25 ms
Electrical characteristics STM32L151xC STM32L152xC
72/136 DocID022799 Rev 13
6.3.6 External clock source characteristics
High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.The
external clock signal has to respect the I/O characteristics in Section 6.3.12. However, the
recommended clock input waveform is shown in Figure 15.
Figure 15. High-speed external clock source AC timing diagram
Table 27. High-speed external user clock characteristics(1)
1. Guaranteed by design.
Symbol Parameter Conditions Min Typ Max Unit
fHSE_ext
User external clock source
frequency
CSS is on or
PLL is used 1832MHz
CSS is off, PLL
not used 0832MHz
VHSEH OSC_IN input pin high level voltage
-
0.7VDD -V
DD V
VHSEL OSC_IN input pin low level voltage VSS -0.3V
DD
tw(HSEH)
tw(HSEL)
OSC_IN high or low time 12 - -
ns
tr(HSE)
tf(HSE)
OSC_IN rise or fall time - - 20
Cin(HSE) OSC_IN input capacitance - 2.6 - pF
069
9+6(+
WI+6(


7+6(
W
WU+6(
9+6(/
WZ+6(+
WZ+6(/
DocID022799 Rev 13 73/136
STM32L151xC STM32L152xC Electrical characteristics
109
Low-speed external user clock generated from an external source
The characteristics given in the following table result from tests performed using a low-
speed external clock source, and under the conditions summarized in Table 14.
Figure 16. Low-speed external clock source AC timing diagram
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 1 to 24 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 29. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
Table 28. Low-speed external user clock characteristics(1)
1. Guaranteed by design.
Symbol Parameter Conditions Min Typ Max Unit
fLSE_ext
User external clock source
frequency
-
1 32.768 1000 kHz
VLSEH
OSC32_IN input pin high level
voltage 0.7VDD -V
DD
V
VLSEL
OSC32_IN input pin low level
voltage VSS -0.3V
DD
tw(LSEH)
tw(LSEL)
OSC32_IN high or low time 465 - -
ns
tr(LSE)
tf(LSE)
OSC32_IN rise or fall time - - 10
CIN(LSE) OSC32_IN input capacitance - - 0.6 - pF
069
9/6(+
WI/6(


7/6(
W
WU/6(
9/6(/
WZ/6(+
WZ/6(/
Electrical characteristics STM32L151xC STM32L152xC
74/136 DocID022799 Rev 13
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 17). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2. Refer to the application note AN2867 “Oscillator design guide for ST
microcontrollers” available from the ST website www.st.com.
Table 29. HSE oscillator characteristics(1)(2)
Symbol Parameter Conditions Min Typ Max Unit
fOSC_IN Oscillator frequency - 1 24 MHz
RFFeedback resistor - - 200 - kΩ
C
Recommended load
capacitance versus
equivalent serial
resistance of the crystal
(RS)(3)
RS = 30 Ω -20 - pF
IHSE HSE driving current
VDD= 3.3 V,
VIN = VSS with 30 pF
load
-- 3 mA
IDD(HSE)
HSE oscillator power
consumption
C = 20 pF
fOSC = 16 MHz -- 2.5 (startup)
0.7 (stabilized) mA
C = 10 pF
fOSC = 16 MHz -- 2.5 (startup)
0.46 (stabilized)
gm
Oscillator
transconductance Startup 3.5 - - mA /V
tSU(HSE)(4) Startup time VDD is stabilized - 1 - ms
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
2. Guaranteed by characterization results.
3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid
environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into
account if the MCU is used in tough humidity conditions.
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is
reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.
DocID022799 Rev 13 75/136
STM32L151xC STM32L152xC Electrical characteristics
109
Figure 17. HSE oscillator circuit diagram
1. REXT value depends on the crystal characteristics.
Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 30. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
Table 30. LSE oscillator characteristics (fLSE = 32.768 kHz)(1)
1. Guaranteed by characterization results.
Symbol Parameter Conditions Min Typ Max Unit
fLSE
Low speed external oscillator
frequency - - 32.768 - kHz
RFFeedback resistor - - 1.2 - MΩ
C(2)
2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator
design guide for ST microcontrollers”.
Recommended load capacitance
versus equivalent serial
resistance of the crystal (RS)(3)
3. The oscillator selection can be optimized in terms of supply current using an high quality resonator with
small RS value for example MSIV-TIN32.768kHz. Refer to crystal manufacturer for more details.
RS = 30 kΩ-8 -pF
ILSE LSE driving current VDD = 3.3 V, VIN = VSS --1.1µA
IDD (LSE)
LSE oscillator current
consumption
VDD = 1.8 V - 450 -
nAVDD = 3.0 V - 600 -
VDD = 3.6V - 750 -
gmOscillator transconductance - 3 - - µA/V
tSU(LSE)(4) Startup time VDD is stabilized - 1 - s
26&B287
26&B,1
I
+6(
WRFRUH
&
/
&
/
5
)
670
5HVRQDWRU
&RQVXPSWLRQ
FRQWURO
J
P
5
P
&
P
/
P
&
2
5HVRQDWRU
DLE
Electrical characteristics STM32L151xC STM32L152xC
76/136 DocID022799 Rev 13
Note: For CL1 and CL2, it is recommended to use high-quality ceramic capacitors in the 5 pF to
15 pF range selected to match the requirements of the crystal or resonator (see Figure 18).
CL1 and CL2, are usually the same size. The crystal manufacturer typically specifies a load
capacitance which is the series combination of CL1 and CL2.
Load capacitance CL has the following formula: CL = CL1 x CL2 / (CL1 + CL2) + Cstray where
Cstray is the pin capacitance and board or trace PCB-related capacitance. Typically, it is
between 2 pF and 7 pF.
Caution: To avoid exceeding the maximum value of CL1 and CL2 (15 pF) it is strongly recommended
to use a resonator with a load capacitance CL 7 pF. Never use a resonator with a load
capacitance of 12.5 pF.
Example: if the user chooses a resonator with a load capacitance of CL = 6 pF and Cstray =
2 pF, then CL1 = CL2 = 8 pF.
Figure 18. Typical application with a 32.768 kHz crystal
4. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized
32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary
significantly with the crystal manufacturer.
DLE
26&B28 7
26&B,1 I/6(
&/
5)
670/[[
N+]
UHVRQDWRU
&/
5HVRQDWRUZLWK
LQWHJUDWHGFDSDFLWRUV
%LDV
FRQWUROOHG
JDLQ
DocID022799 Rev 13 77/136
STM32L151xC STM32L152xC Electrical characteristics
109
6.3.7 Internal clock source characteristics
The parameters given in Table 31 are derived from tests performed under the conditions
summarized in Table 14.
High-speed internal (HSI) RC oscillator
Low-speed internal (LSI) RC oscillator
Table 31. HSI oscillator characteristics
Symbol Parameter Conditions Min Typ Max Unit
fHSI Frequency VDD = 3.0 V - 16 - MHz
TRIM(1)(2)
1. The trimming step differs depending on the trimming code. It is usually negative on the codes which are
multiples of 16 (0x00, 0x10, 0x20, 0x30...0xE0).
HSI user-trimmed
resolution
Trimming code is not a multiple of 16 - ± 0.4 0.7 %
Trimming code is a multiple of 16 - - ± 1.5 %
ACCHSI(2)
2. Guaranteed by characterization results.
Accuracy of the
factory-calibrated
HSI oscillator
VDDA = 3.0 V, TA = 25 °C -1(3)
3. Guaranteed by test in production.
-1
(3) %
VDDA = 3.0 V, TA = 0 to 55 °C -1.5 - 1.5 %
VDDA = 3.0 V, TA = -10 to 70 °C -2 - 2 %
VDDA = 3.0 V, TA = -10 to 85 °C -2.5 - 2 %
VDDA = 3.0 V, TA = -10 to 105 °C -4 - 2 %
VDDA = 1.65 V to 3.6 V
TA = -40 to 105 °C -4 - 3 %
tSU(HSI)(2) HSI oscillator
startup time - - 3.7 6 µs
IDD(HSI)(2) HSI oscillator
power consumption - - 100 140 µA
Table 32. LSI oscillator characteristics
Symbol Parameter Min Typ Max Unit
fLSI(1)
1. Guaranteed by test in production.
LSI frequency 26 38 56 kHz
DLSI(2)
2. This is a deviation for an individual part, once the initial frequency has been measured.
LSI oscillator frequency drift
0°C TA 105°C -10 - 4 %
tsu(LSI)(3)
3. Guaranteed by design.
LSI oscillator startup time - - 200 µs
IDD(LSI)(3) LSI oscillator power consumption - 400 510 nA
Electrical characteristics STM32L151xC STM32L152xC
78/136 DocID022799 Rev 13
Multi-speed internal (MSI) RC oscillator
Table 33. MSI oscillator characteristics
Symbol Parameter Condition Typ Max Unit
fMSI
Frequency after factory calibration, done at
VDD= 3.3 V and TA = 25 °C
MSI range 0 65.5 -
kHz
MSI range 1 131 -
MSI range 2 262 -
MSI range 3 524 -
MSI range 4 1.05 -
MHzMSI range 5 2.1 -
MSI range 6 4.2 -
ACCMSI Frequency error after factory calibration - ±0.5 - %
DTEMP(MSI)(1) MSI oscillator frequency drift
0 °C TA 105 °C -±3-%
DVOLT(MSI)(1) MSI oscillator frequency drift
1.65 V VDD 3.6 V, TA = 25 °C --2.5%/V
IDD(MSI)(2) MSI oscillator power consumption
MSI range 0 0.75 -
µA
MSI range 1 1 -
MSI range 2 1.5 -
MSI range 3 2.5 -
MSI range 4 4.5 -
MSI range 5 8 -
MSI range 6 15 -
tSU(MSI) MSI oscillator startup time
MSI range 0 30 -
µs
MSI range 1 20 -
MSI range 2 15 -
MSI range 3 10 -
MSI range 4 6 -
MSI range 5 5 -
MSI range 6,
Voltage range 1
and 2
3.5 -
MSI range 6,
Voltage range 3 5-
DocID022799 Rev 13 79/136
STM32L151xC STM32L152xC Electrical characteristics
109
tSTAB(MSI)(2) MSI oscillator stabilization time
MSI range 0 - 40
µs
MSI range 1 - 20
MSI range 2 - 10
MSI range 3 - 4
MSI range 4 - 2.5
MSI range 5 - 2
MSI range 6,
Voltage range 1
and 2
-2
MSI range 3,
Voltage range 3 -3
fOVER(MSI) MSI oscillator frequency overshoot
Any range to
range 5 -4
MHz
Any range to
range 6 -6
1. This is a deviation for an individual part, once the initial frequency has been measured.
2. Guaranteed by characterization results.
Table 33. MSI oscillator characteristics (continued)
Symbol Parameter Condition Typ Max Unit
Electrical characteristics STM32L151xC STM32L152xC
80/136 DocID022799 Rev 13
6.3.8 PLL characteristics
The parameters given in Table 34 are derived from tests performed under the conditions
summarized in Table 14.
6.3.9 Memory characteristics
The characteristics are given at TA = -40 to 105 °C unless otherwise specified.
RAM memory
Table 34. PLL characteristics
Symbol Parameter
Value
Unit
Min Typ Max(1)
1. Guaranteed by characterization results.
fPLL_IN
PLL input clock(2)
2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with
the range defined by fPLL_OUT
.
2- 24MHz
PLL input clock duty cycle 45 - 55 %
fPLL_OUT PLL output clock 2 - 32 MHz
tLOCK
PLL lock time
PLL input = 16 MHz
PLL VCO = 96 MHz
-115 160 µs
Jitter Cycle-to-cycle jitter - - ±
600 ps
IDDA(PLL) Current consumption on VDDA -220 450 µA
IDD(PLL) Current consumption on VDD -120 150
Table 35. RAM and hardware registers
Symbol Parameter Conditions Min Typ Max Unit
VRM Data retention mode(1)
1. Minimum supply voltage without losing data stored in RAM (in Stop mode or under Reset) or in hardware
registers (only in Stop mode).
STOP mode (or RESET) 1.65 - - V
DocID022799 Rev 13 81/136
STM32L151xC STM32L152xC Electrical characteristics
109
Flash memory and data EEPROM
Table 36. Flash memory and data EEPROM characteristics
Symbol Parameter Conditions Min Typ Max(1)
1. Guaranteed by design.
Unit
VDD
Operating voltage
Read / Write / Erase -1.65-3.6V
tprog
Programming/ erasing
time for byte / word /
double word / half-page
Erasing - 3.28 3.94
ms
Programming - 3.28 3.94
IDD
Average current during
the whole programming /
erase operation
TA = 25 °C, VDD = 3.6 V
- 600 900 µA
Maximum current (peak)
during the whole
programming / erase
operation
-1.52.5mA
Table 37. Flash memory and data EEPROM endurance and retention
Symbol Parameter Conditions
Value
Unit
Min(1)
1. Guaranteed by characterization results.
Typ Max
NCYC(2)
Cycling (erase / write)
Program memory TA = -40°C to
105 °C
10 --
kcycles
Cycling (erase / write)
EEPROM data memory 300 --
tRET(2)
2. Characterization is done according to JEDEC JESD22-A117.
Data retention (program memory) after
10 kcycles at TA = 85 °C TRET = +85 °C
30 - -
years
Data retention (EEPROM data memory)
after 300 kcycles at TA = 85 °C 30 - -
Data retention (program memory) after
10 kcycles at TA = 105 °C TRET = +105 °C
10 - -
Data retention (EEPROM data memory)
after 300 kcycles at TA = 105 °C 10 - -
Electrical characteristics STM32L151xC STM32L152xC
82/136 DocID022799 Rev 13
6.3.10 EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and
VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is
compliant with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 38. They are based on the EMS levels and classes
defined in application note AN1709.
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the oscillator pins for 1
second.
Table 38. EMS characteristics
Symbol Parameter Conditions Level/
Class
VFESD
Voltage limits to be applied on any I/O pin to
induce a functional disturbance
VDD = 3.3 V, LQFP100, TA = +25 °C,
fHCLK = 32 MHz
conforms to IEC 61000-4-2
2B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD = 3.3 V, LQFP100, TA = +25
°C,
fHCLK = 32 MHz
conforms to IEC 61000-4-4
4A
DocID022799 Rev 13 83/136
STM32L151xC STM32L152xC Electrical characteristics
109
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application is
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with
IEC 61967-2 standard which specifies the test board and the pin loading.
6.3.11 Electrical sensitivity characteristics
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the JESD22-A114, ANSI/ESD STM5.3.1. standard.
Table 39. EMI characteristics
Symbol Parameter Conditions Monitored
frequency band
Max vs. frequency range
Unit
4 MHz
voltage
range 3
16 MHz
voltage
range 2
32 MHz
voltage
range 1
SEMI Peak level
VDD = 3.3 V,
TA = 25 °C,
LQFP100 package
compliant with IEC
61967-2
0.1 to 30 MHz 3 -6 -5
dBµV30 to 130 MHz 18 4 -7
130 MHz to 1GHz 15 5 -7
SAE EMI Level 2.5 2 1 -
Table 40. ESD absolute maximum ratings
Symbol Ratings Conditions Class Maximum
value(1)
1. Guaranteed by characterization results.
Unit
VESD(HBM)
Electrostatic
discharge voltage
(human body model)
TA = +25 °C, conforming
to JESD22-A114 2 2000 V
VESD(CDM)
Electrostatic
discharge voltage
(charge device model)
TA = +25 °C, conforming
to ANSI/ESD STM5.3.1. C4 500 V
Electrical characteristics STM32L151xC STM32L152xC
84/136 DocID022799 Rev 13
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up
performance:
A supply overvoltage is applied to each power supply pin
A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with EIA/JESD 78A IC latch-up standard.
6.3.12 I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard pins) should be avoided during normal product operation.
However, in order to give an indication of the robustness of the microcontroller in cases
when abnormal injection accidentally happens, susceptibility tests are performed on a
sample basis during device characterization.
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher
than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out
of –5 µA/+0 µA range), or other functional failure (for example reset occurrence oscillator
frequency deviation, LCD levels).
The test results are given in the Table 42.
Table 41. Electrical sensitivities
Symbol Parameter Conditions Class
LU Static latch-up class TA = +105 °C conforming to JESD78A II level A
Table 42. I/O current injection susceptibility
Symbol Description
Functional susceptibility
Unit
Negative
injection
Positive
injection
IINJ
Injected current on all 5 V tolerant (FT) pins -5 (1)
1. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject
negative currents.
NA(2)
2. Injection is not possible.
mAInjected current on BOOT0 -0 NA(2)
Injected current on any other pin -5 (1) +5
DocID022799 Rev 13 85/136
STM32L151xC STM32L152xC Electrical characteristics
109
6.3.13 I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 49 are derived from tests
performed under the conditions summarized in Table 14. All I/Os are CMOS and TTL
compliant.
Table 43. I/O static characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL Input low level voltage TC and FT I/O - - 0.3 VDD(1)(2)
V
BOOT0 - - 0.14 VDD(2)
VIH Input high level voltage
TC I/O 0.45 VDD+0.38(2) --
FT I/O 0.39 VDD+0.59(2) --
BOOT0 0.15 VDD+0.56(2) --
Vhys
I/O Schmitt trigger voltage
hysteresis(2)
TC and FT I/O - 10% VDD(3) -
BOOT0 - 0.01 -
Ilkg Input leakage current (4)
VSS VIN VDD
I/Os with LCD --±50
nA
VSS VIN VDD
I/Os with analog
switches
--±50
VSS VIN VDD
I/Os with analog
switches and LCD
--±50
VSS VIN VDD
I/Os with USB --±250
VSS VIN VDD
TC and FT I/Os --±50
FT I/O
VDD VIN 5V --±10µA
RPU
Weak pull-up equivalent
resistor(5)(1) VIN = VSS 25 45 65 kΩ
RPD
Weak pull-down equivalent
resistor(5) VIN = VDD 25 45 65 kΩ
CIO I/O pin capacitance - - 5 - pF
1. Guaranteed by test in production.
2. Guaranteed by design.
3. With a minimum of 200 mV.
4. The max. value may be exceeded if negative current is injected on adjacent pins.
5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This
MOS/NMOS contribution to the series resistance is minimum (~10% order).
Electrical characteristics STM32L151xC STM32L152xC
86/136 DocID022799 Rev 13
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or
source up to ±20 mA with the non-standard VOL/VOH specifications given in Table 44.
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 6.2:
The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
IVDD(Σ) (see Table 12).
The sum of the currents sunk by all the I/Os on VSS plus the maximum Run
consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating
IVSS(Σ) (see Table 12).
Output voltage levels
Unless otherwise specified, the parameters given in Table 44 are derived from tests
performed under the conditions summarized in Table 14. All I/Os are CMOS and TTL
compliant.
Table 44. Output voltage characteristics
Symbol Parameter Conditions Min Max Unit
VOL(1)(2)
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 12
and the sum of IIO (I/O ports and control pins) must not exceed IVSS.
2. Guaranteed by test in production.
Output low level voltage for an I/O pin IIO = 8 mA
2.7 V < VDD < 3.6 V
-0.4
V
VOH(2)(3)
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in
Table 12 and the sum of IIO (I/O ports and control pins) must not exceed IVDD.
Output high level voltage for an I/O pin VDD-0.4 -
VOL (3)(4) Output low level voltage for an I/O pin IIO = 4 mA
1.65 V < VDD < 3.6 V
-0.45
VOH (3)(4) Output high level voltage for an I/O pin VDD-0.45 -
VOL(1)(4)
4. Guaranteed by characterization results.
Output low level voltage for an I/O pin IIO = 20 mA
2.7 V < VDD < 3.6 V
-1.3
VOH(3)(4) Output high level voltage for an I/O pin VDD-1.3 -
DocID022799 Rev 13 87/136
STM32L151xC STM32L152xC Electrical characteristics
109
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 19 and
Table 45, respectively.
Unless otherwise specified, the parameters given in Table 45 are derived from tests
performed under the conditions summarized in Table 14.
Table 45. I/O AC characteristics(1)
OSPEEDRx
[1:0] bit
value(1)
Symbol Parameter Conditions Min Max(2) Unit
00
fmax(IO)out Maximum frequency(3) CL = 50 pF, VDD = 2.7 V to 3.6 V - 400 kHz
CL = 50 pF, VDD = 1.65 V to 2.7 V - 400
tf(IO)out
tr(IO)out
Output rise and fall time CL = 50 pF, VDD = 2.7 V to 3.6 V - 625 ns
CL = 50 pF, VDD = 1.65 V to 2.7 V - 625
01
fmax(IO)out Maximum frequency(3) CL = 50 pF, VDD = 2.7 V to 3.6 V - 2 MHz
CL = 50 pF, VDD = 1.65 V to 2.7 V - 1
tf(IO)out
tr(IO)out
Output rise and fall time CL = 50 pF, VDD = 2.7 V to 3.6 V - 125 ns
CL = 50 pF, VDD = 1.65 V to 2.7 V - 250
10
Fmax(IO)out Maximum frequency(3) CL = 50 pF, VDD = 2.7 V to 3.6 V - 10 MHz
CL = 50 pF, VDD = 1.65 V to 2.7 V - 2
tf(IO)out
tr(IO)out
Output rise and fall time CL = 50 pF, VDD = 2.7 V to 3.6 V - 25 ns
CL = 50 pF, VDD = 1.65 V to 2.7 V - 125
11
Fmax(IO)out Maximum frequency(3) CL = 30 pF, VDD = 2.7 V to 3.6 V - 50 MHz
CL = 50 pF, VDD = 1.65 V to 2.7 V - 8
tf(IO)out
tr(IO)out
Output rise and fall time CL = 30 pF, VDD = 2.7 V to 3.6 V - 5
ns
CL = 50 pF, VDD = 1.65 V to 2.7 V - 30
-t
EXTIpw
Pulse width of external
signals detected by the
EXTI controller
-8-
1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the STM32L151xx, STM32L152xx and STM32L162xx
reference manual for a description of GPIO Port configuration register.
2. Guaranteed by design.
3. The maximum frequency is defined in Figure 19.
Electrical characteristics STM32L151xC STM32L152xC
88/136 DocID022799 Rev 13
Figure 19. I/O AC characteristics definition
6.3.14 NRST pin characteristics
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up
resistor, RPU (see Table 46)
Unless otherwise specified, the parameters given in Table 46 are derived from tests
performed under the conditions summarized in Table 14.
AIC



TR)/OUT
/54054
%84%2.!,
/.P&
-AXIMUMFREQUENCYISACHIEVEDIFTRTF4ANDIFTHEDUTYCYCLEIS



WHENLOADEDBYP&
4
TF)/OUT
Table 46. NRST pin characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL(NRST)(1) NRST input low level
voltage ---0.3 V
DD
V
VIH(NRST)(1) NRST input high
level voltage - 0.39VDD+0.59 - -
VOL(NRST)(1) NRST output low
level voltage
IOL = 2 mA
2.7 V < VDD < 3.6 V --
0.4
IOL = 1.5 mA
1.65 V < VDD < 2.7 V --
Vhys(NRST)(1) NRST Schmitt trigger
voltage hysteresis --10%V
DD(2) -mV
RPU
Weak pull-up
equivalent resistor(3) VIN = VSS 25 45 65 kΩ
VF(NRST)(1) NRST input filtered
pulse ---50ns
VNF(NRST)(3) NRST input not
filtered pulse - 350 - - ns
1. Guaranteed by design.
2. With a minimum of 200 mV.
3. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series
resistance is around 10%.
DocID022799 Rev 13 89/136
STM32L151xC STM32L152xC Electrical characteristics
109
Figure 20. Recommended NRST pin protection
1. The reset network protects the device against parasitic resets. 0.1 uF capacitor must be placed as close as
possible to the chip.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 46. Otherwise the reset will not be taken into account by the device.
6.3.15 TIM timer characteristics
The parameters given in the Table 47 are guaranteed by design.
Refer to Section 6.3.13: I/O port characteristics for details on the input/output ction
characteristics (output compare, input capture, external clock, PWM output).
DLE
670/[[
538
1567

9''
)LOWHU
,QWHUQDOUHVHW
)
([WHUQDOUHVHWFLUFXLW
Table 47. TIMx(1) characteristics
1. TIMx is used as a general term to refer to the TIM2, TIM3 and TIM4 timers.
Symbol Parameter Conditions Min Max Unit
tres(TIM) Timer resolution time -1-t
TIMxCLK
fTIMxCLK = 32 MHz 31.25 - ns
fEXT
Timer external clock
frequency on CH1 to CH4
-0f
TIMxCLK/2 MHz
fTIMxCLK = 32 MHz 0 16 MHz
ResTIM Timer resolution - 16 bit
tCOUNTER
16-bit counter clock
period when internal clock
is selected (timer’s
prescaler disabled)
- 1 65536 tTIMxCLK
fTIMxCLK = 32 MHz 0.0312 2048 µs
tMAX_COUNT Maximum possible count - - 65536 × 65536 tTIMxCLK
fTIMxCLK = 32 MHz - 134.2 s
Electrical characteristics STM32L151xC STM32L152xC
90/136 DocID022799 Rev 13
6.3.16 Communications interfaces
I2C interface characteristics
The device I2C interface meets the requirements of the standard I2C communication
protocol with the following restrictions: SDA and SCL are not “true” open-drain I/O pins.
When configured as open-drain, the PMOS connected between the I/O pin and VDD is
disabled, but is still present.
The I2C characteristics are described in Table 48. Refer also to Section 6.3.13: I/O port
characteristics for more details on the input/output ction characteristics (SDA and SCL).
Table 48. I2C characteristics
Symbol Parameter
Standard mode
I2C(1)(2)
1. Guaranteed by design.
Fast mode I2C(1)(2)
2. fPCLK1 must be at least 2 MHz to achieve standard mode I²C frequencies. It must be at least 4 MHz to
achieve fast mode I²C frequencies. It must be a multiple of 10 MHz to reach the 400 kHz maximum I²C fast
mode clock.
Unit
Min Max Min Max
tw(SCLL) SCL clock low time 4.7 - 1.3 - µs
tw(SCLH) SCL clock high time 4.0 - 0.6 -
tsu(SDA) SDA setup time 250 - 100 -
ns
th(SDA) SDA data hold time - 3450(3) -900
(3)
3. The maximum Data hold time has only to be met if the interface does not stretch the low period of SCL
signal.
tr(SDA)
tr(SCL)
SDA and SCL rise time - 1000 - 300
tf(SDA)
tf(SCL)
SDA and SCL fall time - 300 - 300
th(STA) Start condition hold time 4.0 - 0.6 -
µs
tsu(STA)
Repeated Start condition
setup time 4.7 - 0.6 -
tsu(STO) Stop condition setup time 4.0 - 0.6 - μs
tw(STO:STA)
Stop to Start condition time
(bus free) 4.7 - 1.3 - μs
Cb
Capacitive load for each bus
line - 400 - 400 pF
tSP
Pulse width of spikes that
are suppressed by the
analog filter
050
(4)
4. The minimum width of the spikes filtered by the analog filter is above tSP(max).
050
(4) ns
DocID022799 Rev 13 91/136
STM32L151xC STM32L152xC Electrical characteristics
109
Figure 21. I2C bus AC waveforms and measurement circuit
1. RS = series protection resistor.
2. RP = external pull-up resistor.
3. VDD_I2C is the I2C bus power supply.
4. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
Table 49. SCL frequency (fPCLK1= 32 MHz, VDD = VDD_I2C = 3.3 V)(1)(2)
1. RP = External pull-up resistance, fSCL = I2C speed.
2. For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the
tolerance on the achieved speed is ±2%. These variations depend on the accuracy of the external
components used to design the application.
fSCL (kHz)
I2C_CCR value
RP = 4.7 kΩ
400 0x801B
300 0x8024
200 0x8035
100 0x00A0
50 0x0140
20 0x0320
ĂŝϭϳϴϱϱĐ
^dZd
^
Z^
ZW
/ϮďƵƐ
ZW
Z^
sͺ/Ϯ
sͺ/Ϯ
^dDϯϮ>ϭdždž
^
^>
ƚĨ;^Ϳ ƚƌ;^Ϳ
^>
ƚŚ;^dͿ
ƚǁ;^<,Ϳ
ƚǁ;^<>Ϳ
ƚƐƵ;^Ϳ
ƚƌ;^<Ϳ ƚĨ;^<Ϳ
ƚŚ;^Ϳ
^dZdZWd
^dZd
ƚƐƵ;^dͿ
ƚƐƵ;^dKͿ
^dKW ƚƐƵ;^d^dKͿ
Electrical characteristics STM32L151xC STM32L152xC
92/136 DocID022799 Rev 13
SPI characteristics
Unless otherwise specified, the parameters given in the following table are derived from
tests performed under the conditions summarized in Table 14.
Refer to Section 6.3.12: I/O current injection characteristics for more details on the
input/output alternate function characteristics (NSS, SCK, MOSI, MISO).
Table 50. SPI characteristics(1)
Symbol Parameter Conditions Min Max(2) Unit
fSCK
1/tc(SCK)
SPI clock frequency
Master mode - 16
MHz
Slave mode - 16
Slave transmitter - 12(3)
tr(SCK)(2)
tf(SCK)(2) SPI clock rise and fall time Capacitive load: C = 30 pF - 6 ns
DuCy(SCK) SPI slave input clock duty cycle Slave mode 30 70 %
tsu(NSS) NSS setup time Slave mode 4tHCLK -
ns
th(NSS) NSS hold time Slave mode 2tHCLK -
tw(SCKH)(2)
tw(SCKL)(2) SCK high and low time Master mode tSCK/25t
SCK/2+3
tsu(MI)(2)
Data input setup time Master mode 5 -
tsu(SI)(2) Slave mode 6 -
th(MI)(2)
Data input hold time Master mode 5 -
th(SI)(2) Slave mode 5 -
ta(SO)(4) Data output access time Slave mode 0 3tHCLK
tv(SO) (2) Data output valid time Slave mode - 33
tv(MO)(2) Data output valid time Master mode - 6.5
th(SO)(2)
Data output hold time Slave mode 17 -
th(MO)(2) Master mode 0.5 -
1. The characteristics above are given for voltage range 1.
2. Guaranteed by characterization results.
3. The maximum SPI clock frequency in slave transmitter mode is given for an SPI slave input clock duty cycle (DuCy(SCK))
ranging between 40 to 60%.
4. Min time is for the minimum time to drive the output and max time is for the maximum time to validate the data.
DocID022799 Rev 13 93/136
STM32L151xC STM32L152xC Electrical characteristics
109
Figure 22. SPI timing diagram - slave mode and CPHA = 0
Figure 23. SPI timing diagram - slave mode and CPHA = 1(1)
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
DLE
166LQSXW
W68166 WF6&. WK166
6&.LQSXW
&3+$ 
&32/ 
&3+$ 
&32/ 
WZ6&.+
WZ6&./
WD62 WY62 WK62 WU6&.
WI6&. WGLV62
0,62
287387
026,
,1387
WVX6, WK6,
06%287
06%,1
%,7287 /6%287
/6%,1
%,7,1
Electrical characteristics STM32L151xC STM32L152xC
94/136 DocID022799 Rev 13
Figure 24. SPI timing diagram - master mode(1)
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
DLF
6&.2XWSXW
&3+$
026,
287387
0,62
,13 87
&3+$
/6%287
/6%,1
&32/ 
&32/ 
% , 7287
166LQSXW
WF6&.
WZ6&.+
WZ6&./
WU6&.
WI6&.
WK0,
+LJK
6&.2XWSXW
&3+$
&3+$
&32/ 
&32/ 
WVX0,
WY02 WK02
06%,1 %,7,1
06%287
DocID022799 Rev 13 95/136
STM32L151xC STM32L152xC Electrical characteristics
109
USB characteristics
The USB interface is USB-IF certified (full speed).
Figure 25. USB timings: definition of data signal rise and fall time
Table 51. USB startup time
Symbol Parameter Max Unit
tSTARTUP(1)
1. Guaranteed by design.
USB transceiver startup time 1 µs
Table 52. USB DC electrical characteristics
Symbol Parameter Conditions Min.(1)
1. All the voltages are measured from the local ground potential.
Max.(1) Unit
Input levels
VDD USB operating voltage - 3.0 3.6 V
VDI(2)
2. Guaranteed by characterization results.
Differential input sensitivity I(USB_DP, USB_DM) 0.2 -
VVCM(2) Differential common mode range Includes VDI range 0.8 2.5
VSE(2) Single ended receiver threshold - 1.3 2.0
Output levels
VOL(3)
3. Guaranteed by test in production.
Static output level low RL of 1.5 kΩ to 3.6 V(4)
4. RL is the load connected on the USB drivers.
-0.3
V
VOH(3) Static output level high RL of 15 kΩ to VSS(4) 2.8 3.6
Table 53. USB: full speed electrical characteristics
Driver characteristics(1)
Symbol Parameter Conditions Min Max Unit
trRise time(2) CL = 50 pF 420ns
tfFall Time(2) CL = 50 pF 4 20 ns
trfm Rise/ fall time matching tr/tf90 110 %
VCRS Output signal crossover voltage 1.3 2.0 V
DLE
&URVVRYHU
SRLQWV
'LIIHUHQWLDO
GDWDOLQHV
9&56
966
WIWU
Electrical characteristics STM32L151xC STM32L152xC
96/136 DocID022799 Rev 13
I2S characteristics
Note: Refer to the I2S section of the product reference manual for more details about the sampling
frequency (Fs), fMCK, fCK and DCK values. These values reflect only the digital peripheral
behavior, source clock precision might slightly change them. DCK depends mainly on the
ODD bit value, digital contribution leads to a min of (I2SDIV/(2*I2SDIV+ODD) and a max of
(I2SDIV+ODD)/(2*I2SDIV+ODD). Fs max is supported for each mode/condition.
1. Guaranteed by design.
2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB
Specification - Chapter 7 (version 2.0).
Table 54. I2S characteristics
Symbol Parameter Conditions Min Max Unit
fMCK I2S Main Clock Output 256 x 8K 256xFs (1)
1. The maximum for 256xFs is 8 MHz
MHz
fCK I2S clock frequency Master data: 32 bits - 64xFs MHz
Slave data: 32 bits - 64xFs
DCK I2S clock frequency duty cycle Slave receiver, 48KHz 30 70 %
tr(CK) I2S clock rise time Capacitive load CL=30pF - 8
ns
tf(CK) I2S clock fall time 8
tv(WS) WS valid time Master mode 4 24
th(WS) WS hold time Master mode 0 -
tsu(WS) WS setup time Slave mode 15 -
th(WS) WS hold time Slave mode 0 -
tsu(SD_MR) Data input setup time Master receiver 8 -
tsu(SD_SR) Data input setup time Slave receiver 9 -
th(SD_MR) Data input hold time Master receiver 5 -
th(SD_SR) Slave receiver 4 -
tv(SD_ST) Data output valid time Slave transmitter
(after enable edge) -64
th(SD_ST) Data output hold time Slave transmitter
(after enable edge) 22 -
tv(SD_MT) Data output valid time Master transmitter
(after enable edge) -12
th(SD_MT) Data output hold time Master transmitter
(after enable edge) 8-
DocID022799 Rev 13 97/136
STM32L151xC STM32L152xC Electrical characteristics
109
Figure 26. I2S slave timing diagram (Philips protocol)(1)
1. Measurement points are done at CMOS levels: 0.3 × VDD and 0.7 × VDD.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
Figure 27. I2S master timing diagram (Philips protocol)(1)
1. Guaranteed by characterization results.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
Electrical characteristics STM32L151xC STM32L152xC
98/136 DocID022799 Rev 13
6.3.17 12-bit ADC characteristics
Unless otherwise specified, the parameters given in Table 56 are guaranteed by design.
Table 55. ADC clock frequency
Symbol Parameter Conditions Min Max Unit
fADC
ADC clock
frequency
Voltage
range 1 & 2
2.4 V VDDA 3.6 V
VREF+ = VDDA
0.480
16
MHz
VREF+ < VDDA
VREF+ > 2.4 V 8
VREF+ < VDDA
VREF+ 2.4 V 4
1.8 V VDDA 2.4 V VREF+ = VDDA 8
VREF+ < VDDA 4
Voltage range 3 4
Table 56. ADC characteristics
Symbol Parameter Conditions Min Typ Max Unit
VDDA Power supply - 1.8 - 3.6
VVREF+ Positive reference voltage - 1.8(1) -V
DDA
VREF- Negative reference voltage - - VSSA -
IVDDA Current on the VDDA input pin - - 1000 1450 µA
IVREF(2) Current on the VREF input pin Peak - 400 700
Average - 450
VAIN Conversion voltage range(3) -0
(4) -V
REF+ V
fS
12-bit sampling rate Direct channels - - 1 Msps
Multiplexed channels - - 0.76
10-bit sampling rate Direct channels - - 1.07 Msps
Multiplexed channels - - 0.8
8-bit sampling rate Direct channels - - 1.23 Msps
Multiplexed channels - - 0.89
6-bit sampling rate Direct channels - - 1.45 Msps
Multiplexed channels - - 1
DocID022799 Rev 13 99/136
STM32L151xC STM32L152xC Electrical characteristics
109
tS(5) Sampling time
Direct channels
2.4 V VDDA 3.6 V 0.25 - -
µs
Multiplexed channels
2.4 V VDDA 3.6 V 0.56 - -
Direct channels
1.8 V VDDA 2.4 V 0.56 - -
Multiplexed channels
1.8 V VDDA 2.4 V 1--
-4-3841/f
ADC
tCONV
Total conversion time
(including sampling time)
fADC = 16 MHz 1 - 24.75 µs
-4 to 384 (sampling phase) +12
(successive approximation) 1/fADC
CADC
Internal sample and hold
capacitor
Direct channels - 16 -pF
Multiplexed channels - -
fTRIG
External trigger frequency
Regular sequencer
12-bit conversions - - Tconv+1 1/fADC
6/8/10-bit conversions - - Tconv 1/fADC
fTRIG
External trigger frequency
Injected sequencer
12-bit conversions - - Tconv+2 1/fADC
6/8/10-bit conversions - - Tconv+1 1/fADC
RAIN(6) Signal source impedance - - 50 kΩ
tlat
Injection trigger conversion
latency
fADC = 16 MHz 219 - 281 ns
-3.5-4.51/f
ADC
tlatr
Regular trigger conversion
latency
fADC = 16 MHz 156 - 219 ns
-2.5-3.51/f
ADC
tSTAB Power-up time - - - 3.5 µs
1. The Vref+ input can be grounded if neither the ADC nor the DAC are used (this allows to shut down an external voltage
reference).
2. The current consumption through VREF is composed of two parameters:
- one constant (max 300 µA)
- one variable (max 400 µA), only during sampling time + 2 first conversion pulses
So, peak consumption is 300+400 = 700 µA and average consumption is 300 + [(4 sampling + 2) /16] x 400 = 450 µA at
1Msps
3. VREF+ can be internally connected to VDDA and VREF- can be internally connected to VSSA, depending on the package.
Refer to Section 4: Pin descriptions for further details.
4. VSSA or VREF- must be tied to ground.
5. Minimum sampling time is reached for an external input impedance limited to a value as defined in Table 58: Maximum
source impedance RAIN max.
6. External impedance has another high value limitation when using short sampling time as defined in Table 58: Maximum
source impedance RAIN max.
Table 56. ADC characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Electrical characteristics STM32L151xC STM32L152xC
100/136 DocID022799 Rev 13
Table 57. ADC accuracy(1)(2)
Symbol Parameter Test conditions Min(3) Typ Max(3) Unit
ET Total unadjusted error
2.4 V
VDDA 3.6 V
2.4 V
VREF+ 3.6 V
fADC = 8 MHz, RAIN = 50 Ω
TA = -40 to 105 °C
-24
LSB
EO Offset error - 1 2
EG Gain error - 1.5 3.5
ED Differential linearity error - 1 2
EL Integral linearity error - 1.7 3
ENOB Effective number of bits
2.4 V
VDDA 3.6 V
VDDA = VREF+
fADC = 16 MHz, RAIN = 50 Ω
TA = -40 to 105 °C
Finput=10kHz
9.2 10 - bits
SINAD Signal-to-noise and
distortion ratio 57.5 62 -
dB
SNR Signal-to-noise ratio 57.5 62 -
THD Total harmonic distortion - -70 -65
ENOB Effective number of bits
1.8 V
VDDA 2.4 V
VDDA = VREF+
fADC = 8 MHz or 4 MHz, RAIN = 50 Ω
TA = -40 to 105 °C
Finput=10kHz
9.2 10 - bits
SINAD Signal-to-noise and
distortion ratio 57.5 62 -
dB
SNR Signal-to-noise ratio 57.5 62 -
THD Total harmonic distortion - -70 -65
ET Total unadjusted error
2.4 V
VDDA 3.6 V
1.8 V VREF+ 2.4 V
fADC = 4 MHz, RAIN = 50 Ω
TA = -40 to 105 °C
-46.5
LSB
EO Offset error - 2 4
EG Gain error - 4 6
ED Differential linearity error - 1 2
EL Integral linearity error - 1.5 3
ET Total unadjusted error
1.8 V
VDDA 2.4 V
1.8 V
VREF+ 2.4 V
fADC = 4 MHz, RAIN = 50 Ω
TA = -40 to 105 °C
-23
LSB
EO Offset error - 1 1.5
EG Gain error - 1.5 2
ED Differential linearity error - 1 2
EL Integral linearity error - 1 1.5
1. ADC DC accuracy values are measured after internal calibration.
2. ADC accuracy vs. negative injection current: Injecting a negative current on any analog input pins should be avoided as
this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to
add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.12 does not affect the ADC
accuracy.
3. Guaranteed by characterization results.
DocID022799 Rev 13 101/136
STM32L151xC STM32L152xC Electrical characteristics
109
Figure 28. ADC accuracy characteristics
Figure 29. Typical connection diagram using the ADC
1. Refer to Table 58: Maximum source impedance RAIN max for the value of RAIN and Table 56: ADC
characteristics for the value of CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy
this, fADC should be reduced.
([DPSOHRIDQDFWX DOWUDQVIHUFXUYH
7KHLGHDOWUDQV IHUFX UYH
(QGSRLQWFRUUHODWLRQOLQH



     



DLH
(7 7RWDOXQDGMXVWHG(UURUPD[LPXPGHYLDWLRQ
EHWZHHQWKHDFWXDODQGWKHLGHDOWUDQVIHUFXUYHV
(2 2IIVHW(UURUGHYLDWLRQEHWZHHQWKHILUVWDFWXDO
WUDQVLWLRQDQGWKHODVWDFWXDORQH
(* *DLQ(UURUGHYLDWLRQEHWZHHQWKHODVWLGHDO
WUDQVLWLRQDQGWKHODVWDFWXDORQH
(' 'LIIHUHQWLDO/LQHDULW\(UURUPD[LPXPGHYLDWLRQ
EHWZHHQDFWXDOVWHSVDQGWKHLGHDORQH
(/ ,QWHJUDO/LQHDULW\(UURUPD[LPXPGHYLDWLRQ
EHWZHHQDQ\DFWXDOWUDQVLWLRQDQGWKHHQGSRLQW
FRUUHODWLRQOLQH
966$ 9''$
/6%,'($/
('
(/
(2
(7
(*
>/6%,'($/ 
95()

9''$

RUGHSHQGLQJRQSDFNDJH
DLH
670/[[
9''$
$,1[
,/Q$
5$,1
&SDUDVLWLF
9$,1
ELW
FRQYHUWHU
&$'&
6DPSOHDQGKROG
$'&FRQYHUWHU
Electrical characteristics STM32L151xC STM32L152xC
102/136 DocID022799 Rev 13
Figure 30. Maximum dynamic current consumption on VREF+ supply pin during ADC
conversion
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 12. The applicable
procedure depends on whether VREF+ is connected to VDDA or not. The 100 nF capacitors
should be ceramic (good quality). They should be placed as close as possible to the chip.
ADC clock
Sampling (n cycles) Conversion (12 cycles)
Iref+
300µA
700µA
MS36686V1
Table 58. Maximum source impedance RAIN max(1)
Ts
(µs)
RAIN max (kΩ)
Ts (cycles)
fADC=16 MHz(2)
Multiplexed channels Direct channels
2.4 V < VDDA < 3.6 V 1.8 V < VDDA < 2.4 V 2.4 V < VDDA < 3.6 V 1.8 V < VDDA < 2.4 V
0.25 Not allowed Not allowed 0.7 Not allowed 4
0.5625 0.8 Not allowed 2.0 1.0 9
1 2.0 0.8 4.0 3.0 16
1.5 3.0 1.8 6.0 4.5 24
3 6.8 4.0 15.0 10.0 48
6 15.0 10.0 30.0 20.0 96
12 32.0 25.0 50.0 40.0 192
24 50.0 50.0 50.0 50.0 384
1. Guaranteed by design.
2. Number of samples calculated for fADC = 16 MHz. For fADC = 8 and 4 MHz the number of sampling cycles can be reduced
with respect to the minimum sampling time Ts (µs),
DocID022799 Rev 13 103/136
STM32L151xC STM32L152xC Electrical characteristics
109
6.3.18 DAC electrical specifications
Data guaranteed by design, unless otherwise specified.
Table 59. DAC characteristics
Symbol Parameter Conditions Min Typ Max Unit
VDDA Analog supply voltage - 1.8 - 3.6
V
VREF+
Reference supply
voltage
VREF+ must always be below
VDDA
1.8 - 3.6
VREF- Lower reference voltage - VSSA
IDDVREF+(1)
Current consumption on
VREF+ supply
VREF+ = 3.3 V
No load, middle code (0x800) - 130 220
µA
No load, worst code (0x000) - 220 350
IDDA(1)
Current consumption on
VDDA supply
VDDA = 3.3 V
No load, middle code (0x800) - 210 320
No load, worst code (0xF1C) - 320 520
RLResistive load DAC output
buffer ON
Connected to
VSSA
5- -
kΩ
Conected to
VDDA
25 - -
CL(2) Capacitive load DAC output buffer ON - - 50 pF
ROOutput impedance DAC output buffer OFF 12 16 20 kΩ
VDAC_OUT Voltage on DAC_OUT
output
DAC output buffer ON 0.2 - VDDA – 0.2 V
DAC output buffer OFF 0.5 - VREF+
1LSB mV
DNL(1) Differential non
linearity(3)
CL 50 pF, RL 5 kΩ
DAC output buffer ON -1.5 3
LSB
No RL, CL 50 pF
DAC output buffer OFF -1.5 3
INL(1) Integral non linearity(4)
CL 50 pF, RL 5 kΩ
DAC output buffer ON -2 4
No RL, CL 50 pF
DAC output buffer OFF -2 4
Offset(1) Offset error at code
0x800 (5)
CL 50 pF, RL 5 kΩ
DAC output buffer ON 10 ±25
No RL, CL 50 pF
DAC output buffer OFF 5 ±8
Offset1(1) Offset error at code
0x001(6)
No RL, CL 50 pF
DAC output buffer OFF 1.5 ±5
Electrical characteristics STM32L151xC STM32L152xC
104/136 DocID022799 Rev 13
dOffset/dT(1) Offset error temperature
coefficient (code 0x800)
VDDA = 3.3V
VREF+ = 3.0V
TA = 0 to 50 °C
DAC output buffer OFF
-20 -10 0
µV/°C
VDDA = 3.3V
VREF+ = 3.0V
TA = 0 to 50 °C
DAC output buffer ON
020 50
Gain(1) Gain error(7)
CL 50 pF, RL 5 kΩ
DAC output buffer ON - +0.1 / -0.2% +0.2 / -0.5%
%
No RL, CL 50 pF
DAC output buffer OFF - +0 / -0.2% +0 / -0.4%
dGain/dT(1) Gain error temperature
coefficient
VDDA = 3.3V
VREF+ = 3.0V
TA = 0 to 50 °C
DAC output buffer OFF
-10 -2 0
µV/°C
VDDA = 3.3V
VREF+ = 3.0V
TA = 0 to 50 °C
DAC output buffer ON
-40 -8 0
TUE(1) Total unadjusted error
CL 50 pF, RL 5 kΩ
DAC output buffer ON -12 30
LSB
No RL, CL 50 pF
DAC output buffer OFF -8 12
tSETTLING
Settling time (full scale:
for a 12-bit code
transition between the
lowest and the highest
input codes till
DAC_OUT reaches final
value ±1LSB
CL 50 pF, RL 5 kΩ- 7 12 µs
Update rate
Max frequency for a
correct DAC_OUT
change (95% of final
value) with 1 LSB
variation in the input
code
CL 50 pF, RL 5 kΩ- - 1 Msps
tWAKEUP
Wakeup time from off
state (setting the ENx bit
in the DAC Control
register)(8)
CL 50 pF, RL 5 kΩ- 9 15 µs
PSRR+
VDDA supply rejection
ratio (static DC
measurement)
CL 50 pF, RL 5 kΩ- -60 -35 dB
1. Data based on characterization results.
2. Connected between DAC_OUT and VSSA.
3. Difference between two consecutive codes - 1 LSB.
Table 59. DAC characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
DocID022799 Rev 13 105/136
STM32L151xC STM32L152xC Electrical characteristics
109
Figure 31. 12-bit buffered /non-buffered DAC
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external
loads directly without the use of an external operational amplifier. The buffer can be bypassed by
configuring the BOFFx bit in the DAC_CR register.
6.3.19 Operational amplifier characteristics
4. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 4095.
5. Difference between the value measured at Code (0x800) and the ideal value = VREF+/2.
6. Difference between the value measured at Code (0x001) and the ideal value.
7. Difference between ideal slope of the transfer function and measured slope computed from code 0x000 and 0xFFF when
buffer is OFF, and from code giving 0.2 V and (VDDA – 0.2) V when buffer is ON.
8. In buffered mode, the output can overshoot above the final value for low input code (starting from min value).
5/
&/
%XIIHUHG1RQEXIIHUHG'$&
'$&B287[
%XIIHU
ELW
GLJLWDOWR
DQDORJ
FRQYHUWHU
AI6
Table 60. Operational amplifier characteristics
Symbol Parameter Condition(1) Min(2) Typ Max(2) Unit
CMIR Common mode input range - 0 - VDD
VIOFFSET Input offset voltage
Maximum
calibration range ---±15
mV
After offset
calibration ---±1.5
ΔVIOFFSET
Input offset voltage
drift
Normal mode - - - ±40 µV/°C
Low-power mode - - - ±80
IIB Input current bias
Dedicated input
75 °C
--1
nA
General purpose
input --10
ILOAD Drive current Normal mode - - - 500 µA
Low-power mode - - - 100
IDD Consumption Normal mode No load,
quiescent mode
- 100 220 µA
Low-power mode - 30 60
CMRR Common mode
rejection ration
Normal mode - - -85 - dB
Low-power mode - - -90 -
Electrical characteristics STM32L151xC STM32L152xC
106/136 DocID022799 Rev 13
PSRR Power supply
rejection ratio
Normal mode DC --85-
dB
Low-power mode - -90 -
GBW Bandwidth
Normal mode VDD>2.4 V 400 1000 3000
kHZ
Low-power mode 150 300 800
Normal mode VDD<2.4 V 200 500 2200
Low-power mode 70 150 800
SR Slew rate
Normal mode
VDD>2.4 V
(between 0.1 V and
VDD-0.1 V)
- 700 -
V/ms
Low-power mode VDD>2.4 V - 100 -
Normal mode VDD<2.4 V - 300 -
Low-power mode - 50 -
AO Open loop gain Normal mode 55 100 - dB
Low-power mode 65 110 -
RLResistive load Normal mode VDD<2.4 V 4- -
kΩ
Low-power mode 20 - -
CLCapacitive load - - - 50 pF
VOHSAT
High saturation
voltage
Normal mode
ILOAD = max or
RL = min
VDD-
100 --
mV
Low-power mode VDD-50 - -
VOLSAT
Low saturation
voltage
Normal mode - - 100
Low-power mode - - 50
ϕm Phase margin - - 60 - °
GM Gain margin - - -12 - dB
tOFFTRIM
Offset trim time: during calibration,
minimum time needed between two
steps to have 1 mV accuracy
--1-ms
tWAKEUP Wakeup time
Normal mode CL 50 pf,
RL 4 kΩ-10-
µs
Low-power mode CL 50 pf,
RL 20 kΩ-30-
1. Operating conditions are limited to junction temperature (0 °C to 105 °C) when VDD is below 2 V. Otherwise to the full
ambient temperature range (-40 °C to 85 °C, -40 °C to 105 °C).
2. Guaranteed by characterization results.
Table 60. Operational amplifier characteristics (continued)
Symbol Parameter Condition(1) Min(2) Typ Max(2) Unit
DocID022799 Rev 13 107/136
STM32L151xC STM32L152xC Electrical characteristics
109
6.3.20 Temperature sensor characteristics
6.3.21 Comparator
Table 61. Temperature sensor calibration values
Calibration value name Description Memory address
TS_CAL1
TS ADC raw data acquired at
temperature of 30 °C ±5 °C
VDDA= 3 V ±10 mV
0x1FF8 00FA - 0x1FF8 00FB
TS_CAL2
TS ADC raw data acquired at
temperature of 110 °C ±5 °C
VDDA= 3 V ±10 mV
0x1FF8 00FE - 0x1FF8 00FF
Table 62. Temperature sensor characteristics
Symbol Parameter Min Typ Max Unit
TL(1)
1. Guaranteed by characterization results.
VSENSE linearity with temperature - ±1±C
Avg_Slope(1) Average slope 1.48 1.61 1.75 mV/°C
V110 Voltage at 110°C ±5°C(2)
2. Measured at VDD = 3 V ±10 mV. V110 ADC conversion result is stored in the TS_CAL2 byte.
612 626.8 641.5 mV
IDDA(TEMP)(3) Current consumption - 3.4 6 µA
tSTART(3)
3. Guaranteed by design.
Startup time - - 10
µs
TS_temp(3) ADC sampling time when reading the
temperature 4- -
Table 63. Comparator 1 characteristics
Symbol Parameter Conditions Min(1) Typ Max(1) Unit
VDDA Analog supply voltage - 1.65 3.6 V
R400K R400K value - - 400 - kΩ
R10K R10K value - - 10 -
VIN
Comparator 1 input
voltage range -0.6-V
DDA V
tSTART Comparator startup time - - 7 10 µs
td Propagation delay(2) --310
Voffset Comparator offset - - ±3±10 mV
dVoffset/dt
Comparator offset
variation in worst voltage
stress conditions
VDDA = 3.6 V
VIN+ = 0 V
VIN- = VREFINT
TA = 25 °C
0 1.5 10 mV/1000 h
ICOMP1 Current consumption(3) - - 160 260 nA
Electrical characteristics STM32L151xC STM32L152xC
108/136 DocID022799 Rev 13
1. Guaranteed by characterization results.
2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-
inverting input set to the reference.
3. Comparator consumption only. Internal reference voltage not included.
Table 64. Comparator 2 characteristics
Symbol Parameter Conditions Min Typ Max(1)
1. Guaranteed by characterization results.
Unit
VDDA Analog supply voltage - 1.65 - 3.6 V
VIN Comparator 2 input voltage range - 0 - VDDA V
tSTART Comparator startup time Fast mode - 15 20
µs
Slow mode - 20 25
td slow Propagation delay(2) in slow mode
2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-
inverting input set to the reference.
1.65 V VDDA 2.7 V - 1.8 3.5
2.7 V VDDA 3.6 V - 2.5 6
td fast Propagation delay(2) in fast mode 1.65 V VDDA 2.7 V - 0.8 2
2.7 V VDDA 3.6 V - 1.2 4
Voffset Comparator offset error - ±4±20 mV
dThreshold/
dt
Threshold voltage temperature
coefficient
VDDA = 3.3V
TA = 0 to 50 °C
V- =VREFINT
,
3/4 VREFINT
,
1/2 VREFINT
,
1/4 VREFINT
.
-15100
ppm
/°C
ICOMP2 Current consumption(3)
3. Comparator consumption only. Internal reference voltage (necessary for comparator operation) is not
included.
Fast mode - 3.5 5 µA
Slow mode - 0.5 2
DocID022799 Rev 13 109/136
STM32L151xC STM32L152xC Electrical characteristics
109
6.3.22 LCD controller
The device embeds a built-in step-up converter to provide a constant LCD reference voltage
independently from the VDD voltage. An external capacitor Cext must be connected to the
VLCD pin to decouple this converter.
Table 65. LCD controller characteristics
Symbol Parameter Min Typ Max Unit
VLCD LCD external voltage - - 3.6
V
VLCD0 LCD internal reference voltage 0 - 2.6 -
VLCD1 LCD internal reference voltage 1 - 2.73 -
VLCD2 LCD internal reference voltage 2 - 2.86 -
VLCD3 LCD internal reference voltage 3 - 2.98 -
VLCD4 LCD internal reference voltage 4 - 3.12 -
VLCD5 LCD internal reference voltage 5 - 3.26 -
VLCD6 LCD internal reference voltage 6 - 3.4 -
VLCD7 LCD internal reference voltage 7 - 3.55 -
Cext VLCD external capacitance 0.1 - 2 µF
ILCD(1)
1. LCD enabled with 3 V internal step-up active, 1/8 duty, 1/4 bias, division ratio= 64, all pixels active, no LCD
connected.
Supply current at VDD = 2.2 V - 3.3 - µA
Supply current at VDD = 3.0 V - 3.1 -
RHtot(2)
2. Guaranteed by design.
Low drive resistive network overall value 5.28 6.6 7.92 MΩ
RL(2) High drive resistive network total value 192 240 288 kΩ
V44 Segment/Common highest level voltage - - VLCD V
V34 Segment/Common 3/4 level voltage - 3/4 VLCD -
V
V23 Segment/Common 2/3 level voltage - 2/3 VLCD -
V12 Segment/Common 1/2 level voltage - 1/2 VLCD -
V13 Segment/Common 1/3 level voltage - 1/3 VLCD -
V14 Segment/Common 1/4 level voltage - 1/4 VLCD -
V0Segment/Common lowest level voltage 0 - -
ΔVxx(3)
3. Guaranteed by characterization results.
Segment/Common level voltage error
TA = -40 to 105 °C--± 50 mV
Package information STM32L151xC STM32L152xC
110/136 DocID022799 Rev 13
7 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
7.1 LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package
information
Figure 32. LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package outline
1. Drawing is not to scale.
Table 66. LQPF100, 14 x 14 mm, 100-pin low-profile quad flat package mechanical
data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
E
)$%.4)&)#!4)/.
0).
'!5'%0,!.%
MM
3%!4).'0,!.%
$
$
$
%
%
%
+
CCC #
#




 

,?-%?6
!
!
!
,
,
C
B
!
DocID022799 Rev 13 111/136
STM32L151xC STM32L152xC Package information
135
Figure 33. LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package
recommended footprint
1. Dimensions are in millimeters.
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 15.800 16.000 16.200 0.6220 0.6299 0.6378
D1 13.800 14.000 14.200 0.5433 0.5512 0.5591
D3 - 12.000 - - 0.4724 -
E 15.800 16.000 16.200 0.6220 0.6299 0.6378
E1 13.800 14.000 14.200 0.5433 0.5512 0.5591
E3 - 12.000 - - 0.4724 -
e - 0.500 - - 0.0197 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0.0° 3.5° 7.0° 0.0° 3.5° 7.0°
ccc - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 66. LQPF100, 14 x 14 mm, 100-pin low-profile quad flat package mechanical
data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
 
 

 
 




069
Package information STM32L151xC STM32L152xC
112/136 DocID022799 Rev 13
LQFP100 device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 34. LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package top view
example
1. Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
06Y9
5HYLVLRQFRGH
3URGXFWLGHQWLILFDWLRQ
'DWHFRGH
3LQ
LQGHQWLILHU
670/
9&75
<::
DocID022799 Rev 13 113/136
STM32L151xC STM32L152xC Package information
135
7.2 LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package
information
Figure 35. LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package outline
1. Drawing is not to scale.
Table 67. LQFP64, 10 x 10 mm 64-pin low-profile quad flat package mechanical
data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D - 12.000 - - 0.4724 -
D1 - 10.000 - - 0.3937 -
D3 - 7.500 - - 0.2953 -
E - 12.000 - - 0.4724 -
E1 - 10.000 - - 0.3937 -
:B0(B9
$
$
$
6($7,1*3/$1(
FFF &
E
&
F
$
/
/
.
,'(17,),&$7,21
3,1
'
'
'
H







(
(
(
*$8*(3/$1(
PP
Package information STM32L151xC STM32L152xC
114/136 DocID022799 Rev 13
Figure 36. LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package
recommended footprint
1. Dimensions are in millimeters.
E3 - 7.500 - - 0.2953 -
e - 0.500 - - 0.0197 -
K 0°3.5°7° 0°3.5°7°
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
ccc - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 67. LQFP64, 10 x 10 mm 64-pin low-profile quad flat package mechanical data
(continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max



 










AIC
DocID022799 Rev 13 115/136
STM32L151xC STM32L152xC Package information
135
LQFP64 device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 37. LQFP64 10 x 10 mm, 64-pin low-profile quad flat package top view example
1. Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
06Y9
5HYLVLRQFRGH
670/
3URGXFWLGHQWLILFDWLRQ
'DWHFRGH
<::
3LQ
LQGHQWLILHU
5&7
5
Package information STM32L151xC STM32L152xC
116/136 DocID022799 Rev 13
7.3 LQFP48, 7 x 7 mm, 48-pin low-profile quad flat package
information
Figure 38. LQFP48, 7 x 7 mm, 48-pin low-profile quad flat package outline
1. Drawing is not to scale.
"?-%?6
0).
)$%.4)&)#!4)/.
CCC #
#
$
MM
'!5'%0,!.%
B
!
!
!
C
!
,
,
$
$
%
%
%
E







3%!4).'
0,!.%
+
DocID022799 Rev 13 117/136
STM32L151xC STM32L152xC Package information
135
Figure 39. LQFP48 recommended footprint
1. Dimensions are in millimeters.
Table 68. LQFP48, 7 x 7 mm, 48-pin low-profile quad flat package mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 8.800 9.000 9.200 0.3465 0.3543 0.3622
D1 6.800 7.000 7.200 0.2677 0.2756 0.2835
D3 - 5.500 - - 0.2165 -
E 8.800 9.000 9.200 0.3465 0.3543 0.3622
E1 6.800 7.000 7.200 0.2677 0.2756 0.2835
E3 - 5.500 - - 0.2165 -
e - 0.500 - - 0.0197 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0°3.5°7° 0°3.5°7°
ccc - - 0.080 - - 0.0031
  













AID

Package information STM32L151xC STM32L152xC
118/136 DocID022799 Rev 13
LQFP48 device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 40. LQFP48 package top view example
1. Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.

3URGXFW
LGHQWLILFDWLRQ
45.-
$$5
3
:88
3LQ
LGHQWLILFDWLRQ 5HYLVLRQFRGH
'DWHFRGH
069
DocID022799 Rev 13 119/136
STM32L151xC STM32L152xC Package information
135
7.4 UFQFPN48 7 x 7 mm, 0.5 mm pitch, package information
Figure 41. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package outline
1. Drawing is not to scale.
2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and
solder this back-side pad to PCB ground.
$%B0(B9
'
3LQLGHQWLILHU
ODVHUPDUNLQJDUHD
((
'<
'
(
([SRVHGSDG
DUHD
=

'HWDLO=
5W\S

/
&[
SLQFRUQHU
$
6HDWLQJ
SODQH
$
E
H
GGG
'HWDLO<
7
Package information STM32L151xC STM32L152xC
120/136 DocID022799 Rev 13
Figure 42. UFQFPN48 recommended footprint
1. Dimensions are in millimeters.
Table 69. UFQFPN48 – ultra thin fine pitch quad flat pack no-lead 7 × 7 mm,
0.5 mm pitch package mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A 0.500 0.550 0.600 0.0197 0.0217 0.0236
A1 0.000 0.020 0.050 0.0000 0.0008 0.0020
D 6.900 7.000 7.100 0.2717 0.2756 0.2795
E 6.900 7.000 7.100 0.2717 0.2756 0.2795
D2 5.500 5.600 5.700 0.2165 0.2205 0.2244
E2 5.500 5.600 5.700 0.2165 0.2205 0.2244
L 0.300 0.400 0.500 0.0118 0.0157 0.0197
T - 0.152 - - 0.0060 -
b 0.200 0.250 0.300 0.0079 0.0098 0.0118
e - 0.500 - - 0.0197 -
ddd - - 0.080 - - 0.0031




 







!"?&0?6


 



DocID022799 Rev 13 121/136
STM32L151xC STM32L152xC Package information
135
UFQFPN48 device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 43. UFQFPN48 package top view example
1. Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.

3URGXFW
LGHQWLILFDWLRQ 45.-
$$6
3
:88
3LQ
LGHQWLILFDWLRQ 5HYLVLRQFRGH
'DWHFRGH
069
Package information STM32L151xC STM32L152xC
122/136 DocID022799 Rev 13
7.5 UFBGA100, 7 x 7 mm, 100-ball ultra thin, fine pitch ball grid
array package information
Figure 44. UFBGA100, 7 x 7 mm, 0.5 mm pitch package outline
1. Drawing is not to scale.
Table 70. UFBGA100, 7 x 7 mm, 0.5 mm pitch package mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A 0.460 0.530 0.600 0.0181 0.0209 0.0236
A1 0.050 0.080 0.110 0.0020 0.0031 0.0043
A2 0.400 0.450 0.500 0.0157 0.0177 0.0197
A3 0.080 0.130 0.180 0.0031 0.0051 0.0071
A4 0.270 0.320 0.370 0.0106 0.0126 0.0146
b 0.200 0.250 0.300 0.0079 0.0098 0.0118
D 6.950 7.000 7.050 0.2736 0.2756 0.2776
D1 5.450 5.500 5.550 0.2146 0.2165 0.2185
E 6.950 7.000 7.050 0.2736 0.2756 0.2776
E1 5.450 5.500 5.550 0.2146 0.2165 0.2185
e - 0.500 - - 0.0197 -
F 0.700 0.750 0.800 0.0276 0.0295 0.0315
ddd - - 0.100 - - 0.0039
$&B0(B9
6HDWLQJSODQH
$
H)
)
'
0
EEDOOV
$
(
7239,(:%277209,(:

$EDOO
LGHQWLILHU
H
$
$
<
;
=
GGG =
'
(
HHH = < ;
III
0
0=
$
$
$EDOO
LQGH[DUHD
DocID022799 Rev 13 123/136
STM32L151xC STM32L152xC Package information
135
Figure 45. UFBGA100, 7 x 7 mm, 0.5 mm pitch, package recommended footprint
eee - - 0.150 - - 0.0059
fff - - 0.050 - - 0.0020
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 71. UFBGA100, 7 x 7 mm, 0.50 mm pitch, recommended PCB design rules
Dimension Recommended values
Pitch 0.5
Dpad 0.280 mm
Dsm 0.370 mm typ. (depends on the soldermask
registration tolerance)
Stencil opening 0.280 mm
Stencil thickness Between 0.100 mm and 0.125 mm
Table 70. UFBGA100, 7 x 7 mm, 0.5 mm pitch package mechanical data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
$&B)3B9
'SDG
'VP
Package information STM32L151xC STM32L152xC
124/136 DocID022799 Rev 13
UFBGA100 device marking
The following figure gives an example of topside marking orientation versus ball A1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 46. UFBGA100, 7 x 7 mm, 0.5 mm pitch, package top view example
1. Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.

3URGXFW
LGHQWLILFDWLRQ 45.-
7$)
3
:88
%DOO$
LGHQWLILHU 5HYLVLRQFRGH
'DWHFRGH
069
DocID022799 Rev 13 125/136
STM32L151xC STM32L152xC Package information
135
7.6 WLCSP63, 0.400 mm pitch wafer level chip size package
information
Figure 47. WLCSP63, 0.400 mm pitch wafer level chip size package outline
1. Drawing is not to scale.
$7*B0(B9
%RWWRPYLHZ
%XPEVLGH
$%DOOORFDWLRQ
6LGHYLHZ
7RSYLHZ
:DIHUEDFN6LGH
$UHIHUHQFH
ORFDWLRQ
'HWDLO$
URWDWHG
'HWDLO$
6HDWLQJSODQH
H
)
*
H
H
*
)
H
'
(
$
%XPS
$
$
EEE
DDD
HHH
$
E
FFF
GGG
=
=
;<
$
Package information STM32L151xC STM32L152xC
126/136 DocID022799 Rev 13
Table 72. WLCSP63, 0.400 mm pitch wafer level chip size package mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A 0.540 0.570 0.600 0.0213 0.0224 0.0236
A1 - 0.190 - - 0.0075 -
A2 - 0.380 - - 0.0150 -
A3 - 0.025 - - 0.0010 -
Øb 0.240 0.270 0.300 0.0094 0.0106 0.0118
D 3.193 3.228 3.263 0.1257 0.1271 0.1285
E 4.129 4.164 4.199 0.1626 0.1639 0.1653
e - 0.400 - - 0.0157 -
e1 - 2.400 - - 0.0945 -
e2 - 3.200 - - 0.1260 -
F - 0.414 - - 0.0163 -
G - 0.482 - 0.0190 -
aaa - - 0.100 - - 0.0039
bbb - - 0.100 - - 0.0039
ccc - - 0.100 - - 0.0039
ddd - - 0.050 - - 0.0020
eee - - 0.050 - - 0.0020
DocID022799 Rev 13 127/136
STM32L151xC STM32L152xC Package information
135
WLCSP63 device marking
The following figure gives an example of topside marking orientation versus ball A1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 48. WLCSP63 device marking example
1. Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
069
%DOO$
LGHQWLILHU
-6$:
'DWHFRGH 5HYLVLRQFRGH
3URGXFWLGHQWLILFDWLRQ
3:88
Package information STM32L151xC STM32L152xC
128/136 DocID022799 Rev 13
7.7 Thermal characteristics
The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max × Θ
JA)
Where:
TA max is the maximum ambient temperature in °C,
•Θ
JA is the package junction-to-ambient thermal resistance, in °C/W,
PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),
PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
Table 73. Thermal characteristics
Symbol Parameter Value Unit
Θ
JA
Thermal resistance junction-ambient
UFBGA100 - 7 x 7 mm 59
°C/W
Thermal resistance junction-ambient
LQFP100 - 14 x 14 mm / 0.5 mm pitch 43
Thermal resistance junction-ambient
LQFP64 - 10 x 10 mm / 0.5 mm pitch 46
Thermal resistance junction-ambient
WLCSP63 - 0.400 mm pitch 49
Thermal resistance junction-ambient
LQFP48 - 7 x 7 mm / 0.5 mm pitch 55
Thermal resistance junction-ambient
UFQFPN48 - 7 x 7 mm / 0.5 mm pitch 33
DocID022799 Rev 13 129/136
STM32L151xC STM32L152xC Package information
135
Figure 49. Thermal resistance suffix 6
Figure 50. Thermal resistance suffix 7
7.7.1 Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org.
D^ϯϭϰϬϱsϱ
ϬϬϬ
ϱϬϬϬϬ
Ϭ
&ŽƌďŝĚĚĞŶĂƌĞĂ
d:хd:ŵĂdž



/4)3[PP
:/&63
8)%*$[PP
/4)3[PP
8)4)31[PP
/4)3[PP
   

7HPSHUDWXUH&
3'P:

06Y9





)RUELGGHQDUHD
7-!7-PD[
/4)3[PP
:/&63
8)%*$[PP
/4)3[PP
8)4)31[PP
/4)3[PP
   

7HPSHUDWXUH&
3'P:

Part numbering STM32L151xC STM32L152xC
130/136 DocID022799 Rev 13
8 Part numbering
For a list of available options (speed, package, etc.) or for further information on any aspect
of this device, please contact the nearest ST sales office.
Table 74. STM32L151xC and STM32L152xC ordering information scheme
Example: STM32 L 151 R C T 6 D TR
Device family
STM32 = ARM-based 32-bit microcontroller
Product type
L = Low-power
Device subfamily
151: Devices without LCD
152: Devices with LCD
Pin count
C = 48 pins
U = 63 pins
R = 64 pins
V = 100 pins
Flash memory size
C = 256 Kbytes of Flash memory
Package
H = BGA
T = LQFP
Y = WLCSP
U = UFQFPN
Temperature range
6 = Industrial temperature range, –40 to 85 °C
7 = Industrial temperature range, –40 to 105 °C
Options
No character = VDD range: 1.8 to 3.6 V and BOR enabled
D = VDD range: 1.65 to 3.6 V and BOR disabled
Packing
TR = tape and reel
No character = tray or tube
DocID022799 Rev 13 131/136
STM32L151xC STM32L152xC Revision History
135
9 Revision History
Table 75. Document revision history
Date Revision Changes
21-Feb-2012 1 Initial release.
12-Oct-2012 2
Added WLCSP63 package.
Updated Figure 1: Ultra-low-power STM32L162xC block diagram.
Changed maximum number of touch sensing channels to 34, and
updated Table 2: Ultralow power STM32L15xxC device features and
peripheral counts.
Added Table 4: Functionalities depending on the working mode (from
Run/active down to standby), and Table 3: ange depending on
dynamic voltage scaling.
Updated Section 3.10: ADC (analog-to-digital converter) to add
Section 3.10.1: Temperature sensor and Section 3.10.2: Internal
voltage reference (VREFINT).
Updated Figure 3: STM32L162VC LQFP100 pinout.
Table 10: STM32L15xxC pin definitions: updated name of reference
manual in footnote 5.
Changed I2C1_SMBAI into I2C1_SMBA in Table 10: STM32L15xxC
pin definitions.
Modified PB10/11/12 for AFIO4 alternate function, and replaced LBAR
by NADV for AFIO12 in Table 10: Alternate function input/output.
Removed caution note below Figure 8: Power supply scheme.
Added Note 2 in Table 15: Embedded reset and power control block
characteristics.
Updated Table 14: General operating conditions.
Updated Table 22: Typical and maximum current consumptions in Stop
mode and added Note 6. Updated Table 23: Typical and maximum
current consumptions in Standby mode. Updated tWUSTOP in Table : .
Updated Table 26: Peripheral current consumption.
Updated Table 60: SPI characteristics, added Note 1 and Note 3, and
applied Note 2 to tr(SCK), tf(SCK), tw(SCKH), tw(SCKL), tsu(MI), tsu(SI), th(MI),
and th(SI).
Added Table 61: I2S characteristics, Figure 29: I2S slave timing
diagram (Philips protocol)(1) and Figure 30: I2S master timing diagram
(Philips protocol)(1).
Updated Table 72: Temperature sensor characteristics.
Added Figure 40: Thermal resistance.
Revision History STM32L151xC STM32L152xC
132/136 DocID022799 Rev 13
01-Feb-2013 3
Removed AHB1/AHB2 and corrected typo on APB1/APB2 in:Figure 1:
Ultra-low-power STM32L162xC block diagram-low-power
STM32L162xC block diagram
Updated “OP amp” line in Table 4: Functionalities depending on the
working mode (from Run/active down to standby)
Added IWDG and WWDG rows in Table 4: Functionalities depending
on the working mode (from Run/active down to standby)
Updated address range in Table 7: Internal voltage reference
measured values
The comment "HSE = 16 MHz(2) (PLL ON for fHCLK above 16 MHz)"
replaced by "fHSE = fHCLK up to 16 MHz included, fHSE = fHCLK/2
above 16 MHz (PLL ON)(2)” in table Table 27: Current consumption in
Sleep mode
replaced pin names D7,C7,C6,C8,B8,A8 respectively by
D11,D10,C12,B12,A12,A11 in column UFBGA100 of Table 9:
STM32L15xxC pin definitionsAdded more alternate functions
supported on pin K3 and M4 for UFBGA100 package in Table 9:
STM32L15xxC pin definitions
Added part number STM32L151CC in Table 1: Device summary
Updated Stop mode current to 1.5 µA in Ultra-low-power platform
Updated entire Section 7: Package information
02-Sep-2013 4
Removed UFBGA132 and LQFP144 packages
Removed first sentence in Section : I2C interface characteristics
Added Section Table 5.: VLCD rail decoupling
Added VRAIL functions in Table 9: STM32L15xxC pin definitions
Updated PH0-OSC_IN and PH1-OSC_OUT type in Table 9:
STM32L15xxC pin definitions.
Added Table 6.1.7: Optional LCD power supply scheme.
Updated consumption data in Table 6.3.4: Supply current
characteristics
Updated Table 7: Pin loading conditions
Updated Table 8: Pin input voltage Updated Table 15: Typical
application with a 32.768 kHz crystal
Updated Table 25: Recommended NRST pin protection
Table 26: I2C bus AC waveforms and measurement circuitUpdated
Table 35: Typical connection diagram using the ADC and
definition of symbol “RAIN” in Table 77: ADC characteristics
Updated dThreshold/dt conditions in Table 85: Comparator 2
characteristics.
Updated Table 49: Thermal resistance suffix 6.
Added D2 and E2 in Table 69: UFQFPN48 – ultra thin fine pitch quad
flat pack no-lead 7 × 7 mm, 0.5 mm pitch package mechanical data
Fixed columns inversion in Table 67: LQFP64, 10 x 10 mm 64-pin low-
profile quad flat package mechanical data and Table 70: UFBGA100, 7
x 7 mm, 0.5 mm pitch package mechanical data
Table 75. Document revision history (continued)
Date Revision Changes
DocID022799 Rev 13 133/136
STM32L151xC STM32L152xC Revision History
135
12-Nov-2013 5
Updated Section 3.15: Touch sensing.
Added VDD= 1.71 to 1.8 V operating power supply range in Table 4:
Functionalities depending on the working mode (from Run/active down
to standby)
Renamed "I/O Level" to "I/O structure" in Table 9: STM32L15xxC pin
definitions, added the I/O structure for PC14, PC15, PC3, PH0, PH1,
PA3, PA4, PA5, PB0, PE7, PE8, PE9, PE10, NRST and BOOT0
Updated Table 10: Voltage characteristics added row
Updated Table 11: Current characteristics replaced with the one inside
STM32L15xxBxxA datasheet.
Updated Table 13: General operating conditions, footnote and added
row.
Updated Table 15: Embedded internal reference voltage calibration
values and moved inside Section 6.3.3: Embedded internal reference
voltage
Updated Section 6.3.4: Supply current characteristics.
Updated Table 19: Current consumption in Run mode, code with data
processing running from Flash.
Updated Table 22: Current consumption in Run mode, code with data
processing running from RAM.
Created Section 6.3.5: Wakeup time from low-power mode..
Updated Table 38: High-speed external user clock characteristics.
Moved Figure 12: High-speed external clock source AC timing diagram
after Table 38: High-speed external user clock characteristics.
Updated Table 40: HSE oscillator characteristics.
Updated Section 6.3.12: Electrical sensitivity characteristics (title).
Updated Section 6.3.13: I/O current injection characteristics.
Updated Table 61: I/O current injection susceptibility and added
footnote.
Updated Table 63: I/O static characteristics
Updated Section 6.3.15: NRST pin characteristics.
Updated Table 77: ADC characteristics.
Added footnote(5) and (6) in Table 77: ADC characteristics
Updated THD values and added 4 more rows ENOB, SINAD, SNR,
THD in Table 78: ADC accuracy
Updated “SDA data hold time” and “SDA and SCL rise time” values
and added “Pulse width of spikes that are suppressed by the analog
filter” row in Table 68: I2C characteristics
Updated direct channels VDDA range in Table 79: RAIN max for fADC =
16 MHz
Moved Table 82: Temperature sensor calibration values and moved
inside Section 6.3.23: Temperature sensor characteristics
Updated IDD (WU from Standby) unit in Table 31: Typical and
maximum current consumptions in Standby mode.
Updated Table 67: LQFP64, 10 x 10 mm 64-pin low-profile quad flat
package mechanical data
Updated Chapter 8: Part numbering (title).
Table 75. Document revision history (continued)
Date Revision Changes
Revision History STM32L151xC STM32L152xC
134/136 DocID022799 Rev 13
09-Dec-2013 6
Apply footnote 1 also to VDD= 1.8 to 2.0 V in Table 2: Functionalities
depending on the operating power supply range.
Updated Iinj pin in Table 11: Current characteristics.
Added Input Voltage in Table 13: General operating conditions.
Updated Input leakage current conditions in Table 63: I/O static
characteristics
Removed minimum value for fSin Table 77: ADC characteristics.
Removed Finput for ENOB,SINAD,SNR,THD in Table 78: ADC
accuracy.
Added tolerance for TS_CAL1 and TS_CAL2 in Table 82: Temperature
sensor calibration values.
13-Mar-2014 7
Updated Section 3.7: Memories, Table 33: Peripheral current
consumption : updated Flash value, Table 61: I/O current injection
susceptibility, Table 63: I/O static characteristics:added BOOT0 pin
Table 66: NRST pin characteristics, Chapter 2.2: Ultra-low-power
device continuum. removed figures “Power supply and reference
decoupling (VREF+ not connected to VDDA) and “Power supply and
reference decoupling(VREF+ connected to VDDA). Updated Table 19:
Current consumption in Run mode, code with data processing running
from Flash
Updated Section 6.3.1: General operating conditions.
Updated Table 80: DAC characteristics
Added marking for LQFP48/UFQFPN48 packages
Updated Table 66: NRST pin characteristics
Updated Table 63: I/O static characteristics
16-May-2014 8
Updated IIO in Table 12: Current characteristics.
Updated conditions in Table 44: Output voltage characteristics.
Removed note 4 in Table 62: Temperature sensor characteristics
Updated the conditions in Table 26: Low-power mode wakeup timings.
Removed ambiguity of “ambient temperature” in the electrical
characteristics description.
13-Oct-2014 9
Updated Section 3.17: Communication interfaces putting I2S
characteristics inside.
Updated DMIPS features in cover page and Section 2: Description.
Updated max temperature at 105°C instead of 85°C in the whole
datasheet.
Updated current consumption in Table 20: Current consumption in
Sleep mode.
Updated Table 25: Peripheral current consumption with new measured
current values.
Updated Table 58: Maximum source impedance RAIN max adding
note 2.
06-Mar-2015 10
Updated Section 7: Package information with new package device
marking.
Updated Figure 9: Memory map.
Table 75. Document revision history (continued)
Date Revision Changes
DocID022799 Rev 13 135/136
STM32L151xC STM32L152xC Revision History
135
20-Aug-2015 11
Updated Table 17: Embedded internal reference voltage temperature
coefficient at 100ppm/°C and table footnote 3: “guaranteed by design”
changed by “guaranteed by characterization results”.
Updated Table 64: Comparator 2 characteristics new maximum
threshold voltage temperature coefficient at 100ppm/°C.
10-Mar-2016 12
Updated cover page putting eight SPIs in the peripheral
communication interface list.
Updated Table 2: Ultra-low-power STM32L151xC and STM32L152xC
device features and peripheral counts SPI and I2S lines.
Updated Table 40: ESD absolute maximum ratings CDM class.
Updated all the notes, removing ‘not tested in production’.
Updated thermal resistance for UFQFPN48 to value of 33 °C/W.
Updated Table 11: Voltage characteristics adding note about VREF- pin.
Updated Table 5: Functionalities depending on the working mode (from
Run/active down to standby) LSI and LSE functionalities putting “Y” in
Standby mode.
Removed note 1 below Figure 2: Clock tree.
25-Aug-2017 13
Updated Table 43: I/O static characteristics pull-up and pull-down
values.
Updated Table 46: NRST pin characteristics pull-up values.
Updated Section 7: Package information adding information about
other optional marking or inset/upset marks.
Updated note 1 below all the package device marking figures.
Updated Section 7: Package information replacing “Marking of
engineering samples” by “device marking”.
Updated Nested vectored interrupt controller (NVIC) in Section 3.2:
ARM® Cortex®-M3 core with MPU about process state automatically
saved.
Updated Table 3: Functionalities depending on the operating power
supply range removing I/O operation column and adding note about
GPIO speed.
Updated Table 42: I/O current injection susceptibility note by ‘injection
is not possible’.
Updated Figure 20: Recommended NRST pin protection note about
the 0.1uF capacitor.
Updated Table 59: DAC characteristics resistive load.
Updated Section 3.1: Low-power modes Low-power run mode (MSI)
RC oscillator clock.
Updated Table 5: Functionalities depending on the working mode
(from Run/active down to standby) disabling I2C functionality in Low-
power Run and Low-power Sleep modes.
Table 75. Document revision history (continued)
Date Revision Changes
STM32L151xC STM32L152xC
136/136 DocID022799 Rev 13
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2017 STMicroelectronics – All rights reserved