1
MRF136 MRF136YMOTOROLA RF DEVICE DATA
The RF MOSFET Line
 !
  
   
. . . designed for wideband large–signal amplifier and oscillator applications up
to 400 MHz range, in either single ended or push–pull configuration.
Guaranteed 28 Volt, 150 MHz Performance
MRF136 MRF136Y
Output Power = 15 Watts Output Power = 30 Watts
Narrowband Gain = 16 dB (Typ) Broadband Gain = 14 dB (Typ)
Efficiency = 60% (Typical) Efficiency = 54% (Typical)
Small–Signal and Large–Signal
Characterization
100% Tested For Load
Mismatch At All Phase
Angles With 30:1 VSWR
Space Saving Package For
Push–Pull Circuit
Applications — MRF136Y
Excellent Thermal Stability,
Ideally Suited For Class A
Operation
Facilitates Manual Gain
Control, ALC and
Modulation Techniques
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Rating
Symbol
MRF136 MRF136Y
Unit
Drain–Source Voltage VDSS 65 65 Vdc
Drain–Gate Voltage (RGS = 1.0 M) VDGR 65 65 Vdc
Gate–Source Voltage VGS ±40 Vdc
Drain Current — Continuous ID2.5 5.0 Adc
Total Device Dissipation @ TC = 25°C
Derate above 25°CPD55
0.314 100
0.571 Watts
W/°C
Storage Temperature Range Tstg 65 to +150 °C
Operating Junction Temperature TJ200 °C
THERMAL CHARACTERISTICS
Characteristic
Symbol
Max
Unit
Characteristic
Symbol
MRF136 MRF136Y
Unit
Thermal Resistance, Junction to Case RθJC 3.2 1.75 °C/W
Handling and Packaging — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and
packaging MOS devices should be observed.
Order this document
by MRF136/D

SEMICONDUCTOR TECHNICAL DATA

15 W, 30 W, to 400 MHz
N–CHANNEL
MOS BROADBAND
RF POWER FETs
CASE 211–07, STYLE 2
MRF136
CASE 319B–02, STYLE 1
MRF136Y
Motorola, Inc. 1994
D
G
S
D
GS
(FLANGE)
MRF136
MRF136Y
D
G
REV 6
MRF136 MRF136Y
2MOTOROLA RF DEVICE DATA
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted.)
Characteristic Symbol Min Typ Max Unit
OFF CHARACTERISTICS (1)
Drain–Source Breakdown Voltage
(VGS = 0, ID = 5.0 mA) V(BR)DSS 65 Vdc
Zero–Gate Voltage Drain Current
(VDS = 28 V, VGS = 0) IDSS 2.0 mAdc
Gate–Source Leakage Current
(VGS = 40 V, VDS = 0) IGSS 1.0 µAdc
ON CHARACTERISTICS (1)
Gate Threshold Voltage
(VDS = 10 V, ID = 25 mA) VGS(th) 1.0 3.0 6.0 Vdc
Forward Transconductance
(VDS = 10 V, ID = 250 mA) gfs 250 400 mmhos
DYNAMIC CHARACTERISTICS (1)
Input Capacitance
(VDS = 28 V, VGS = 0, f = 1.0 MHz) Ciss 24 pF
Output Capacitance
(VDS = 28 V, VGS = 0, f = 1.0 MHz) Coss 27 pF
Reverse Transfer Capacitance
(VDS = 28 V, VGS = 0, f = 1.0 MHz) Crss 5.5 pF
FUNCTIONAL CHARACTERISTICS (2)
Noise Figure MRF136
(VDS = 28 Vdc, ID = 500 mA, f = 150 MHz) NF 1.0 dB
Common Source Power Gain (Figure 1) MRF136
(VDD = 28 Vdc, Pout = 15 W, f = 150 MHz, IDQ = 25 mA) Gps 13 16 dB
Common Source Power Gain (Figure 2) MRF136Y
(VDD = 28 Vdc, Pout = 30 W, f = 150 MHz, IDQ = 100 mA) Gps 12 14 dB
Drain Efficiency (Figure 1) MRF136
(VDD = 28 Vdc, Pout = 15 W, f = 150 MHz, IDQ = 25 mA) η50 60 %
Drain Efficiency (Figure 2) MRF136Y
(VDD = 28 Vdc, Pout = 30 W, f = 150 MHz, IDQ = 100 mA) η50 54 %
Electrical Ruggedness (Figure 1) MRF136
(VDD = 28 Vdc, Pout = 15 W, f = 150 MHz, IDQ = 25 mA,
VSWR 30:1 at all Phase Angles)
ψNo Degradation in Output Power
Electrical Ruggedness (Figure 2) MRF136Y
(VDD = 28 Vdc, Pout = 30 W, f = 150 MHz, IDQ = 100 mA,
VSWR 30:1 at all Phase Angles)
ψNo Degradation in Output Power
NOTES:
1. For MRF136Y, each side measured separately.
2. For MRF136Y measured in push–pull configuration.
3
MRF136 MRF136YMOTOROLA RF DEVICE DATA
Figure 1. 150 MHz Test Circuit (MRF136)
Figure 2. 30150 MHz Test Circuit (MRF136Y)
C1, C2 — Arco 406, 15115 pF or Equivalent
C3 — Arco 404, 860 pF or Equivalent
C4 — 43 pF Mini–Unelco or Equivalent
C5 — 24 pF Mini–Unelco or Equivalent
C6 — 680 pF, 100 Mils Chip
C7 — 0.01 µF Ceramic
C8 — 100 µF, 40 V
C9 — 0.1 µF Ceramic
C10, C11 — 680 pF Feedthru
D1 — 1N5925A Motorola Zener
L1 — 2 Turns, 0.29 ID, #18 AWG, 0.10 Long
L2 — 2 Turns, 0.23 ID, #18 AWG, 0.10 Long
L3 — 2–1/4 Turns, 0.29 ID, #18 AWG, 0.125 Long
RFC1 — 20 Turns, 0.30 ID, #20 AWG Enamel Closewound
RFC2 — Ferroxcube VK–200 — 19/4B
R1 — 27 , 1 W Thin Film
R2 — 10 k, 1/4 W
R3 — 10 Turns, 10 k
R4 — 1.8 k, 1/2 W
Board Material — 0.062 G10, 1 oz. Cu Clad, Double Sided
C1 — 5.0 pF
C2, C3, C4, C6, C7, C9, C11 — 0.1 µF Ceramic
C5, C8 — 680 pF Feedthru
C10 — 15 pF
D1 — 1N4740 Motorola Zener
RFC1 — 17 Turns, #24 AWG Wound on R5
RFC2 — Ferroxcube VK–200–19/4B or Equivalent
R1 — 10 k, 1/4 W
R2, R3 — 560 , 1/2 W
R4 — 10 Turns, 10 k
R5 — 56 k, 1 W
R6 — 1.6 k, 1/4 W
T1 — Primary Winding — 3 Turns #28 Enameled Wire.
T1 — Secondary Winding — 2 Turns #28 Enameled Wire.
T1 — Both windings wound through a Fair/Rite Balun 65 core.
T1 — Part #2865002402.
T2 — 1:1 Transformer Wound Bifilar — 2 Turns Twisted Pair
T1 — #24 Enameled Wire through a Indiana General Balun Q1
T1 — core. Part #18006–1–Q1. Primary winding center tapped.
Board Material — 0.062 G10, 1 oz. Cu Clad, Double Sided
R4 C10
D1 C8 +
RFC1
C7
C1 L1
R2
R1
C9
C4 C3
C2
RF INPUT
L2
RFC2
L3
DUT
RF OUTPUT
C6
C5
C11 VDD = +28 V
RF OUTPUT
VDD = +28 V
RFC2 C8
C5
C7
R4
D1 C11
RFC1
R6
R5
R2 C3
R3
C6
C10C9
C4
DUT
R3
C1
R1
C2
DT2T1 S
D
G
G
BA
BIAS
ADJUST
BIAS
ADJUST
RF INPUT
MRF136 MRF136Y
4MOTOROLA RF DEVICE DATA
400
Figure 3. Output Power versus Input Power Figure 4. Output Power versus Input Power
Figure 5. Output Power versus Input Power Figure 6. Output Power versus Supply Voltage
Figure 7. Output Power versus Supply Voltage Figure 8. Output Power versus Supply Voltage
2020
18
16
14
12
10
8
6
4
2
00 200 600 800 1000
f = 100 MHz
f = 400 MHz
IDQ = 25 mA
150 MHz 200 MHz f = 100 MHz
VDD = 13.5 V
IDQ = 25 mA
Pin, INPUT POWER (MILLWATTS)
Pout, OUTPUT POWER (WATTS)
20
18
16
14
12
10
8
6
4
2
00 1 2 3 4
Pin, INPUT POWER (WATTS)
Pout, OUTPUT POWER (WATTS)
10
9
8
7
6
5
4
3
2
1
00 200 400 600 800 1000
Pin, INPUT POWER (MILLWATTS)
Pout, OUTPUT POWER (WATTS)
200 MHz
150 MHz
24
21
18
15
12
9
6
3
012 16 20 24 28
VDD, SUPPLY VOLTAGE (VOLTS)
Pout, OUTPUT POWER (WATTS)
14 18 22 26
400 mW
200 mW
0.7 W
VDD = 28 V
VDD = 13.5 V
IDQ = 25 mA
f = 100 MHz
Pin = 600 mW
12 16 20 24 28
VDD, SUPPLY VOLTAGE (VOLTS)
Pout, OUTPUT POWER (WATTS)
14 18 22 26
600 mW
300 mW
IDQ = 25 mA
f = 150 MHz
Pin = 900 mW
24
21
18
15
12
9
6
3
012 16 20 24 28
VDD, SUPPLY VOLTAGE (VOLTS)
Pout, OUTPUT POWER (WATTS)
14 18 22 26
0.4 W
Pin = 1 W
IDQ = 25 mA
f = 200 MHz
VDD = 28 V
IDQ = 25 mA
24
21
18
15
12
9
6
3
0
5
MRF136 MRF136YMOTOROLA RF DEVICE DATA
VGS, GATE–SOURCE VOLTAGE (VOLTS)
Figure 9. Output Power versus Supply Voltage
MRF136 Figure 10. Output Power versus Gate Voltage
MRF136
Figure 11. Drain Current versus Gate Voltage
(Transfer Characteristics)*
MRF136/MRF136Y
Figure 12. Gate–Source Voltage versus
Case Temperature*
MRF136/MRF136Y
Figure 13. Capacitance versus Drain–Source Voltage*
MRF136/MRF136Y Figure 14. DC Safe Operating Area
MRF136/MRF136Y
*Data shown applies to MRF136 and each half of MRF136Y.
12 16 20 24 28
VDD, SUPPLY VOLTAGE (VOLTS)
Pout, OUTPUT POWER (WATTS)
14 18 22 26
2 W
IDQ = 25 mA
f = 400 MHz Pin = 3 W
2
1.8
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
0
20
18
16
14
12
10
8
6
4
2
0
0 16 20 24 28
VDS, DRAIN–SOURCE VOLTAGE (VOLTS)
25 25 75 125 175
TC, CASE TEMPERATURE (
°
C)
0 50 100 150
0.94
7
Pout, OUTPUT POWER (WATTS)
16
14
12
10
8
6
4
2
0
4 8 12
1.04
1.03
1.02
1.01
1
0.99
0.98
0.97
0.96
0.95
0 4 5 6 7
VDS, GATE–SOURCE VOLTAGE (VOLTS)
1 2 3
0
100
180
60
40
20
6 5 4 3 2 –1 0 1 2 3
1 W
VDS = 28 V ID = 750 mA
25 mA
500 mA
250 mA
1 3020 50 100
VDS, DRAIN–SOURCE VOLTAGE (VOLTS)
2 3 5
0.1 10 70
10
5
3
2
1
0.3
0.2
VDS = 10 V
TYPICAL DEVICE
SHOWN, VGS(th) = 3 V
VDD = 28 V
IDQ = 25 mA
Pin = CONSTANT
TYPICAL DEVICE
SHOWN, VGS(th) = 3 V
VGS = 0 V
f = 1 MHz
Coss
Ciss
Crss
MRF136Y
MRF136
TC = 25
°
C
400 MHz
400 MHz150 MHz
ID, DRAIN CURRENT (MILLAMPS)
ID, DRAIN CURRENT (AMPS)
C, CAPACITANCE (pF)
VGS, GATE-SOURCE VOLTAGE (NORMALIZED)
MRF136 MRF136Y
6MOTOROLA RF DEVICE DATA
Figure 15. Output Power versus Input Power Figure 16. Power Gain versus Frequency
Figure 17. Drain Efficiency versus Frequency Figure 18. Output Power versus Gate Voltage
Figure 19. Output Power versus Input Power Figure 20. Output Power versus Gate Voltage
MRF136Y
TYPICAL PERFORMANCE IN BROADBAND TEST CIRCUIT
(Refer to Figure 2)
TYPICAL 400 MHz PERFORMANCE
0 40 80 120 160
f, FREQUENCY (MHz)
20 60 100 140
100
90
80
70
60
50
40
30
20
10
0
VDD = 28 V
IDQ = 100 mA
Pin = CONSTANT
TYPICAL DEVICE
SHOWN, VGS(th) = 3 V
VDD = 28 V
IDQ = 100 mA
Pout = 30 W
VDD = 28 V
IDQ = 100 mA
Pout = 30 W
VDD = 28 V
IDQ = 100 mA
VDD = 28 V
IDQ = 100 mA
f = 400 MHz
VDD = 28 V
IDQ = 100 mA
Pin = CONSTANT
TYPICAL DEVICE
SHOWN, VGS(th) = 3 V
40
35
30
25
20
15
10
5
04 2 0 2 4
VGS, GATE–SOURCE VOLTAGE (VOLTS)
Pout, OUTPUT POWER (WATTS)
3 –1 1 3
40
35
30
25
20
15
10
5
00 1 2.5 3.5
Pin, INPUT POWER (WATTS)
Pout, OUTPUT POWER (WATTS)
0.5 1.5 2 3
40
35
30
25
20
15
10
5
00
Pout, OUTPUT POWER (WATTS)
16
14
12
10
8
6
4
2
00 40 80 120 160
f, FREQUENCY (MHz)
POWER GAIN (dB)
20 60 100 1400.5 2 2.5
Pin, INPUT POWER (WATTS)
1 1.5
06 VGS, GATE–SOURCE VOLTAGE (VOLTS)
30
25
20
15
10
5
2 0 2 64 4
Pout, OUTPUT POWER (WATTS)
η
, EFFICIENCY (%)
f = 150 MHz
30 MHz
30 MHz
f = 150 MHz
f = 400 MHz
7
MRF136 MRF136YMOTOROLA RF DEVICE DATA
Figure 21. Large–Signal Series Equivalent
Input Impedance, Zin
MRF136
Figure 22. Large–Signal Series Equivalent
Output Impedance, ZOL*
MRF136
Figure 23. Input and Outut Impedance
MRF136Y
400
200
150
f = 100 MHz
Zin
{
VDD = 28 V, IDQ = 25 mA,
Pout = 15 W
{
27
Shunt Resistor Gate–to–Ground
f
MHz Zin
{
OHMS
100
150
200
400
7.5 – j9.73
4.11 – j7.56
2.66 – j6.39
2.39 – j2.18
400
200
150
f = 100 MHz
ZOL*
VDD = 28 V, IDQ = 25 mA,
Pout = 15 W
ZOL* = Conjugate of the
optimum load impedance into
which the device operates at
a given output power, voltage
and frequency.
f
MHz ZOL*
OHMS
100
150
200
400
13.7 – j16.8
9.08 – j15.38
4.74 – j8.92
4.28 – j4.17
400
225
150
f = 30 MHz
ZOL*
100
50
Zin
f = 30 MHz
50
100
150
225
400
Feedback loops: 560 ohms in series with 0.1
µ
F
Drain to gate, each side of push–pull FET
ZOL* = Conjugate of the optimum load imped -
ance into which the device operates at a given
output power, voltage and frequency.
VDD = 28 V, IDQ = 100 mA,
Pout = 30 W
f
MHz Zin
{
Ohms ZOL*
Ohms
30
50
100
150
225
400
59.3 – j24
48 – j33.5
20.5 – j34.2
4.77 – j25.4
3 – j9.5
2.34 – j3.31
40.1 – j8.52
37 – j11.9
29 – j16.5
20.6 – j19
13 – j16.7
10.2 – j14.3
Zin & ZOL* are given
from drain–to–drain and
gate–to–gate respectively.
MRF136 MRF136Y
8MOTOROLA RF DEVICE DATA
MRF136
f
(MHz)
S11 S21 S12 S22
f
(MHz)
|S11|±φ|S21|±φ|S12|±φ|S22|±φ
2.0 0.988 11 41.19 173 0.006 67 0.729 12
5.0 0.970 27 40.07 164 0.014 62 0.720 31
10 0.923 52 35.94 149 0.026 54 0.714 58
20 0.837 88 27.23 129 0.040 36 0.690 96
30 0.784 111 20.75 117 0.046 27 0.684 118
40 0.751 125 16.49 108 0.048 22 0.680 131
50 0.733 135 13.41 103 0.050 19 0.679 139
60 0.720 142 11.43 99 0.050 16 0.678 145
70 0.709 147 9.871 96 0.050 14 0.679 149
80 0.707 152 8.663 93 0.051 13 0.683 153
90 0.706 155 7.784 91 0.051 13 0.682 155
100 0.708 157 7.008 88 0.051 13 0.680 157
110 0.711 159 6.435 86 0.051 14 0.681 158
120 0.714 161 5.899 85 0.051 15 0.682 159
130 0.717 163 5.439 82 0.052 16 0.684 160
140 0.720 164 5.068 80 0.052 17 0.684 161
150 0.723 165 4.709 80 0.052 18 0.686 161
160 0.727 166 4.455 78 0.052 18 0.690 161
170 0.732 167 4.200 77 0.052 18 0.694 162
180 0.735 168 3.967 75 0.052 19 0.699 162
190 0.738 169 3.756 74 0.052 19 0.703 163
200 0.740 170 3.545 73 0.052 20 0.706 163
225 0.746 171 3.140 69 0.053 22 0.717 163
250 0.742 172 2.783 67 0.053 25 0.724 163
275 0.744 173 2.540 64 0.054 27 0.724 163
300 0.751 174 2.323 60 0.055 29 0.736 163
325 0.757 175 2.140 58 0.058 32 0.749 163
350 0.760 176 1.963 54 0.059 35 0.758 163
375 0.762 177 1.838 52 0.062 38 0.768 163
400 0.774 179 1.696 50 0.065 41 0.783 163
425 0.775 179 1.590 48 0.068 43 0.793 163
450 0.781 +179 1.493 46 0.071 46 0.805 163
475 0.787 +177 1.415 43 0.074 47 0.813 164
500 0.792 +176 1.332 40 0.079 48 0.825 164
525 0.797 +175 1.259 38 0.083 50 0.831 164
550 0.801 +175 1.185 37 0.088 51 0.843 164
575 0.810 +174 1.145 36 0.094 52 0.855 164
600 0.816 +173 1.091 34 0.101 52 0.869 165
625 0.818 +171 1.041 32 0.106 53 0.871 165
650 0.825 +170 0.994 30 0.112 53 0.884 165
675 0.834 +169 0.962 29 0.119 53 0.890 165
700 0.837 +168 0.922 27 0.127 53 0.906 166
725 0.836 +167 0.879 25 0.133 52 0.909 167
750 0.841 +166 0.838 25 0.140 53 0.917 167
775 0.844 +165 0.824 24 0.148 52 0.933 167
800 0.846 +163 0.785 21 0.154 50 0.941 168
Table 1. Common Source Scattering Parameters
VDS = 28 V, ID = 0.5 A
9
MRF136 MRF136YMOTOROLA RF DEVICE DATA
S11
+90
°
+120
°
+150
°
0
°
–150
°
–120
°
60
°
30
°
+30
°
+60
°
S12
70
10 25 50 100 150 250 500
+j50
+j100
+j150
+j250
+j500
j500
j250
j150
j100
j50
j25
j10
0
+j10
+j25
400 70
S22
150
Figure 24. S11, Input Reflection Coefficient
versus Frequency
VDS = 28 V ID = 0.5 A
Figure 25. S12, Reverse Transmission Coefficient
versus Frequency
VDS = 28 V ID = 0.5 A
Figure 26. S21, Forward Transmission Coefficient
versus Frequency
VDS = 28 V ID = 0.5 A
Figure 27. S22, Output Reflection Coefficient
versus Frequency
VDS = 28 V ID = 0.5 A
10 25 50 100 150 250 500
+j50
+j100
+j150
+j250
+j500
j500
j250
j150
j100
j50
j25
j10
0
+j10
+j25
+90
°
+120
°
+150
°
180
°
0
°
–150
°
–120
°
90
°
60
°
30
°
+30
°
+60
°
f = 800 MHz
842
6400
100
150
70
–90
°
0.16 0.12 0.08 0.04
0.06
600
0.020.18
180
°
0.14 0.10
400
f = 800 MHz
400
150
70
S21
f = 800 MHz
f = 800 MHz
MRF136 MRF136Y
10 MOTOROLA RF DEVICE DATA
DESIGN CONSIDERATIONS
The MRF136 and MRF136Y are RF power N–Channel
enhancement mode field–effect transistors (FETs) designed
especially for HF and VHF power amplifier applications.
Motorola RF MOS FETs feature planar design for optimum
manufacturability.
Motorola Application Note AN211A, FETs in Theory and
Practice, is suggested reading for those not familiar with the
construction and characteristics of FETs.
The major advantages of RF power FETs include high gain,
low noise, simple bias systems, relative immunity from ther-
mal runaway, and the ability to withstand severely mis-
matched loads without suffering damage. Power output can
be varied over a wide range with a low power dc control signal,
thus facilitating manual gain control, ALC and modulation.
DC BIAS
The MRF136 and MRF136Y are enhancement mode FETs
and, therefore, do not conduct when drain voltage is applied
without gate bias. A positive gate voltage causes drain current
to flow (see Figure 11). RF power FETs require forward bias
for optimum gain and power output. A Class AB condition with
quiescent drain current (IDQ) in the 25–100 mA range is
sufficient for many applications. For special requirements
such as linear amplification, IDQ may have to be adjusted to
optimize the critical parameters.
The MOS gate is a dc open circuit. Since the gate bias circuit
does not have to deliver any current to the FET, a simple
resistive divider arrangement may sometimes suffice for this
function. Special applications may require more elaborate
gate bias systems.
GAIN CONTROL
Power output of the MRF136 and MRF136Y may be
controlled from rated values down to the milliwatt region (>20
dB reduction in power output with constant input power) by
varying the dc gate voltage. This feature, not available in
bipolar RF power devices, facilitates the incorporation of
manual gain control, AGC/ALC and modulation schemes into
system designs. A full range of power output control may
require dc gate voltage excursions into the negative region.
AMPLIFIER DESIGN
Impedance matching networks similar to those used with
bipolar transistors are suitable for MRF136 and MRF136Y.
See Motorola Application Note AN721, Impedance Matching
Networks Applied to RF Power T ransistors. Both small signal
scattering parameters (MRF136 only) and large signal
impedance parameters are provided. Large signal imped-
ances should be used for network designs wherever possible.
While the s parameters will not produce an exact design
solution for high power operation, they do yield a good first
approximation. This is particularly useful at frequencies
outside those presented in the large signal impedance plots.
RF power FETs are triode devices and are therefore not
unilateral. This, coupled with the very high gain, yields a
device capable of self oscillation. Stability may be achieved
using techniques such as drain loading, input shunt resistive
loading, or feedback. S parameter stability analysis can
provide useful information in the selection of loading and/or
feedback to insure stable operation. The MRF136 was
characterized with a 27 ohm input shunt loading resistor, while
the MRF136Y was characterized with a resistive feedback
loop around each of its two active devices.
For further discussion of RF amplifier stability and the use
of two port parameters in RF amplifier design, see Motorola
Application Note AN215A on page 6–204 in the RF Device
Data (DL110 Rev 1).
LOW NOISE OPERATION
Input resistive loading will degrade noise performance, and
noise figure may vary significantly with gate driving imped-
ance. A low loss input matching network with its gate
impedance optimized for lowest noise is recommended.
11
MRF136 MRF136YMOTOROLA RF DEVICE DATA
PACKAGE DIMENSIONS
CASE 211–07
ISSUE N
MRF136
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
A
UM
M
Q
RB
1
4
32
D
K
E
SEATING
PLANE
C
J
H
S
DIM MIN MAX MIN MAX
MILLIMETERSINCHES
A0.960 0.990 24.39 25.14
B0.370 0.390 9.40 9.90
C0.229 0.281 5.82 7.13
D0.215 0.235 5.47 5.96
E0.085 0.105 2.16 2.66
H0.150 0.108 3.81 4.57
J0.004 0.006 0.11 0.15
K0.395 0.405 10.04 10.28
M40 50 40 50
Q0.113 0.130 2.88 3.30
R0.245 0.255 6.23 6.47
S0.790 0.810 20.07 20.57
U0.720 0.730 18.29 18.54
_ _ _ _
STYLE 2:
PIN 1. SOURCE
2. GATE
3. SOURCE
4. DRAIN
CASE 319B–02
ISSUE C
MRF136Y
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
STYLE 1:
PIN 1. GATE (INPUT)
2. GATE (INPUT)
3. DRAIN (OUTPUT)
4. DRAIN (OUTPUT)
SOURCE IS FLANGE
IDENTIFICATION
NOTCH
4 3
1 2
–A–
L
K
DF4 PL
Q2 PL
–N–
H
JB
E
C
SEATING
PLANE
–T–
M
A
M
0.15 (0.006) N M
T
M
A
M
0.38 (0.015) N M
T
M
A
M
0.38 (0.015) N M
T
DIM MIN MAX MIN MAX
MILLIMETERSINCHES
A0.965 0.985 24.51 25.02
B0.355 0.375 9.02 9.52
C0.230 0.260 5.84 6.60
D0.055 0.065 1.40 1.65
E0.102 0.114 2.59 2.90
F0.055 0.065 1.40 1.65
H0.160 0.170 4.06 4.31
J0.004 0.006 0.10 0.15
K0.120 0.140 3.05 3.55
L0.725 BSC 18.42 BSC
N0.225 0.241 5.72 6.12
Q0.125 0.135 3.18 3.42
MRF136 MRF136Y
12 MOTOROLA RF DEVICE DATA
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty , representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability , including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different
applications. All operating parameters, including “T ypicals” must be validated for each customer application by customers technical experts. Motorola does
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body , or other applications intended to support or sustain life, or for any other application in which the failure of
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
Literature Distribution Centers:
USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.
EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.
JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.
ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center , No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.
MRF136/D
*MRF136/D*