Parameter Max. Units
VCES Collector-to-Emitter Voltage 600 V
IC @ TC = 25°C Continuous Collector Current 11.5
IC @ TC = 100°C Continuous Collector Current 6.3
ICM Pulsed Collector Current 23 A
ILM Clamped Inductive Load Current 23
IF @ TC = 100°C Diode Continuous Forward Current 6.3
IFM Diode Maximum Forward Current 23
tsc Short Circuit Withstand Time 10 µs
VISOL RMS Isolation Voltage, Terminal to Case, t = 1 min 2500
VGE Gate-to-Emitter Voltage ± 20
PD @ TC = 25°C Maximum Power Dissipation 34
PD @ TC = 100°C Maximum Power Dissipation 14
TJOperating Junction and -55 to +150
TSTG Storage Temperature Range
Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or M3 Screw. 10 lbfin (1.1 Nm)
IRG4IBC20KDPbF
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
Features
E
G
n-channel
C
VCES = 600V
VCE(on) typ. = 2.27V
@VGE = 15V, IC = 6.3A
Short Circuit Rated
UltraFast IGBT
01/28/2010
High switching speed optimized for up to 25kHz
with low VCE(on)
 Short Circuit Rating 10µs @ 125°C, VGE = 15V
 Generation 4 IGBT design provides tighter
parameter distribution and higher efficiency than
previous generation
 IGBT co-packaged with HEXFREDTM ultrafast,
ultra-soft-recovery anti-parallel diodes for use in
bridge configurations
 Industry standard TO-220 FULLPAK
Lead-Free
Benefits
Absolute Maximum Ratings
W
Generation 4 IGBTs offer highest efficiencies available
maximizing the power density of the system
IGBTs optimized for specific application conditions
 HEXFREDTM diodes optimized for performance with IGBTs.
Minimized recovery characteristics reduce noise EMI
Designed to exceed the power handling capability of
equivalent industry-standard IGBTs
TO-220 FULLPAK
Parameter Typ. Max. Units
RθJC Junction-to-Case - IGBT  3.7
RθCS Junction-to-Case - Diode  5.5 °C/W
RθJA Junction-to-Ambient, typical socket mount  65
Wt Weight 2.0 (0.07)  g (oz)
Thermal Resistance
V
°C
www.irf.com 1
PD -94916A
IRG4IBC20KDPbF
2www.irf.com
Parameter Min. Typ. Max. Units Conditions
QgTotal Gate Charge (turn-on) 34 51 IC = 9.0A
Qge Gate - Emitter Charge (turn-on) 4.9 7.4 nC VCC = 400V See Fig.8
Qgc Gate - Collector Charge (turn-on) 14 21 VGE = 15V
td(on) Turn-On Delay Time 54
trRise Time 34 TJ = 25°C
td(off) Turn-Off Delay Time 180 270 IC = 9.0A, VCC = 480V
tfFall Time 72 110 VGE = 15V, RG = 50
Eon Turn-On Switching Loss 0.34 Energy losses include "tail"
Eoff Turn-Off Switching Loss 0.30 mJ and diode reverse recovery
Ets Total Switching Loss 0.64 0.96 See Fig. 9,10,14
tsc Short Circuit Withstand Time 10 µs VCC = 360V, TJ = 125°C
VGE = 15V, RG = 50 , VCPK < 500V
td(on) Turn-On Delay Time 51 TJ = 150°C, See Fig. 10,11,14
trRise Time 37 IC = 9.0A, VCC = 480V
td(off) Turn-Off Delay Time 220 VGE = 15V, RG = 50
tfFall Time 160 Energy losses include "tail"
Ets Total Switching Loss 0.85 mJ and diode reverse recovery
LEInternal Emitter Inductance 7.5 nH Measured 5mm from package
Cies Input Capacitance 450 VGE = 0V
Coes Output Capacitance 61 pF VCC = 30V See Fig. 7
Cres Reverse Transfer Capacitance 14  = 1.0MHz
trr Diode Reverse Recovery Time 37 55 ns TJ = 25°C See Fig.
5590 T
J = 125°C 14 IF = 8.0A
Irr Diode Peak Reverse Recovery Current 3.5 5.0 A TJ = 25°C See Fig.
4.5 8.0 TJ = 125°C 15 VR = 200V
Qrr Diode Reverse Recovery Charge 65 138 nC TJ = 25°C See Fig.
124 360 TJ = 125°C 16 di/dt = 200Aµs
di(rec)M/dt Diode Peak Rate of Fall of Recovery 240 A/µs TJ = 25°C See Fig.
During tb 210 TJ = 125°C 17
Parameter Min. Typ. Max. Units Conditions
V(BR)CES Collector-to-Emitter Breakdown Voltage600 V VGE = 0V, IC = 250µA
V(BR)CES/T
JTemperature Coeff. of Breakdown Voltage 0.49 V/°C VGE = 0V, IC = 1.0mA
VCE(on) Collector-to-Emitter Saturation Voltage 2.27 2.8 IC = 9.0A VGE = 15V
3.01 V IC = 16A See Fig. 2, 5
2.43 IC = 9.0A, TJ = 150°C
VGE(th) Gate Threshold Voltage 3.0 6.0 VCE = VGE, IC = 250µA
VGE(th)/TJTemperature Coeff. of Threshold Voltage -10 mV/°C VCE = VGE, IC = 250µA
gfe Forward Transconductance 2.9 4.3 S VCE = 100V, IC = 9.0A
ICES Zero Gate Voltage Collector Current 250 µA VGE = 0V, VCE = 600V
1000 VGE = 0V, VCE = 600V, TJ = 150°C
VFM Diode Forward Voltage Drop 1.4 1.7 V IC = 8.0A See Fig. 13
1.3 1.6 IC = 8.0A, TJ = 150°C
IGES Gate-to-Emitter Leakage Current ±100 nA VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
ns
ns
IRG4IBC20KDPbF
www.irf.com 3
0.1 1 10 100
0
1
2
3
4
5
6
7
8
f, Frequency (KHz)
LOAD CURRENT (A)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
For both:
Duty cycle: 50%
T = 125°C
T = 90°C
Gate drive as specified
sink
J
Power Dissipation = W
60% of rated
voltage
I
Ideal diodes
Square wave:
9.5
Fig. 2 - Typical Output Characteristics Fig. 3 - Typical Transfer Characteristics
1
10
100
1 10
V , Collector-to-Emitter Voltage (V)
I , Collector-to-Emitter Current (A)
CE
C
V = 15V
20µs PULSE WIDTH
GE
T = 25 C
Jo
T = 150 C
Jo
1
10
100
510 15 20
V , Gate-to-Emitter Voltage (V)
I , Collector-to-Emitter Current (A)
GE
C
V = 50V
s PULSE WIDTH
CC
T = 25 C
Jo
T = 150 C
Jo
IRG4IBC20KDPbF
4www.irf.com
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
Fig. 4 - Maximum Collector Current vs. Case
Temperature
-60 -40 -20 020 40 60 80 100 120 140 160
1.0
2.0
3.0
4.0
5.0
T , Junction Temperature ( C)
V , Collector-to-Emitter Voltage(V)
J°
CE
V = 15V
80 us PULSE WIDTH
GE
I = A4.5
C
I = A9
C
I = A18
C
9.0A
0.01
0.1
1
10
0.00001 0.0001 0.001 0.01 0.1 1 10
Notes:
1. Duty factor D = t / t
2. Peak T = P x Z + T
1 2
JDM thJC C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response (Z )
1
thJC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)
25 50 75 100 125 150
0
2
4
6
8
10
12
T , Case Temperature ( C)
Maximum DC Collector Current(A)
C°
IRG4IBC20KDPbF
www.irf.com 5
010 20 30 40 50
0.5
0.6
0.7
0.8
R , Gate Resistance (Ohm)
Total Switching Losses (mJ)
G
V = 480V
V = 15V
T = 25 C
I = 9.0A
CC
GE
J
C
°
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
010 20 30 40
0
4
8
12
16
20
Q , Total Gate Charge (nC)
V , Gate-to-Emitter Voltage (V)
G
GE
V= 400V
I = 9.0A
CC
C
1 10 100
0
200
400
600
800
V , Collector-to-Emitter Voltage (V)
C, Capacitance (pF)
CE
V
C
C
C
=
=
=
=
0V,
C
C
C
f = 1MHz
+ C
+ C
C SHORTED
GE
ies ge gc , ce
res gc
oes ce gc
Cies
Coes
Cres
RG , Gate Resistance ( Ω )
-60 -40 -20 020 40 60 80 100 120 140 160
0.1
1
10
T , Junction Temperature ( C )
Total Switching Losses (mJ)
J°
R = Ohm
V = 15V
V = 480V
G
GE
CC
I = A
18
C
I = A
9
C
I = A
4.5
C
50
9.0A
IRG4IBC20KDPbF
6www.irf.com
1
10
100
1 10 100 1000
V = 20V
T = 125 C
GE
Jo
SAFE OPERATING AREA
V , Collector-to-Emitter Voltage (V)
I , Collector Current (A)
CE
C
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
Fig. 12 - Turn-Off SOA
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
0.1
1
10
100
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2
FM
F
Instantaneous Forward Current - I (A)
Forward Voltage Drop - V (V)
T = 150°C
T = 125°C
T = 25°C
J
J
J
04812 16 20
0.0
1.0
2.0
3.0
I , Collector-to-emitter Current (A)
Total Switching Losses (mJ)
C
R = Ohm
T = 150 C
V = 480V
V = 15V
G
J
CC
GE
°
50
IRG4IBC20KDPbF
www.irf.com 7
Fig. 14 - Typical Reverse Recovery vs. dif/dt Fig. 15 - Typical Recovery Current vs. dif/dt
Fig. 16 - Typical Stored Charge vs. dif/dt Fig. 17 - Typical di(rec)M/dt vs. dif/dt
0
100
200
300
400
500
100 1000
f
di /dt - (A/µs)
RR
Q - (nC)
I = 16A
I = 8.0A
I = 4.0A
F
F
F
V = 200V
T = 125°C
T = 25°C
R
J
J
100
1000
10000
100 1000
f
di /dt - (A/µs)
di(rec)M/dt - (A/µs)
I = 16A
I = 8.0A
I = 4.0A
F
F
F
V = 200V
T = 125°C
T = 25°C
R
J
J
0
20
40
60
80
100
100 1000
f
di /dt - (A/µs)
t - (ns)
rr
I = 16A
I = 8.0A
I = 4.0A
F
F
F
V = 200V
T = 125°C
T = 25°C
R
J
J
1
10
100
100 1000
f
di /dt - (A/µs)
I - (A)
IRRM
I = 16A
I = 8.0A
I = 4.0A
F
F
F
V = 200V
T = 125°C
T = 25°C
R
J
J
IRG4IBC20KDPbF
8www.irf.com
Same type
device as
D.U.T.
D.U.T.
430µF
80%
of Vce
Fig. 18a - Test Circuit for Measurement of
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
t1
Ic
Vce
t1 t2
90% Ic
10% Vce
td(off) tf
Ic
5% Ic
t1+S
Vce ic dt
90% Vge
+Vge
Eoff =
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
Vce ie dt
t2
t1
5% Vce
Ic
Ipk
Vcc 10% Ic
Vce
t1 t2
DUT VOLTAGE
AND CURRENT
GATE VOLTAGE D.U.T.
+Vg
10% +Vg
90% Ic
tr
td(on)
DIODE REVERSE
RECOVERY ENERGY
tx
Eon =
Erec =
t4
t3
Vd id dt
t4
t3
DIODE RECOVERY
WAVEFORMS
Ic
Vpk
10% Vcc
Irr
10% Irr
Vcc
trr
Qrr =
trr
tx
id dt
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
Vc Ic dt
Vce Ic dt
Ic dt
Vce Ic dt
IRG4IBC20KDPbF
www.irf.com 9
Vg GATE SIGNAL
DEVICE UNDER TES
T
CURRENT D.U.T.
VOLTAGE IN D.U.T.
CURRENT IN D1
t0 t1 t2
Figure 19. Clamped Inductive Load Test Circuit Figure 20. Pulsed Collector Current
Test Circuit
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
D.U.T.
V *
c
50V
L
1000V
6000µF
100V
0 - VCC
RLICM
VCC
=
480µF
IRG4IBC20KDPbF
10 www.irf.com
Notes:
Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature
(figure 20)
VCC=80%(VCES), VGE=20V, L=10µH, RG= 50(figure 19)
Pulse width 80µs; duty factor 0.1%.
Pulse width 5.0µs, single shot.
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.01/2010
TO-220AB Full-Pak Package Outline
Dimensions are shown in millimeters (inches)
TO-220AB Full-Pak Part Marking Information
/2*2,17+($66(0%/</,1(.
$66(0%/('21::
(;$03/(
/27&2'(
7+,6,6$1,5),*
:,7+$66(0%/< 3$57180%(5
,17(51$7,21$/
5(&7,),(5
.
,5),*
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH /,1(.
:((.
<($5 
'$7(&2'(
/27&2'(
$66(0%/<

TO-220AB Full-Pak package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/