VN7010AJ
High-side driver with MultiSense analog feedback for automotive
applications
Datasheet - product ion data
Features
Max transient supply voltage VCC 40 V
Operating voltage range VCC 4 to 28 V
Typ. on-state resistance (per Ch) RON 10
Current limitation (typ) ILIMH 91 A
Standby current (max) ISTBY 0.5 µA
Automotive qualified
General
Single channel smart high-side driver
with MultiSense analog feedback
Very low standby current
Com patible with 3 V and 5 V CMOS
outputs
MultiSense diagnostic functions
Multiplexed analog feedback of: load
current with high precision proportional
current mirror, V CC suppl y voltage and
TCHIP device temperature
Overload and short to ground (power
limitation) indication
Thermal shutdown indication
OFF-state open-load detection
Output short to VCC detection
Sense enabl e/d isab le
Protections
Undervoltage shutdown
Overvoltage clamp
Load current limitation
Self limiting of fast thermal transients
Configurable latch-off on
overtemperature or power limitation
with dedicated fault reset pin
Loss of ground and loss of VCC
Reverse battery with external
components
Electrostatic discharge protection
Applications
All types of Automotive resistive, inductive
and capacitive loads
Specially intended for Automotive
Headlamps
Description
The device is a single channel high-side driver
manufactured using ST proprietary VIPower® M0-
7 technology and housed in PowerSSO-16
package. The device is designed to drive 12 V
automotive grounded loads through a 3 V and
5 V CMOS-compatible interface, providing
protection and diagnostics.
The device integrates advanced protective
functions such as load current limitation, overload
active management by power limitation and
overtemperature shutdown with configurable
latch-off.
A FaultRST pin unlatches t he outp ut in case of
fault or disables the latch-off functionality.
A dedicated multifunction multiplexed analog
output pin delivers sophisticated diagnostic
functions including high precision proportional
load current sense, supply voltage feedback and
chip temperature sense, in addition to the
detection of overload and short circuit to ground,
short to VCC and OFF-state open-load.
A sense enable pin allows OFF-state diagnosis to
be disabled during the module low-power mode
as well as external sense resistor sharing among
similar devices.
May 2015 DocID027394 Rev 1 1/45
This is information on a product in full production. www.st.com
Contents
VN7010AJ
Contents
1 Block diagram and pin des cr iption ................................................ 5
2 Electrical specification .................................................................... 7
2.1 Absolute maxi mu m ratings ................................................................ 7
2.2 Thermal dat a ..................................................................................... 8
2.3 Main electrical characteristics ........................................................... 8
2.4 Waveforms ...................................................................................... 19
2.5 Electrical characteristics curves ...................................................... 21
3 Protections..................................................................................... 25
3.1 Power limitation ............................................................................... 25
3.2 Thermal shutdown ........................................................................... 25
3.3 Current limitation ............................................................................. 25
3.4 Negative voltage clamp ................................................................... 25
4 Application information ................................................................ 26
4.1 GND protection network against reverse battery ............................. 26
4.1.1 Diode (DGND) in the ground line ..................................................... 27
4.2 Immunity against transient electrical disturbances .......................... 27
4.3 MCU I/Os protection ........................................................................ 27
4.4 Multisense - analog current sense .................................................. 28
4.4.1 Principle of Multisense signal generation ......................................... 29
4.4.2 TCASE and VCC monitor ................................................................. 31
4.4.3 Short to VCC and OFF-state open-l oad det ec tio n ........................... 32
5 Maxim um demagne t izati on ener gy (VCC = 16 V) ........................ 34
6 Package and PCB thermal data .................................................... 35
6.1 PowerSSO-16 thermal data ............................................................ 35
7 Package information ..................................................................... 38
7.1 PowerSSO-16 package information ................................................ 38
7.2 PowerSSO-16 packing information ................................................. 40
7.3 PowerSSO-16 marki ng in format ion ................................................. 42
8 Order c ode s ................................................................................... 43
9 Revision history ............................................................................ 44
2/45 DocID027394 Rev 1
VN7010AJ
List of tables
List of tables
Table 1: Pin functions ................................................................................................................................. 5
Table 2: Suggested connections for unused and not connected pins ........................................................ 6
Table 3: Absolute maximum ratings ........................................................................................................... 7
Table 4: Thermal data ................................................................................................................................. 8
Table 5: Power section ............................................................................................................................... 8
Table 6: Switching ....................................................................................................................................... 9
Table 7: Logic inputs ................................................................................................................................. 10
Table 8: Protec t io ns .................................................................................................................................. 11
Table 9: MultiSense .................................................................................................................................. 11
Table 10: Truth table ................................................................................................................................. 18
Table 11: MultiSense multiplexer addressing ........................................................................................... 18
Table 12: ISO 7637-2 - electrical transient conduction along supply line ................................................. 27
Table 13: MultiSense pin levels in off-state .............................................................................................. 31
Table 14: PCB properties ......................................................................................................................... 35
Table 15: Thermal parameters ................................................................................................................. 37
Table 16: PowerSSO-16 mechanical data................................................................................................ 38
Table 17: Reel dimensions ....................................................................................................................... 40
Table 18: PowerSSO-16 carrier tape dimensions .................................................................................... 41
Table 19: Device summary ....................................................................................................................... 43
Table 20: Document revision history ........................................................................................................ 44
DocID027394 Rev 1 3/45
List of figur es
List of figures
Figure 1: Block diagram .............................................................................................................................. 5
Figure 2: Configuration diagram (top view)................................................................................................. 6
Figure 3: Current and voltage conventions ................................................................................................. 7
Figure 4: IOUT/ISENSE versus IOUT ....................................................................................................... 15
Figure 5: Current sense accuracy versus IOUT ....................................................................................... 15
Figure 6: Switching time and Pulse skew ................................................................................................. 16
Figure 7: MultiSense timings (current sense mode) ................................................................................. 16
Figure 8: Multisense timings (chip temperature and VCC sense mode) .................................................. 17
Figure 9: TDSTKON .................................................................................................................................. 17
Figure 10: Latch func t ion al ity - behavior in hard short circuit condition (TAMB << TTSD) ...................... 19
Figure 11: Latch func t ion al ity - behavior in hard short circuit condition .................................................... 19
Figure 12: Latch func t ion al ity - behavior in hard short circuit condition (autorestart mode + latch off) .... 20
Figure 13: Standby mode activation ......................................................................................................... 20
Figure 14: Stand b y state di agram ............................................................................................................. 21
Figure 15: OFF-state output current ......................................................................................................... 21
Figure 16: Stand b y curre nt ....................................................................................................................... 21
Figure 17: IGND(ON) vs. Iout ................................................................................................................... 22
Figure 18: Logic Input hi gh le vel volt age .................................................................................................. 22
Figure 19: Logic Input lo w level vo ltag e .................................................................................................... 22
Figure 20: High lev el logic input curre nt ................................................................................................... 22
Figure 21: Low level logic input current .................................................................................................... 22
Figure 22: Logic Input h yster es is volt age ................................................................................................. 22
Figure 23: FaultRST Input clamp voltage ................................................................................................. 23
Figure 24: Under vo lta ge shut do wn ........................................................................................................... 23
Figure 25: On-state resistance vs. Tcase ................................................................................................. 23
Figure 26: On-state resistance vs. VCC ................................................................................................... 23
Figure 27: Turn-on volta ge s lope .............................................................................................................. 23
Figure 28: Turn-off voltage slope .............................................................................................................. 23
Figure 29: Won vs. Tcase ......................................................................................................................... 24
Figure 30: Woff vs. Tcase ......................................................................................................................... 24
Figure 31: ILIMH vs. Tcase ....................................................................................................................... 24
Figure 32: OFF-state open-load voltage detection threshold ................................................................... 24
Figure 33: Vsense clamp vs. Tcase .......................................................................................................... 24
Figure 34: Vsense h vs . Tc ase .................................................................................................................. 24
Figure 35: Appl icati on dia gram ................................................................................................................. 26
Figure 36: Simplified internal structure ..................................................................................................... 26
Figure 37: Multi Se nse a nd diagnos t ic block diagram ............................................................................ 28
Figure 38: MultiSense block diagram ....................................................................................................... 29
Figure 39: Anal ogu e HSD open-load detect ion in of f -state ................................................................... 30
Figure 40: Open-load / short to VCC condition ......................................................................................... 31
Figure 41: GND voltage shift .................................................................................................................... 32
Figure 42: Maximum turn off current versus inductance .......................................................................... 34
Figure 43: Power S SO-16 on two-layers PCB (2s0p to JEDEC JESD 51-5) ............................................ 35
Figure 44: Power S SO-16 on four-layers PCB (2s2p to JEDEC JESD 51-7) ........................................... 35
Figure 45: Rthj-amb vs PCB copper area in open box free air condition (one channel on) ..................... 36
Figure 46: Power S SO-16 thermal impedance junction ambient single pulse (one channel on) .............. 36
Figure 47: Thermal fitting model of a double-channel HSD in PowerSSO-16.......................................... 37
Figure 48: Power S SO-16 package dimensions ........................................................................................ 38
Figure 49: Power S SO-16 reel 13" ............................................................................................................ 40
Figure 50: Power S SO-16 carrier tape ...................................................................................................... 41
Figure 51: Power S SO-16 schematic drawing of leader and trailer tape .................................................. 41
Figure 52: Power S SO-16 marking information ......................................................................................... 42
4/45 DocID027394 Rev 1
VN7010AJ
Block diagram and pin description
1 Block diagram and pin description
Figure 1: Block diagra m
Table 1: Pin functions
Name Function
VCC Battery connection.
OUTPUT Power outputs. All the pins must be connected together.
GND Ground connection. Must be reverse battery protected by an external diode / resistor
network.
INPUT Voltage controlled input pin with hysteresis, compatible with 3 V and 5 V CMOS outputs.
It controls output switch state.
MultiSense
Multiplexed analog sense output pin; it delivers a current proportional to the selected
diagnostic: load current, supply voltage or chip temperature.
SEn Active high compatible with 3 V and 5 V CMOS outputs pin; it enables the MultiSense
diagnostic pin.
SEL0,1 Active high compatible with 3 V and 5 V CMOS outputs pin; they address the MultiSense
multiplexer.
FaultRST Active low compatible with 3 V and 5
V CMOS outputs pin; it unlatches the output in case
of fault; If kept low, sets the outputs in auto-rest ar t. mod e
Con tr o l &Diagnostic
V
CC
V
ON
Limitation
Current
Limitation
V
CC
OUT
Clamp
Internal supply
OUTPUT
MUX
Current
Sense
GND
Undervoltage
shut-down
V
CC
GND
Clamp
Fault
T
Short to V
CC
Open-Loadin OFF
Overtemperature
Power Limitation
T
V
SENSEH
INPUT
SEL
0
SEL
1
SEn
MultiSense
FaultRST
V
CC
Gate Driver
GAPGCFT00328
DocID027394 Rev 1 5/45
Block diagram and pin description
VN7010AJ
Figure 2: Configuration diagram (top view)
Pins 9, 10, 11 and 12 are internally connected; Pins 13, 14, 15 and 16 are
internally connected; All output pins must be connected together on PCB.
Table 2: Suggested connections for unused and not connected pins
Connection /
pin MultiSense N.C.
Output Input SEn, SELx,
FaultRST
Floating Not allowed X (1)
X X X
To ground Through 1
resistor X Not
allowed Through 15
resistor Through 15
resistor
Notes:
(1)X: do not care.
1
2
3
4
5
6
MultiSense
FaultRSTOUTPUT
7
8
SEn
N.C.
16
15
14
13
12
11OUTPU T
OUTPUT
OUTPUT
OUTPUT
10
9
OUTPUT
OUTPUT
OUTPUT
SEL1
GND
INPUT0
TAB = VCC
PowerSSO-16
GAPGCFT00329
SEL0
6/45 DocID027394 Rev 1
VN7010AJ
Electrical specification
2 Electrical specification
Figure 3: Current and voltage conventions
V
Fn
= V
OUTn
- V
CC
during reverse battery condition.
2.1 Absolute m a xi m um rat ings
Stressing the device above the rating listed in Table 3: "Absolute maximum ratings" may
cause permanent damage to the device. These are stress ratings only and operation of the
device at these or any other conditions above those indicated in the operating sections of
this specification is not implied. Exposure to the conditions in table below for extended
periods may affect device reliability.
Table 3: A bsolut e maximum rat ings
Symbol
Parameter Value Unit
VCC DC supply voltage 38 V
-VCC Reverse DC supply voltage 0.3
VCCPK Maximum transient supply voltage (ISO 16750-2:2010 Test B
clamped to 40 V; RL = 4 Ω) 40 V
VCCJS Maximum jump start voltage for single pulse short circuit protection 28 V
-IGND DC reverse ground pin current 200 mA
IOUT OUTPUT DC output current Internally limited
A
-IOUT Reverse DC output current 35
IIN INPUT DC input current
-1 to 10 mA
ISEn SEn DC input current
ISEL SEL0,1 DC input curre nt
IFR FaultRST DC input current
VFR FaultRST DC input voltage 7.5 V
V
IN
OUTPUT
MultiSense
FaultRST
SE
n
SEL
0,1
INPUT
I
IN
I
SEL
I
SEn
I
FR
I
GND
V
SENSE
V
OUT
V
CC
V
Fn
I
S
I
OUT
I
SENSE
V
CC
V
SEL
V
SEn
V
FR
GAPGCFT00330
DocID027394 Rev 1 7/45
Electrical specification
VN7010AJ
Symbol
Parameter Value Unit
ISENSE MultiSense pin DC output current (VGND = VCC and VSENSE < 0 V) 10 mA
MultiSense pin DC output current in reverse (VCC < 0 V) -20
EMAX Maximum switching energy (single pulse) (TDEMAG = 0.4 ms;
Tjstart = 150 °C) 168 mJ
VESD
Electrostatic discharge (JEDEC 22A-114F)
INPUT
MultiSense
SEn, SEL0,1, FaultRST
OUTPUT
VCC
4000
2000
4000
4000
4000
V
V
V
V
V
VESD Charge device model (CDM-AEC-Q100-011) 750 V
Tj Junction operating temperature -40 to 150 °C
Tstg Storage temperat ure -55 to 150
2.2 Thermal da t a
Table 4: Thermal data
Symbol Parameter Typ. value Unit
Rthj-board T hermal resi stan ce jun cti on-board (JEDEC JESD 51-5 / 51-8) (1) 3.9
°C/W
Rthj-amb Thermal resistan ce jun cti on-ambient (JEDEC JESD 51-5)(2) 55
Rthj-amb Thermal resistan ce jun cti on-ambient (JEDEC JESD 51-7)(1) 21.2
Notes:
(1)Device mounted on four-layers 2s2p PCB
(2)Device mounted on two-layers 2s0p PCB with 2 cm2 heatsink copper trace
2.3 Main electrical characteristics
7 V < VCC < 18 V; -40°C < Tj < 150°C, unless otherwise specified.
All typical values refer to VCC = 13 V; Tj = 25°C, unless otherwise specified.
Table 5: Power section
Symbol Parameter Test conditions Min. Typ. Max. Unit
VCC Operating supply
voltage
4 13 28 V
VUSD Undervoltage shut dow n
4 V
VUSDReset
Undervolta ge shut down
reset
5 V
VUSDhyst Undervolta ge shut down
hysteresis
0.3
V
RON On-state resistance
IOUT = 5 A; Tj = 25°C
10
IOUT = 5 A; Tj = 150°C
20
IOUT = 5 A; VCC = 4 V; Tj = 25°C
15
8/45 DocID027394 Rev 1
VN7010AJ
Electrical specification
Symbol Parameter Test conditions Min. Typ. Max. Unit
Vclamp Clamp voltage IS = 20 mA; 25°C < Tj < 150°C 41 46 52 V
IS = 20 mA; Tj = -40°C 38
V
ISTBY Supply current in
standby at VCC = 13 V (1)
VCC = 13 V;
VIN = VOUT = VFR = VSEn = 0 V;
VSEL0,1 = 0 V; Tj = 25°C 0.5
µA
VCC = 13 V;
VIN = VOUT = VFR = VSEn = 0 V;
VSEL0,1 = 0 V; Tj = 85°C (2) 0.5
VCC = 13 V;
VIN = VOUT = VFR = VSEn = 0 V;
VSEL0,1 = 0 V; Tj = 125°C 3
tD_STBY Standby mode blanking
time
VCC = 13 V;
VIN = 5 V; VSEn = VFR = VSEL0,1 = 0 V;
IOUT = 0 V 60 300 550 µs
IS(ON) Supply current VCC = 13 V;
VSEn = VFR = VSEL0,1 = 0 V; VIN = 5 V;
IOUT = 0 A 3 5 mA
IGND(ON)
Control stage curr en t
consumption in ON
state. All c hannels
active.
VCC = 13 V; VSEn = 5 V;
VFR = VSEL0,1 = 0 V; VIN = 5 V;
IOUT = 5 A 6 mA
IL(off) Off-state output curre nt
at VCC = 13 V
VIN = VOUT = 0 V; VCC = 13 V;
Tj = 25°C 0 0.01 0.5 µA
VIN = VOUT = 0 V; VCC = 13 V;
Tj = 125°C 0
3
VF Output - VCC diode
voltage IOUT = -5 A; Tj = 150°C
0.7 V
Notes:
(1)PowerMOS leakage included.
(2)Parameter specified by design; not subject to production t est.
Table 6: Switchin g
VCC = 13 V; -40°C < Tj < 150°C, unless otherwise specified
Symbol Parameter Test conditions Min. Typ.
Max. Unit
td(on)(1) Turn-on delay time at Tj = 25 °C RL = 2.6 Ω 10 70 120 µs
td(off)(1) Turn-off delay time at Tj = 25 °C 10 40 100
(dVOUT/dt)on(1) Turn-on voltage slope at Tj = 25 °C RL = 2.6 Ω 0.1 0.2 0.7 V/µs
(dVOUT/dt)off(1) Turn-off voltage slope at Tj = 25 °C 0.1 0.3 0.7
WON Switching energy losses at turn-on (twon) RL = 2.6 Ω 0.9 1.2(2) mJ
WOFF Switching energy losses at turn-off (twoff) RL = 2.6 Ω 0.6 0.8(2) mJ
tSKEW(1) Differential Pulse skew (tPHL - tPLH) RL = 2.6 Ω -90 -40 10 µs
Notes:
(1)See Figure 6: "Switching time and Pulse skew".
(2)Parameter guaranteed by design and characterizati on; not subj ect to product i on test.
DocID027394 Rev 1 9/45
Electrical specification
VN7010AJ
Table 7: Logic inputs
7 V < VCC < 28 V; -40°C < Tj < 150°C
Symbol Parameter Test conditions Min. Typ. Max. Unit
INPUT characteristics
VIL Input low level voltage
0.9 V
IIL Low level input current VIN = 0.9 V 1
µA
VIH Input high level voltage
2.1
V
IIH High level input current VIN = 2.1 V
10 µA
VI(hyst) Input hystere si s voltage
0.2
V
VICL Input clamp voltag e IIN = 1 mA 5.3
7.2 V
IIN = -1 mA
-0.7
FaultRST characteristics
VFRL Input low level voltage
0.9 V
IFRL Low level input current VIN = 0.9 V 1
µA
VFRH Input high level voltage
2.1
V
IFRH High level input current VIN = 2.1 V
10 µA
VFR(hyst) Input hysteresi s volta ge
0.2
V
VFRCL Input clamp voltage IIN = 1 mA 5.3
7.5 V
IIN = -1 mA
-0.7
SEL0,1 characteristics (7 V < VCC < 18 V)
VSELL Input low level voltage
0.9 V
ISELL Low level input current VIN = 0.9 V 1
µA
VSELH Input high level voltage
2.1
V
ISELH High level input current VIN = 2.1 V
10 µA
VSEL(hyst) Input hysteresi s voltage
0.2
V
VSELCL Input clamp voltage IIN = 1 mA 5.3
7.2 V
IIN = -1 mA
-0.7
SEn characteristics (7 V < VCC < 18 V)
VSEnL Input low level voltage
0.9 V
ISEnL Low level input current VIN = 0.9 V 1
µA
VSEnH Input high level voltage
2.1
V
ISEnH High level input current VIN = 2.1 V
10 µA
VSEn(hyst) Input hysteresis voltage
0.2
V
VSEnCL Input clamp voltage IIN = 1 mA 5.3
7.2 V
IIN = -1 mA
-0.7
10/45 DocID027394 Rev 1
VN7010AJ
Electrical specification
Table 8: Protections
7 V < VCC < 18 V; -40°C < Tj < 150°C
Symbol Parameter Test conditions Min. Typ. Max. Unit
ILIMH DC short circuit current VCC = 13 V 65 91 130 A
4 V < VCC < 18 V (1)
ILIML Short circuit current
during thermal cycling VCC = 13 V;
TR < Tj < TTSD
30
TTSD Shutdown temperature
150 175 200
°C
TR Reset temperature(1)
TRS + 1 TRS + 7
TRS Thermal reset of fault
diagnostic ind ica tio n VFR = 0 V; VSEn = 5 V 135
THYST Thermal hysteresis
(TTSD - TR)(1)
7
ΔTJ_SD Dynamic temperature Tj = -40°C; VCC = 13 V
60
K
tLATCH_RST
Fault reset time for
output unlatch(1)
VFR = 5 V to 0 V; VSEn = 5 V;
VIN = 5 V; VSEL0 = 0 V;
VSEL1 = 0 V 3 10 20 µs
VDEMAG Turn-off output voltage
clamp
IOUT = 2 A; L = 6 mH;
Tj = -40°C VCC - 38
V
IOUT = 2 A; L = 6 mH;
Tj = 25°C to 150°C VCC - 41 VCC - 46
VCC - 52 V
VON Output volt age drop
limitation IOUT = 0.2 A
20
mV
Notes:
(1)Parameter guaranteed by design and characterizati on; not subj ect to product i on test.
Table 9: MultiSen se
7 V < VCC < 18 V; -40°C < Tj < 150°C
Symbol Parameter Test conditions Min. Typ. Max.
Unit
VSENSE_CL MultiS ense clamp
voltage
V
SEn
= 0 V; I
SENSE
= 1 mA
-17
-12 V
VSEn = 0 V; ISENSE = -1 mA
7
CurrentS ense char act er istics
K0 IOUT/ISENSE IOUT = 0.9 A; VSENSE = 0.5 V;
VSEn = 5 V 3190 5210 7450
dK0/K0(1)(2) Current sense ratio
drift IOUT = 0.9 A; VSENSE = 0.5 V;
VSEn = 5 V -20
20 %
K1 IOUT/ISENSE IOUT = 1.5 A; VSENSE = 4 V;
VSEn = 5 V 3530 4950 6560
dK1/K1(1)(2) Current sense ratio
drift IOUT = 1.5 A; VSENSE = 4 V;
VSEn = 5 V -15
15 %
K2 IOUT/ISENSE IOUT = 6 A; VSENSE = 4 V;
VSEn = 5 V 3840 4720 5640
DocID027394 Rev 1 11/45
Electrical specification
VN7010AJ
7 V < VCC < 18 V; -40°C < Tj < 150°C
Symbol Parameter Test conditions Min. Typ. Max.
Unit
dK2/K2(1)(2) Current sense ratio
drift IOUT = 6 A; VSENSE = 4 V;
VSEn = 5 V -10
10 %
K3 IOUT/ISENSE IOUT = 18 A; VSENSE = 4 V;
VSEn = 5 V 4260 4710 5140
dK3/K3(1)(2) Current sense ratio
drift IOUT = 18 A; VSENSE = 4 V;
VSEn = 5 V -5
5 %
ISENSE0 MultiSense leakage
current
MultiSense disabled: VSEn = 0 V 0
0.5
µA
MultiSense disabled:
-1 V < VSENSE < 5 V(1) -0.5
0.5
MultiSense enabled: VSEn = 5 V;
Channel ON; IOUT = 0 A;
Diagnostic selected; VIN = 5 V;
VSEL0 = 0 V; VSEL1 = 0 V; IOUT = 0 A 0 2
MultiSense enabled: VSEn = 5 V;
Channel OFF; Diagnostic
selected:
VIN = 0 V; VSEL0 = 0 V; VSEL1 = 0 V 0 2
VOUT_MSD(1) Output Voltage for
MultiS ense shut dow n
VIN = 5 V; VSEn = 5 V; VSEL0 = 0 V;
VSEL1 = 0 V; RSENSE = 2.7 kΩ;
IOUT = 5 A 5 V
VSENSE_SAT Multisense saturation
voltage
VCC = 7 V; RSENSE = 2.7 kΩ;
VSEn = 5 V; VIN = 5 V; VSEL0 = 0 V;
VSEL1 = 0 V; IOUT = 18 A;
Tj = 150°C
5 V
ISENSE_SAT(1) CS saturation current VCC = 7 V; VSENSE = 4 V; VIN = 5 V;
VSEn = 5 V; VSEL0 = 0 V;
VSEL1 = 0 V; Tj = 150°C 4 mA
IOUT_SAT(1) Output saturation
current
VCC = 7 V; VSENSE = 4 V; VIN = 5 V;
VSEn = 5 V; VSEL0 = 0 V;
VSEL1 = 0 V; Tj = 150°C 24 A
OFF-state diagnostic
VOL OFF-state open-load
voltage detection
threshold
VIN = 0 V; VSEn = 5 V; VSEL0 = 0 V;
VSEL1 = 0 V 2 3 4 V
IL(off2) OFF-state output sin k
current VIN = 0 V; VOUT = VOL; Tj = -40°C to
125°C -100
-15 µA
tDSTKON
OFF-state diagnostic
delay time from falling
edge of INPUT (see
Figure 9:
"TDSTKON")
VIN = 5 V to 0 V; VSEn = 5 V;
VSEL0 = 0 V; VSEL1 = 0 V;
IOUT = 0 A; VOUT = 4 V 100 350 700 µs
tD_OL_V
Settling time for valid
OFF-state open load
diagnostic ind ica tio n
from rising edge of
SEn
VIN = 0 V; VFR = 0 V; VSEL0 = 0 V;
VSEL1 = 0 V; VOUT = 4 V; VSEn = 0 V
to 5 V 60 µs
tD_VOL OFF-state diagnostic
delay time from rising
edge of VOUT
VIN = 0 V; VSEn = 5 V; VSEL0 = 0 V;
VSEL1 = 0 V; VOUT = 0 V to 4 V 5 30 µs
12/45 DocID027394 Rev 1
VN7010AJ
Electrical specification
7 V < VCC < 18 V; -40°C < Tj < 150°C
Symbol Parameter Test conditions Min. Typ. Max.
Unit
Chip temperature analog feedback
VSENSE_TC MultiSense output
voltage propor tio nal
to chip temperature
VSEn = 5 V; VSEL0 = 0 V;
VSEL1 = 5 V; VIN = 0 V;
RSENSE = 1 kΩ; Tj = -40°C 2.325
2.41 2.495
V
VSEn = 5 V; VSEL0 = 0 V;
VSEL1 = 5 V; VIN = 0 V;
RSENSE = 1 kΩ; Tj = 25°C 1.985
2.07 2.155
V
VSEn = 5 V; VSEL0 = 0 V;
VSEL1 = 5 V; VIN = 0 V;
RSENSE = 1 kΩ; Tj = 125°C 1.435
1.52 1.605
V
dVSENSE_TC/dT
Temperature
coefficient Tj = -40°C to 150°C
-5.5
mV/
K
Transfer function VSENSE_TC (T) = VSENSE_TC (T0) + dVSENSE_TC / dT * (T - T0)
VCC supply voltage analog feedback
VSENSE_VCC MultiSense output
voltage propor tio nal
to VCC supply voltage
VCC = 13 V; VSEn = 5 V;
VSEL0 = 5 V; VSEL1 = 5 V; VIN = 0 V;
RSENSE = 1 3.16 3.23 3.3 V
Transfer function (3) VSENSE_VCC = VCC / 4
Fault diagnostic feedback (see Table 10: "Truth table")
VSENSEH MultiSense output
voltage in fault
condition
VCC = 13 V; VIN = 0 V; VSEn = 5 V;
VSEL0 = 0 V; VSEL1 = 0 V;
IOUT = 0 A; VOUT = 4 V;
RSENSE = 1 kΩ;
5 6.6 V
ISENSEH MultiSense output
cu rrent in fault
condition VCC = 13 V; VSENSE = 5 V 7 20 30 mA
MultiSense ti mings (current sense mode - see Figure 7: "MultiSense timings (current sense
mode)")(4)
tDSENSE1H
Current sense sett ling
time from rising edge
of SEn
VIN = 5 V; VSEn = 0 V to 5 V;
RSENSE = 1 kΩ; RL = 2.6 Ω 60 µs
tDSENSE1L
Current sense disa ble
delay time from falling
edge of SEn
VIN = 5 V; VSEn = 5 V to 0 V;
RSENSE = 1 kΩ; RL = 2.6 Ω 5 20 µs
tDSENSE2H
Current sense sett ling
time from rising edge
of INPUT
VIN = 0 V to 5 V; VSEn = 5 V;
RSENSE = 1 kΩ; RL = 2.6 Ω 100 250 µs
ΔtDSENSE2H
Current sense sett ling
time from rising edge
of IOUT (dynamic
response to a step
change of IOUT)
VIN = 5 V; VSEn = 5 V;
RSENSE = 1 kΩ; ISENSE = 90 % of
ISENSEMAX; RL = 2.6 Ω 100 µs
tDSENSE2L Current sense tur n-off
delay time from falling
edge of INPUT
VIN = 5 V to 0 V; VSEn = 5 V;
RSENSE = 1 kΩ; RL = 2.6 Ω 50 250 µs
DocID027394 Rev 1 13/45
Electrical specification
VN7010AJ
7 V < VCC < 18 V; -40°C < Tj < 150°C
Symbol Parameter Test conditions Min. Typ. Max.
Unit
MultiSense timings (chip temperature sense mode - see Figure 8: "Multisense timings (chip
temperature and VCC sens e mode)" )(4)
tDSENSE3H VSENSE_TC
settling time
from rising edge of
SEn
VSEn = 0 V to 5 V; VSEL0 = 0 V;
VSEL1 = 5 V; RSENSE = 1 60 µs
tDSENSE3L VSENSE_TC disable
delay time from falling
edge of SEn
VSEn = 5 V to 0 V; VSEL0 = 0 V;
VSEL1 = 5 V; RSENSE = 1 20 µs
MultiSense timings (VCC vo ltage sense mo de - see Figure 8: "Multisense timings (chip
temperature and VCC sens e mode)")(4)
tDSENSE4H VSENSE_VCC settling
time from rising edge
of SEn
VSEn = 0 V to 5 V; VSEL0 = 5 V;
VSEL1 = 5 V; RSENSE = 1 kΩ 60 µs
tDSENSE4L VSENSE_VCC disable
delay time from falling
edge of SEn
VSEn = 5 V to 0 V; VSEL0 = 5 V;
VSEL1 = 5 V; RSENSE = 1 20 µs
MultiSense timings (Multiplexer transition times)(4)
tD_CStoTC MultiSense transition
delay from current
se nse to TC sense
VIN = 5 V; VSEn = 5 V; VSEL0 = 0 V;
VSEL1 = 0 V to 5 V; IOUT = 2.5 A;
RSENSE = 1 60 µs
tD_TCtoCS MultiSense transition
delay from TC sense
to current sense
VIN = 5 V; VSEn = 5 V; VSEL0 = 0 V;
VSEL1 = 5 V to 0 V; IOUT = 2.5 A;
RSENSE = 1 20 µs
tD_CStoVCC MultiSense transition
delay from current
se nse to VCC sense
VIN = 5 V; VSEn = 5 V; VSEL0 = 5 V;
VSEL1 = 0 V to 5 V; IOUT = 2.5A;
RSENSE = 1 60 µs
tD_VCCtoCS MultiSense transition
delay from VCC sense
to current sense
VIN = 5 V; VSEn = 5 V; VSEL0 = 5 V;
VSEL1 = 5 V to 0 V; IOUT = 2.5 A;
RSENSE = 1 20 µs
tD_TCtoVCC MultiSense transition
delay from TC sense
to VCC sense
VCC = 13 V; Tj = 125°C; VSEn = 5
V;
VSEL0 = 0 V to 5 V; VSEL1 = 5 V;
RSENSE = 1 20 µs
tD_VCCtoTC MultiSense transition
delay from VCC sense
to TC sense
VCC = 13 V; Tj = 125°C; VSEn = 5
V;
VSEL0 = 5 V to 0 V; VSEL1 = 5 V;
RSENSE = 1 20 µs
Notes:
(1)Parameter specified by design; not subject to production t est.
(2)All values refer to VCC = 13 V; Tj = 25°C, unless otherwise specified.
(3)VCC sensing and TC are referred to GND potential.
(4)Transition delay are measured up to +/- 10% of final conditions.
14/45 DocID027394 Rev 1
VN7010AJ
Electrical specification
Figure 4: IOUT/ISENSE versus IOUT
Figure 5: Current sense accuracy versus IOUT
0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000
01 2 34 5 6 7 89 10 11 12 13 14 15 16 17 18 19
K-factor
I
OUT
[A]
Max
Min
Typ
GAPG0508131345CFT
GAPG0508131350CFT
0
5
10
15
20
25
30
35
40
45
50
55
60
65
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
%
IOUT [A]
Current sense uncalibrated precision
Current sense calibrated precision
DocID027394 Rev 1 15/45
Electrical specification
VN7010AJ
Figure 6: Switching time and Pulse skew
Figure 7: MultiSense timings (current sense mode)
VOUT
t
Vcc
twon
80% Vcc
20% Vcc
twoff
INPUT
td(on)
tpLH tpHL
td(off)
t
dV
OUT
/dt
ON OFF
dV
OUT
/dt
GAPG2609141134CFT
CURRENT SENSE
IN1
SEn
IOUT1
tDSENSE2H tDSENSE1L tDSENSE2L
tDSENSE1H
SEL0
SEL1
Low
High
Low
High
Low
High
GAPGCFT00318
16/45 DocID027394 Rev 1
VN7010AJ
Electrical specification
Figure 8: Multisense timings (chip temperature and VCC sense mode)
Figure 9: TDSTKON
SENSE
SEn
V
CC
t
DSENSE4H
t
DSENSE4L
t
DSENSE3L
t
DSENSE3H
SEL0
SEL1
Low
High
Low
High
Low
High
V
SENSE
= V
SENSE_VCC
V
SENSE
= V
SENSE_TC
VCC VOLTAGE SENSE MODE CHIP TEMPERATURESENSE MODE
GAPGCFT00319
T
DSTKON
V
INPU T
V
OUT
MultiSense
V
OUT
> V
OL
GAPG2609141140CFT
DocID027394 Rev 1 17/45
Electrical specification
VN7010AJ
Table 10: Truth table
Mode Conditions INX
FR
SEn
SELX
OUTX
MultiSense
Comments
Standby All logic inputs low L L L L L Hi-Z Low quiescent
current
consumption
Normal Nominal load
connected; Tj < 150 °C
L X
See (1)
L See (1)
H L H See (1) Outputs config ur ed
for auto-restart
H H H See (1) Outputs config ur ed
for Latch-off
Overload
Overload or short to
GND causing:
Tj > TTSD or
ΔTj > ΔTj_SD
L X
See (1)
L See (1)
H L H See (1) Output cycles with
temperature
hysteresis
H H L See (1) Output latches-off
Undervoltage VCC < VUSD (falling) X X X X L
L Hi-Z
Hi-Z
Re-start when
VCC > VUSD +
VUSDhyst (rising)
OFF-state
diagnostics Short to VCC L X See (1) H See (1)
Open-load L X H See (1) External pull-up
Negative output
voltage Inductive loads turn-off
L X See (1) < 0 V
See (1)
Notes:
(1)Refer to Table 11: "MultiSense multiplexer addressing"
Table 11: MultiSe nse mult iplexer addressi n g
SEn
SEL1
SEL0
MUX channel MultiSense output
Normal mode Overload OFF-
state diag.
(1) Negative
output
L X X
Hi-Z
H L L Output
diagnostic ISENSE =
1/K * IOUT VSENSE =
VSENSEH VSENSE =
VSENSEH Hi-Z
H L H
H H L TCHIP Sense VSENSE = VSENSE_TC
H H H VCC Sense VSENSE = VSENSE_VCC
Notes:
(1)In case the output channel corresponding to the selected MUX channel is latched off while the relevant i nput is
low, Multisens e pin deli vers feedback accordi ng to OFF-State diagnostic. Example 1: FR = 1; IN = 0; OUT = L
(latched); MUX channel = channel 0 diagnost ic; Mutisense = 0. Example 2: FR = 1; IN = 0; OUT = latched,
VOUT > VOL; MUX channel = channel 0 diagnostic; Mutisense = VSENSEH
18/45 DocID027394 Rev 1
VN7010AJ
Electrical specification
2.4 Waveforms
Figure 10: Latch functionality - behavior in hard short circuit condition (TAMB << TTSD)
Figure 11: Latch functionality - behavior in hard short circuit condition
DocID027394 Rev 1 19/45
Electrical specification
VN7010AJ
Figure 12: Latch functionality - behavior in hard short circuit condition (autorestart mode +
latch off)
Figure 13: Standby mode activation
20/45 DocID027394 Rev 1
VN7010AJ
Electrical specification
Figure 14: Standby state diagram
2.5 Electrical characteristics curves
Figure 15: OFF-state output current
Figure 16: Standby current
0
200
400
600
800
1000
1200
1400
1600
-50 -25 0 25 50 75 100125150175
T [°C]
Iloff [nA]
GAPG0805131355CFT
Off State
Vcc =13V
Vin = Vout = 0
GAPG0805131358CFT
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
-50 -25 0 25 50 75 100125150175
T [°C]
ISTBY [µA]
Vcc =13V
DocID027394 Rev 1 21/45
Electrical specification
VN7010AJ
Figure 17: IGND(ON) vs. Iou t
Figure 18: Logic Input high level voltage
Figure 19: Logic Input low level voltage
Figure 20: High level logic input current
Figure 21: Low level logic input current
Figure 22: Logic Input hysteresis voltage
GAPG0805131359CFT
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
-50 -25 0 25 5075 100125150175
T[°C]
IGND(ON) [mA]
Vcc =13V
Iout = 5A
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
-50 -25 0 25 50 75 100125150175
T [°C]
ViH, VFRH, VSELH, VSEnH[V]
GAPG0805131409CFT
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
-50 -25 0 25 50 75 100125150175
T [°C]
VilL VFRL, VSELL, VSEnL [V]
GAPG0805131411CFT
GAPG0805131413CFT
0
0.5
1
1.5
2
2.5
3
3.5
4
-50 -25 0 25 50 75 100125150175
T [°C]
IiH, IFRH, ISELH, ISEnH[µA]
GAPG0805131415CFT
0
0.5
1
1.5
2
2.5
3
3.5
4
-50 -25 0 25 50 75 100125150175
T [°C]
IiL, IFRL, ISELL, ISEnL [µA]
GAPG0805131416CFT
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
-50 -25 0 25 50 75 100125150175
T [°C]
Vi(hyst), VFR(hyst), VSEL(hyst), VSEn(hyst) [V]
22/45 DocID027394 Rev 1
VN7010AJ
Electrical specification
Figure 23: FaultRST Input clamp voltage
Figure 24: Undervoltage shutdown
Figure 25: On-state resistance vs. Tcase
Figure 26: On-state resistance vs. VCC
Figure 27: Turn-on voltage slope
Figure 28: Turn-off voltage slope
GAPG0805131421CFT
-1
0
1
2
3
4
5
6
7
8
-50 -25 0 25 50 75 100125150175
T [°C]
VFRCL [V]
Iin = 1mA
Iin = -1mA
GAPG0805131423CFT
0
1
2
3
4
5
6
7
8
-50 -25 0 25 50 75 100125150175
T [°C]
VUSD [V]
GAPG0805131425CFT
0
5
10
15
20
25
30
35
40
45
50
-50 -25 0 25 50 75 100125150175
T [°C]
Ron[mOhm]
Iout = 5A
Vcc =13V
GAPG0805131426CFT
0
5
10
15
20
25
0 5 10 15 20 25 30 35 40
Vcc [V]
Ron[mOhm]
T = -40 °C
T = 25 °C
T = 125°C
T = 150°C
GAPG0805131428CFT
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
-50 -25 0 25 50 75 100125150175
T [°C]
(dVout/dt)On [Vs]
Vcc =13V
Rl = 2.6Ω
GAPG0805131430CFT
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
-50 -25 0 25 50 75 100125150175
T [°C]
(dVout/dt)Off[V/µs]
Vcc =13V
Rl = 2.6Ω
DocID027394 Rev 1 23/45
Electrical specification
VN7010AJ
Figure 29: Won vs. Tcase
Figure 30: Woff vs. Tcase
Figure 31: ILIMH vs. Tcase
Figure 32: OFF-state open-load voltage
detection threshold
Figure 33: Vsense clamp vs. Tcase
Figure 34: Vsenseh vs. Tcase
GAPG0805131431CFT
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
1.1
1.2
1.3
1.4
1.5
-50 -25 0 25 50 75 100125150175
T [°C]
Won[mJ]
GAPG0805131433CFT
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
-50 -25 0 25 50 75 100125150175
T [°C]
Woff[mJ]
GAPG0805131434CFT
80
85
90
95
100
105
110
115
120
-50 -25 0 25 50 75 100125150175
T [°C]
Ilimh[A]
Vcc =13V
GAPG0805131435CFT
0
0.5
1
1.5
2
2.5
3
3.5
4
-50 -25 0 25 50 75 100125150175
T [°C]
VOL [V]
GAPG0805131447CFT
-1
0
1
2
3
4
5
6
7
8
9
10
-50 -25 0 25 50 75 100125150175
T [°C]
VSENSE_CL[V]
Iin = 1mA
Iin = -1mA
GAPG0805131448CFT
0
1
2
3
4
5
6
7
8
9
10
-50 -25 0 25 50 75 100125150175
T [°C]
VSENSEH[V]
24/45 DocID027394 Rev 1
VN7010AJ
Protections
3 Protections
3.1 Power limitation
The basic working principle of this protection consists of an indirect measurement of the
junction temperature swing ΔTj through the direct measurement of the spatial temperature
gradient on the device surface in order to automatically shut off the output MOSFET as
soon as ΔTj exceeds the safety level of ΔTj_SD. According to the voltage level on the
FaultRST pin, the output MOSFET switches on and cycles with a thermal hysteresis
according to the maximum instantaneous power which can be handled (FaultRST = Low)
or remains off (FaultRST = High). The protection prevents fast thermal transient effects
and, consequently, reduces thermo-mechanical fatigue.
3.2 Thermal s hut dow n
In case the junction temperature of the device exceeds the maximum allowed threshold
(typically 175°C), it automatically switches off and the diagnostic indication is triggered.
According to the voltage level on the FaultRST pin, the device switches on again as soon
as its junction temperature drops to TR (FaultRST = Low) or remains off (FaultRST = High).
3.3 Current limitation
The device is equipped with an output current limiter in order to protect the silicon as well
as the other components of the system (e.g. bonding wires, wiring harness, connectors,
loads, etc.) from excessive current flow. Consequently, in case of short circuit, overload or
during load power-up, the output current is clamped to a safety level, ILIMH, by operating the
output power MOSFET in the active region.
3.4 Negative voltage clamp
In case the device drives inductive load, the output voltage reaches a negative value during
turn off. A negative voltage clamp structure limits the maximum negative voltage to a
certain value, VDEMAG, allowing the inductor energy to be dissipated without damaging the
device.
DocID027394 Rev 1 25/45
Application information
VN7010AJ
4 Application information
Figure 35: Application diagram
4.1 GND protection network against reverse battery
Figure 36: Simplified internal structure
26/45 DocID027394 Rev 1
VN7010AJ
Application information
4.1.1 Diode (DGND) in the ground line
A resistor (typ. RGND = 4.7 kΩ) should be inserted in parallel to DGND if the device drives an
inducti ve load.
This small signal diode can be safely shared amongst several different HSDs. Also in this
case, the presence of the ground network produces a shift (≈600 mV) in the input threshold
and in the status output values if the microprocessor ground is not common to the device
ground. This shift does not vary if more than one HSD shares the same diode/resistor
network.
4.2 Immuni ty against t ransie nt electrical disturbances
The immunity of the device against transient electrical emissions, conducted along the
supply lines and injected into the VCC pin, is tested in accordance with ISO7637-2:2011 (E)
and ISO 16750-2:2010.
The related function performance status classification is shown in Table 12: "ISO 7637-2 -
electrical transient conduction along supply line".
Test pulses are applied directly to DUT (Device Under Test) both in ON and OFF-state and
in accordance to ISO 7637-2:2011(E), chapter 4. The DUT is intended as the present
device only, without components and accessed through VCC and GND terminals.
Status II is defined in ISO 7637-1 Function Performance Status Classification (FPSC) as
follows: “The function does not perform as designed during the test but returns
automatically to normal operation after the test”.
Table 12: ISO 7637-2 - electrical transient conduction along supply line
Test
Pulse
2011(E)
Test pulse severity
level with Status II
functional performance
status
Minimum
number of
pulses or test
time
Burst cycle / pulse
repetition time P ulse durati on and
pulse generator
internal impedance
Level US(1) min max
1 III -112V 500 pulses 0,5 s
2ms, 10Ω
2a III +55V 500 pulses 0,2 s 5 s 50µs, 2Ω
3a IV -220V 1h 90 ms 100 ms 0.1µs, 50Ω
3b IV +150V 1h 90 ms 100 ms 0.1µs, 50Ω
4 (2) IV -7V 1 pulse
100ms, 0.01Ω
Load dump according to ISO 16750-2:2010
Test B (3)
40V 5 pulse 1 min
400ms, 2Ω
Notes:
(1)US is the peak amplitude as defined for each test pulse in ISO 7637-2:2011(E), chapter 5.6.
(2)Test pulse from ISO 7637-2:2004(E).
(3)With 40 V external suppressor referred to ground (-40°C < Tj < 150°C).
4.3 MCU I/O s prot e ction
If a ground protection network is used and negative transients are present on the VCC line,
the control pins will be pulled negative. ST suggests to insert a resistor (Rprot) in line both to
prevent the microcontroller I/O pins to latch-up and to protect the HSD inputs.
DocID027394 Rev 1 27/45
Application information
VN7010AJ
The value of these resistors is a compromise between the leakage current of
microcontroller and the current required by the HSD I/Os (Input levels compatibility) with
the latch-up limit of microcontroller I/Os.
Equation
VCCpeak/Ilatchup ≤ Rprot ≤ (VOHµC - VIH - VGND) / IIHmax
Calculat ion example:
For VCCpeak = -150 V; Ilatchup ≥ 20 mA; VOHµC ≥ 4.5 V
7.5 kΩ ≤ Rprot ≤ 140 kΩ.
Recommended values: Rprot = 15
4.4 Multisense - analog curr ent sense
Diagnostic information on device and load status are provided by an analog output pin
(MultiSense) delivering the following signals:
Current monitor: current mirror of channel output current
VCC monitor: voltage propotional to VCC
TCASE: voltage propotional to chip temperature
Those signals are routed through an analog multiplexer which is configured and controlled
by means of SELx and SEn pins, according to the address map in MultiSense multiplexer
addressing Table.
Figure 37: MultiSense and diagnostic block diagra m
28/45 DocID027394 Rev 1
VN7010AJ
Application information
4.4.1 Principle of Multisense signal generation
Figure 38: MultiSense block diagram
Current monitor
When current mode is selected in the MultiSense, this output is capable to provide:
Current mirror proportional to the load current in normal operation, delivering current
proportional to the load according to known ratio named K
Diagnostics flag in fault conditions delivering fixed voltage VSENSEH
The current delivered by the current sense circuit, ISENSE, can be easily converted to a
voltage VSENSE by using an external sense resistor, RSENSE, allowing continuous load
monitoring and abnormal condition detection.
Normal operation (channel ON, no fault, SEn active)
While device is operating in normal conditions (no fault intervention), VSENSE calculation can
be done using simple equations
Current provided by MultiSense output: ISENSE = IOUT/K
Voltage on RSENSE: VSENSE = RSENSE · ISENSE = RSENSE · IOUT/K
Where:
VSENSE is voltage measurable on RSENSE resistor
ISENSE is current provided from MultiSense pin in current output mode
DocID027394 Rev 1 29/45
Application information
VN7010AJ
IOUT is current flowing through output
K factor represents the ratio between PowerMOS cells and SenseMOS cells; its
spread includes geometric factor spread, current sense amplifier offset and process
parameters spread of overall circuitry specifying ratio between IOUT and ISENSE.
Failure flag indication
In case of power limitation/overtemperature, the fault is indicated by the MultiSense pin
which is switched to a “current limited” voltage source, VSENSEH.
In any case, the current sourced by the MultiSense in this condition is limited to ISENSEH.
The typical behavior in case of overload or hard short circuit is shown in Waveforms
section.
Figure 39: Analogue HSD open-load detection in off-state
30/45 DocID027394 Rev 1
VN7010AJ
Application information
Figure 40: Open -load / short to VCC condition
Table 13: MultiSense pin levels in off-state
Condition Output MultiSense SEn
Open-load
VOUT > VOL Hi-Z L
VSENSEH H
VOUT < VOL Hi-Z L
0 H
Short to VCC VOUT > VOL Hi-Z L
VSENSEH H
Nominal VOUT < VOL Hi-Z L
0 H
4.4.2 TCASE and VCC monitor
In this case, MultiSense output operates in voltage mode and output level is referred to
device GND. Care must be taken in case a GND network protection is used, because of a
voltage shift is generated between device GND and the microcontroller input GND
reference.
Figure 41: "GND voltage shift" shows link between VMEASURED and real VSENSE signal.
DocID027394 Rev 1 31/45
Application information
VN7010AJ
Figure 41: GND voltage shift
VCC monitor
Battery monitoring channel provides VSENSE = VCC / 4.
Case temperature monitor
Case temperature monitor is capable to provide information about the actual device
temperature. Since a diode is used for temperature sensing, the following equation
describes the link between temperature and output VSENSE level:
VSENSE_TC (T) = VSENSE_TC (T0) + dVSENSE_TC / dT * (T - T0)
where dVSENSE_TC / dT ~ typically -5.5 mV/K (for temperature range (-40 °C to 150 °C).
4.4.3 Short to VCC and OFF-state open-load detection
Short to VCC
A short circuit between VCC and output is indicated by the relevant current sense pin set to
VSENSEH during the de vice off-state. Small or no current is delivered by the current sense
during the on-state depending on the nature of the short circuit.
OFF-state open-load with external circuitry
Detection of an open-load in off mode requires an external pull-up resistor RPU connecting
the output to a positive supply voltage VPU.
It is preferable VPU to be switched off during the module standby mode in order to avo id the
overall standby current consumption to increase in normal conditions, i.e. when load is
connected.
RPU must be selected in order to ensure VOUT > VOLmax in accordance with the following
equation:
32/45 DocID027394 Rev 1
VN7010AJ
Application information
Equation
R
PU
< V
PU
- 4
I
L(off2)min @ 4V
DocID027394 Rev 1 33/45
Maximum demagnetization energy (VCC = 16 V)
VN7010AJ
5 Maximu m demagnetization energy (VCC = 16 V)
Figure 42: Maximum turn off current versus inductance
Values are generated with R
L
= 0 Ω.
In case of repetitive pulses, Tjstart (at the beginning of each demagnetization) of
every pulse must not exceed the temperature specified above for curves A and B.
GAPGCFT01216
0.1
1
10
100
0.11 10100 1000
I (A)
L(mH)
VN7010AJ- Maximum turn offcurrent versusinductance
VN7010AJ - Single Pulse
RepetitivepulseTjstart=100°C
Repetitive pulse Tjstart=125°C
1
10
100
1000
10000
0.01 0.1 1 10 100
E [mJ]
Tdemag [ms]
VN7010AJ - Maximumturn off Energyversus Tdemag
VN7010AJ - Single Pulse
Repetitive pulse Tjstart=100°C
Repetitive pulse Tjstart=125°C
34/45 DocID027394 Rev 1
VN7010AJ
Package and PCB thermal data
6 Package and PCB thermal data
6.1 PowerSSO-16 thermal data
Figure 43: PowerSSO-16 on two-layers PCB (2s0p to JEDEC JESD 51-5)
Figure 44: PowerSSO-16 on four-layers PCB (2s2p to JEDEC JESD 51-7)
Table 14: PCB properties
Dimension Value
Board finish thickness 1.6 mm +/- 10%
Board dimension 77 mm x 86 mm
Board Material FR4
Copper thickness (top and bottom layers) 0. 070 m m
Copper thickness (inner layers) 0.035 mm
Thermal vias separation 1.2 mm
Thermal via diamet er 0.3 mm +/- 0.08 mm
Copper thickness on vias 0.025 mm
Footprint dimension (top layer ) 2.2 mm x 3.9 mm
Heatsink copper area dimension (bottom layer) Footprint, 2 cm2 or 8 cm2
DocID027394 Rev 1 35/45
Package and PCB thermal data
VN7010AJ
Figure 45: Rthj-a m b vs PCB copper area in open box free air condition (one channel on)
Figure 46: PowerSSO-16 thermal impedance junction ambient single pulse (one channel on)
Equation: pulse calculation formula
ZTHδ = RTH · δ + ZTHtp (1 - δ)
where δ = tP/T
30
40
50
60
70
80
90
0 2 4 6 8 10
RTHjamb
RTHjamb
GAPGCFT01055
0.1
1
10
100
0.0001 0.001 0.01 0.1 1 10 100 1000
Z
TH
(°C/W)
Time (s)
Cu=foot print
Cu=2 cm2
Cu=8 cm2
4 Layer
GAPGCFT01056
36/45 DocID027394 Rev 1
VN7010AJ
Package and PCB thermal data
Figure 47: Thermal fitting model of a double-channel HSD in PowerSSO-16
The fitting model is a simplified thermal tool and is valid for transient evolutions
where the embedded protections (power limitation or thermal cycling during
thermal shutdown) are not triggered.
Table 15: Thermal par am eters
Area/island (cm2) Footprint 2 8 4L
R1 (°C/W) 0.15
R2 (°C/W) 1.7
R3 (°C/W) 7 7 7 5
R4 (°C/W) 16 6 6 4
R5 (°C/W) 30 20 10 3
R6 (°C/W) 26 20 18 7
C1 (W.s/ ° C) 0.0015
C2 (W.s/ ° C) 0.02
C3 (W.s/ ° C) 0.1
C4 (W.s/ ° C) 0.2 0.3 0.3 0.4
C5 (W.s/ ° C) 0.4 1 1 4
C6 (W.s/°C) 3 5 7 18
DocID027394 Rev 1 37/45
Package information
VN7010AJ
7 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
7.1 PowerSSO-16 package information
Figure 48: PowerSSO-16 package dimensions
Table 16: Po werSSO-16 mec h anica l data
Symbol Millimeters
Min. Typ. Max.
Θ
Θ1
Θ2
15°
Θ3
15°
A
1.70
A1 0.00
0.10
A2 1.10
1.60
38/45 DocID027394 Rev 1
VN7010AJ
Package information
Symbol Millimeters
Min. Typ. Max.
b 0.20
0.30
b1 0.20 0.25 0.28
c 0.19
0.25
c1 0.19 0.20 0.23
D 4.9 BSC
D1 3.60
4.20
e 0.50 BSC
E 6.00 BSC
E1 3.90 BSC
E2 1.90
2.50
h 0.25
0.50
L 0.40 0.60 0.85
L1 1.00 REF
N 16
R 0.07
R1 0.07
S 0.20
Tolerance of form and position
aaa 0.10
bbb 0.10
ccc 0.08
ddd 0.08
eee 0.10
fff 0.10
ggg 0.15
DocID027394 Rev 1 39/45
Package information
VN7010AJ
7.2 PowerSSO-16 packing inf orm a ti on
Figure 49: PowerSSO-16 reel 13"
Table 17: Reel dimensions
Description Value(1)
Base quantity 2500
Bulk quantity 2500
A (max) 330
B (min) 1.5
C (+0.5, -0.2) 13
D (min) 20.2
N 100
W1 (+2 /-0) 12.4
W2 (max) 18.4
Notes:
(1)All dimensions are in mm.
40/45 DocID027394 Rev 1
VN7010AJ
Package information
Figure 50: PowerSSO-16 carrier tape
Table 18: Po werSSO-16 carrier tape dimensions
Description Value(1)
A0 6.50 ± 0.1
B0 5.25 ± 0.1
K0 2.10 ± 0.1
K1 1.80 ± 0.1
F 5.50 ± 0.1
P1 8.00 ± 0.1
W 12.00 ± 0.3
Notes:
(1)All dimensions are in mm.
Figure 51: PowerSSO-16 schematic drawing of leader and trailer tape
0.30 ±0.05 1.55 ±0.05
1.6±0.1
R 0.5
Typical
K
1
K
0
B
0
P
2
2.0 ±0.1
P
0
4.0 ±0.1
P
1
A
0
F
W
1.75 ±0.1
SECTION X - X
SECTION Y - Y
REF 4.18
REF 0.6
REF 0.5
X
X
Y Y
GAPG2204151242CFT
DocID027394 Rev 1 41/45
Package information
VN7010AJ
7.3 PowerSSO-16 marking information
Figure 52: PowerSSO-16 marking information
Engineering Samples: these samples can be clearly identified by a dedicated
special symbol in the marking of each unit. These samples are intended to be
used for electrical compatibility evaluation only; usage for any other purpose may
be agreed only upon written authorization by ST. ST is not liable for any customer
usage in product ion and/or in reliability qualification trials.
Commercial Samples: fully qualified parts from ST standard production with no
usage restrictions.
GAPG0401151415CFT
1234567 8
Special function digit
&: Engineering sample
<blank>: Commercial sample
PowerSSO-16 TOP VIEW
(not in scale)
Marking area
42/45 DocID027394 Rev 1
VN7010AJ
Order codes
8 Order codes
Table 19: Device summary
Package Order codes
Tape and reel
PowerSSO-16 VN7010AJTR
DocID027394 Rev 1 43/45
Revision history
VN7010AJ
9 Revision history
Table 20: Document revision history
Date Revision Changes
19-May-2015 1 Initial release.
44/45 DocID027394 Rev 1
VN7010AJ
IMPORTANT NOTICE PLEAS E READ CAREFULLY
STMic r oe lectron ic s NV a nd its s ubsi dia r i es ( “S T”) r eserv e th e r i ght to m ake chan ges, c o r rec t i on s , enh ancemen ts , m od ific atio ns, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST
produc ts befor e placin g orders . ST produc ts are sold pursuant to ST’s terms and c onditions of sa le in pla ce at the ti me of order acknowledgement.
Purchasers are solely responsible for the choic e, selection, and use of S T produc ts and ST as sumes no li abili ty for appli catio n assistance or th e
design of Purchasers’ pr oduc ts.
No license, express or im pl ied, t o any int ellect ual prop erty right is granted by ST herein.
Resale of ST products wit h provisions dif ferent from the informa tion set forth herein shall void any warranty granted by ST for such product.
ST and the S T logo are tr ademarks of ST. Al l other product or s ervice n ames are the proper ty of their respective owners.
Info rm atio n i n th is docum e nt sup erse de s an d r e places information previously supplied in any prior versions of this docu ment.
© 20 1 5 STMicroe lectron ic s All rights reserved
DocID027394 Rev 1 45/45
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
STMicroelectronics:
VN7010AJTR