DESCRIPTION
The 4N39 and 4N40 have a gallium-arsenide infrared
emitting diode optically coupled with a light activated sil-
icon controlled rectifier in a dual in-line package.
PHOTO SCR OPTOCOUPLERS
4N39 4N40
APPLICATIONS
• Low power logic circuits
• Telecommunications equipment
• Portable electronics
• Solid state relays
• Interfacing coupling systems of different potentials and impedances.
FEATURES
• 10 A, T2L compatible, solid state relay
• 25 W logic indicator lamp driver
• 400 V symmetrical transistor coupler
• Underwriters Laboratory (UL) recognized File #E90700
6
1
6
1
6
1
CATHODE
ANODE
1
2
3
ANODE
CATHODE
4
5
6GATE
N/C
SCHEMATIC
Parameter Symbol Device Value Units
TOTAL DEVICE TSTG All -55 to +150 °C
*Storage Temperature
*Operating Temperature TOPR All -55 to +100 °C
*Lead Solder Temperature TSOL All 260 for 10 sec °C
*Total Device Power Dissipation (-55°C to 50 °C) PDAll 450 mW
Derate above 50°C 9.0 mW/°C
EMITTER IFAll 60 mA
*Continuous Forward Current
*Reverse Voltage VRAll 6 V
*Forward Current - Peak (300 µs, 2% Duty Cycle) IF(pk) All 1.0 A
*LED Power Dissipation (-55°C to 50 °C) PDAll 100 mW
Derate above 50°C 2.0 mW/°C
DETECTOR
*Off-State And Reverse Voltage 4N39 200 V
4N40 400 V
*Peak Reverse Gate Voltage 6V
*Direct On-State Current 300 mA
*Surge On-State Current (100 µs) 10 A
*Peak Gate Current 10 mA
*Detector Power Dissipation (-55°C to 50°C) PDAll 400 mW
Derate above 50°C 8.0 mW/°C
2001 Fairchild Semiconductor Corporation
DS300381 2/27/01 1 OF 8 www.fairchildsemi.com
Note
* Indicates JEDEC Registered Data
** Typical values at TA= 25°C
Parameter Test Conditions Symbol Device Min Typ** Max Unit
EMITTER
Input Forward Voltage IF= 10 mA VFAll 1.1 1.5 V
Reverse Leakage Current VR= 3 V IRAll 10 µA
Capacitance VF= 0 V, f = 1.0 MHz CJAll 50 pF
DETECTOR
Peak Off-State Voltage RGK = 10 kΩ, TA=100 °C VDM 4N39 200 V
4N40 400
Peak Reverse Voltage TA=100 °C VRM 4N39 200 V
4N40 400
On-State Voltage IT= 300 mA VTAll 1.3 V
Off-State Current VDM = 200 V, TA = 100 °C, IDM 4N39 50 µA
IF = 0 mA, RGK = 10 k4N40 150
Reverse Current VR= 200 V, TA=100 °C, IF= 0 mA IR4N39 50 µA
4N40 150
Holding Current VFx = 50V, RGK = 27 kIHAll 1.0 mA
INDIVIDUAL COMPONENT CHARACTERISTICS
ELECTRICAL CHARACTERISTICS (TA= 25°C Unless otherwise specified.)
Characteristic Test Conditions Symbol Min Typ** Max Units
*Input-Output Isolation Voltage ( II-0 1 µA, Vrms, t = 1 min.) VISO 5300 Vac(rms)
*Isolation Resistance (VI-O = 500 VDC) RISO 1011 !
Isolation Capacitance (VI-O = ∅, f = 1 MHz) CISO 0.8 pf
ISOLATION CHARACTERISTICS
Characteristics Test Conditions Symbol Device Min Typ** Max Units
*Input Current to Trigger VAK = 50 V, RGK = 10 kIFT 4N39 30 mA
VAK = 100 V, RGK = 27 k4N40 14
*Turn-On Time VAK = 50 V, IF= 30 mA ton ALL 50 µA
RGK = 10 k, RL = 200
Package Capacitance f = 1 MHz CI-O ALL 2 pF
(input to output) Input to Output Voltage = 0
Coupled dv/dt, input to output dV/dt ALL 500 V/µS
(figure 13)
TRANSFER CHARACTERISTICS (TA= 25°C Unless otherwise specified.)
PHOTO SCR OPTOCOUPLERS
4N39 4N40
www.fairchildsemi.com 2 OF 8 2/27/01 DS300381
Note
* Indicates JEDEC Registered Data
** Typical values at TA= 25°C
50
5
10
1
.5
.1 51 10 50 100 200 400
VAK - ANODE TO CATHODE VOLTAGE (VOLTS)
Figure 1. Input Current To Trigger vs. Anode-Cathode Voltage
IFT - NORMALIZED INPUT CURRENT TO TRIGGER
100
1000
10
1
.01
0
.001 0.5 1.0 2.0 3.0
VAK - FORWARD VOLTAGE (VOLTS)
Figure 6. Input Characteristics IF vs. VF
IF - FORWARD CURRENT (MILLIAMPERES)
40
100
4
6
8
20
2
10
1
.2
.1
.6
.8
.4
21486 10 20 40 60 100 200 400 1000
PULSE WIDTH (MICRO SECONDS)
Figure 4. Input Current To Trigger vs. Pluse Width
IFT - NORMALIZED INPUT CURRENT TO TRIGGER
Figure 3. Input Current To Trigger Distribution vs. Temperature
.4
.2
.1
1
.8
.6
6
4
2
12
10
8
-40-60 -20 0 20 40 60 80 100 120
-40 -20 0 20 40 60 80 100
TA - AMBIENT TEMPERATURE (˚C)
TA - AMBIENT TEMPERATURE (˚C)
Figure 2. Input Current To Trigger vs. Temperature
IFT - NORMALIZED INPUT CURRENT TO TRIGGER
.4
.2
.1
1
.8
.6
6
4
2
10
8
IFT - NORMALIZED INPUT CURRENT TO TRIGGER
4
6
8
12
2
10
16
14
20
18
24
22
2010 30 5040 60 70 80 90 100
IF - INPUT CURRENT (MILLIAMPERES)
Figure 5. Turn-On Time vs. Input Current
ton - TURN ON TIME (MICROSECONDS)
RGK = 300
1K
RGK = 300
1K
NORMALIZED TO
VAK = 50V
RGK = 10K
TA = 25˚C
NORMALIZED TO
VAK = 50V
RGK = 10K
TA = 25˚C
VAK = 50V
ton = td + Ir
tr 1µS
NORMALIZED TO
VAK = 50V
RGK = 10K
TA = 25˚C
NORMALIZED TO
VAK = 50V
RGK = 10K
TA = 25˚C
10K
27K
56K
10K
27K
56K
1K
10K
27K
56K
RGK = 300
90 TH PERCENTILE
10 TH PERCENTILE
10K
56K
RGK = 1K
PHOTO SCR OPTOCOUPLERS
4N39 4N40
DS300381 2/27/01 3 OF 8 www.fairchildsemi.com
0 25 50 75 100
Figure 9. Off-State Forward Current vs. Temperature
IM - HOLDING CURRENT (MICROAMPERES)
TRANSIENT THERMAL IMPEDANCE (˚C PER WATT)
5,000
10,000
500
1000
100
50
10 -20-40 0 20 40 60 80 100
TA - AMBIENT TEMPERATURE (˚C)
TIME (SECONDS)
TA - AMBIENT TEMPERATURE (˚C)
Figure 7. Holding Current vs. Temperature
IFT - NORMALIZED INPUT CURRENT TO TRIGGER
ID - NORMALIZED FORWARD CURRENT (OFF STATE)
5000
10,000
500
1000
100
50
10
5
1
30
100
20
10
60
50
40
90
80
70
0.2 0.4 0.6 08 10
ON-STATE CURRENT (AMPERES)
Figure 10. On-State Current vs. Maximum Allowable Temperature
MAXIMUM ALLOWABLE TEMPERATURE (˚C)
Figure 12. On-State Characteristics
010203040
VT - ON-STATE VOLTAGE (VOLTS)
.-2
.01
.06
.08
.01
.04
.6
.4
1
.8
.2
2
IT - ON-STATE CURRENT (AMPERES)
RGK = 300
1K
10K
27K
56K
1K
56K
400V 50V
VAK = 50V
NORMALIZED TO
VAK +50V
TA +25˚C
.0004 .001 .002 .004.0001
.0002 .01 .02 .04 1 2 4 10 20 40 100
Figure 8. Maximum Transient Thermal Impedance
40
1000
10
20
100
200
400
600
60
6
4
2
1
25 50 75 100
Figure 11. dv/dt vs. Temperature
TA - AMBIENT TEMPERATURE (˚C)
dV/dI - CRITICAL RATE OF RISE APPLIED FORWARD VOLTAGE ( Volt/µ sec)
500
1000
100
50
10
5
1.0
.5
ANODE LEAD TEMP
DC CURRENT
AMBIENT TEMP
HALF-SINE
WAVE AVGERAGE ANODE LEAD TEMP
1/2 SINE WAVE AVERAGE
AMBIENT TEMP
DC CURRENT
10K
27K
RGK = 300
JUNCTION TEMPERATURE = 100˚C
INCREASES TO FORW ARD
BREAK O VER VOLTAGE
JUNCTION TEMPERATURE = 25˚C
NOTE: (1) LEAD TEMPERATURE MEASURED AT THE WIDEST PORTION
OF THE SCR ANODE LEAD
(2) AMBIENT TEMPERATURE MEASURED AT A POINT
1/2" FROM THE DEVICE
JUNCTION TO AMBIENT
JUNCTION TO LEAD
www.fairchildsemi.com 4 OF 8 2/27/01 DS300381
PHOTO SCR OPTOCOUPLERS
4N39 4N40
+5V 470
"COIL"
4N40
56K
100
47
47
SC1460 0.1
µ
F
LOAD
"CONTACT"
220 V AC
IN5060 (4)
TYPICAL APPLICATIONS
DS300381 2/27/01 5 OF 8 www.fairchildsemi.com
PHOTO SCR OPTOCOUPLERS
4N39 4N40
Fig. 13 Coupled dv/dt - Test Circuit
tp
+DUT
-
Vp
H
EXPONENTIAL OSCILLOSCOPE
10 K
RAMP GEN.
100
+100 V AC
Vp = 800 Volts
tp = .010 Seconds
f = 25 Hertz
T
A
= 25
°
C
dV / dt
.63 Vp
Vp
10A, T2L COMPATIBLE, SOLID
STATE RELAY
Use of the 4N40 for high sensi-
tivity, 5300 V isolation capability,
provides this highly reliable solid
state relay design. This design is
compatible with 74, 74S and 74H
series T2L logic systems inputs
and 220V AC loads up to 10A.
LOGIC
+5V
56K
470
4N40
0.1
µ
F
220 V AC
100
INPUT
INDICATER
LAMP
25W, LOGIC INDICATOR LAMP DRIVER
The high surge capability and non-reactive input
characteristics of the 4N40 allow it to directly couple,
without buffers, T2L and DTL logic to indicator alarm
devices, without danger of introducing noise and
logic glitches.
OUTPUT
INPUT
4N40
400V SYMMETRICAL TRANSISTOR COUPLER
Use of the high voltage PNP portion of the 4N40 provides a 400V transistor
capable of conducting positive and negative signals with current transfer
ratios of over 1%. This function is useful in remote instrumentation, high volt-
age power supplies and test equipment. Care should be taken not to exceed
the 40mW power dissipation rating when used at high voltages.
Lead Coplanarity : 0.004 (0.10) MAX
0.270 (6.86)
0.240 (6.10)
0.350 (8.89)
0.330 (8.38)
0.300 (7.62)
TYP
0.405 (10.30)
MAX
0.315 (8.00)
MIN
0.016 (0.40) MI N
2
5
PIN 1
ID.
0.016 (0.41)
0.008 (0.20)
0.100 (2.54)
TYP
0.022 (0.56)
0.016 (0.41)
0.070 (1.78)
0.045 (1.14)
0.200 (5.08)
0.165 (4.18)
4
3
0.020 (0.51)
MIN
1
6
0.100 (2.54)
TYP
0.020 (0.51)
MIN
0.350 (8.89)
0.330 (8.38)
0.270 (6.86)
0.240 (6.10)
PIN 1
ID.
0.022 (0.56)
0.016 (0.41)
0.070 (1.78)
0.045 (1.14)
0.200 (5.08)
0.135 (3.43)
0.300 (7.62)
TYP
0° to 15°
0.154 (3.90)
0.100 (2.54)
SEATING PLANE
0.016 (0.40)
0.008 (0.20)
SEATING PLANE
0.016 (0.40)
0.008 (0.20)
0.070 (1.78)
0.045 (1.14)
0.350 (8.89)
0.330 (8.38)
0.154 (3.90)
0.100 (2.54)
0.200 (5.08)
0.135 (3.43)
0.004 (0.10)
MIN
0.270 (6.86)
0.240 (6.10)
0.400 (10.16)
TYP
0° to 15°
0.022 (0.56)
0.016 (0.41) 0.100 (2.54) TYP
NOTE
All dimensions are in inches (millimeters)
0.070 (1.78)
0.060 (1.52)
0.030 (0.76)
0.100 (2.54)
0.295 (7.49)
0.415 (10.54)
Packa ge Dimensions (Surface Mount)Packa ge Dimensions (T hrough Hole)
Package Dimensions (0.4”Lead Spacing) Recommended Pad Layout for
Surface Mount Leadfor m
www.fairchildsemi.com 6 OF 8 2/27/01 DS30381
PHOTO SCR OPTOCOUPLERS
4N39 4N40
S .S Surface Mount Lead Bend
SD .SD Surface Mount; Tape and reel
W .W 0.4” Lead Spacing
300 .300 VDE 0884
300W .300W VDE 0884, 0.4” Lead Spacing
3S .3S VDE 0884, Surface Mount
3SD .3SD VDE 0884, Surface Mount, Tape & Reel
Option Order Entry Identifier Description
4.0 ± 0.1
Ø1.55 ± 0.05
User Direction of Feed
4.0 ± 0.1
1.75 ± 0.10
7.5 ± 0.1
16.0 ± 0.3
12.0 ± 0.1
0.30 ± 0.05
13.2 ± 0.2
4.85 ± 0.20
0.1 MAX 10.30 ± 0.20
9.55 ± 0.20
Ø1.6 ± 0.1
Carrier Tape Specifications (“D” Taping Orientation)
ORDERING INFORMATION
NOTE
All dimensions are millimeters
DS300381 2/27/01 7 OF 8 www.fairchildsemi.com
PHOTO SCR OPTOCOUPLERS
4N39 4N40
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE
TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT
ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT
DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE
RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD
SEMICONDUCTOR CORPORATION. As used herein:
1. Life support devices or systems are devices or
systems which, (a) are intended for surgical
implant into the body,or (b) support or sustain life,
and (c) whose failure to perform when properly
used in accordance with instructions for use provided
in labeling, can be reasonably expected to result in a
significant injury of the user.
2. A critical component in any component of a life support
device or system whose failure to perform can be
reasonably expected to cause the failure of the life
support device or system, or to affect its safety or
effectiveness.
PHOTO SCR OPTOCOUPLERS
4N39 4N40
www.fairchildsemi.com 8 OF 8 2/27/01 DS30381