Notes through are on page 8
www.irf.com 1
09/15/04
IRFBA90N20DPbF
SMPS MOSFET
HEXFET® Power MOSFET
VDSS RDS(on) max ID
200V 0.02398A
PD - 95902
Parameter Max. Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 98
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 71A
IDM Pulsed Drain Current 390
PD @TC = 25°C Power Dissipation 650 W
Linear Derating Factor 4.3 W/°C
VGS Gate-to-Source Voltage ± 30 V
dv/dt Peak Diode Recovery dv/dt 6.3 V/ns
TJOperating Junction and -55 to + 175
TSTG Storage Temperature Range
Soldering Temperature, for 10 seconds 300 (1.6mm from case ) °C
Recommended Clip Force 20 N
Absolute Maximum Ratings
lHigh frequency DC-DC converters
lLead-Free
Benefits
Applications
lLow Gate-to-Drain Charge to Reduce
Switching Losses
lFully Characterized Capacitance Including
Effective COSS to Simplify Design, (See
App. Note AN1001)
lFully Characterized Avalanche Voltage
and Current
Super-220™
Thermal Resistance Parameter Typ. Max. Units
RθJC Junction-to-Case ––– 0.23
RθCS Case-to-Sink, Flat, Greased Surface 0.50 ––– °C/W
RθJA Junction-to-Ambient ––– 58
IRFBA90N20DPbF
2www.irf.com
Parameter Min. Typ. Max. Units Conditions
gfs Forward Transconductance 41 ––– ––– S VDS = 50V, ID = 59A
QgTotal Gate Charge –– 16 0 240 ID = 59A
Qgs Gate-to-Source Charge ––– 45 67 nC VDS = 160V
Qgd Gate-to-Drain ("Miller") Charge ––– 75 110 VGS = 10V
td(on) Turn-On Delay Time ––– 23 –– VDD = 100V
trRise Time ––– 160 ––– ID = 59A
td(off) Turn-Off Delay Time ––– 39 ––– RG = 1.2
tfFall Time ––– 77 ––– VGS = 10V
Ciss Input Capacitance ––– 6080 ––– VGS = 0V
Coss Output Capacitance ––– 1040 ––– VDS = 25V
Crss Reverse Transfer Capacitance ––– 150 ––– pF ƒ = 1.0MHz
Coss Output Capacitance ––– 7500 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
Coss Output Capacitance ––– 410 ––– VGS = 0V, V DS = 160V, ƒ = 1.0MHz
Coss eff. Effective Output Capacitance ––– 790 ––– VGS = 0V, VDS = 0V to 160V
Dynamic @ TJ = 25°C (unless otherwise specified)
ns
Parameter Typ. Max. Units
EAS Single Pulse Avalanche Energy––– 960 mJ
IAR Avalanche Current––– 59 A
EAR Repetitive Avalanche Energy––– 65 mJ
Avalanche Characteristics
S
D
G
Parameter Min. Typ. Max. Units Conditions
ISContinuous Source Current MOSFET symbol
(Body Diode) ––– ––– showing the
ISM Pulsed Source Current integral reverse
(Body Diode) ––– ––– p-n junction diode.
VSD Diode Forward Voltage ––– ––– 1.5 V TJ = 25°C, IS = 59A, VGS = 0V
trr Reverse Recovery Time ––– 220 3 40 nS TJ = 25°C, IF = 59A
Qrr Reverse RecoveryCharge ––– 1.9 2.8 µC di/dt = 100A/µs
ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Diode Characteristics
98
390 A
Static @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
V(BR)DSS Drain-to-Source Breakdown Voltage 200 –– ––– V VGS = 0V, ID = 250µA
V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient ––– 0.22 ––– V/°C Reference to 25°C, ID = 1mA
RDS(on) Static Drain-to-Source On-Resistance ––– ––– 0.023 VGS = 10V, ID = 59A
VGS(th) Gate Threshold Voltage 3.0 ––– 5.0 V VDS = VGS, ID = 250µA
––– ––– 25 µA VDS = 200V, VGS = 0V
––– ––– 250 VDS = 160V, VGS = 0V, TJ = 150°C
Gate-to-Source Forward Leakage ––– ––– 100 VGS = 30V
Gate-to-Source Reverse Leakage ––– ––– -100 nA VGS = -30V
IGSS
IDSS Drain-to-Source Leakage Current
IRFBA90N20DPbF
www.irf.com 3
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
0.1 110 100
VDS, Dr ain-to-Source Voltage (V)
0.01
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
5.0V
20µs PU LSE WIDTH
Tj = 25° C
VGS
TOP 15V
12V
10V
8.0V
7.0V
6.0V
5.5V
BOTTOM 5.0V
0.1 110 100
VDS, Dr ain-to-Source Voltage (V)
1
10
100
1000
ID, Drain-to-Source Current (A)
5.0V
20µs PU LSE WIDTH
Tj = 175° C
VGS
TOP 15V
12V
10V
8.0V
7.0V
6.0V
5.5V
BOTTOM 5.0V
5.0 7.0 9.0 11.0 13.0 15.0
VGS, Gat e-to-Source Voltage (V)
0.10
1.00
10.00
100.00
1000.00
ID, Drain-to-Source Current (Α)
TJ = 25° C
TJ = 175° C
VDS = 15V
20µs PU LSE WIDTH
-60 -40 -20 020 40 60 80 100 120 140 160 180
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
T , Junction Temperature ( C)
R , Drain-to-Source On Resistance
(Normalized)
J
DS(on)
°
V =
I =
GS
D
10V
98A
IRFBA90N20DPbF
4www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
110 100 1000
VDS, Dr ain-to- Source Voltage (V )
10
100
1000
10000
100000
C, Capacitance(pF)
Coss
Crss
Ciss
VGS = 0V, f = 1 MHZ
Ciss = C
gs + Cgd, C
ds SHORTED
Crss
= C
gd
Coss
= C
ds + Cgd
0.00.51.01.52.02.53.0
VSD, Source-toDrain Voltage (V)
0.10
1.00
10.00
100.00
1000.00
ISD, Reverse Drain Current (A)
TJ = 25°C
TJ = 175° C
VGS = 0V
1 10 100 1000
VDS , Drain-toSource V oltage (V)
0.1
1
10
100
1000
10000
ID, Drain-to-Source Current (A)
Tc = 25°C
Tj = 175° C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY RDS(on)
100µsec
0 20 40 60 80 100 120 140 160 180 200
QG Total G ate Charge ( nC)
0.0
2.0
4.0
6.0
8.0
10.0
12.0
VGS, Gate-to-Source Voltage (V)
VDS= 160V
VDS= 100V
VDS= 40V
ID= 59A
IRFBA90N20DPbF
www.irf.com 5
Fig 10a. Switching Time Test Circuit
V
DS
9
0%
1
0%
V
GS t
d(on)
t
r
t
d(off)
t
f
Fig 10b. Switching Time Waveforms
VDS
Pulse Width ≤ 1 µs
Duty Factor 0.1 %
RD
VGS
RG
D.U.T.
10V
+
-
VDD
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current Vs.
Case Temperature
0.001
0.01
0.1
1
0.00001 0.0001 0.001 0.01 0.1 1
Notes:
1. Duty factor D = t / t
2. Peak T = P x Z + T
1 2
JDM thJC C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response (Z )
1
thJC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)
25 50 75 100 125 150 175
0
20
40
60
80
100
T , Case Temperature ( C)
I , Drain Current (A)
°
C
D
LI MI TED BY PACKAGE
IRFBA90N20DPbF
6www.irf.com
Q
G
Q
GS
Q
GD
V
G
Charge
D.U.T. V
D
S
I
D
I
G
3mA
V
GS
.3µF
50K
.2µF
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
10 V
Fig 13b. Gate Charge Test Circuit
Fig 13a. Basic Gate Charge Waveform
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
Fig 12a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
25 50 75 100 125 150 175
0
400
800
1200
1600
2000
Starting T , Junction Temperature ( C)
E , Single Pulse Avalanche Energy (mJ)
J
AS
°
ID
TOP
BOTTOM
24A
42A
59A
IRFBA90N20DPbF
www.irf.com 7
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
R
e-Applied
V
oltage
Reverse
Recovery
Current Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D = P.W.
Period
+
+
+
-
-
-
Fig 14. For N-Channel HEXFET® Power MOSFETs
* VGS = 5V for Logic Level Devices
Peak Diode Recovery dv/dt Test Circuit
RG
VDD
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
*
IRFBA90N20DPbF
8www.irf.com
Repetitive rating; pulse width limited by
max. junction temperature.
ISD 59A, di/dt 170A/µs, VDD V(BR)DSS,
TJ 175°C
Notes:
Starting TJ = 25°C, L = 0.55mH
RG = 25, IAS = 59A.
Pulse width 300µs; duty cycle 2%.
Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS
Calculated continuous current based on maximum allowable
junction temperature. Package limitation current is 95A.
2X
A
123
3X
0.25 [.010] BA
B
4X
4
0.2
5 [
3.00 [.118]
2.50 [.099]
14.50 [.57 0]
13.00 [.51 2]
4.00 [.15 7]
3.50 [.138 ]
1.30 [.051]
0. 90 [.036]
2.55 [.100]
1.00 [.039]
0.70 [.02 8]
5.00 [.196 ]
4.00 [.158 ]
11.00 [.433]
10.00 [.394]
1.50 [.059 ]
0.50 [.02 0]
15.00 [.59 0]
14.00 [.55 2]
9.00
[.
8.00
[.
13.5
0 [.
12.5
0 [.
MOSFET IGBT
Super-220 ( TO-273AA ) Package Outline
IRFBA90N20DPbF
www.irf.com 9
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.09/04
Super-220 not recommended for surface mount application.
Super-220 (TO-273AA) Part Marking Information
TOP
EXAMPLE: THIS IS AN IRFBA22N50A WITH
ASSEMBLY LOT CODE 1789
ASSEMBLY LOT CODE
INTERNATIONAL RECTIFIER
LOGO
89
IRFBA22N50A
17
YEAR 7 = 1997
LINE C
WEEK 19
D ATE CODE
PART NUMBER
ASSEMBLED ON WW 19, 1997
IN THE ASSEMBLY LINE "C "
719C
Note: "P" in assembly line p osition
indicates "Lead-Free"