2005-10-11
1
BFR340L3
2
3
1
NPN Silicon RF Transistor*
Low voltage/ Low current operation
Transition frequency of 14 GHz
High insertion gain
Ideal for low current amplifiers and oscillators
* Short term description
ESD (Electrostatic discharge) sensitive device, observe handling precaution!
Type Marking Pin Configuration Package
BFR340L3 FA 1 = B 2 = E 3 = C TSLP-3-1
Maximum Ratings
Parameter Symbol Value Unit
Collector-emitter voltage VCEO 6 V
Collector-emitter voltage VCES 15
Collector-base voltage VCBO 15
Emitter-base voltage VEBO 2
Collector current IC10 mA
Base current IB2
Total power dissipation1)
TS 120°C Ptot 60 mW
Junction temperature T
j
150 °C
Ambient temperature T
A
-65 ... 150
Storage temperature Tst
g
-65 ... 150
Thermal Resistance
Parameter Symbol Value Unit
Junction - soldering point2) RthJS tbd K/W
1TS is measured on the collector lead at the soldering point to the pcb
2For calculation of RthJA please refer to Application Note Thermal Resistance
2005-10-11
2
BFR340L3
Electrical Characteristics at TA = 25°C, unless otherwise specified
Parameter Symbol Values Unit
min. typ. max.
DC Characteristics
Collector-emitter breakdown voltage
IC = 1 mA, IB = 0 V(BR)CEO 6 9 - V
Collector-emitter cutoff current
VCE = 15 V, VBE = 0 ICES - - 10 µA
Collector-base cutoff current
VCB = 5 V, IE = 0 ICBO - - 100 nA
Emitter-base cutoff current
VEB = 1 V, IC = 0 IEBO - - 1 µA
DC current gain
IC = 5 mA, VCE = 3 V, pulse measured hFE 90 120 160 -
2005-10-11
3
BFR340L3
Electrical Characteristics at T
A
= 25°C, unless otherwise specified
Parameter Symbol Values Unit
min. typ. max.
AC Characteristics (verified by random sampling)
Transition frequency
IC = 6 mA, VCE = 3 V, f = 1 GHz fT10 14 - GHz
Collector-base capacitance
VCB = 5 V, f = 1 MHz, VBE = 0 ,
emitter grounded
Ccb - 0.17 0.4 pF
Collector emitter capacitance
VCE = 5 V, f = 1 MHz, VBE = 0 ,
base grounded
Cce - 0.13 -
Emitter-base capacitance
VEB = 0.5 V, f = 1 MHz, VCB = 0 ,
collector grounded
Ceb - 0.12 -
Noise figure
IC = 1 mA, VCE = 3 V, ZS = ZSopt , f = 1.8 GHz Fmin - 1.15 - dB
Power gain, maximum stable1)
IC = 5 mA, VCE = 3 V, ZS = ZSopt ,
ZL = ZLopt, f = 1.8 GHz
Gms - 17.5 - -
Power gain, maximum available1)
IC = 5 mA, VCE = 3 V, ZS = ZSopt ,
ZL = ZLopt , f = 3 GHz
Gma - 13 - dB
Transducer gain
IC = 5 mA, VCE = 3 V, ZS = ZL = 50 ,
f = 1.8 GHz
f = 3 GHz
|S21e|2
-
-
14
10
-
-
dB
Third order intercept point at output2)
VCE = 3 V, IC = 5 mA, f = 1.8 GHz,
ZS = ZL = 50
IP3- 12.5 - dBm
1dB Compression point at output
IC = 5 mA, VCE = 3 V, ZS = ZL = 50 ,
f = 1.8 GHz
P-1dB - -1 -
1Gma = |S21e / S12e| (k-(k²-1)1/2), Gms = |S21e / S12e|
2IP3 value depends on termination of all intermodulation frequency components.
Termination used for this measurement is 50 from 0.1 MHz to 6 GHz
2005-10-11
4
BFR340L3
SPICE Parameter (Gummel-Poon Model, Berkley-SPICE 2G.6 Syntax):
Transitor Chip Data:
NF = 0.4213 -
ISE = 11.768 nA
NR = 0.3253 -
ISC = 3.632 nA
IRB = 0.01 mA
RC = 5.2493
MJE = 0.4172 -
VTF = 0.262 V
CJC = 222.63 fF
XCJC = 0.3904 -
VJS = 0.75 V
EG = 1.11 eV
TNOM 300 K
IS = 6.12 fA
VAF = 42.228 V
NE = 2.4753 -
VAR = 16.777 V
NC = 0.8956 -
RBM = 0.2403
CJE = 182 fF
TF = 10.3 ps
ITF = 0.0017 mA
VJC = 0.5487 V
TR = 2.71 ns
MJS = 0-
XTI = 0-
BF = 98.48 -
IKF = 103 mA
BR = 19.61 -
IKR = 0.834 A
RB = 59.99
RE = 3.677 -
VJE = 0.626 V
XTF = 0 -
PTF = 0 deg
MJC = 0.319 -
CJS = 0 fF
NK = 0.5 -
FC = 0.735
All parameters are ready to use, no scalling is necessary. Extracted on behalf of Infineon Technologies AG by:
Institut für Mobil- und Satellitentechnik (IMST)
Package Equivalent Circuit: L1 = 0.575 nH
L2 = 0.575 nH
L3 = 0.275 nH
C1 = 33 fF
C2 = 28 fF
C3 = 131 fF
C4 = 8fF
C5 =8fF
C6 = 24 fF
C7 = 300 fF
R1 = 204
EHA07536
Transistor C' L
E'
B'
3
4
C
C
Chip
E
L
1
5
C
B
2
L
C
6
C
1
C
2
C
3
C
7
R
1
For examples and ready to use parameters
please contact your local Infineon Technologies
distributor or sales office to obtain a Infineon
Technologies CD-ROM or see Internet:
http//www.infineon.com/silicondiscretes
Valid up to 6GHz
2005-10-11
5
BFR340L3
Package TSLP-3-1
2
3
1
0.4
+0.1
Type code
Laser marking
Example
BFR193L3
Pin 1
marking
0.76
4
1.16
0.5
Pin 1
marking
8
Reel ø180 mm = 15.000 Pieces/Reel
For board assembly information please refer to Infineon website "Packages"
Package Outline
Foot Print
Marking Layout
Standard Packing
Stencil aperturesCopper Solder mask
0.275
0.2
0.315
0.945
0.45
0.17
0.355
0.2
0.35
0.225
1
0.6
0.225
0.15
0.35 0.3
R0.1
1
2
±0.05
0.35
±0.035
2x0.15
1)
Top view Bottom view
1) Dimension applies to plated terminal
±0.035
0.5
1) ±0.05
0.6
3
±0.05
0.65
±0.035
2x
0.25
1)
±0.035
0.25
1)
1
±0.05
Pin 1
marking
0.05 MAX.
2005-10-11
6
BFR340L3
Published by Infineon Technologies AG,
St.-Martin-Strasse 53,
81669 München
© Infineon Technologies AG 2005.
All Rights Reserved.
Attention please!
The information herein is given to describe certain components and shall not be
considered as a guarantee of characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of
non-infringement, regarding circuits, descriptions and charts stated herein.
Information
For further information on technology, delivery terms and conditions and prices
please contact your nearest Infineon Technologies Office (www.Infineon.com).
Warnings
Due to technical requirements components may contain dangerous substances.
For information on the types in question please contact your nearest Infineon
Technologies Office.
Infineon Technologies Components may only be used in life-support devices or
systems with the express written approval of Infineon Technologies, if a failure of
such components can reasonably be expected to cause the failure of that life-support
device or system, or to affect the safety or effectiveness of that device or system.
Life support devices or systems are intended to be implanted in the human body, or
to support and/or maintain and sustain and/or protect human life. If they fail, it is
reasonable to assume that the health of the user or other persons may be endangered.