PD -94916A IRG4IBC20KDPbF INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features Short Circuit Rated UltraFast IGBT C High switching speed optimized for up to 25kHz with low VCE(on) Short Circuit Rating 10s @ 125C, VGE = 15V Generation 4 IGBT design provides tighter parameter distribution and higher efficiency than previous generation IGBT co-packaged with HEXFREDTM ultrafast, ultra-soft-recovery anti-parallel diodes for use in bridge configurations Industry standard TO-220 FULLPAK Lead-Free VCES = 600V VCE(on) typ. = 2.27V G @VGE = 15V, IC = 6.3A E n-channel Benefits Generation 4 IGBTs offer highest efficiencies available maximizing the power density of the system IGBTs optimized for specific application conditions HEXFREDTM diodes optimized for performance with IGBTs. Minimized recovery characteristics reduce noise EMI Designed to exceed the power handling capability of equivalent industry-standard IGBTs TO-220 FULLPAK Absolute Maximum Ratings Parameter VCES IC @ TC = 25C IC @ TC = 100C ICM ILM IF @ TC = 100C IFM tsc VISOL VGE PD @ TC = 25C PD @ TC = 100C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Diode Continuous Forward Current Diode Maximum Forward Current Short Circuit Withstand Time RMS Isolation Voltage, Terminal to Case, t = 1 min Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw. Max. Units 600 11.5 6.3 23 23 6.3 23 10 2500 20 34 14 -55 to +150 V A s V W C 300 (0.063 in. (1.6mm) from case) 10 lbfin (1.1 Nm) Thermal Resistance Parameter RJC RCS RJA Wt www.irf.com Junction-to-Case - IGBT Junction-to-Case - Diode Junction-to-Ambient, typical socket mount Weight Typ. Max. 2.0 (0.07) 3.7 5.5 65 Units C/W g (oz) 1 01/28/2010 IRG4IBC20KDPbF Electrical Characteristics @ TJ = 25C (unless otherwise specified) V(BR)CES V(BR)CES/TJ VCE(on) VGE(th) VGE(th)/TJ gfe ICES VFM IGES Parameter Min. Typ. Max. Units Collector-to-Emitter Breakdown Voltage 600 V Temperature Coeff. of Breakdown Voltage 0.49 V/C Collector-to-Emitter Saturation Voltage 2.27 2.8 3.01 V 2.43 Gate Threshold Voltage 3.0 6.0 Temperature Coeff. of Threshold Voltage -10 mV/C Forward Transconductance 2.9 4.3 S Zero Gate Voltage Collector Current 250 A 1000 Diode Forward Voltage Drop 1.4 1.7 V 1.3 1.6 Gate-to-Emitter Leakage Current 100 nA Conditions VGE = 0V, IC = 250A VGE = 0V, IC = 1.0mA IC = 9.0A VGE = 15V See Fig. 2, 5 IC = 16A IC = 9.0A, TJ = 150C VCE = VGE, IC = 250A VCE = VGE, IC = 250A VCE = 100V, IC = 9.0A VGE = 0V, VCE = 600V VGE = 0V, VCE = 600V, TJ = 150C IC = 8.0A See Fig. 13 IC = 8.0A, TJ = 150C VGE = 20V Switching Characteristics @ TJ = 25C (unless otherwise specified) Qg Qge Qgc t d(on) tr td(off) tf Eon Eoff Ets tsc Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Short Circuit Withstand Time t d(on) tr td(off) tf Ets LE Cies Coes Cres trr Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Irr Diode Peak Reverse Recovery Current Qrr Diode Reverse Recovery Charge di(rec)M/dt Diode Peak Rate of Fall of Recovery During tb 2 Min. 10 Typ. Max. Units Conditions 34 51 IC = 9.0A 4.9 7.4 nC VCC = 400V See Fig.8 14 21 VGE = 15V 54 34 TJ = 25C ns 180 270 IC = 9.0A, VCC = 480V 72 110 VGE = 15V, RG = 50 0.34 Energy losses include "tail" 0.30 mJ and diode reverse recovery 0.64 0.96 See Fig. 9,10,14 s VCC = 360V, TJ = 125C VGE = 15V, RG = 50 , VCPK < 500V 51 TJ = 150C, See Fig. 10,11,14 37 IC = 9.0A, VCC = 480V ns 220 VGE = 15V, RG = 50 160 Energy losses include "tail" 0.85 mJ and diode reverse recovery 7.5 nH Measured 5mm from package 450 VGE = 0V 61 pF VCC = 30V See Fig. 7 14 = 1.0MHz 37 55 ns TJ = 25C See Fig. 55 90 TJ = 125C 14 IF = 8.0A 3.5 5.0 A TJ = 25C See Fig. 4.5 8.0 TJ = 125C 15 VR = 200V 65 138 nC TJ = 25C See Fig. 124 360 TJ = 125C 16 di/dt = 200As 240 A/s TJ = 25C See Fig. 210 TJ = 125C 17 www.irf.com IRG4IBC20KDPbF 8 For both: 7 Duty cycle: 50% TJ = 125C Tsink = 90C Gate drive as specified LOAD CURRENT (A) 6 Power Dissipation = 9.5 W 5 Square wave: 60% of rated voltage 4 3 I 2 Ideal diodes 1 0 0.1 1 10 100 f, Frequency (KHz) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) 100 TJ = 25 o C TJ = 150 o C 10 1 V GE = 15V 20s PULSE WIDTH 1 10 VCE , Collector-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics www.irf.com I C, Collector-to-Emitter Current (A) I C , Collector-to-Emitter Current (A) 100 10 TJ = 150 o C TJ = 25 oC 1 V CC = 50V 5s PULSE WIDTH 5 10 15 20 VGE , Gate-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics 3 IRG4IBC20KDPbF 5.0 VCE , Collector-to-Emitter Voltage(V) Maximum DC Collector Current(A) 12 10 8 6 4 2 0 25 50 75 100 125 IC = 18 A 4.0 3.0 IC = 9.0A 9A IC = 4.5 A 2.0 1.0 -60 -40 -20 150 TC , Case Temperature ( C) Fig. 4 - Maximum Collector Current vs. Case Temperature VGE = 15V 80 us PULSE WIDTH 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( C) Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature Thermal Response (Z thJC ) 10 D = 0.50 1 0.20 0.10 0.05 0.1 0.01 0.00001 PDM 0.02 t1 0.01 SINGLE PULSE (THERMAL RESPONSE) t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = PDM x Z thJC + TC 0.0001 0.001 0.01 0.1 1 10 t1, Rectangular Pulse Duration (sec) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com IRG4IBC20KDPbF 20 VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc VGE , Gate-to-Emitter Voltage (V) C, Capacitance (pF) 800 600 Cies 400 200 Coes VCC = 400V I C = 9.0A 16 12 8 4 Cres 0 1 10 0 100 VCE , Collector-to-Emitter Voltage (V) Total Switching Losses (mJ) Total Switching Losses (mJ) 10 V CC = 480V V GE = 15V TJ = 25 C I C = 9.0A 0.6 0 10 20 30 40 RRGG ,, Gate Resistance( (Ohm) Gate Resistance ) Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com 20 30 40 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage 0.7 0.5 10 QG , Total Gate Charge (nC) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage 0.8 0 50 RG 50 = Ohm VGE = 15V VCC = 480V IC = 18 A 1 IC = 9.0A 9A IC = 4.5 A 0.1 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( C ) Fig. 10 - Typical Switching Losses vs. Junction Temperature 5 IRG4IBC20KDPbF 100 = 50 Ohm = 150 C = 480V = 15V I C , Collector Current (A) RG TJ VCC VGE 2.0 1.0 0.0 0 4 8 12 16 10 1 20 VGE = 20V T J = 125 o C SAFE OPERATING AREA 1 I C, Collector-to-emitter Current (A) 10 100 1000 VCE, Collector-to-Emitter Voltage (V) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current Fig. 12 - Turn-Off SOA 100 Instantaneous Forward Current - I F (A) Total Switching Losses (mJ) 3.0 10 TJ = 150C TJ = 125C TJ = 25C 1 0.1 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 Forward Voltage Drop - V FM (V) Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current 6 www.irf.com IRG4IBC20KDPbF 100 100 VR = 200V TJ = 125C TJ = 25C VR = 200V TJ = 125C TJ = 25C 80 60 I F = 8.0A 40 I IRRM - (A) t rr - (ns) IF = 16A I F = 16A 10 IF = 8.0A I F = 4.0A I F = 4.0A 20 0 100 1 100 1000 di f /dt - (A/s) Fig. 14 - Typical Reverse Recovery vs. dif/dt di f /dt - (A/s) 1000 Fig. 15 - Typical Recovery Current vs. dif/dt 500 10000 VR = 200V TJ = 125C TJ = 25C VR = 200V TJ = 125C TJ = 25C di(rec)M/dt - (A/s) Q RR - (nC) 400 300 I F = 16A 200 I F = 8.0A 1000 IF = 4.0A IF = 8.0A I F = 16A 100 IF = 4.0A 0 100 di f /dt - (A/s) Fig. 16 - Typical Stored Charge vs. dif/dt www.irf.com 1000 100 100 di f /dt - (A/s) 1000 Fig. 17 - Typical di(rec)M/dt vs. dif/dt 7 IRG4IBC20KDPbF 90% Vge Same type device as D.U.T. +Vge Vce 430F 80% of Vce D.U.T. Ic 90% Ic 10% Vce Ic 5% Ic td(off) tf Eoff = Fig. 18a - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf t1+5S Vce icIcdtdt Vce t1 t1 t2 Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining Eoff, td(off), tf GATE VOLTAGE D.U.T. 10% +Vg trr Ic Qrr = tx DUT VOLTAGE AND CURRENT Vce 10% Ic 90% Ic tr td(on) 10% Irr Ipk Vpk Vcc Irr Ic DIODE RECOVERY WAVEFORMS 5% Vce t1 t2 VceieIcdtdt Eon = Vce t1 t2 DIODE REVERSE RECOVERY ENERGY t3 Fig. 18c - Test Waveforms for Circuit of Fig. 18a, Defining Eon, td(on), tr 8 +Vg 10% Vcc Vcc trr id Ic dtdt tx t4 Erec = Vd VcidIcdt dt t3 t4 Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining Erec, trr, Qrr, Irr www.irf.com IRG4IBC20KDPbF Vg GATE SIGNAL DEVICE UNDER TEST CURRENT D.U.T. VOLTAGE IN D.U.T. CURRENT IN D1 t0 t1 t2 Figure 18e. Macro Waveforms for Figure 18a's Test Circuit RL = VCC ICM D.U.T. L 1000V Vc* 50V 6000F 100V Figure 19. Clamped Inductive Load Test Circuit www.irf.com 0 - VCC 480F Figure 20. Pulsed Collector Current Test Circuit 9 IRG4IBC20KDPbF TO-220AB Full-Pak Package Outline Dimensions are shown in millimeters (inches) TO-220AB Full-Pak Part Marking Information (;$03/( 7+,6,6$1,5),* :,7+$66(0%/< /27&2'( $66(0%/('21:: ,17+($66(0%/