KAI-1010 IMAGE SENSOR
1008 (H) X 1018 (V) INTERLINE CCD IMAGE SENSOR
JULY 13, 2012
DEVICE PERFORMANCE SPECIFICATION
REVISION 1.0 PS-0021
KAI-1010 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0021 Pg 2
TABLE OF CONTENTS
Summary Specification ......................................................................................................................................................................................... 5
Description .................................................................................................................................................................................................... 5
Features ......................................................................................................................................................................................................... 5
Applications .................................................................................................................................................................................................. 5
Ordering Information ............................................................................................................................................................................................ 6
Device Description ................................................................................................................................................................................................. 7
Architecture .................................................................................................................................................................................................. 7
Image Acquisition ........................................................................................................................................................................................ 7
Charge Transport ......................................................................................................................................................................................... 8
Output Structure ......................................................................................................................................................................................... 9
Electronic Shutter ..................................................................................................................................................................................... 10
Physical Description ................................................................................................................................................................................. 11
Pin Description and Device Orientation ......................................................................................................................................... 11
Imaging Performance .......................................................................................................................................................................................... 12
Electro-Optical for KAI-1010-ABA ........................................................................................................................................................ 12
Monochrome with Microlens Quantum Efficiency ........................................................................................................................... 13
Angular Quantum Efficiency .................................................................................................................................................................. 14
Frame Rates ............................................................................................................................................................................................... 15
CCD Image Specifications ....................................................................................................................................................................... 16
Output Amplifier @ VDD = 15 V, VSS = 0.0 V .................................................................................................................................... 16
General ........................................................................................................................................................................................................ 17
Defect Classification ........................................................................................................................................................................................... 19
Operation .................................................................................................................................................................................................................. 20
Absolute Maximum Range ..................................................................................................................................................................... 20
DC Operating Conditions........................................................................................................................................................................ 21
AC Clock Level Conditions ...................................................................................................................................................................... 22
AC Timing Requirements for 20 MHz Operation .............................................................................................................................. 23
Frame Timing - Single Register Readout ........................................................................................................................................ 24
Line Timing - Single Register Readout ............................................................................................................................................ 25
Pixel Timing - Single Register Readout ........................................................................................................................................... 26
Electronic Shutter Timing - Single Register Readout .................................................................................................................. 27
Frame Timing - Dual Register Readout ........................................................................................................................................... 28
Line Timing - Dual Register Readout ............................................................................................................................................... 29
Pixel Timing - Dual Register Readout .............................................................................................................................................. 30
Fast Dump Timing Removing Four Lines ..................................................................................................................................... 31
Binning Two to One Line Binning .................................................................................................................................................. 32
Timing Sample Video Waveform ................................................................................................................................................... 33
Storage and Handling .......................................................................................................................................................................................... 34
Climatic Requirements ............................................................................................................................................................................ 34
ESD ............................................................................................................................................................................................................... 34
Cover Glass Care and Cleanliness ......................................................................................................................................................... 34
Environmental Exposure ........................................................................................................................................................................ 34
Soldering Recommendations ................................................................................................................................................................ 35
Mechanical Information ..................................................................................................................................................................................... 36
Completed Assembly ............................................................................................................................................................................... 36
Cover Glass ................................................................................................................................................................................................. 38
Quality Assurance and Reliability .................................................................................................................................................................. 39
Quality and Reliability ............................................................................................................................................................................. 39
KAI-1010 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0021 Pg 3
Replacement .............................................................................................................................................................................................. 39
Liability of the Supplier ........................................................................................................................................................................... 39
Liability of the Customer ........................................................................................................................................................................ 39
Test Data Retention ................................................................................................................................................................................. 39
Mechanical .................................................................................................................................................................................................. 39
Life Support Applications Policy .................................................................................................................................................................... 39
Revision Changes................................................................................................................................................................................................... 40
MTD/PS-0502 ............................................................................................................................................................................................. 40
PS-0021 ....................................................................................................................................................................................................... 41
KAI-1010 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0021 Pg 4
TABLE OF FIGURES
Figure 1: Functional Block Diagram ........................................................................................................................................................... 7
Figure 2: True 2 Phase CCD Cross Section ................................................................................................................................................ 8
Figure 3: Output Structure ........................................................................................................................................................................... 9
Figure 4: Pinout Diagram ............................................................................................................................................................................ 11
Figure 5: Nominal KAI-1010-ABA Spectral Response .......................................................................................................................... 13
Figure 6: Angular Dependence of Quantum Efficiency ....................................................................................................................... 14
Figure 7: Frame Rate versus Horizontal Clock Frequency .................................................................................................................. 15
Figure 8: Typical KAI-1010-ABA Photoresponse ................................................................................................................................... 17
Figure 9: Example of Vsat versus Vsub ................................................................................................................................................... 18
Figure 10: Recommended Output Structure Load Diagram .............................................................................................................. 21
Figure 11: Frame Timing - Single Register Readout ............................................................................................................................. 24
Figure 12: Line Timing - Single Register Output ................................................................................................................................... 25
Figure 13: Pixel Timing Diagram - Single Register Readout ............................................................................................................... 26
Figure 14: Electronic Shutter Timing Diagram - Single Register Readout ...................................................................................... 27
Figure 15: Frame Timing - Dual Register Readout ................................................................................................................................ 28
Figure 16: Line Timing - Dual Register Output ...................................................................................................................................... 29
Figure 17: Pixel Timing Diagram - Dual Register Readout.................................................................................................................. 30
Figure 18: Fast Dump Timing - Removing Four Lines ........................................................................................................................... 31
Figure 19: Binning - 2 to 1 Line Binning ................................................................................................................................................... 32
Figure 20: Sample Video Waveform at 5MHz ........................................................................................................................................ 33
Figure 21: Completed Assembly (1 of 2) ................................................................................................................................................. 36
Figure 22: Completed Assembly (2 of 2) ................................................................................................................................................. 37
Figure 23: Glass Drawing ............................................................................................................................................................................. 38
TABLE OF TABLES
Table 1: Electro-Optical Image Specifications KAI-1010-ABA ........................................................................................................... 12
Table 2: CCD Image Specifications ........................................................................................................................................................... 16
Table 3: Output Amplifier Image Specifications ................................................................................................................................... 16
Table 4: General Image Specifications ..................................................................................................................................................... 17
Table 5: Absolute Maximum Ranges ........................................................................................................................................................ 20
Table 6: DC Operating Conditions ............................................................................................................................................................ 21
Table 7: AC Clock Level Conditions .......................................................................................................................................................... 22
Table 8: AC Timing Requirements for 20 MHz Operation .................................................................................................................. 23
Table 9: Climatic Requirements ................................................................................................................................................................ 34
KAI-1010 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0021 Pg 5
Summary Specification
KAI-1010 Image Sensor
DESCRIPTION
The KAI-1010 Image Sensor is a high-resolution
monochrome charge coupled device (CCD) device whose
non-interlaced architecture makes it ideally suited for
video, electronic still and motion/still camera
applications. The device is built using an advanced true
two-phase, double-polysilicon, NMOS CCD technology.
The p+npn- photodetector elements eliminate image lag
and reduce image smear while providing antiblooming
protection and electronic-exposure control. The total
chip size is 10.15 (H) mm x 10.00 (V) mm.
FEATURES
Front Illuminated Interline Architecture
Progressive Scan (Non-interlaced)
Electronic Shutter
On-Chip Dark Reference Pixels
Low Dark Current
High Sensitivity Output Structure
Dual Output Shift Registers
Antiblooming Protection
Negligible Lag
Low Smear (0.01% with microlens)
APPLICATIONS
Machine Vision
Parameter
Typical Value
Architecture
Interline CCD, Non-Interlaced
Total Number of Pixels
1024 (H) x 1024 (V)
Number of Effective Pixels
1008 (H) x 1018 (V)
Number of Active Pixels
1008 (H) x 1018 (V)
Number of Outputs
1 or 2
Pixel Size
9 µm (H) x 9 µm (V)
Active Image Size
9.1 mm (H) x 9.2 mm (V)
12.9 mm (diagonal)
Optical Fill-Factor
60%
Saturation Signal
>50,000 electrons
Output Sensitivity
12 µV/electron
Dark Noise
50 electrons rms
Dark Current
<0.5 nA/cm2
Quantum Efficiency
(wavelength = 500 nm)
37%
Blooming Suppression
>100 X
Maximum Data Rate
20 MHz/Channel (2 channels)
Image Lag
Negligible
Package
CERDIP
Cover Glass
AR Coated (both sides)
All parameters above are specified at T = 40 °C
KAI-1010 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0021 Pg 6
Ordering Information
Catalog
Number
Product Name
Description
Marking Code
KAI- 1010-ABA-CD-AE
Monochrome, Telecentric Microlens, CERDIP Package (sidebrazed), Clear Cover
Glass with AR coating (both sides), Engineering Sample
KAI-1010M
Serial Number
KAI- 1010-ABA-CD-BA
Monochrome, Telecentric Microlens, CERDIP Package (sidebrazed), Clear Cover
Glass with AR coating (both sides), Standard Grade
KAI-1010M
Serial Number
KAI- 1010-ABA-CR-AE
Monochrome, Telecentric Microlens, CERDIP Package (sidebrazed), Taped Clear
Cover Glass with AR coating (2 sides), Engineering Sample
KAI-1010M
Serial Number
KAI- 1010-ABA-CR-BA
Monochrome, Telecentric Microlens, CERDIP Package (sidebrazed), Taped Clear
Cover Glass with AR coating (2 sides), Standard Grade
KAI-1010M
Serial Number
See Application Note Product Naming Convention for a full description of the naming convention used for Truesense
Imaging image sensors. For reference documentation, including information on evaluation kits, please visit our web
site at www.truesenseimaging.com.
Please address all inquiries and purchase orders to:
Truesense Imaging, Inc.
1964 Lake Avenue
Rochester, New York 14615
Phone: (585) 784-5500
E-mail: info@truesenseimaging.com
Truesense Imaging reserves the right to change any information contained herein without notice. All information
furnished by Truesense Imaging is believed to be accurate.
KAI-1010 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0021 Pg 7
Device Description
ARCHITECTURE
Figure 1: Functional Block Diagram
The KAI-1010 consists of 1024 x 1024 photodiodes, 1024 vertical (parallel) CCD shift registers (VCCDs), and dual 1032
pixel horizontal (serial) CCD shift registers (HCCDs) with independent output structures. The device can be operated in
either single or dual line mode. The advanced, progressive-scan architecture of the device allows the entire image area
to be read out in a single scan. The active pixels are arranged in a 1008 (H) x 1018 (V) array with an additional 16
columns and 6 rows of light-shielded dark reference pixels.
IMAGE ACQUISITION
An electronic representation of an image is formed when incident photons falling on the sensor plane create electron-
hole pairs within the individual silicon photodiodes. These photoelectrons are collected locally by the formation of
potential wells at each photosite. Below photodiode saturation, the number of photoelectrons collected at each pixel
is linearly dependent on light level and exposure time and non-linearly dependent on wavelength. When the
photodiode's charge capacity is reached, excess electrons are discharged into the substrate to prevent blooming.
4 dark lines at bottom of image
2 dark lines at top of image
6 dark columns
10 dark columns
KAI-1010
Active Image Area:
1008 (H) x 1018 (V)
9.0 x9.0 m2 pixels
Horizontal Register A
6 dummies 2 dummies
V1
V2
Horizontal Register B
V1
V2
VOUTA
VOUTB
H1A
H2
H1B
VDD
VDD
VSS/OG
VSS/OG
VRD
R
WELL
VSUB
KAI-1010 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0021 Pg 8
CHARGE TRANSPORT
The accumulated or integrated charge from each photodiode is transported to the output by a three step process. The
charge is first transported from the photodiodes to the VCCDs by applying a large positive voltage to the phase-one
vertical clock (φV1). This reads out every row, or line, of photodiodes into the VCCDs.
The charge is then transported from the VCCDs to the HCCDs line by line. Finally, the HCCDs transport these rows of
charge packets to the output structures pixel by pixel. On each falling edge of the horizontal clock, φH2, these charge
packets are dumped over the output gate (OG, Figure 3) onto the floating diffusion (FDA and FDB, Figure 3).
Both the horizontal and vertical shift registers use traditional two-phase complementary clocking for charge transport.
Transfer to the HCCDs begins when φV2 is clocked high and then low (while holding øH1A high) causing charge to be
transferred from φV1 to φV2 and subsequently into the A HCCD. The A register can now be read out in single line
mode. If it is desired to operate the device in a dual line readout mode for higher frame rates, this line is transferred
into the B HCCD by clocking φH1A to a low state, and φH1B to a high state while holding φH2 low. After φH1A is
returned to a high state, the next line can be transferred into the A HCCD. After this clocking sequence, both HCCDs
are read out in parallel.
The charge capacity of the horizontal CCDs is slightly more than twice that of the vertical CCDs. This feature allows the
user to perform two-to-one line aggregation in the charge domain during V-to-H transfer. This device is also equipped
with a fast dump feature that allows the user to selectively dump complete lines (or rows) of pixels at a time. This
dump, or line clear, is also accomplished during the V-to-H transfer time by clocking the fast dump gate.
Figure 2: True 2 Phase CCD Cross Section
Direction of Transfer
-V
+V
Pixel Pn
Pixel Pn+1
-V
+V
φ
Q1
Q2
KAI-1010 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0021 Pg 9
OUTPUT STRUCTURE
Charge packets contained in the horizontal register are dumped pixel by pixel, onto the floating diffusion output node
whose potential varies linearly with the quantity of charge in each packet. The amount of potential change is
determined by the expression ΔVfd=ΔQ/Cfd. A three stage source-follower amplifier is used to buffer this signal
voltage off chip with slightly less than unity gain. The translation from the charge domain to the voltage domain is
quantified by the output sensitivity or charge to voltage conversion in terms of µV/e-. After the signal has been
sampled off-chip, the reset clock R) removes the charge from the floating diffusion and resets its potential to the
reset-drain voltage (VRD).
Figure 3: Output Structure
VDD
VOUTA
VSS & OG
VOUTB
HCCDA
HCCDB
RD
R
VWELL VSUB
FDB (n/c)
FDA (n/c)
KAI-1010 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0021 Pg 10
ELECTRONIC SHUTTER
The KAI-1010 provides a structure for the prevention of blooming which may be used to realize a variable exposure
time as well as performing the anti-blooming function. The anti-blooming function limits the charge capacity of the
photodiode by draining excess electrons vertically into the substrate (hence the name Vertical Overflow Drain or
VOD). This function is controlled by applying a large potential to the device substrate (device terminal SUB). If a
sufficiently large voltage pulse (VES 40V) is applied to the substrate, all photodiodes will be emptied of charge
through the substrate, beginning the integration period. After returning the substrate voltage to the nominal value,
charge can accumulate in the diodes and the charge packet is subsequently readout onto the VCCD at the next
occurrence of the high level on φV1. The integration time is then the time between the falling edges of the substrate
shutter pulse and φV1. This scheme allows electronic variation of the exposure time by a variation in the clock timing
while maintaining a standard video frame rate.
Application of the large shutter pulse must be avoided during the horizontal register readout or an image artifact will
appear due to feed-through. The shutter pulse VES must be “hidden” in the horizontal retrace interval. The integration
time is changed by skipping the shutter pulse from one horizontal retrace interval to another.
The smear specification is not met under electronic shutter operation. Under constant light intensity and spot size, if
the electronic exposure time is decreased, the smear signal will remain the same while the image signal will decrease
linearly with exposure. Smear is quoted as a percentage of the image signal and so the percent smear will increase by
the same factor that the integration time has decreased. This effect is basic to interline devices.
Extremely bright light can potentially harm solid state imagers such as Charge-Coupled Devices (CCDs). Refer to
Application Note Using Interline CCD Image Sensors in High Intensity Visible Lighting Conditions.
KAI-1010 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0021 Pg 11
PHYSICAL DESCRIPTION
Pin Description and Device Orientation
Figure 4: Pinout Diagram
PIN
NAME
DESCRIPTION
Notes
1,5,14,16,20,21
GND
Ground
1
2, 24
φV1
Vertical CCD Clock - Phase 1
2
3, 23
φV2
Vertical CCD Clock - Phase 2
3
4
SUB
Substrate
6
FDG
Fast Dump Gate
7
VDD
Output Amplifier Supply
8
VOUTA
Video Output Channel A
9
VSS
Output Amplifier Return & OG
10
φR
Reset Clock
11
VRD
Reset Drain
12
VOUTB
Video Output Channel B
13
φH2
A & B Horizontal CCD Clock - Phase 2
15
φH1B
B Horizontal CCD Clock - Phase 1
17
φH1A
A Horizontal CCD Clock - Phase 1
18
IDHB
Input Diode B Horizontal CCD
19
IDHA
Input Diode A Horizontal CCD
22
WELL
P-Well
Notes:
1. All GND pins should be connected to WELL (P-Well).
2. Pins 2 and 24 must be connected together - only 1 Phase 1 clock driver is required.
3. Pins 3 and 23 must be connected together - only 1 Phase 2 clock driver is required.
GND 1
2
3
4
5
6
7
8
9
10
11
12
24
23
22
21
20
19
18
17
16
15
14
13
V1L
V2L
SUB
GND
FDG
VDD
VOUTA
VRD
VOUTB
VSS
R
H2
IDHB
IDHA
GND
GND
H1B
GND
H1A
GND
WELL
V2R
V1R
Pixel 1,1
KAI-1010 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0021 Pg 12
Imaging Performance
All the following values were derived using nominal operating conditions using the recommended timing. Unless
otherwise stated, readout time = 140 ms, integration time = 140 ms and sensor temperature = 40 °C. Correlated double
sampling of the output is assumed and recommended. Many units are expressed in electrons, to convert to voltage,
multiply by the amplifier sensitivity.
Defects are excluded from the following tests and the signal output is referenced to the dark pixels at the end of each
line unless otherwise specified.
ELECTRO-OPTICAL FOR KAI-1010-ABA
SYMBOL
PARAMETER
MIN.
NOM.
MAX.
UNITS
NOTES
F F
Optical Fill Factor
55.0
%
Esat
Saturation Exposure
0.037
μJ/cm2
1
QE
Peak Quantum Efficiency
37
%
2
PRNU
Photoresponse Non-uniformity
10.0
%pp
3, 4
PRNL
Photoresponse Non-linearity
5.0
%
Table 1: Electro-Optical Image Specifications KAI-1010-ABA
Notes:
1. For λ = 550nm wavelength, and Vsat = 350 mV.
2. Refer to typical values from Figure 5.
3. Under uniform illumination with output signal equal to 280 mV.
4. Units: % Peak to Peak. A 200 by 200 sub ROI is used.
KAI-1010 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0021 Pg 13
MONOCHROME WITH MICROLENS QUANTUM EFFICIENCY
Figure 5: Nominal KAI-1010-ABA Spectral Response
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
400 450 500 550 600 650 700 750 800 850 900 950 1000
Absolute Quantum Efficiency
Wavelength (nm)
KAI-1010 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0021 Pg 14
ANGULAR QUANTUM EFFICIENCY
Figure 6: Angular Dependence of Quantum Efficiency
For the curve marked “Horizontal”, the incident light angle is varied in a plane parallel to the HCCD.
For the curve marked “Vertical”, the incident light angle is varied in a plane parallel to the VCCD.
0
10
20
30
40
50
60
70
80
90
100
110
0 5 10 15 20 25 30
Quantum Efficiency (percent relative to normal incidence)
Angle from Normal Incidence (degrees)
Horizontal
Vertical
KAI-1010 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0021 Pg 15
FRAME RATES
Figure 7: Frame Rate versus Horizontal Clock Frequency
0
10
20
30
40
50
60
0 5 10 15 20 25 30 35 40
Frame Rate (Frames per Second)
Horizontal Clock Frequency - (MHz)
KAI-1010 Frame Rate
versus
Horizontal Clock Frequency
Single Channel
Dual Channel
Dual Channel
Estimated
Single Channel
Estimated
KAI-1010 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0021 Pg 16
CCD IMAGE SPECIFICATIONS
SYMBOL
PARAMETER
MIN.
NOM.
MAX.
UNITS
NOTES
Vsat
Output Saturation Voltage
350
mV
1,2,8
Id
Dark Current
0.5
nA
DCDT
Dark Current Doubling Temp
7
8
10
°C
CTE
Charge Transfer Efficiency
0.99999
2,3
fH
Horizontal CCD Frequency
40
MHz
4
IL
Image Lag
100
e-
5
Xab
Blooming Margin
100
6,8
Smr
Vertical Smear
0.01
%
7
Table 2: CCD Image Specifications
Notes:
1. Vsat is the green pixel mean value at saturation as measured at the output of the device with Xab=1. Vsat can be varied by
adjusting Vsub.
2. Measured at sensor output.
3. With stray output load capacitance of CL = 10 pF between the output and AC ground.
4. Using maximum CCD frequency and/or minimum CCD transfer times may compromise performance.
5. This is the first field decay lag measured by strobe illuminating the device at (Hsat, Vsat), and by then measuring the
subsequent frame's average pixel output in the dark.
6. Xab represents the increase above the saturation-irradiance level (Hsat) that the device can be exposed to before blooming
of the vertical shift register will occur. It should also be noted that Vout rises above Vsat for irradiance levels above Hsat,
as shown in Figure 8.
7. Measured under 10% (~ 100 lines) image height illumination with white light source and without electronic shutter
operation and below Vsat.
8. It should be noted that there is tradeoff between Xab and Vsat.
OUTPUT AMPLIFIER @ VDD = 15 V, VSS = 0.0 V
SYMBOL
PARAMETER
MIN.
NOM.
MAX.
UNITS
NOTES
Vodc
Output DC Offset
7
V
1,2
Pd
Power Dissipation
----
225
----
mW
3
f-3db
Output Amplifier Bandwidth
140
MHz
1,4
CL
Off-Chip Load
10
pF
Table 3: Output Amplifier Image Specifications
Notes:
1. Measured at sensor output with constant current load of Iout = 5 mA per output.
2. Measured with VRD = 9 V during the floating-diffusion reset interval, (φR high), at the sensor output terminals.
3. Both channels.
4. With stray output load capacitance of CL = 10 pF between the output and AC ground.
KAI-1010 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0021 Pg 17
GENERAL
SYMBOL
PARAMETER
MIN.
NOM.
MAX.
UNITS
NOTES
Vn - total
Total Sensor Noise
0.5
mV, rms
1
DR
Dynamic Range
60
dB
2
Table 4: General Image Specifications
Notes:
1. Includes amplifier noise and dark current shot noise at data rates of 10 MHz. The number is based on the full bandwidth of
the amplifier. It can be reduced when a low pass filter is used.
2. Uses 20LOG(Vsat/Vn - total) where Vsat refers to the output saturation signal.
Figure 8: Typical KAI-1010-ABA Photoresponse
0
50
100
150
200
250
300
350
400
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Output Signal - Vout - (mV)
Sensor Plane Irradiance - H - (arb)
(Hsat, Vsat)
KAI-1010 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0021 Pg 18
Figure 9: Example of Vsat versus Vsub
As Vsub is decreased, Vsat increases and anti-blooming protection decreases.
As Vsub is increased, Vsat decreases and anti-blooming protection increases.
0
100
200
300
400
500
600
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Output Signal - Vout - (mV)
Sensor Plane Irradiance - H - (arb)
Vsub=8V
Vsub=9V
Vsub=10V
Vsub=11V
Vsub=12V
Vsub=13V
Vsub=14V
Vsub=15V
KAI-1010 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0021 Pg 19
Defect Classification
All values derived under nominal operating conditions at 40 °C operating temperature.
Defect Type
Defect Definition
Number
Allowed
Notes
Defective Pixel
Under uniform illumination with mean pixel output at 80% of Vsat, a defective pixel deviates by
more than 15% from the mean value of all pixels in its section.
12
1
Bright Defect
Under dark field conditions, a bright defect deviates more than 15mV from the mean value of all
pixels in its section.
5
1
Cluster Defect
Two or more vertically or horizontally adjacent defective pixels.
0
Notes:
1. Sections are 252 (H) x 255 (V) pixel groups, which divide the imager into sixteen equal areas as shown below.
1,1
1008,1018
1008,1
1,1
252,1
504,1
1,255
1,510
1,1018
1,1018
252,1018
504,1018
1008,1018
1008,255
1008,510
1008,1
756,1
756,1018
1,765 1008,765
Test Conditions
Junction Temperature
(Tj) = 40 °C
Integration Time
(tint) = 70 msec
Readout Rate
(treadout) = 70 msec
KAI-1010 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0021 Pg 20
Operation
ABSOLUTE MAXIMUM RANGE
RATING
DESCRIPTION
MIN.
MAX.
UNITS
NOTES
Temperature
(@ 10% ± 5%RH)
Operation Without Damage
-50
+70
°C
5, 6
Voltage
(Between Pins)
SUB-WELL
0
+40
V
1, 7
VRD,VDD,OG&VSS-WELL
0
+15
V
2
IDHA,B & VOUTA,B - WELL
0
+15
V
2
φV1 - φV2
-12
+20
V
2
φH1A, φH1B - φH2
-12
+15
V
2
φH1A, φH1B, φH2, FDG - φV2
-12
+15
V
2
φH2 - OG & VSS
-12
+15
V
2
φR SUB
-20
0
V
1,2,4
All Clocks - WELL
-12
+15
V
2
Current
Output Bias Current (Iout)
----
10
mA
3
Table 5: Absolute Maximum Ranges
Notes:
1. Under normal operating conditions the substrate voltage should be above +7 V, but may be pulsed to 40 V for electronic
shuttering.
2. Care must be taken in handling so as not to create static discharge which may permanently damage the device.
3. Per Output. Iout affects the band-width of the outputs.
4. φR should never be more positive than VSUB.
5. The tolerance on all relative humidity values is provided due to limitations in measurement instrument accuracy.
6. The image sensor shall continue to function but not necessarily meet the specifications of this document while operating at
the specified conditions.
7. Refer to Application Note Using Interline CCD Image Sensors in High Intensity Visible Lighting Conditions.
KAI-1010 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0021 Pg 21
DC OPERATING CONDITIONS
SYMBOL
DESCRIPTION
MIN.
NOM.
MAX.
UNITS
PIN IMPEDANCE6
NOTES
VRD
Reset Drain
8.5
9
9.5
V
5 pF, > 1.2 MΩ
IRD
Reset Drain Current
0.2
mA
VSS
Output Amplifier Return & OG
0
V
30 pF, >1.2 MΩ
ISS
Output Amplifier Return Current
5
mA
VDD
Output Amplifier Supply
12
15.0
15.0
V
30 pF, >1.2 MΩ
Iout
Output Bias Current
5
10
mA
5
WELL
P-well
----
0.0
----
V
Common
1
GND
Ground
-----
0.0
----
V
1
FDG
Fast Dump Gate
-7.0
-6.0
-5.5
V
20 pF, >1.2 MΩ
2
SUB
Substrate
7
Vsub
15
V
1 nF, >1.2 MΩ
3, 8
IDHA, IDHB
Input Diode A, B Horizontal CCD
12.0
15.0
15.0
V
5 pF, > 1.2 MΩ
4
Table 6: DC Operating Conditions
Notes:
1. The WELL and GND pins should be connected to P-well ground.
2. The voltage level specified will disable the fast dump feature.
3. This pin may be pulsed to Ves=40 V for electronic shuttering
4. Electrical injection test pins. Connect to VDD power supply.
5. Per output. Note also that Iout affects the bandwidth of the outputs.
6. Pins shown with impedances greater than 1.2 Mohm are expected resistances. These pins are only verified to 1.2 Mohm.
7. The operating levels are for room temperature operation. Operation at other temperatures may or may not require
adjustments of these voltages.
8. Refer to Application Note Using Interline CCD Image Sensors in High Intensity Visible Lighting Conditions.
Figure 10: Recommended Output Structure Load Diagram
KAI-1010 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0021 Pg 22
AC CLOCK LEVEL CONDITIONS
SYMBOL
DESCRIPTION
Level
Min.
NOM.
MAX.
UNITS
PIN IMPEDANCE2
φV1
Vertical CCD Clock
Low
-10.0
-9.5
-9.0
V
25 nF, >1.2 MΩ
Mid
0.0
0.2
0.4
V
High
8.5
9.0
9.5
V
φV2
Vertical CCD Clock
Low
-10.0
-9.5
-9.0
V
25 nF, >1.2 MΩ
High
0.0
0.2
0.4
V
φH1A
φ1 Horizontal CCD A Clock
Low
-7.5
-7.0
-6.5
V
100 pF, > 1.2 MΩ
High
2.5
3.0
3.5
V
φH1B4
φ1 Horizontal CCD B Clock
(single register mode)
Low
-7.5
-7.0
-6.5
V
100 pF, > 1.2 MΩ
φH1B4
φ1 Horizontal CCD B Clock
(dual register mode)
Low
-7.5
-7.0
-6.5
V
100 pF, > 1.2 MΩ
High
2.5
3.0
3.5
V
φH2
φ2 Horizontal CCD Clock
Low
-7.5
-7.0
-6.5
V
125 pF, > 1.2 MΩ
High
2.5
3.0
3.5
V
φR
Reset Clock
Low
-6.5
-6.0
-5.5
V
5 pF, > 1.2 MΩ
High
-0.5
0.0
0.5
V
φFDG3
Fast Dump Gate Clock
Low
-7.0
-6.0
-5.5
V
20 pF, > 1.2 MΩ
High
4.5
5.0
5.5
V
Table 7: AC Clock Level Conditions
Notes:
1. The AC and DC operating levels are for room temperature operation. Operation at other temperatures may or may not
require adjustments of these voltages.
2. Pins shown with impedances greater than 1.2 Mohm are expected resistances. These pins are only verified to 1.2 Mohm.
3. When not used, refer to DC operating condition.
4. For single register mode, set φH1B to -7.0 volts at all times rather than clocking it.
5. This device is suitable for a wide range of applications requiring a variety of different operating conditions. Consult
Truesense Imaging in those situations in which operating conditions meet or exceed minimum or maximum levels.
KAI-1010 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0021 Pg 23
AC TIMING REQUIREMENTS FOR 20 MHZ OPERATION
SYMBOL
DESCRIPTION
MIN
NOM
MAX
UNITS
NOTES
FIGURE
tφR
Reset Pulse Width
10
nsec
Figure 10
t es
Electronic Shutter Pulse Width
10
25
μsec
Figure 11
t int
Integration Time
0.1
msec
1
Figure 11
t φVh
Photodiode to VCCD Transfer Pulse Width
4
5
μsec
2
Figure 8
t cd
Clamp Delay
15
nsec
Figure 10
t cp
Clamp Pulse Width
15
nsec
Figure 10
t sd
Sample Delay
35
nsec
Figure 10
t sp
Sample Pulse Width
15
nsec
Figure 10
t rd
Vertical Readout Delay
10
----
----
μsec
Figure 8
t φV
φV1, φV2 Pulse Width
3
----
μsec
Figure 9
t φH
Clock Frequency φH1A, φH1B , φH2
----
20
MHz
Figure 10
t φAB
Line A to Line B Transfer Pulse Width
3
μsec
Figure 13
t φHd
Horizontal Delay
3
μsec
Figure 9
t φVd
Vertical Delay
25
nsec
Figure 9
t φHVES
Horizontal Delay with Electronic Shutter
1
μsec
Figure 11
Table 8: AC Timing Requirements for 20 MHz Operation
Notes:
1. Integration time varies with shutter speed. It is to be noted that smear increases when integration time decreases below
readout time (frame time). Photodiode dark current increases when integration time increases, while CCD dark current
increases with readout time (frame time).
2. Antiblooming function is off during photodiode to VCCD transfer.
KAI-1010 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0021 Pg 24
Frame Timing - Single Register Readout
V1
V1
V2
V2
0
0
1
1
2
2
3
4
1023
1023
1022
1022
1021
1020
1019
1018
t Vh
t rd
1023
1022
1021 0
1 Frame = 1024 Lines
Frame
Time
Figure 11: Frame Timing - Single Register Readout
Note:
1. When no electronic shutter is used, the integration time is equal to the frame time.
KAI-1010 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0021 Pg 25
Line Timing - Single Register Readout

R
H1B held low for single register operation
V1 t V

V2 t d

t Vd

Line Content
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
20
21
22
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
Empty Shift Register Phases Dark Reference Pixels Photoactive Pixels
Figure 12: Line Timing - Single Register Output
KAI-1010 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0021 Pg 26
Pixel Timing - Single Register Readout
Signal
Signal
Reference
Reference
tsp
tcp
tcd
tsd
H1A
H2
VOUTA
CLAMP
SAMPLE
VIDEO AFTER DOUBLE
CORRELATED SAMPLING
(INVERTED)
RtR
t H= 50ns min
1 count = 1 Pixel
Figure 13: Pixel Timing Diagram - Single Register Readout
KAI-1010 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0021 Pg 27
Electronic Shutter Timing - Single Register Readout
V1
V1
V2
V2
H1A
H2
VES (SUB)
Integration time tint
VES (SUB)
VES (SUB)
Reference Vsub
Ves
t es
t HVES
Electronic Shutter - Operating Voltages
Electronic Shutter - Placement
Electronic Shutter - Frame Timing
Figure 14: Electronic Shutter Timing Diagram - Single Register Readout
KAI-1010 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0021 Pg 28
Frame Timing - Dual Register Readout
V1
V2
0,1
0,1
2,3
2,3
4,5
4,5
6,7
8,9
1022,1023
1022,1023
1020,1021
1020,1021
1018,1019
1016,1017
1014,1015
1012,1013
1 Frame = 512 Lines Pairs
Frame
Time
V1
V2 0,11022,10231020,10211018,1019
trd
t Vh
Figure 15: Frame Timing - Dual Register Readout
Note:
1. When no electronic shutter is used, the integration time is equal to the frame time.
KAI-1010 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0021 Pg 29
Line Timing - Dual Register Readout

R
V1 t V
t V
t V

V2
t d

t Vd
t


Line Content
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
20
21
22
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
Empty Shift Register Phases Dark Reference Pixels Photoactive Pixels
Figure 16: Line Timing - Dual Register Output
KAI-1010 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0021 Pg 30
Pixel Timing - Dual Register Readout
Signal
Signal
Reference
Reference
tsp
tcp
tcd
tsd
H1B
H1A
H2
VOUTA
CLAMP
SAMPLE
VIDEO AFTER DOUBLE
CORRELATED SAMPLING
(INVERTED)
RtR
t H= 50ns min
1 count = 1 Pixel
Figure 17: Pixel Timing Diagram - Dual Register Readout
KAI-1010 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0021 Pg 31
Fast Dump Timing Removing Four Lines
V1
V2
FDG
H1A
H2
R
Dumped Line #1
Dumped Line #2
Dumped Line #3
Dumped Line #4
Valid Line
End of a Valid Line
Valid Line
min 0.5 sec
V2
FDG
min 0.5 sec
V2
FDG
max 0.1 sec
FDG
V2
Fast Dump Rising Edge wrt V2
Falling Edge Fast Dump Falling Edge wrt V2 Falling
Edge
Fast Dump Falling Edge wrt V2 Rising
Edge
H1B
Figure 18: Fast Dump Timing - Removing Four Lines
KAI-1010 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0021 Pg 32
Binning Two to One Line Binning
V1
H1A
R
V2
H2
tV tVd
tHd
H1B
Figure 19: Binning - 2 to 1 Line Binning
KAI-1010 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0021 Pg 33
Timing Sample Video Waveform
Figure 20: Sample Video Waveform at 5MHz
KAI-1010 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0021 Pg 34
Storage and Handling
CLIMATIC REQUIREMENTS
ITEM
DESCRIPTION
MIN.
MAX.
UNITS
CONDITIONS
NOTES
Operation to Specification
Temperature
-25
+40
°C
@ 10% ± 5% RH
1, 2
Humidity
10
86
%RH
@ 36 ± 2 °C Temp.
1, 2
Storage
Temperature
-55
+70
°C
@ 10% ± 5%RH
2, 3
Humidity
-----
95
%RH
@ 49 ± 2 °C Temp.
2, 3
Table 9: Climatic Requirements
Notes:
1. The image sensor shall meet the specifications of this document while operating at these conditions.
2. The tolerance on all relative humidity values is provided due to limitations in measurement instrument accuracy.
3. The image sensor shall meet the specifications of this document after storage for 15 days at the specified condition
ESD
1. This device contains limited protection against Electrostatic Discharge (ESD). ESD events may cause irreparable
damage to a CCD image sensor either immediately or well after the ESD event occurred. Failure to protect the
sensor from electrostatic discharge may affect device performance and reliability.
2. Devices should be handled in accordance with strict ESD procedures for Class 0 (<250 V per JESD22 Human
Body Model test), or Class A (<200 V JESD22 Machine Model test) devices. Devices are shipped in static-safe
containers and should only be handled at static-safe workstations.
3. See Application Note Image Sensor Handling Best Practices for proper handling and grounding procedures. This
application note also contains workplace recommendations to minimize electrostatic discharge.
4. Store devices in containers made of electro-conductive materials.
COVER GLASS CARE AND CLEANLINESS
1. The cover glass is highly susceptible to particles and other contamination. Perform all assembly operations in a
clean environment.
2. Touching the cover glass must be avoided.
3. Improper cleaning of the cover glass may damage these devices. Refer to Application Note Image Sensor
Handling Best Practices.
ENVIRONMENTAL EXPOSURE
1. Extremely bright light can potentially harm CCD image sensors. Do not expose to strong sunlight for long
periods of time, as the color filters and/or microlenses may become discolored. In addition, long time
exposures to a static high contrast scene should be avoided. Localized changes in response may occur from
color filter/microlens aging. For Interline devices, refer to Application Note Using Interline CCD Image Sensors in
High Intensity Visible lighting Conditions.
2. Exposure to temperatures exceeding maximum specified levels should be avoided for storage and operation,
as device performance and reliability may be affected.
3. Avoid sudden temperature changes.
KAI-1010 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0021 Pg 35
4. Exposure to excessive humidity may affect device characteristics and may alter device performance and
reliability, and therefore should be avoided.
5. Avoid storage of the product in the presence of dust or corrosive agents or gases, as deterioration of lead
solderability may occur. It is advised that the solderability of the device leads be assessed after an extended
period of storage, over one year.
SOLDERING RECOMMENDATIONS
1. The soldering iron tip temperature is not to exceed 370 °C. Higher temperatures may alter device performance
and reliability.
2. Flow soldering method is not recommended. Solder dipping can cause damage to the glass and harm the
imaging capability of the device. Recommended method is by partial heating using a grounded 30 W soldering
iron. Heat each pin for less than 2 seconds duration.
KAI-1010 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0021 Pg 36
Mechanical Information
COMPLETED ASSEMBLY
Figure 21: Completed Assembly (1 of 2)
Notes:
1. Cover glass is manually placed and visually aligned over die location accuracy is not guaranteed.
KAI-1010 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0021 Pg 37
Figure 22: Completed Assembly (2 of 2)
Notes:
1. Center of image area is offset from center of package by (-0.02, -0.06) mm nominal.
2. Die is aligned within +/- 2 degree of any package cavity edge.
KAI-1010 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0021 Pg 38
COVER GLASS
Figure 23: Glass Drawing
Notes:
1. DUST/SCRATCH COUNT 20 MICRON MAX. (ZONE-A)
2. EPOXY: NCO-110SZ
THICKNESS: 0.002” – 0.007”
3. GLASS: SCHOTT D263 eco or equivalent
4. DOUBLE-SIDED AR COATING REFLECTANCE
a. 420nm 435nm < 2.0%
b. 435nm 630nm < 0.8%
c. 630nm 680nm < 2.0%
KAI-1010 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0021 Pg 39
Quality Assurance and Reliability
QUALITY AND RELIABILITY
All image sensors conform to the specifications stated in this document. This is accomplished through a combination
of statistical process control and visual inspection and electrical testing at key points of the manufacturing process,
using industry standard methods. Information concerning the quality assurance and reliability testing procedures and
results are available from Truesense Imaging upon request. For further information refer to Application Note Quality
and Reliability.
REPLACEMENT
All devices are warranted against failure in accordance with the Terms of Sale. Devices that fail due to mechanical and
electrical damage caused by the customer will not be replaced.
LIABILITY OF THE SUPPLIER
A reject is defined as an image sensor that does not meet all of the specifications in this document upon receipt by the
customer. Product liability is limited to the cost of the defective item, as defined in the Terms of Sale.
LIABILITY OF THE CUSTOMER
Damage from mishandling (scratches or breakage), electrostatic discharge (ESD), or other electrical misuse of the
device beyond the stated operating or storage limits, which occurred after receipt of the sensor by the customer, shall
be the responsibility of the customer.
TEST DATA RETENTION
Image sensors shall have an identifying number traceable to a test data file. Test data shall be kept for a period of 2
years after date of delivery.
MECHANICAL
The device assembly drawing is provided as a reference.
Truesense Imaging reserves the right to change any information contained herein without notice. All information
furnished by Truesense Imaging is believed to be accurate.
Life Support Applications Policy
Truesense Imaging image sensors are not authorized for and should not be used within Life Support Systems without
the specific written consent of Truesense Imaging, Inc.
KAI-1010 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0021 Pg 40
Revision Changes
MTD/PS-0502
Revision Number
Description of Revision
0.0
Revision 0 is the original version of the document
1.0
Revision 1.0 changes name from KAI-1001C to KAI-1001 series and includes data on all series imagers
2.0
Entire spec revised
3.0
Entire spec revised
4.0
Changed from KAI-1001 series to KAI-1010. Added cluster closeness specification, 4 good pixels between cluster defects.
5.0
Changed defect and grades.
Added frame rate table and angle QE.
6.0
Added Web and e-mail references to footers.
Added pixel 1,1 locator to figure 7, Pinout diagram.
Corrected missing reference to figure 16 in Electro-Optical for KAI-1010CM note 2.
Removed reference to KAI-1001 from both color and mono QE curves.
Removed boxes around vertical and horizontal labels on angle QE figure.
Removed boxes around labels on frame rate figure, added arrows from labels to curves.
Corrected figure 21 Vsat versus Vsub plot to properly position labels.
Added Web and e-mail references in section 4.3 ordering information.
Corrected repeat table 4 entry.
Corrected frame rate versus horizontal clock frequency figure. Data for dual mode was incorrect.
7.0
Changed figure 6 label from Device Drawing #6 Die Placement to Device Drawing Die Placement.
Added figure 16, Fast Dump Timing.
Added figure 17, Binning 2 to 1 line binning.
Added figure 18, Sample Video Waveform at 5MHz.
In Appendix 1, Part Numbers, changed references from taped on glass to snap-on lid.
8.0
Updated page layout.
Color version of part updated to use improved material. Naming of color part changed from KAI-1010CM to KAI-1011CM.
Page 13 Added cautions pertaining to ESD and glass cleaning.
Page 26 Color PRNU value changed from 5 to 15. Units clarified to % Peak to Peak.
Page 28 Monochrome PRNU value changed from 5 to 10. Units clarified to % Peak to Peak.
Page 27 Updated color quantum efficiency graph to new KAI-1011CM.
Page 35 Updated quality Assurance and Reliability section.
Page 36 Appendix 1 replaced with Available Part Configurations.
9.0
Page 8 Figure 5 CFA Pattern corrected pattern. First active line is blue/green. Previous versions on the specification
incorrectly had the first active line as green/red.
Note: the color filter pattern has not been physically changed on the device.
Page 35 Update Storage and Handling Section.
Page 36 Updated Quality Assurance and Reliability section.
10.0
Page 37 removed KAI-1010 monochrome sealed quartz glass configuration. This configuration has been obsoleted.
11.0
Updated format
Updated Summary Specification
Updated completed assembly drawing
Added cover glass drawing
Updated ordering information
12.0
Obsoleted KAI-1011-CBA and KAI-1010-AAA products
13.0
Added the note “Refer to Application Note Using Interline CCD Image Sensors in High Intensity Visible Lighting Conditions
to the following sections
o Electronic Shutter
o Absolute Maximum Ratings
o DC Operating Conditions
o Storage and Handling
Changed cover glass material to D263T eco or equivalent
KAI-1010 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0021 Pg 41
©Truesense Imaging Inc., 2012. TRUESENSE is a registered trademark of Truesense Imaging, Inc.
PS-0021
Revision Number
Description of Changes
1.0
Initial release with new document number, updated branding and document template
Updated Storage and Handling and Quality Assurance and Reliability sections