84330CV www.icst.com/products/hiperclocks.html REV. B DECEMBER 7, 2004
1
Integrated
Circuit
Systems, Inc.
ICS84330C
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
GENERAL DESCRIPTION
The ICS84330C is a general purpose, single out-
put high frequency synthesizer and a member of
the HiPerClockS™ family of High Performance
Clock Solutions from ICS. The VCO operates at a
frequency range of 250MHz to 700MHz. The VCO
and output frequency can be programmed using the serial or
parallel interfaces to the configuration logic. The output can be
configured to divide the VCO frequency by 1, 2, 4, and 8. Output
frequency steps from 250KHz to 2MHz can be achieved using
a 16MHz crystal depending on the output divider setting.
FEATURES
Fully integrated PLL, no external loop filter requirements
1 differential 3.3V LVPECL output
Crystal oscillator interface: 10MHz to 25MHz
Output frequency range: 31.25MHz to 700MHz
VCO range: 250MHz to 700MHz
Parallel or serial interface for programming M and N dividers
during power-up
RMS Period jitter: 5ps (maximum)
Cycle-to-cycle jitter: 40ps (maximum)
3.3V supply voltage
0°C to 70°C ambient operating temperature
Pin compatible with the MC12430
Lead-Free package available
Industrial temperature information available upon request
HiPerClockS
ICS
PIN ASSIGNMENT
BLOCK DIAGRAM
ICS84330C
28-Lead PLCC
V Package
11.6mm x 11.4mm x 4.1mm
body package
Top View
25 24 23 22 21 20 19
5 6 7 8 9 10 11
26
27
28
1
2
3
4
18
17
16
15
14
13
12
S_CLOCK
S_DATA
S_LOAD
VCCA
FREF_EXT
XTAL_SEL
XTAL1
M3
M2
M1
M0
nP_LOAD
OE
XTAL2
VEE
TEST
VCC
VEE
nFOUT
FOUT
VCC
N1
N0
M8
M7
M6
M5
M4
OSC
XTAL1
XTAL2
FREF_EXT
XTAL_SEL
S_LOAD
S_DATA
S_CLOCK
nP_LOAD
M0:M8
N0:N1
VCO
PLL
TEST
CONFIGURATION
INTERFACE
LOGIC
÷ M
÷ 16
PHASE DETECTOR ÷2
÷4
÷8
÷1
1
0
OE
1
0
÷ 2
FOUT
nFOUT
ICS84330C
32-Lead LQFP
Y package
7mm x 7mm x 1.4mm
body package
Top View
32 31 30 29 28 27 26 25
9 10 11 12 13 14 15 16
1
2
3
4
5
6
7
8
24
23
22
21
20
19
18
17
n/c
N1
N0
M8
M7
M6
M5
M4
S_CLOCK
S_DATA
S_LOAD
VCCA
VCCA
FREF_EXT
XTAL_SEL
XTAL1
nc
M3
M2
M1
M0
nP_LOAD
OE
XTAL2
VEE
TEST
VCC
VCC
VEE
nFOUT
FOUT
VCC
84330CV www.icst.com/products/hiperclocks.html REV. B DECEMBER 7, 2004
2
Integrated
Circuit
Systems, Inc.
ICS84330C
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
N0 through N1 is passed directly to the M divider and N output
divider. On the LOW-to-HIGH transition of the nP_LOAD input,
the data is latched and the M divider remains loaded until the
next LOW transition on nP_LOAD or until a serial event occurs.
The TEST output is Mode 000 (shift register out) when operat-
ing in the parallel input mode. The relationship between the VCO
frequency, the crystal frequency and the M divider is defined as
follows:
The M value and the required values of M0 through M8 are
shown in Table 3B, Programmable VCO Frequency Function
Table. Valid M values for which the PLL will achieve lock are
defined as 125 M 350. The frequency out is defined as
follows:
Serial operation occurs when nP_LOAD is HIGH and S_LOAD
is LOW. The shift register is loaded by sampling the S_DATA
bits with the rising edge of S_CLOCK. The contents of the
shift register are loaded into the M divider when S_LOAD tran-
sitions from LOW-to-HIGH. The M divide and N output divide
values are latched on the HIGH-to-LOW transition of S_LOAD.
If S_LOAD is held HIGH, data at the S_DATA input is passed
directly to the M divider on each rising edge of S_CLOCK.
The serial mode can be used to program the M and N bits and
test bits T2:T0. The internal registers T2:T0 determine the state
of the TEST output as follows in the table below:
FUNCTIONAL DESCRIPTION
NOTE: The functional description that follows describes op-
eration using a 16MHz crystal. Valid PLL loop divider values
for different crystal or input frequencies are defined in the In-
put Frequency Characteristics, Table 6, NOTE 1.
The ICS84330C features a fully integrated PLL and therefore
requires no external components for setting the loop band-
width. A quartz crystal is used as the input to the on-chip
oscillator. The output of the oscillator is divided by 16 prior to
the phase detector. With a 16MHz crystal this provides a 1MHz
reference frequency. The VCO of the PLL operates over a
range of 250MHz to 700MHz. The output of the M divider is
also applied to the phase detector.
The phase detector and the M divider force the VCO output fre-
quency to be 2M times the reference frequency by adjusting the
VCO control voltage. Note that for some values of M (either too
high or too low), the PLL will not achieve lock. The output of the
VCO is scaled by a divider prior to being sent to each of the LVPECL
output buffers. The divider provides a 50% output duty cycle.
The programmable features of the ICS84330C support two in-
put modes to program the M divider and N output divider. The
two input operational modes are parallel and serial.
Figure 1
shows the timing diagram for each mode. In parallel mode the
nP_LOAD input is LOW. The data on inputs M0 through M8 and
FIGURE 1. PARALLEL & SERIAL LOAD OPERATIONS
16 2M
fVCO = fxtal x
N
fout =fVCO =16
2Mfxtal xN
T2 T1 T0 TEST Output
0 0 0 Shift Register Out
0 0 1 High
0 1 0 PLL Reference Xtal ÷ 16
0 1 1 (VCO ÷ M) /2 (non 50% Duty Cycle M divider)
1 0 0 fOUT
LVCMOS Output Frequency < 200MHz
1 0 1 Low
1 1 0 (S_CLOCK ÷ M) /2 (non 50% Duty Cycle M divider)
1 1 1 fOUT ÷ 4
fOUT
fOUT
fOUT
fOUT
fOUT
fOUT
fOUT
S_CLOCK ÷ N divider
fOUT
Time
S
ERIAL
L
OADING
P
ARALLEL
L
OADING
M, N
t
S
t
H
t
S
t
H
t
S
T2 T1 T0 N1 N0 M8 M7 M6 M5 M4 M3 M2 M1 M0
S_CLOCK
S_DATA
S_LOAD
nP_LOAD
M0:M8, N0:N1
nP_LOAD
84330CV www.icst.com/products/hiperclocks.html REV. B DECEMBER 7, 2004
3
Integrated
Circuit
Systems, Inc.
ICS84330C
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
TABLE 2. PIN CHARACTERISTICS
TABLE 1. PIN DESCRIPTIONS
emaNepyTnoitpircseD
V
ACC
rewoP.nipylppusgolanA
2LATX,1LATX .tupnirotallicsonasi1LATX.ecafretnirotallicsolatsyrC
.tuptuorotallicson
asi2LATX
LES_LATXtupnIpulluP
ecnereferLLPehtsastupniTXE_FERFrorotallicsolatsyrcehtneewtebstceleS
.WOLnehwTXE_FERFstceleS.HGIHnehwstupniLATXstceleS.ecruos
.slevelecafretniLTTVL/SOMCVL
EOtupnIpulluP.slevelecafretni
LTTVL/SOMCVL.elbanetuptuO
DAOL_PntupnIpulluP
otnidedaolsi0M:8MtatneserpatadnehwsenimreteD.tupnidaollellar
aP
.eulavedividtuptuoNehtstes0N:1Ntatneserpatadnehwdna,redividM
.slevelecafretniLTTVL/SOMCVL
2M,1M,0M
5M,
4M,3M
8M,7M,6M
tupnIpulluP .tupniDAOL_PnfonoitisnartHGIH-ot-WOLnodehctalataD.stupniredividM
.slevelecafret
niLTTVL/SOMCVL
1N,0NtupnIpulluP .elbaTnoitcnuFC3elbaTnidenifedsaeulavredividtuptuoNsenimreteD
.slevelecafr
etniLTTVL/SOMCVL
V
EE
rewoP.snipylppusevitageN
TSETtuptuO .noitarepofoedomlairesehtnidesusihcihwtuptuotseT
.slevelecafretniLCEPV
Ldedne-elgniS
V
CC
rewoP.snipylppuseroC
TUOF,TUOFntuptuO .slevelecafretniLCEPVLV3.3.rezisehtnysehtroftuptuolaitnereffiD
cndesu
nU.tcennocoN
TXE_FERFtupnInwodlluP.slevelecafretniLTTVL/SOMCVL.tupniecnereferLLP
KCOLC_StupnInwodlluP ehtnoret
sigertfihsehtotnitupniATAD_StatneserpatadlairesehtskcolC
.slevelecafretniLTTVL/SOMCVL.KCOLC_Sfoegdegni
sir
ATAD_StupnInwodlluP .KCOLC_SfoegdegnisirehtnodelpmasataD.tupnilairesretsigertfihS
.slevelecafretniLTTVL/SOMCVL
DAOL_StupnInwodlluP .redividMehtotniretsigertfihsmorfatadfonoitisnartslortnoC
.slevelecafretniLTT
VL/SOMCVL
:ETON
pulluP
dna
nwodlluP
.seulavlacipytrof,scitsiretcarahCniP,2elbaTeeS.srotsisertupnilanretniotrefer
lobmySretemaraPsnoitidnoCtseTmuminiMlacipyTmumixaMstinU
C
NI
ecnaticapaCtupnI 4Fp
R
PULLUP
rotsiseRpulluPtupnI 15K
R
NWODLLUP
rotsiseRnwodlluPtupnI 15K
84330CV www.icst.com/products/hiperclocks.html REV. B DECEMBER 7, 2004
4
Integrated
Circuit
Systems, Inc.
ICS84330C
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
TABLE 3A. PARALLEL AND SERIAL MODE FUNCTION TABLE
TABLE 3B. PROGRAMMABLE VCO FREQUENCY FUNCTION TABLE
TABLE 3C. PROGRAMMABLE OUTPUT DIVIDER FUNCTION TABLE
stupnI snoitidnoC
DAOL_PnMNDAOL_SKCOLC_SATAD_S
XXXX X X .HGIHtesllaerastibNdnaM.teseR
LataDataDX X X dnaredividMotyltceriddessa
pstupniNdnaMnoataD
.000edomTSET.redividtuptuoN
ataDataDX X X dedaolsniamerdnasretsigertupniotnidehctalsiataD
.
sruccotnevelairesalitnuronoitisnartWOLtxenlitnu
HXXL ataD noatadhtiwdedaolsiretsigertfihS.edomtupnilaireS
.KCOLC_SfoegdegnisirhcaenoATAD_S
HXX
LataD redividMehtotdessaperaretsigertfihsehtfostnetnoC
.redividtuptuoNd
na
HXXLataD.dehctaleraseulavedividtuptuoNdnaedividM
HXXL X X .sretsigertfihstceffatonodtupnilairesrolellaraP
HXXH ataD.d
ekcolcsitisaredividMotyltceriddessapATAD_S
WOL=L:ETON
HGIH=H
eract'noD=X
noitisnartegdegnisiR=
noitisnar
tegdegnillaF=
ycneuqerFOCV
)zHM( ediviDM 6528214623618421
8M7M6M5M4M3M2M1M0M
052521 00 111110 1
252621 00 1111110
452721 00 111110 1
652821 0 100000 10
•••••••••
•••••••••
696843 10 10 11100
896943 10 10 1110 1
007053 10 10 11110
.zHM61foycneuqerflatsyr
caotdnopserrocseicneuqerfgnitluserehtdnaseulavedividMesehT:1ETON
stupnI eulaVrediviDN )zHM(ycneuqerFtuptuO
1N0NmuminiMmumixaM
00 2 521053
01 4 5.26571
10 8 52.135.78
11 1 052007
84330CV www.icst.com/products/hiperclocks.html REV. B DECEMBER 7, 2004
5
Integrated
Circuit
Systems, Inc.
ICS84330C
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
TABLE 4C. LVPECL DC CHARACTERISTICS, VCC = VCCA = 3.3V±5%, TA = 0°C TO 70°C
lobmySretemaraPsnoitidnoCtseTmuminiMlacipyTmumixaMstinU
V
HO
1ETON;egatloVhgiHtuptuOV
CC
4.1-V
CC
0.1-V
V
LO
1ETON;egatloVwoLtuptuOV
CC
0.2-V
CC
7.1-V
V
GNIWS
gniwSegatloVtuptuOkaeP-ot-kaeP 6.00.1V
05htiwdetanimretstuptuO:1ETON Vot
CC
.V2-
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = VCCA = 3.3V±5%, TA = 0°C TO 70°C
TABLE 4B. LVCMOS / LVTTL DC CHARACTERISTICS, VCC = VCCA = 3.3V±5%, TA = 0°C TO 70°C
lobmySretemaraPsnoitidnoCtseTmuminiMlacipyTmumixaMstinU
V
CC
egatloVylppuSeroC 531.33.3564.3V
V
ACC
egatloVylppuSgolanA 531.33.3564.3V
I
CC
tnerruCylppuSrewoP 061Am
I
ACC
tnerruCylppuSgolanA 61Am
lobmySretemaraPsnoitidnoCtseTmuminiMlacipyTmumixaMstinU
V
HI
egatloVhgiHtupnI 2V
CC
3.0+V
V
LI
egatloVwoLtupnI 3.0-8.0V
I
HI
tnerruChgiHtupnI
,1N,0N,8M-0M
,DAOL_Pn,EO
LES_LATX
V
CC
V=
NI
V564.3=5Aµ
KCOLC_S,DAOL_S
ATAD_S,TXE_FERF V
CC
V=
NI
V564.3=051Aµ
I
LI
tnerruCwoLtupnI
,1N,0N,8M-0M
,DAOL_Pn,EO
LES_LATX
V
CC
V,V564.3=
NI
V0=051-Aµ
KCOLC_S,DAOL_S
ATAD_S,TXE_FERF V
CC
V,V564.3=
NI
V0=5-Aµ
NOTE: Stresses beyond those listed under Absolute
Maximum Ratings may cause permanent damage to the
device. These ratings are stress specifications only. Functional
operation of product at these conditions or any conditions be-
yond those listed in the
DC Characteristics
or
AC Character-
istics
is not implied. Exposure to absolute maximum rating
conditions for extended periods may affect product reliability.
ABSOLUTE MAXIMUM RATINGS
Supply Voltage, V
CC 4.6V
Inputs, VI-0.5V to VCC + 0.5 V
Outputs, IO
Continuous Current 50mA
Surge Current 100mA
Package Thermal Impedance, θJA 37.8°C/W (0 lfpm)
Storage Temperature, T
STG -65°C to 150°C
84330CV www.icst.com/products/hiperclocks.html REV. B DECEMBER 7, 2004
6
Integrated
Circuit
Systems, Inc.
ICS84330C
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
TABLE 6. INPUT FREQUENCY CHARACTERISTICS, VCC = VCCA = 3.3V±5%, TA = 0°C TO 70°C
lobmySretemaraPsnoitidnoCtseTmuminiMlacipyTmumixaMstinU
f
NI
ycneuqerFtupnI
1ETON;LATX0152zHM
KCOLC_S 05zHM
2ETON;TXE_FERF01zHM
ycneuqerfOCVmumixamromuminimehteveihcaotteseb
tsumeulavMehtegnarycneuqerflatsyrcehtroF:1ETON
002eraMfoseulavdilav,zHM01foycneuqerfmuminimehtgnisU.zH
M007otzHM052foegnar M.115
08eraMfoseulavdilav,zHM52foycneuqerfmumixamehtgnisU M.422
noitacilppAeeS.sn
oitatimilretnuocMlanretniehtnotnednepedsiTXE_FERFnoycneuqerfmumixaM:2ETON
.tupniTXE_FERFehtgnisuecnamr
ofrepehtgnizimitponosnoitadnemmocerrofnoitceSnoitamrofnI
TABLE 5. CRYSTAL CHARACTERISTICS
retemaraPsnoitidnoCtseTmuminiMlacipyTmumixaMstinU
noitallicsOfoedoM latnemadnuF
ycneuqerF 0152zHM
)RSE(ecnatsiseR
seireStnelaviuqE 05
ecnaticapaCtnuhS 7Fp
TABLE 7. AC CHARACTERISTICS, VCC = VCCA = 3.3V±5%, TA = 0°C TO 70°C
lobmySretemaraPsnoitidnoCtseTmuminiMlacipyTmumixaMstinU
F
TUO
ycneuqerFtuptuO 007zHM
t
)rep(tij2,1ETON;SMR,rettiJdoireP 5sp
t
)cc(tij2,1ETON;rettiJelcyC-ot-elcyC 04sp
t
R
t/
F
emiTllaF/esiRtuptuO%08ot%02002006sp
t
S
emiTputeS
KCOLC_SotATAD_S02sn
DAOL_SotKCOLC_S02sn
DAOL_PnotN,M02sn
t
H
emiTdloH KCOLC_SotATAD_S02sn
DAOL_PnotN,M02sn
t
L
emiTkcoLLLP 01sm
cdoelcyCytuDtuptuO 5455%
.noitcesnoitamrofnItnemerusaeMretemaraPeeS
.tupniLATXagnisudeziretca
rahC
56dradnatSCEDEJhtiwecnadroccanidenifedsiretemarapsihT:1ETON
.noitcessnoitacilppAeeS:2ETON
84330CV www.icst.com/products/hiperclocks.html REV. B DECEMBER 7, 2004
7
Integrated
Circuit
Systems, Inc.
ICS84330C
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
PARAMETER MEASUREMENT INFORMATION
SCOPE
Qx
nQx
LVPECL
CYCLE-TO-CYCLE JITTER
PERIOD JITTER
3.3V OUTPUT LOAD AC TEST CIRCUIT
2V
-1.3V ± 0.165V
FOUT
OUTPUT RISE/FALL TIME
t
jit(cc) =
t
cycle n –
t
cycle n+1
1000 Cycles
t
cycle n
t
cycle n+1
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD
VOH
VREF
VOL
Mean Period
(First edge after trigger)
Reference Point
(Trigger Edge)
1σ contains 68.26% of all measurements
2σ contains 95.4% of all measurements
3σ contains 99.73% of all measurements
4σ contains 99.99366% of all measurements
6σ contains (100-1.973x10-7)% of all measurements
Histogram
nFOUT
Pulse Width
t
PERIOD
t
PW
t
PERIOD
odc =
FOUT
nFOUT
Clock
Outputs 20%
80% 80%
20%
t
R
t
F
V
SWING
VCC,
VCCA
VEE
84330CV www.icst.com/products/hiperclocks.html REV. B DECEMBER 7, 2004
8
Integrated
Circuit
Systems, Inc.
ICS84330C
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
V
CC
- 2V
5050
RTT
Z
o
= 50
Z
o
= 50
FOUT FIN
RTT = Z
o
1
((V
OH
+ V
OL
) / (V
CC
– 2)) – 2
3.3V
125125
8484
Zo = 50
Zo = 50
FOUT FIN
The clock layout topology shown below is a typical termina-
tion for LVPECL outputs. The two different layouts mentioned
are recommended only as guidelines.
FOUT and nFOUT are low impedance follower outputs that
generate ECL/LVPECL compatible outputs. Therefore, terminat-
ing resistors (DC current path to ground) or current sources
must be used for functionality. These outputs are designed to
FIGURE 3B. LVPECL OUTPUT TERMINATIONFIGURE 3A. LVPECL OUTPUT TERMINATION
drive 50 transmission lines. Matched impedance techniques
should be used to maximize operating frequency and minimize
signal distortion.
Figures 3A and 3B
show two different layouts
which are recommended only as guidelines. Other suitable clock
layouts may exist and it would be recommended that the board
designers simulate to guarantee compatibility across all printed
circuit and clock component process variations.
TERMINATION FOR LVPECL OUTPUTS
APPLICATION INFORMATION
As in any high speed analog circuitry, the power supply pins
are vulnerable to random noise. The ICS84330C provides
separate power supplies to isolate any high switching
noise from the outputs to the internal PLL. VCC and VCCA
should be individually connected to the power supply
plane through vias, and bypass capacitors should be
used for each pin. To achieve optimum jitter performance,
power supply isolation is required.
Figure 2
illustrates how
a 10 resistor along with a 10µF and a .01µF bypass
capacitor should be connected to each VCCA pin. FIGURE 2. POWER SUPPLY FILTERING
10
VCCA
10µF
.01µF
3.3V
.01µF
VCC
POWER SUPPLY FILTERING T ECHNIQUES
84330CV www.icst.com/products/hiperclocks.html REV. B DECEMBER 7, 2004
9
Integrated
Circuit
Systems, Inc.
ICS84330C
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
50
40
30
20
10
0
200 300 600 700400 500
Output Frequency (MHz)
Cycle-to-Cycle Jitter (ps)
N = 1
Spec Limit
LVCMOS TO XTAL INTERFACE
The XTAL1 input can accept single ended LVCMOS signal
through an AC couple capacitor. A general interface diagram
is shown in
Figure 4.
The XTAL2 input can be left floating. The
edge rate can be as slow as 10ns. If the incoming signal has
sharp edge rate and the signal path is a long trace, proper
termination for the driver and controlled characteristic imped-
Crystal Input Interfac
e
XTAL1
XTAL2
C1
0.1uF
Q1
LVCMOS_Driver
VDD
Figure 4. GENERAL DIAGRAM FOR LVCMOS DRIVER TO XTAL INPUT INTERFACE
ance trace may be required. The input can function with half
swing amplitude. Reducing amplitude from full swing of 3.3V
to half swing of about 1.65V can prevent signal interfere with
power rail and may reduce noise. Please refer to the LVCMOS
driver data sheet and application note for amplitude reduction
and termination approach.
FIGURE 5. CYCLE-TO-CYCLE JITTER VS. fOUT (using a 16MHz XTAL)
84330CV www.icst.com/products/hiperclocks.html REV. B DECEMBER 7, 2004
10
Integrated
Circuit
Systems, Inc.
ICS84330C
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
The schematic of the ICS84330C layout example used in
this layout guideline is shown in
Figure 6A.
The ICS84330C
recommended PCB board layout for this example is shown
in
Figure 6B.
This layout example is used as a general guide-
LAYOUT GUIDELINE
FIGURE 6A. SCHEMATIC OF RECOMMENDED LAYOUT
line. The layout in the actual system will depend on the
selected component types, the density of the components,
the density of the traces, and the stack up of the P.C. board.
M7
C4
0.1u
M8
M5
nPLoad
VCCA
OE
C3
0.1uF
SP = Space (i.e. not intstalled)
M6
M8
M3
Fout = 200 MHz
RU0
SP
N0
nPLOAD
Zo = 50 Ohm
VCC
N[1:0] =00 (Divide by 2)
M4
M2
R1
50
N1
N1
M0
U1
ICS84330
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
27
26
25
24
23
22
21
28
VCCA
FREF_EXT
XTA L_S E L
XTA L 1
XTAL2
OE
nP_LOAD
M0
M1
M2
M3
M4
M5
M6
M7
M8
N0
N1
VEE
TEST
S_DATA
S_CLOCK
VCC
FOUT
nFOUT
VEE
VCC
S_LOAD
VCC
R2
50
RD9
1K
N2
VCC=3.3V
RU7
1K
RU1
SP
RD7
SP
Zo = 50 Ohm
M0
RU10
1K
VCC
RD10
SP
C1
SP
C11
0.01u
M1
OE
R7
10
+
-
RU11
SP
RU9
SP
X1
16MHz, 18pF
RU8
1K
RD6
1K
RU12
1K
M7
R3
50
RD12
SP
RD1
1K
RD0
1K
C2
SP
M1
C16
10u
RD8
SP
M[8:0]= 110010000 (400)
84330CV www.icst.com/products/hiperclocks.html REV. B DECEMBER 7, 2004
11
Integrated
Circuit
Systems, Inc.
ICS84330C
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
FIGURE 6B. PCB BOARD LAYOUT FOR ICS84330C
The following component footprints are used in this layout
example:
All the resistors and capacitors are size 0603.
POWER AND GROUNDING
Place the decoupling capacitors C3 and C4, as close as pos-
sible to the power pins. If space allows, placement of the
decoupling capacitor on the component side is preferred. This
can reduce unwanted inductance between the decoupling
capacitor and the power pin caused by the via.
Maximize the power and ground pad sizes and number of vias
capacitors. This can reduce the inductance between the power
and ground planes and the component power and ground pins.
The RC filter consisting of R7, C11, and C16 should be placed
as close to the VCCA pin as possible.
CLOCK TRACES AND TERMINATION
Poor signal integrity can degrade the system performance or
cause system failure. In synchronous high-speed digital systems,
the clock signal is less tolerant to poor signal integrity than other
signals. Any ringing on the rising or falling edge or excessive ring
back can cause system failure. The shape of the trace and the
trace delay might be restricted by the available space on the board
and the component location. While routing the traces, the clock
signal traces should be routed first and should be locked prior to
routing other signal traces.
The differential 50 output traces should have the
same length.
Avoid sharp angles on the clock trace. Sharp angle
turns cause the characteristic impedance to change on
the transmission lines.
Keep the clock traces on the same layer. Whenever pos-
sible, avoid placing vias on the clock traces. Placement
of vias on the traces can affect the trace characteristic
impedance and hence degrade signal integrity.
To prevent cross talk, avoid routing other signal traces in
parallel with the clock traces. If running parallel traces is
unavoidable, allow a separation of at least three trace
widths between the differential clock trace and the other
signal trace.
Make sure no other signal traces are routed between the
clock trace pair.
The matching termination resistors should be located as
close to the receiver input pins as possible.
CRYSTAL
The crystal X1 should be located as close as possible to the pins
4 (XTAL1) and 5 (XTAL2). The trace length between the X1 and
U1 should be kept to a minimum to avoid unwanted parasitic in-
ductance and capacitance. Other signal traces should not be
routed near the crystal traces.
R7
Signals
Traces
VCCA
C1
C4
VCC
50 Ohm
Traces
C11
C3
GND
PIN 2
C2
PIN 1
C16
U1
X1
VIA
VCCA
84330CV www.icst.com/products/hiperclocks.html REV. B DECEMBER 7, 2004
12
Integrated
Circuit
Systems, Inc.
ICS84330C
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
If the FREF_EXT input is driven by a 3.3V LVCMOS driver, the
jitter performance can be improved by reducing the amplitude
swing and slowing down the edge rate.
Figure 7A
shows an
amplitude reduction approach for a long trace. The swing will
be approximately 0.85V for logic low and 2.5V for logic high
R2
100
VDD
R1
100
Ro ~ 7 Ohm
Driver_LVCMOS
Zo = 50 Ohm
Td
RS
43
VDD
VDD
GND
TEST_CLK
VDD
VDD
GND
TEST_CLK
R1
200
RS
100
Ro ~ 7 Ohm
Driver_LVCMOS
R2
200
VDD
VDD
VDD
R1
400
R2
400
Ro ~ 7 Ohm
Driver_LVCMOS
RS
200
VDD
GND
TEST_CLK
JITTER REDUCTION FOR FREF_EXT SINGLE END INPUT
(instead of 0V to 3.3V).
Figure 7B
shows amplitude reduction
approach for a short trace. The circuit shown in
Figure 7C
reduces amplitude swing and also slows down the edge rate
by increasing the resistor value.
FIGURE 7C. EDGE RATE REDUCTION BY INCREASING THE RESISTOR VALUE
FIGURE 7A. AMPLITUDE REDUCTION FOR A LONG TRACE
FIGURE 7B. AMPLITUDE REDUCTION FOR A SHORT TRACE
FREF_EXT
FREF_EXT
FREF_EXT
84330CV www.icst.com/products/hiperclocks.html REV. B DECEMBER 7, 2004
13
Integrated
Circuit
Systems, Inc.
ICS84330C
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
θθ
θθ
θJA by Velocity (Linear Feet per Minute)
0 200 500
Multi-Layer PCB, JEDEC Standard Test Boards 37.8°C/W 31.1°C/W 28.3°C/W
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.
TABLE 9A. THERMAL RESISTANCE θθ
θθ
θJA FOR 28-PIN PLCC, FORCED CONVECTION
θθ
θθ
θJA by Velocity (Linear Feet per Minute)
0 200 500
Single-Layer PCB, JEDEC Standard Test Boards 67.8°C/W 55.9°C/W 50.1°C/W
Multi-Layer PCB, JEDEC Standard Test Boards 47.9°C/W 42.1°C/W 39.4°C/W
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.
TABLE 9B. THERMAL RESISTANCE θθ
θθ
θJA FOR 32-PIN LQFP, FORCED CONVECTION
POWER CONSIDERATIONS
This section provides information on power dissipation and junction temperature for the ICS84330C.
Equations and example calculations are also provided.
1. Power Dissipation.
The total power dissipation for the ICS84330C is the sum of the core power plus the power dissipated in the load(s).
The following is the power dissipation for VCC = 3.3V + 5% = 3.465V, which gives worst case results.
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 176mA = 609.8mW
Power (outputs)MAX = 30.2mW/Loaded Output pair
If all outputs are loaded, the total power is 1 * 30.2mW = 30.2mW
Total Power_MAX (3.465V, with all outputs switching) = 609.8 + 30.2mW = 640mW
2. Junction Temperature.
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the
device. The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.
The equation for Tj is as follows: Tj = θJA * Pd_total + TA
Tj = Junction Temperature
θJA = Junction-to-Ambient Thermal Resistance
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)
TA = Ambient Temperature
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA
must be used. Assuming a
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 31.1°C/W per Table 9A below.
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:
70°C + 0.640W * 31.1°C/W = 89.9°C. This is well below the limit of 125°C.
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,
and the type of board (single layer or multi-layer).
84330CV www.icst.com/products/hiperclocks.html REV. B DECEMBER 7, 2004
14
Integrated
Circuit
Systems, Inc.
ICS84330C
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
3. Calculations and Equations.
The purpose of this section is to derive the power dissipated into the load.
LVPECL output driver circuit and termination are shown in the
Figure 8.
To calculate worst case power dissipation into the load, use the following equations which assume a 50 load, and a termination
voltage of V
CC
- 2V.
For logic high, VOUT = VOH_MAX = VCC_MAX – 1.0V
(VCC_MAX - VOH_MAX
) = 1.0V
For logic low, VOUT = VOL_MAX = VCC_MAX
– 1.7V
(VCC_MAX - VOL_MAX
) = 1.7V
Pd_H is power dissipation when the output drives high.
Pd_L is the power dissipation when the output drives low.
Pd_H = [(VOH_MAX
– (VCC_MAX
- 2V))/R
L
] * (VCC_MAX
- VOH_MAX) = [(2V - (V
CC_MAX - VOH_MAX
))/R
L
] * (VCC_MAX
- VOH_MAX) =
[(2V - 1V)/50] * 1V = 20.0mW
Pd_L = [(VOL_MAX
– (VCC_MAX
- 2V))/R
L
] * (VCC_MAX
- VOL_MAX) = [(2V - (V
CC_MAX - VOL_MAX
))/R
L
] * (VCC_MAX
- VOL_MAX) =
[(2V - 1.7V)/50] * 1.7V = 10.2mW
Total Power Dissipation per output pair = Pd_H + Pd_L = 30.2mW
FIGURE 8. LVPECL DRIVER CIRCUIT AND TERMINATION
Q1
VOUT
VCC
RL
50
VCC - 2V
84330CV www.icst.com/products/hiperclocks.html REV. B DECEMBER 7, 2004
15
Integrated
Circuit
Systems, Inc.
ICS84330C
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
0 200 500
Multi-Layer PCB, JEDEC Standard Test Boards 37.8°C/W 31.1°C/W 28.3°C/W
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.
RELIABILITY INFORMATION
TRANSISTOR COUNT
The transistor count for ICS84330C is: 4498
TABLE 10A. θJAVS. AIR FLOW 28 LEAD PLCC TABLE
θθ
θθ
θJA by Velocity (Linear Feet per Minute)
θθ
θθ
θJA by Velocity (Linear Feet per Minute)
0 200 500
Single-Layer PCB, JEDEC Standard Test Boards 67.8°C/W 55.9°C/W 50.1°C/W
Multi-Layer PCB, JEDEC Standard Test Boards 47.9°C/W 42.1°C/W 39.4°C/W
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.
TABLE 10B. θJAVS. AIR FLOW 32 LEAD LQFP TABLE
84330CV www.icst.com/products/hiperclocks.html REV. B DECEMBER 7, 2004
16
Integrated
Circuit
Systems, Inc.
ICS84330C
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
PACKAGE OUTLINE - V SUFFIX FOR 28 LEAD PLCC
NOITAIRAVCEDEJ
SRETEMILLIMNISNOISNEMIDLLA
LOBMYSMUMINIMMUMIXAM
N82
A91.475.4
1A 92.250.3
2A 75.111.2
b33.035.0
c91.023
.0
D23.2175.21
1D 34.1185.11
2D 58.465.5
E23.2175.21
1E 34.1185.11
2E 58.465.5
TABLE 11A. PACKAGE DIMENSIONS
Reference Document: JEDEC Publication 95, MS-018
84330CV www.icst.com/products/hiperclocks.html REV. B DECEMBER 7, 2004
17
Integrated
Circuit
Systems, Inc.
ICS84330C
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
TABLE 11B. PACKAGE DIMENSIONS
Reference Document: JEDEC Publication 95, MS-026
NOITAIRAVCEDEJ
SRETEMILLIMNISNOISNEMIDLLA
LOBMYS
ABB
MUMINIMLANIMONMUMIXAM
N23
A----06.1
1A 50.0--51.0
2A 53.104.154.1
b03.073.054.0
c90.0--02.0
DCISAB00.9
1D CISAB00.7
2D .feR06.5
ECISAB00.9
1E CISAB00.7
2E .feR06.5
eCISAB08.0
L54.006.057.
0
θθ
θ
θθ 0
°
-- 7
°
ccc ----01.0
PACKAGE OUTLINE - Y SUFFIX FOR 32 LEAD LQFP
84330CV www.icst.com/products/hiperclocks.html REV. B DECEMBER 7, 2004
18
Integrated
Circuit
Systems, Inc.
ICS84330C
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
TABLE 12. ORDERING INFORMATION
rebmuNredrO/traPgnikraMegakcaPtnuoCerutarepmeT
VC03348SCIVC03348SCICCLPdaeL82ebuTrep83C°07otC°0
TVC03348SCIVC033
48SCIleeRdnaepaTnoCCLPdaeL82005C°07otC°0
NLVC03348SCINLVC03348SCICCLP"eerF-daeL"daeL82ebuTrep83C°07otC°0
TNLVC
03348SCINLVC03348SCI noCCLP"eerF-daeL"daeL82
leeRdnaepaT 005C°07otC°0
YC03348SCIYC03348SCIPFQLdaeL23yarTrep052C
°07otC°0
TYC03348SCIYC03348SCIleeRdnaepaTnoPFQLdaeL230001C°07otC°0
NLYC03348SCINLYC03348SCIPFQLdelaennA/eerFd
aeL,daeL23yarTrep052C°07otC°0
TNLYC03348SCINLYC03348SCI PFQLdelaennA/eerFdaeL,daeL23
leeRdnaepaTno 0001C°07ot
C°0
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use
in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are
not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS
product for use in life support devices or critical medical instruments.
The aforementioned trademark, HiPerClockS™ is a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries.
84330CV www.icst.com/products/hiperclocks.html REV. B DECEMBER 7, 2004
19
Integrated
Circuit
Systems, Inc.
ICS84330C
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
TEEHSYROTSIHNOISIVER
veRelbaTegaPegnahCfonoitpircseDetaD
B
1T
B4T
5T
2
3
5
6
8
.margaidsnoitarepOdaoLlaireS&lellaraP
detadpU
daerdluohstuptuoTSETotnoitpircsed-elbaTnoitpircseDniP
dedne-elgniS
slevelecafretniLCEPVL
fodaetsni
slevelecafretniLTTVL/SOMCVL
.
V-elbaTSOMCVL
HO
V/
LO
VdegnahcdnanipTSETdeddaslevel
HO
morf.nim
VotV6.2
CC
Vdegnahc;V4.1-
LO
VotV5.0morf.xam
CC
.V7.1-
07morfRSEdegnahc-elbaTscitsiretcarahClatsyrC 05ot.xam .xam
.smargaidnoitanimreTtuptuOLCEPVLdetad
pU
30/82/8
BB4T5 VdeteleD
HO
V&
LO
.elbaTSOMCVLmorfseirtnewor30/01/9
B21T81 .elbaTnoitamrofnIgniredrOtraPehtotdelaennA/eerF-daeLdeddA 40/1/6
B2
1T
1
81
.tellubeerF-daeLdedda-noitceSserutaeF
.rebmuntrapeerF-daeLCCLPdedda-elbaTnoitamrofnIgniredrO 40/5/
01
B1 otzHM52morfegnaRycneuqerFtuptuOdetcerroc-noitceSserutaeF
.zHM52.13 40/7/21