1/23
PRELIMINARY DATA
January 2005
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notic e.
M41T50
Seri al Acc ess Digit al In put
Real-Time Clock with Alarms
FEATURES SUMMARY
TIMEKEEPING DOWN TO 1.3V
1.7V TO 3.6V I 2C BUS OPER ATING
VOLTAGE
OP ERAT ES FROM 50Hz OR 60Hz DIGITAL
C LOC K SI GNA L
COUNTERS FOR SECONDS, MINUTES,
HOURS, DAY, DATE, MONT H, YEAR, AND
CENTURY
SERIA L INT ERFACE SU PPORTS I 2C BUS
(400kHz)
PROGRAMMABLE ALARM AN D
INTERRUPT FUNCTION
1Hz SQUARE WAVE OUTPUT
LOW OPERATING CURRENT OF 350µ A
AUTOMAT IC L EAP YEAR C OMP EN SATION
SOFTWARE PROGRAMMABLE OUTPUT
(OUT)
OP ERAT ING TEMPER ATURE OF –40 TO
85°C
LEAD-FREE 16-PIN QFN PACKAGE
Figure 1. Package
QFN16 (Q)
M41T50
2/23
TABLE OF CONTENTS
FEATUR ES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Figure 1. Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
SUM MARY DESCRIPT ION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 2. Logi c Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Table 1. Signa l Na mes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 3. 16-pi n QFN Conne ctions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 4. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2-Wire Bus Chara cteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Bus not busy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Start data transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Stop data transfe r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Data Valid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Acknowl edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 5. S erial Bus Data Transfer Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 6. A c knowledg eme nt Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
READ Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 7. Slave Address Location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 8. RE A D Mode Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Figure 9. Alternative READ Mod e Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
WRITE M ode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 10.WRITE Mode Seq uence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
CLOCK O PERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Digital Cloc k Inp ut. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
TIMEKEEPER® Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 2. TIMEKEEPER® Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Setting Alarm Clock Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 3
Figure 11.Alarm Interrupt Reset Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 3. Alarm Repeat Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Sq uare Wave Outp ut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Centur y Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Output Driver Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Initial Powe r-on Defaults. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 4. Initial Power-on Default Value s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 5. Century Bits Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
MAXIMU M RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 6. Absolute Maximum Rati ngs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
DC AND AC PARAM ETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3/23
M41T50
Table 7. Operating a nd AC Measurement Cond itions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 12.AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 8. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 6
Table 9. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 13.Bus Timing Requiremen ts Sequenc e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 10. AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 8
PACKAGE MECHANICAL INFORMATIO N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 14.QFN16 – 16-lead, Quad, Flat Package, No Lead, 3 x3mm body size, Outline . . . . . . . . 19
Table 11. QF N16 – 16-lead, Quad, Flat Packag e, No Lead, 3x3mm body size, Mecha nical Data. 20
Figure 15.QFN16 – 16-lead, Quad, Flat Package, No Lead, 3 x3mm body size, Footprint . . . . . . . 20
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 12. Orderi ng Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
REVISION HISTO RY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 13. Document Revision Histo ry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
M41T50
4/23
S UM MARY DESCRIPTION
The M41T50 Serial Access TIMEKEEPER® is a
low power Serial RT C that does not require a crys-
tal. The clock operates from a digital clock input
pin at 50Hz or 60Hz. Eight registers (see Table
2., page 12) are used for the clock/calend ar f unc-
tion and are configured in binary coded decimal
(BCD) format. An additional 8 registers provide
status/control of Alarm, Square Wave (1Hz), and
50Hz or 60Hz digital clock frequency selection
functions. Addresse s and data are transferred se-
rially via a two line, bi-directional I2C in ter fac e. The
built-in address register is incremented automati-
cally after e ach WRITE or READ data byte.
Functions available to the user include a time-of-
day clock/calendar, Alarm interrupts, and Square
Wave output. The eight clock address locations
contain the century, year, month, d ate, day, hour,
minute, and seconds in 24-hour BCD format. Cor-
rections for 28-, 29- (leap year), 30- and 31-day
months are made automat ically.
The M41T5 0 is supplied in a 16-pin QFN.
Figure 2. Logic Diagram
Note: 1. Ope n Drain on l y.
2. Defau lts to p ush-p ul l (SQ W d isa bled ) on po we r- up. Ma y
also be programm ed to be Open Drain.
Table 1. Signal Names
Figu re 3. 16- pi n QF N C onn e ct i on s
Note: 1. Ope n Drain on l y.
2. Defau lts to p ush- pull (SQ W d isa bled ) on po we r- up. May
also be programm ed to be Open Drain.
SCL
VCC
M41T50
VSS
SDA
IRQ/OUT(1)
SQW (1Hz)(2)
CLKIN
AI09110
CLKIN Digital Clock Input (50Hz or 60Hz)
SDA Serial Data Input/Output
SCL Serial Clock Input
IRQ/OUT Interrupt or OUT Output (Open
Drain)
SQW
(1Hz) Square Wave Output (Open Drain
or Push-pull)
VCC Supply Vo ltage
VSS Ground
1
2
3
4
5678
9
10
11
12
13
14
15
16
CLKIN
NC
NC
NC
NC
NC
NC
NC
SQW (1Hz)(2)
VSS
VSS
VCC
NC
SCL
SDA
IRQ/OUT(1)
AI09111
5/23
M41T50
Figu re 4. Blo ck Diagram
Note: 1. May b e configur ed as either push- pul l or open drain.
2. Open drain only .
AI09112
SECONDS
ALARM
SERIAL
BUS
INTERFACE
DIVIDER
CONTROL
LOGIC
ADDRESS
REGISTER
MINUTES
HOURS
DAY
DATE
CENTURY/
MONTH
YEAR
CLKIN
VCC
VSS
SCL
SDA
1 Hz
IRQ/OUT(2)
AFE
OUT
SQWE SQW(1)
M41T50
6/23
OPERATION
The M41T 50 clock operates as a s lave device on
the serial bus . Access is obtained by implementing
a start condition f ollowed by the correc t slave ad-
dress (D0h). The 16 bytes contained i n the device
can then be accessed sequentially in t he foll owing
order:
1. Reserved0 Register
2. Seconds Register
3. Min utes Register
4. Hours Register
5. Day Register
6. D ate Register
7. Cent ury/Month Register
8. Yea r Register
9. Out Register
10. Reserved1 Register
11 - 15. Ala rm Registers
16. Fl ags Register
2-Wire Bus Characteristics
The bus is intended for communication between
different ICs. It consists of two lines: a bi-direction-
al data signal (SDA) and a clock signal (SCL).
Both the SDA and SCL lines mus t be connected to
a positive supply voltage via a pull-up resistor.
The following protocol has been defined:
D ata transfer may be initiated only when the
bus is not bus y.
During data transfer, the data line must remain
stable whenever the clock line is High.
Changes in the data line, while t he clock line is
H igh, will be inte rpreted as control signals.
Accordingly, the following bus conditions have
been defined:
Bus not busy. Both data and clock lines remain
High.
Start data transfer . A change in the state of the
data line, from high to Low, while the clock is High,
defines the START condi tion.
Stop data transfer. A change in the state of the
data line, from Low to High, while the clock is High,
defines the STOP condition .
Data Va lid. T he state of the data line rep resents
valid data when after a start condition, the dat a line
is stable for the duration of the high period of the
clock signal. The data on the line may be changed
during the Low period of the clock signal. There is
one clock pulse per bit of data.
Each data transfer is initiated with a start condi tion
and terminated with a stop condition. The number
of data bytes transferred between the start and
stop conditions is not limited. The information is
transmitted byte-wide and each rec eiver ack nowl-
edges with a ninth bit .
By definition a dev ice t hat gives o ut a m essag e is
called “transmitter,” the receiving dev ice that gets
the message is called “receiver.” The device that
controls the message is called “master.” The de-
vices that are controlled by th e ma ster are called
“slaves.
Acknowledge. E ac h byte of eig ht bits is foll owed
by one Acknowledge B it. Thi s Acknowledge Bit is
a low level put on t he bus by the receiver whereas
the master generates an extra ac knowled ge relat-
ed clock pulse. A slave receiver which is ad-
dressed is obliged to generate an acknowledge
after the reception of each byte that has been
clocked out of the slave transmitter.
The device that acknowledges has to pull down
the SDA line during the acknowledge clock pulse
in such a way that the SDA line is a stable Low dur-
ing the High period of the acknowledge related
clock pulse. Of course, setup and hold times mus t
be taken int o account. A master recei ver must sig-
nal an end of data to the slave transmitter by not
generating an acknowledge on the last byte that
has been clocked out of the slave. In this case the
transmitter must l eave the data l ine High to enable
the mast er to generate the S TOP condition.
7/23
M41T50
Figure 5. Serial Bus Data Transfer Sequen ce
Figure 6. Acknowledgement Sequence
AI00587
DATA
CLOCK
DATA LINE
STABLE
DATA VALID
START
CONDITION CHANGE OF
DATA ALLOWED STOP
CONDITION
AI00601
DATA OUTPUT
BY RECEIVER
DATA OUTPUT
BY TRANSMITTER
SCL FROM
MASTER
START CLOCK PULSE FOR
ACKNOWLEDGEMENT
12 89
MSB LSB
M41T50
8/23
READ Mode
In this mode the master reads the M41T50 slave
after setting the slave address (see Figure
8., page 9). Following the WRITE Mode Control
Bit (R/W=0) and the Acknowledge Bit, the word
address 'An' is written to the on-chip address
pointer. Next the START condition and slave ad-
dress are repeated followed by the READ Mode
Control Bit (R/W=1). At this point the master trans-
mitter becomes the master receiver. The data byte
which was addressed will be transmitted and the
master receiver will send an Acknowledge Bit to
the slave transmitter. The address pointer is only
incremented on reception of an Acknowledge
Clock. The M41T50 slave transmitter will now
place the data byte at address An+1 on the bus,
the master receiver reads and acknowledges the
new byte and the ad dress p ointer is incremented
to “An+2.”
This cycle of reading consecutive addresses will
continue until the master receiver se nds a STOP
condition to the slave transmitter.
The system-to-user transfer of clock data will be
halted whenever the address bei ng read is a clock
address (00h to 07h). The update will re su me due
to a Stop Condition or when the pointer incr ements
to any non-clock address (08h-0Fh).
Note: This is true bot h in READ Mode and WRITE
Mode.
An alternate READ Mode may al so be implement-
ed whereby the master reads the M41T50 slave
without first w ri tin g to the (volatile) addres s point-
er. The first address that is read is the last one
stored in the p ointer (see Figure 9. , page 9).
Figure 7. Slave Address Locat ion
AI00602
R/W
SLAVE ADDRESS
START A
0100011
MSB
LSB
9/23
M41T50
Figure 8. READ Mode Sequence
Figure 9. Alternative RE AD Mode Sequence
WRITE Mod e
In this mode the master transmitter transmits to
the M41T50 slav e receiver. Bus protocol is shown
in Fig ure 10., page 10. Following the STA RT con-
dition and slave address, a logic '0' (R/W=0) is
placed on the bus and indicates to the addressed
dev ic e t h at word addre s s An w ill follo w a nd is t o
be written to the on-chip addres s pointer. The data
word to be written to the memory is strobed in nex t
and the internal address pointer is increme nted to
the next address location on the reception of an
acknowledge clock. The M41T50 slave receiver
will send an acknowledge clock to the master
transmitter after i t has received the slave address
see Figure 7., page 8 and again after it has re-
ceived the word address and each data byte.
AI00899
BUS ACTIVITY:
ACK
S
ACK
ACK
ACK
NO ACK STOP
START
P
SDA LINE
BUS ACTIVITY:
MASTER
R/W
DATA n DATA n+1
DATA n+X
WORD
ADDRESS (An)
SLAVE
ADDRESS
S
START
R/W
SLAVE
ADDRESS
ACK
AI00895
BUS ACTIVITY:
ACK
S
ACK
ACK
ACK
NO ACK STOP
START
PSDA LINE
BUS ACTIVITY:
MASTER
R/W
DATA n DATA n+1 DATA n+X
SLAVE
ADDRESS
M41T50
10/23
Figure 10. WRI TE Mode Se qu e nce
AI00591
BUS ACTIVITY:
ACK
S
ACK
ACK
ACK
ACK STOP
START
PSDA LINE
BUS ACTIVITY:
MASTER
R/W
DATA n DATA n+1 DATA n+X
WORD
ADDRESS (An)
SLAVE
ADDRESS
11/23
M41T50
C LOCK OP ERATION
The eight byte clock register (see Table
2., page 12) is used to both set the clock and to
read the date and time from the clock, in a binary
coded d ecimal f ormat. Reserv ed0, S econds , M in-
utes, and Hours are contained within the first four
registers.
Bits D0 through D2 of Register 04h contain the
Day (day of week). Registers 05h, 06h, and 07h
contain the Date (day of month), Month, and
Years. Bit D 7 of Re gister 01h contains the STOP
Bit (S T). Setting t his bi t to a '1' will cause the oscil-
lator to sto p. When rese t to a '0' the oscillator re-
starts within one second (typical).
Bits D6 and D7 of Clock Register 06h (Century/
Month Register) contain the CENTURY Bit 0
(CB0) and CENTURY Bit 1 (CB1).
Bit D6 of Register 0Ch (Alar m Hour Register) con-
tains the SQW Open Drain Bit (SQWOD). When
this bit is set to '1,' the Square Wave output will be-
come an open drain output and require a pull-up
resistor.
Note: A WRITE to ANY location within the first
eight bytes of the clo ck regi ster (00h -07h), inc lud-
ing the 60Hz Bit and CB0-CB1 Bits wi ll result in an
update of the system clock and a reset of the divid-
er chain. This could result in an inadvertent
change of the current time. These non-clock rel at-
ed bits should be written prior to setting the clock,
and remain unchanged until such time as a new
clock time is also writte n.
The eight Clock Registers may be read one byte at
a time, or in a sequent ial block. Provision has been
made to assure that a clock update does not occur
while any of the eight clock addresses are being
read. If a c lock address is being read, an update of
the clock registers will be halted. T his will prevent
a transition of data duri ng the RE AD.
Digi tal Cl ock Input
The M41T50 requires an external square wave
clock source of 50Hz or 60Hz (45% to 55% duty
cycle) for the clock function. Bit D7 (60Hz bit) of
Register 05h (Date Regi ster) is used to select be-
tween a 50Hz (60Hz Bit = '0') or a 60Hz (60Hz Bit
= '1') clock input frequency signal. The 60Hz Bit
defaults to '1' on power-up.
TIMEKEEPER® Registers
The M41T50 offers 16 internal registers which
contain Clock, Alarm, and Flag Registers. The
Clock registers are memory locations which con-
tain external (user accessible) and internal copies
of the data (usually referred to as BiPORT TIME-
KEEPER cells). T he external copies are indepen-
dent of internal functions except that they are
updated periodically by the simultaneous tran sfer
of the incremented internal copy. The internal di-
vider (or clock) chain will be reset upon the com-
pletion of a WRITE to any clock address (00h to
07h).
The system-to-user transfer of clock data will be
halted whenever the address bei ng read is a clock
address (00h to 07h). The update will resume ei-
ther due to a Stop Condition or when the pointer
increments to a non-clock address.
TIMEKEEPER and Alarm Registers store data in
BCD format.
M41T50
12/23
Table 2. T IME KE EPER® Re gister Map
K eys: 0 = Mus t be set to '0'
AF = A l arm F l ag (Read o nl y)
AFE = Alarm Flag Enable Fla g
CB0-CB1 = Century Bits
OUT = Output level
SQWOD = Sq uare Wave output Open Drai n B i t
RP T 1-RPT5 = A l arm Repeat M ode B i ts
SQWE = Square Wave Enable Bit
ST = Stop Bit
60Hz = 50Hz or 60Hz Sele ct Bit
Addr Function/Range BCD
Format
D7 D6 D5 D4 D3 D2 D1 D0
00h 0 0 0 0 0 0 0 0 Reserved0
01h ST 10 Seconds Seconds Seconds 00-59
02h 0 10 Minutes Minutes Minutes 00-59
03h 0 0 10 Hours Hours (24 Hour Format) Hours 00-23
04h 0 0 0 0 0 Day of Week Day 01-7
05h 60Hz 0 10 Date Date: Day of Month Date 01-31
06h CB1 CB0 0 10M Month Century/
Month 0-3/01-12
07h 10 Years Year Year 00-99
08h OUT 0 0 0 0000Out
09h 0 0 0 0 0 0 0 0 Reserved1
0Ah AFE SQWE 0 Al 10M Alarm Month Al Month 01-12
0Bh RPT4 RPT5 AI 10 Date Alarm Date Al Date 01-31
0Ch RPT3 SQWOD AI 10 Hour Alarm Hour Al Hour 00-23
0Dh RPT2 Alarm 10 Minutes Alarm Minutes Al Min 00-59
0Eh RPT1 Alarm 10 Seconds Alarm Seconds Al Sec 00-59
0Fh0AF000000 Flags
13/23
M41T50
Setting Alarm Clock Registers
Address locations 0Ah-0E h cont ain the alarm se t-
tings. The alarm can be configured to go off at a
prescribed time on a specific month, date, hour,
minute, or second, or repeat every year, month,
day, hour, minute, or second. Bits RPT5–RPT1
put the alarm in the repeat mode of operation. Ta-
ble 3., page 13 shows t he possible configurat ions.
Codes not lis ted in the table def ault to the once per
second m ode to quickly alert the user o f a n incor-
rect alarm s etting.
When the clock information matches the alarm
clock settings based on the match criteria defined
by RPT5–RP T1, the AF (Alarm Flag) is set. If AFE
(Alarm Flag Enable) is also set, the alarm condi-
tion activates the IRQ/OUT pin. To disable the
alarm, write '0' to the Alarm Date Register and to
RPT5–RPT1.
Note: If the address pointer is allowed to incre-
ment to the Flag Registe r ad dress, an alarm con-
dition will not cause the Interrupt/Flag to occur until
the address pointer is moved to a different ad-
dress. It should also be noted that if the last ad-
dress written is the “Alarm Seconds,” the address
pointer will increment to t he F lag address, c ausing
this situation to oc cur.
The IRQ output i s cleared by a READ to the Flags
Register as sho wn in Fi gure 11., page 13. A s ub-
sequent READ of the Flags Regist er is necessary
to see that the value of the Alarm Flag has been
re set to '0. '
Figure 11. Alarm Interrupt Reset Waveform
Table 3. Alarm Repeat Modes
RPT5 RPT4 RPT3 RPT2 RPT1 Alarm Setting
1 1 1 1 1 Once per Second
1 1 1 1 0 Once per Minute
1 1 1 0 0 Once per Hour
11000 Once per Day
1 0 0 0 0 Once per Month
00000 Once per Year
ALARM FLAG BIT (AF)
0Fh0Eh 00h
HIGH-Z
AI09113
IRQ/OUT
M41T50
14/23
Square Wave Output
The M41T50 offers the user a 1Hz square wave
function which is output on the SQW pin. The
SQW pin can be tu rned on and off under software
control with the Square Wave Enable Bit (SQWE )
located in Register 0Ah.
The SQW out put is programm able as an N-chan-
nel, open d rain o utp ut driver, or a full CM OS ou t-
put driver. The initial power-up default for the S QW
output is disabled, in the full-CMOS (or Push-pull
mode). By setting the Square Wave Open Drain
Bit (SQWOD in address 0Ch) to a '1,' the output
will be configured as an open drain (with IOL as
specified i n Table 9., page 17). When SQWOD is
set to '0,' the output will be configured as full-
CMOS (sink and source c urrent as specified in Ta-
ble 9., page 17).
Note: When configured as Open Drain
(SQWOD = '1'), the SQW pin requi res an external
pull-up resistor.
Century Bits
These two bits will increment in a binary fas hion at
the turn of th e century, and handle a ll leap years
co rrectly. See Table 5., page 1 4 for additional ex-
planation.
Output Driver Pin
When t he AFE Bit is not set to g enerate an inter-
rupt, the IRQ/OUT pin becomes an output driver
that reflects the cont ents of D7 of the Out Register.
In other words, when D7 (OUT Bit) is a '0,' then the
IRQ/OUT pi n will be driven low.
Note: The I RQ/OUT pin is an open drain which re-
quires an external pull-up resistor.
In it ial P o wer - o n D efaul ts
Upon application of power to the device, the regis-
ter bit s will initia lly po we r-on in the stat e i ndic ate d
in Table 4.
Table 4 . Initia l Powe r-on D e f a ult Values
Note: 1. All other control bits power-up in an undetermined state.
Tabl e 5. Century Bits Examples
Note: 1. Leap year occurs every four years (for years evenly divisible by four), except for years evenly divisi ble by 100. The only exceptions
are those yea rs evenly divisi bl e by 400 (t he year 200 0 was a lea p year, year 2100 is not ).
Condition ST SQWOD OUT AFE SQWE 60Hz
Initial
Power-up(1) 001001
CB0 CB1 Leap Year? Example(1)
00Yes2000
0 1 No 2100
1 0 No 2200
1 1 No 2300
15/23
M41T50
MAXI MUM RAT IN G
Stressing the device above t he rating l isted in t he
“Absolute Maximum Ratings” table may cause
permanent damage to the device. These are
stress ratings only and operation of the device at
these or any other conditions above those indicat-
ed in the Oper ating sections of this specification i s
not impl ied. Exposure to Absol ute Max imum Ra t-
ing conditions for extended periods may affect de-
vice reliability. Refer also to the
STMicroelectronics S URE P rogram and other rel-
evant quality documents.
Table 6. Absolute Maximum Ratings
Note: 1. Reflow at peak temperature of 260°C (total thermal budg et not to exc eed 245°C for gr eater tha n 30 s econds).
Sym Parameter Value Unit
TSTG Storage Temperature (VCC Off) –55 to 125 °C
VCC Supply Voltage –0.3 to 4.6 V
TSLD(1) Lead Solder Temperature for 10 Seconds 260 °C
VIO Input or Output Vo ltages –0.2 to Vcc+0.2 V
IOOutput Curre nt 20 mA
PDPower Dissipation 1 W
M41T50
16/23
DC AND AC PARAM ETERS
This section summarizes the operating and mea-
surement conditions, as well as the DC and AC
characteristics of the device. The parameters in
the following DC and AC Characteristic tables are
derived from tests pe rf ormed unde r t he Measure-
ment Condition s listed in the relevant tables. De-
signers should check that the operating conditions
in their projects match the measurement condi-
tions when using the quoted parameters.
Table 7. Operating and AC Measurem en t Conditions
Note: 1. 0.2VCC to 0. 9V CC fo r CLKIN input (p in 16)
Figu re 12. AC Measure m e nt I/ O Wa veform
Table 8. Capacitance
Note: 1. Effective c apacitance measured with power supply at 3.6V; samp le d only, not 100% tes ted.
2. At 25° C, f = 1MHz.
3. Outputs deselected .
Parameter M41T50
Supply Voltage (VCC)1.7V to 3.6V
Ambient Operating Temperature (TA)–40 to 85°C
Load Capacitance (CL)50pF
Input Rise and Fall Times 5ns
Input Pulse Voltages 0.2VCC to 0.8 VCC(1)
Input and Output Timing Ref. Voltages 0.3VCC to 0.7 VCC
AI02568
0.8VCC
0.2VCC
0.7VCC
0.3VCC
Symbol Parameter(1,2) Min Max Unit
CIN Input Capacitance 7 pF
COUT(3) Output Capacitance 10 pF
tLP Low-pass filter input time constant (SDA and SCL) 50 ns
17/23
M41T50
Table 9. DC Characteristics
Note: 1. Vali d for Ambient Operating T em perat ure: TA = –40 to 85°C; VCC = 1. 7V to 3.6V (except wher e noted).
2. CL KI N pin = VSS or VCC.
Symb
ol Parameter Test Condition(1) Min Typ Max Unit
VCC Operating Voltage Clock 1.3 3.6 V
I2C bus (400kHz) 1.7 3.6 V
ICC1 Supply Current SCL = 400kHz
(No load)
VCC = 3.6V 400 µA
VCC = 3.0V 350 µA
VCC = 2.5V 300 µA
VCC = 2.0V 250 µA
ICC2 Supply Current (standby)
SCL = 0Hz
All inputs(2)
VCC – 0.2V
VSS + 0.2V
SQW On
(Open Drain)
3.6V 1.3 µA
3.0V 1.2 µA
2.0V 0.9 µA
SQW Off
3.6V 0.7 µA
3.0V 0.65 µA
2.0V 0.6 µA
VIL Input Low Voltage –0.2 0.3VCC V
VIH Input High Voltage 0.9VCC VCC+0.2 V
VOL Output Low Voltage VCC = 3.6V, IOL = 3.0mA (SDA) 0.4 V
VCC = 3.6V, IOL = 1.0mA (IRQ/OUT, SQW) 0.4 V
VOH Output High Voltage VCC = 3.6V, IOH = –1. 0mA (Push -Pull only) 2.4 V
Pull-up Supply Voltage
(Open Drain) IRQ/OUT, SQW (1Hz) 3.6 V
ILI Input Leakage Current 0V VIN VCC(2) ±1 µA
ILO Output Leakage Current 0V VOUT VCC ±1 µA
M41T50
18/23
Figure 13. Bus Timing Requirements Sequence
Table 10. AC Characteristics
Note: 1. Vali d for Ambient Operating T em perat ure: TA = –40 to 85°C; VCC = 1. 7V to 3.6V (except wher e noted).
2. Tran smi tter must internally provide a hold tim e to bridge the undef ined re gion (300ns max) of the falling edge of SCL.
Sym Parameter(1) Min Typ Max Units
fSCL SCL Clock Frequency 0 400 kHz
tLOW Clock Low Period 1.3 µs
tHIGH Clock High Period 600 ns
tRSDA and SCL Rise Time 300 ns
tFSDA and SCL Fall Time 300 ns
tHD:STA START Condition Hold Time
(after this period the first clock pulse is generated) 600 ns
tSU:STA START Condition Setup Time
(only relevant for a repeated start condition) 600 ns
tSU:DAT(2) Data Setup Time 100 ns
tHD:DAT Data Hold Time 0 µs
tSU:STO STOP Condition Setup Time 600 ns
tBUF Time the bus must be free before a new
transmission can start 1.3 µs
AI00589
SDA
PtSU:STOtSU:STA
tHD:STA
SR
SCL
tSU:DAT
tF
tHD:DAT
tR
tHIGH
tLOW
tHD:STAtBUF
SP
19/23
M41T50
P ACKAGE MECHANICAL INFO RMATION
Figure 14. QF N16 – 16-l ead, Qu ad, Flat Package, No Lead, 3x3mm body size, Outline
No te : Drawi ng is not to scale.
A3 A
A1
e
K
K
b
Ch
D2
E2
L
E
D
1
2
ddd
3
QFN16-A
C
M41T50
20/23
Table 11. QFN16 – 16-lead, Quad, Flat Package, No Lead, 3x3mm bod y size, Mechanical Data
Figure 15. QFN16 – 16-lead, Quad , Flat Package, No Lead, 3x3mm, Recommend ed Footpr int
Note: S ubstra t e pad should be tied to VSS.
Symb mm inches
Typ Min Max Typ Min Max
A 0.90 0.80 1.00 0.035 0.032 0.039
A1 0.02 0.00 0.05 0.001 0.000 0.002
A3 0.20 0.008
b 0.25 0.18 0.30 0.010 0.007 0.012
D 3.00 2.90 3.10 0.118 0.114 0.122
D2 1.70 1.55 1.80 0.067 0.061 0.071
E 3.00 2.90 3.10 0.118 0.114 0.122
E2 1.70 1.55 1.80 0.067 0.061 0.071
e0.50– 0.020
K 0.20 0.008
L 0.40 0.30 0.50 0.016 0.012 0.020
ddd 0.08 0.003
Ch –0.33– 0.013
N16 16
0.28
1.60
3.55 2.0
AI09126
21/23
M41T50
PART NUMBERING
Table 12. Ordering Information Scheme
For other options, or for more information on any aspec t of this device, please contact the ST Sales Office
nearest you.
Example: M41T 50 Q 6 F
Device Family
M41T
Device Type and Supply Voltage
50 = VCC = 1.7V to 3.6V
Package
Q = QFN16
Temperature Range
6 = –40°C to 85°C
Shipping Method for SOIC
F = Lead-free Package (ECO PACK®), Tape & Reel
M41T50
22/23
REVISION HISTORY
Table 13. Document Revi sion History
M41T50, 41T50, T50, T62, T63, T64, T65, Serial, Serial, Serial, Serial, Serial, Serial, Serial, Serial, Serial, Serial, Serial, Serial, Ser ial, Ser ial, Serial, Serial, Serial, Serial,
Serial, Serial, Serial, Serial, Serial, Ser ial, Serial, Serial, Se rial, Serial , Seri al, Seria l, Se rial, Serial , Seri al, Seria l, Se rial, Serial, Seri al, Serial, Serial, Serial, Serial, Serial,
Serial, Serial, Serial, Access, Access, A ccess, Access, Access, Access, Access, Access, Access, Access, Access, Access, Access, Access, Access, Access, Access,
Access, Access, Access, Access, Access, A ccess, Access, Access, Access, Access, Access, Access, Access, Access, Access, Access, Access, Access, Access, Ac-
cess, Access, A ccess, Access, Access, Access, Access, Access, Access, Access, Access, Access, Access, A ccess, Access, Access, Access, Access, Access, Access,
Access, Access, Access, A ccess, Access, Access, A ccess, Access, Access, Access, Access, Access, Access, Access, Access, A ccess, Access, Access, Access, Inter-
face, In ter fa ce, Inte rface , In ter fa ce, I nte rf ace , In terfa ce, I nte rf ace, Int erface , In te rfa ce, Int erface , In ter fa ce, I nte r face , In terfa ce, I nte rf ace , Int erfa ce, In te rfa ce, Int erface ,
Inter face , Int erface , In ter fa ce, In te rface, Inte rf ace, Inter face , Int er face , In terfa ce, In ter fa ce, In te rface, Inte rf ace, Inter face , Int er face , In terfa ce, In ter fa ce, In te rface, Inte r-
face, In ter fa ce, Inte rface , In ter fa ce, I nte rf ace , In terfa ce, I nte rf ace, Int erface , In te rfa ce, Int erface , In ter fa ce, I nte r face , In terfa ce, I nte rf ace , Int erfa ce, In te rfa ce, Int erface ,
Inter face , Int erface , In ter fa ce, In te rface, Inte rf ace, Inter face , Int er face , In terfa ce, In ter fa ce, In te rface, Inte rf ace, Inter face , Int er face , In terfa ce, In ter fa ce, In te rface, Inte r-
face, In ter fa ce, Inte rface , In ter fa ce, I nte rf ace , In terfa ce, I nte rf ace, Int erface , In te rfa ce, Int erface , In ter fa ce, I nte r face , In terfa ce, I nte rf ace , Int erfa ce, In te rfa ce, Int erface ,
Interfa ce, In terface, Interface, Interface, Interface, Interface, Interface, C lock, Clock, Clock, Cl ock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clo ck, Clock,
Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock,
Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock,
Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock,
Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock,
RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC,
RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC,
RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, Programmable, Programmable, Programmable, Programmable, Programmable, Programmable, Programm ab le,
Progra mmable, Programm able, Progra mmable, Programm able, Progra mmable, Prog rammable, Progra mmable, Prog rammable, Progra mmable, Pr ogra mmabl e, Pro-
grammable, Programmable, Programmable, Programmable, Programmable, Programmable, Programmable, Programmable, Programmable, Progra mm a b l e , P r ogra m-
m abl e , Prog ra mm ab le, Pr og ra mma b le, Pr og ra mma bl e, Pro gr am ma ble , Pro gr am m abl e, Pro gr am mab le , Pro gra mm ab le , Pr ogr a mm ab le, Pr og ra mm able, Programmabl e,
Progra mmable, Programm able, Progra mmable, Programm able, Progra mmable, Prog rammable, Progra mmable, Prog rammable, Progra mmable, Pr ogra mmabl e, Pro-
grammabl e, Programmable, Programmab l e, Pr ogra m mab le, Programm able, Prog r ammable, Programmable, Prog r ammable Alarm, Programmable Alarm, Programma-
bl e Al arm , P ro g ram ma ble A lar m , Pr og ra mm ab le A la rm , P ro gr amm ab le Al ar m , Pro g ram ma bl e A lar m, Pr og ra mm ab le A la rm , P ro gr am mab le Al arm , Pr og ra mma bl e A lar m,
Alarm, A larm, A larm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm,
Alarm, A larm, A larm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm,
Alarm, A larm, A larm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm,
Alarm, A larm, A larm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm,
Alarm, Alar m, Ala rm, Alar m, Ala rm, Al a rm, Al arm , Alar m, Inter r upt, Int er ru pt, Interr upt, In ter r upt, I nterr u pt, Interr upt, Int er rupt, Inte rrup t, In terr upt , Inte rru pt, Interr upt, In-
terrupt, Interrupt, Interrupt, Interrupt, In terrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrup t, In terrupt, Interrupt, Interrupt, Interrupt, Interr upt, Inter -
rupt, Interrupt, Inter rupt, Interrupt, Interrupt, Interru pt, Interrupt, Interrupt, Interrupt, Inter rupt, Interrupt, Interrupt, Interrupt, Interrup t, In terr upt, Interrupt, Interrupt, Inte rrupt,
Interrupt, Interr upt, Interrupt, Interrupt, Interrupt, Interrupt, Interru pt, Interrupt, In terrupt, Interrupt, Interrup t, Interrupt, Inte rrupt, Interrupt, Interrupt, Interrupt, Inte rrupt, In-
terrupt, Interrupt, Interrupt, Interrupt, In terrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrup t, In terrupt, Interrupt, Interrupt, Interrupt, Interr upt, Inter -
rupt, Interrupt, Inter rupt, Interrupt, Interrupt, Interru pt, Interrupt, Interrupt, Interrupt, Inter rupt, Interrupt, Interrupt, Interrupt, Interrup t, In terr upt, Interrupt, Interrupt, Inte rrupt,
Interrupt, Interr upt, Interrupt, Interrupt, Interrupt, Interrupt, Interru pt, Interrupt, In terrupt, Interrupt, Interrup t, Interrupt, Inte rrupt, Interrupt, Interrupt, Interrupt, Inte rrupt, In-
terrupt, Interrupt, Interrupt, Interrupt, In terrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrup t, In terrupt, Interrupt, Interrupt, Interrupt, Interr upt, Inter -
rupt, Interrupt, Inter rupt, Interrupt, Interrupt, Interru pt, Interrupt, Interrupt, Interrupt, Inter rupt, Interrupt, Interrupt, Interrupt, Interrup t, In terr upt, Interrupt, Interrupt, Inte rrupt,
Interrupt, Interr upt, Interrupt, Interrupt, Interrupt, Interrupt, Interru pt, Interrupt, In terrupt, Interrupt, Interrup t, Interrupt, Inte rrupt, Interrupt, Interrupt, Interrupt, Inte rrupt, In-
terrupt, Interrupt, Interrupt, Interrupt, Inte rru pt, Interrupt, In terrupt, Inter rupt, Interrupt, Interrupt, Interrupt, Inter rupt, Interrupt, Watchdog, W atchdog, Watchdog, Watchdo g,
Watchdog, Watchd og, Watchd og, Watchd og, Watchdog, Watch dog, Wa tchdog, Wa tchdog, Wa tchdog, Watchdog, W atchdog, Watchdog , Watchdog, Watchdog, Watch-
dog, Wat chd og, Wa tch do g, Wat chd og, Wa tch dog , Wat chd og, Watc hdog , Wat chd og, Watc hdog , Wat chdo g, Watc hdog , Wat chdo g, Watc hdog , Wa tc hdog, Watc hdog ,
Watchdog, Watchd og, Watchd og, Watchd og, Watchdog, Watch dog, Wa tchdog, Wa tchdog, Wa tchdog, Watchdog, W atchdog, Watchdog , Watchdog, Watchdog, Watch-
dog, Watch dog , Watc hdog , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , Switchov er, Sw itc ho ver, Sw i tcho ver , Swi tcho ver , Swi tcho v er,
Switchover, Switchover, Swi tchover, Switchover, Backup, Backup, Backup, Backup, Backup, Backup, Backu p, Backup, Backup, Backup, Backup, Backup, Backup, Ba ck-
up, Backup, Bac kup, Backup, Backup, Backup, Back up, Write Pr otec t, Write Protect, Write Protect, Wri te Protec t, Write Protect , Write Protect, Write Protect, Write Pro-
tect, Write Protect, Write Protect, Write Protect, Write Protect, Write Protect, Write Protect, Write Protect, Write Protect, Write Protect, Write Protect, Write Protect, Write
Protect, Wr i te Protec t, Wri te Pr otect, Writ e Pr ot e ct , W ri te Pro t e c t, Wr i te Pr otect, Ind ustr i al , I n dus t ri al , In dustr ia l , Industr ial , In dus tria l, Ind ustr ial , In dust ria l, Indu str ial , In-
dustrial, Industrial, Industri al, vIndustrial, Industrial, Industrial, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT , SNAPHAT, SN AP HA T, SN AP HA T , S NAP H AT ,
SNAPH A T, SNAPH AT , SNAPHAT, SN APH AT, SNAPH AT, SN AP HA T , SN APHAT , SNA PH AT, SN AP HA T , SNAPH AT , SNAPHAT, SNAPHAT, SN APH AT, SN A PH AT ,
SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SOIC, SOIC, SOIC, SO-
IC, SOIC, SOIC, SOIC, SOIC, SOIC, SOIC, SOIC, SOIC, SOIC, SOIC, SOIC
Date Version Revision Details
December 12, 2003 1.0 First Edition
25-Dec-03 1.1 Add crystal isolation, footprint (Figure 13)
15-Jan-04 1.2 Update characteristics (Figure 2, 3, 13; Table 2, 4, 9, 11, 12)
27-Feb-04 1.3 Update characteristics, mechanical information (Figure 4, 14, 15; Table 6, 9, 11)
02-Mar-04 1.4 Update characteristics (Table 7, 9, 10, 12)
26-Apr-04 2.0 Reformat and publish
13-May-04 3.0 Update characteristics (Table 6, 9, 10; Figure 2, 3, 15)
18-Jan-05 4.0 Update characteristics (Figure 4; Table 2, 7, 9)
23/23
M41T50
Information fur nished is believed to b e accurate and relia ble. However, STMicroelectronics a ssumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. S TMi croelectronics product s are not
authorized for us e as cri t i cal com ponents in lif e support devices or sy stems without express written a p proval of STMicr oel ectro nics.
The ST l ogo i s a regist ered tra dem ark of STMi croelectron ics.
All other names are th e property of their respec tive owners
© 200 5 STMicr oel ectro ni cs - All ri ghts reserved
STM i croelectron ics group of compan i es
Aus tralia - Be l gium - B razil - Ca nada - Chi na - Czech R epublic - Finland - France - Germ any - Hong K ong - India - Isra el - It aly - Ja pan -
Malaysia - M a l t a - Moroc co - S i ngapore - Spain - Sweden - Swit zerland - Unite d K i ngdom - United S tates of A m eri ca
www.st.com