LT1498/LT1499
14989fg
1
TYPICAL APPLICATION
DESCRIPTION
10MHz, 6V/µs, Dual/Quad
Rail-to-Rail Input and Output
Precision C-Load Op Amps
The LT
®
1498/LT1499 are dual/quad, rail-to-rail input and
output precision C-Load™ op amps with a 10MHz gain-
bandwidth product and a 6V/μs slew rate.
The LT1498/LT1499 are designed to maximize input
dynamic range by delivering precision performance over
the full supply voltage. Using a patented technique, both
input stages of the LT1498/LT1499 are trimmed, one at
the negative supply and the other at the positive supply.
The resulting guaranteed common mode rejection is much
better than other rail-to-rail input op amps. When used as
a unity-gain buffer in front of single supply 12-bit A-to-D
converters, the LT1498/LT1499 are guaranteed to add less
than 1LSB of error even in single 3V supply systems.
With 110dB of supply rejection, the LT1498/LT1499 main-
tain their performance over a supply range of 2.2V to 36V
and are specifi ed for 3V, 5V and ±15V supplies. The inputs
can be driven beyond the supplies without damage or phase
reversal of the output. These op amps remain stable while
driving capacitive loads up to 10,000pF.
The LT1498 is available with the standard dual op amp
confi guration in 8-pin PDIP and SO packaging. The LT1499
features the standard quad op amp confi guration and is
available in a 14-pin plastic SO package. These devices
can be used as plug-in replacements for many standard
op amps to improve input/output range and precision.
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and C-Load
is a trademark of Linear Technology Corporation. All other trademarks are the property of their
respective owners.
FEATURES
APPLICATIONS
n Rail-to-Rail Input and Output
n 475μV Max VOS from V+ to V
n Gain-Bandwidth Product: 10MHz
n Slew Rate: 6V/μs
n Low Supply Current per Amplifi er: 1.7mA
n Input Offset Current: 65nA Max
n Input Bias Current: 650nA Max
n Open-Loop Gain: 1000V/mV Min
n Low Input Noise Voltage: 12nV/√Hz Typ
n Wide Supply Range: 2.2V to ±15V
n Large Output Drive Current: 30mA
n Stable for Capacitive Loads Up to 10,000pF
n Dual in 8-Pin PDIP and SO Package
n Quad in Narrow 14-Pin SO
n Driving A-to-D Converters
n Active Filters
n Rail-to-Rail Buffer Amplifi ers
n Low Voltage Signal Processing
n Battery-Powered Systems
Frequency Response
Single Supply 100kHz 4th Order Butterworth Filter
+
1/2 LT1498
6.81k
VIN
V+/2
V+
VOUT
1498 TA01
330pF
11.3k
6.81k
+
1/2 LT1498
5.23k 47pF
1000pF
10.2k
5.23k
100pF
FREQUENCY (Hz)
100
GAIN (dB)
–50
–30
–10
10
1M
1498 TA02
–70
–90
–60
–40
–20
0
–80
–100
–110 1k 10k 100k 10M
VIN = 2.7VP-P
V+ = 3V
LT1498/LT1499
14989fg
2
ABSOLUTE MAXIMUM RATINGS
Total Supply Voltage (V+ to V) .................................36V
Input Current ........................................................ ±10mA
Output Short-Circuit Duration (Note 2) .........Continuous
Operating Temperature Range
LT1498/LT1499 ....................................40°C to 85°C
LT1498H/LT1499H ............................. 40°C to 125°C
LT1498MP ......................................... 55°C to 125°C
(Note 1)
PIN CONFIGURATION
ORDER INFORMATION
Specifi ed Temperature Range (Note 4)
LT1498/LT1499 ....................................40°C to 85°C
LT1498H/LT1499H ............................. 40°C to 125°C
LT1498MP ......................................... 55°C to 125°C
Junction Temperature ........................................... 150°C
Storage Temperature Range ..................65°C to 150°C
Lead Temperature (Soldering, 10 sec)...................300°C
1
2
3
4
8
7
6
5
TOP VIEW
OUT A
–IN A
+IN A
V
V+
OUT B
–IN B
+IN B
N8 PACKAGE
8-LEAD PLASTIC DIP
A
B
TJMAX = 150°C, θJA = 130°C/W
1
2
3
4
8
7
6
5
TOP VIEW
V+
OUT B
–IN B
+IN B
OUT A
–IN A
+IN A
V
S8 PACKAGE
8-LEAD PLASTIC SO
A
B
TJMAX = 150°C, θJA = 130°C/W
TOP VIEW
S PACKAGE
14-LEAD PLASTIC SO
1
2
3
4
5
6
7
14
13
12
11
10
8
8
OUTA
–IN A
+IN A
V+
+IN B
–IN B
OUT B
OUT D
–IN D
+IN D
V
+IN C
–IN C
OUT C
AD
BC
TJMAX = 150°C, θJA = 150°C/W
LEAD FREE FINISH TAPE AND REEL PART MARKING* PACKAGE DESCRIPTION SPECIFIED TEMPERATURE RANGE
LT1498CN8#PBF LT1498CN8#TRPBF LT1498CN8 8-Lead Plastic PDIP 0°C to 70°C
LT1498CS8#PBF LT1498CS8#TRPBF 1498 8-Lead Plastic SO 0°C to 70°C
LT1498IN8#PBF LT1498IN8#TRPBF LT1498IN8 8-Lead Plastic PDIP –40°C to 85°C
LT1498IS8#PBF LT1498IS8#TRPBF 1498I 8-Lead Plastic SO –40°C to 85°C
LT1498HS8#PBF LT1498HS8#TRPBF 1498H 8-Lead Plastic SO –40°C to 125°C
LT1498MPS8#PBF LT1498MPS8#TRPBF 1498MP 8-Lead Plastic SO –55°C to 125°C
LT1499CS#PBF LT1499CS#TRPBF LT1499CS 14-Lead Plastic SO 0°C to 70°C
LT1499IS#PBF LT1499IS#TRPBF LT1499IS 14-Lead Plastic SO –40°C to 85°C
LT1499HS#PBF LT1499HS#TRPBF LT1499HS 14-Lead Plastic SO –40°C to 125°C
Consult LTC Marketing for parts specifi ed with wider operating temperature ranges. *The temperature grade is identifi ed by a label on the shipping container.
Consult LTC Marketing for information on non-standard lead based fi nish parts.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifi cations, go to: http://www.linear.com/tapeandreel/
LT1498/LT1499
14989fg
3
ELECTRICAL CHARACTERISTICS
T
A = 25°C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless
otherwise noted.
SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS
VOS Input Offset Voltage VCM = V+
VCM = V150
150
475
475
μV
μV
ΔVOS Input Offset Voltage Shift VCM = V to V+150 425 μV
Input Offset Voltage Match (Channel-to-Channel) VCM = V+, V (Note 5) 200 750 μV
IBInput Bias Current VCM = V+
VCM = V0
–650
250
–250
650
0
nA
nA
ΔIBInput Bias Current Shift VCM = V to V+500 1300 nA
Input Bias Current Match (Channel-to-Channel) VCM = V+ (Note 5)
VCM = V (Note 5)
0
–100
10
–10
100
0
nA
nA
IOS Input Offset Current VCM = V+
VCM = V5
5
65
65
nA
nA
ΔIOS Input Offset Current Shift VCM = V to V+10 130 nA
Input Noise Voltage 0.1Hz to 10Hz 400 nVP-P
enInput Noise Voltage Density f = 1kHz 12 nV/√Hz
inInput Noise Current Density f = 1kHz 0.3 pA/√Hz
CIN Input Capacitance 5pF
AVOL Large-Signal Voltage Gain VS = 5V, VO = 75mV to 4.8V, RL = 10k
VS = 3V, VO = 75mV to 2.8V, RL = 10k
600
500
3800
2000
V/mV
V/mV
CMRR Common Mode Rejection Ratio VS = 5V, VCM = V to V+
VS = 3V, VCM = V to V+81
76
90
86
dB
dB
CMRR Match (Channel-to-Channel) (Note 5) VS = 5V, VCM = V to V+
VS = 3V, VCM = V to V+75
70
91
86
dB
dB
PSRR Power Supply Rejection Ratio VS = 2.2V to 12V, VCM = VO = 0.5V 88 105 dB
PSRR Match (Channel-to-Channel) (Note 5) VS = 2.2V to 12V, VCM = VO = 0.5V 82 103 dB
VOL Output Voltage Swing (Low) (Note 6) No Load
ISINK = 0.5mA
ISINK = 2.5mA
14
35
90
30
70
200
mV
mV
mV
VOH Output Voltage Swing (High) (Note 6) No Load
ISOURCE = 0.5mA
ISOURCE = 2.5mA
2.5
50
140
10
100
250
mV
mV
mV
ISC Short-Circuit Current VS = 5V
VS = 3V
±12.5
±12.0
±24
±19
mA
mA
IS Supply Current per Amplifi er 1.7 2.2 mA
GBW Gain-Bandwidth Product (Note 7) 6.8 10.5 MHz
SR Slew Rate (Note 8) VS = 5V, AV = –1, RL = Open, VO = 4V
VS = 3V, AV = –1, RL = Open
2.6
2.3
4.5
4.0
V/μs
V/μs
LT1498/LT1499
14989fg
4
ELECTRICAL CHARACTERISTICS
The l denotes the specifi cations which apply over the temperature range
0°C < TA < 70°C. VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless otherwise noted.
SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS
VOS Input Offset Voltage VCM = V+
VCM = V + 0.1V
l
l
175
175
650
650
μV
μV
VOS TC Input Offset Voltage Drift (Note 3)
VCM = V+
l
l
0.5
1.5
2.5
4.0
μV/°C
μV/°C
ΔVOS Input Offset Voltage Shift VCM = V + 0.1V to V+l170 600 μV
Input Offset Voltage Match (Channel-to-Channel) VCM = V + 0.1V, V+ (Note 5) l200 900 μV
IBInput Bias Current VCM = V+
VCM = V + 0.1V
l
l
0
–780
275
–275
780
0
nA
nA
ΔIBInput Bias Current Shift VCM = V + 0.1V to V+l550 1560 nA
Input Bias Current Match (Channel-to-Channel) VCM = V+ (Note 5)
VCM = V + 0.1V (Note 5)
l
l
0
–170
15
–15
170
0
nA
nA
IOS Input Offset Current VCM = V+
VCM = V + 0.1V
l
l
10
10
85
85
nA
nA
ΔIOS Input Offset Current Shift VCM = V + 0.1V to V+l20 170 nA
AVOL Large-Signal Voltage Gain VS = 5V, VO = 75mV to 4.8V, RL = 10k
VS = 3V, VO = 75mV to 2.8V, RL = 10k
l
l
500
400
2500
2000
V/mV
V/mV
CMRR Common Mode Rejection Ratio VS = 5V, VCM = V + 0.1V to V+
VS = 3V, VCM = V + 0.1V to V+
l
l
78
73
89
85
dB
dB
CMRR Match (Channel-to-Channel) (Note 5) VS = 5V, VCM = V + 0.1V to V+
VS = 3V, VCM = V + 0.1V to V+
l
l
74
69
90
86
dB
dB
PSRR Power Supply Rejection Ratio VS = 2.3V to 12V, VCM = VO = 0.5V l86 102 dB
PSRR Match (Channel-to-Channel) (Note 5) VS = 2.3V to 12V, VCM = VO = 0.5V l80 102 dB
VOL Output Voltage Swing (Low) (Note 6) No Load
ISINK = 0.5mA
ISINK = 2.5mA
l
l
l
17
40
110
35
80
220
mV
mV
mV
VOH Output Voltage Swing (High) (Note 6) No Load
ISOURCE = 0.5mA
ISOURCE = 2.5mA
l
l
l
3.5
55
160
15
120
300
mV
mV
mV
ISC Short-Circuit Current VS = 5V
VS = 3V
l
l
±12
±10
±23
±20
mA
mA
ISSupply Current per Amplifi er l1.9 2.6 mA
GBW Gain-Bandwidth Product (Note 7) l6.1 9 MHz
SR Slew Rate (Note 8) VS = 5V, AV = –1, RL = Open, VO = 4V
VS = 3V, AV = –1, RL = Open
l
l
2.5
2.2
4.0
3.5
V/μs
V/μs
LT1498/LT1499
14989fg
5
ELECTRICAL CHARACTERISTICS
The l denotes the specifi cations which apply over the temperature range
–40°C < TA < 85°C. VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless otherwise noted. (Note 4)
SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS
VOS Input Offset Voltage VCM = V+
VCM = V + 0.1V
l
l
250
250
750
750
μV
μV
VOS TC Input Offset Voltage Drift (Note 3)
VCM = V+
l
l
0.5
1.5
2.5
4.0
μV/°C
μV/°C
ΔVOS Input Offset Voltage Shift VCM = V + 0.1V to V+l250 650 μV
Input Offset Voltage Match (Channel-to-Channel) VCM = V + 0.1V, V+ (Note 5) l300 1500 μV
IBInput Bias Current VCM = V+
VCM = V + 0.1V
l
l
0
–975
350
–350
975
0
nA
nA
ΔIBInput Bias Current Shift VCM = V + 0.1V to V+l700 1950 nA
Input Bias Current Match (Channel-to-Channel) VCM = V+ (Note 5)
VCM = V + 0.1V (Note 5)
l
l
0
–180
30
–30
180
0
nA
nA
IOS Input Offset Current VCM = V+
VCM = V + 0.1V
l
l
15
15
110
110
nA
nA
ΔIOS Input Offset Current Shift VCM = V + 0.1V to V+l30 220 nA
AVOL Large-Signal Voltage Gain VS = 5V, VO = 75mV to 4.8V, RL = 10k
VS = 3V, VO = 75mV to 2.8V, RL = 10k
l
l
400
300
2500
2000
V/mV
V/mV
CMRR Common Mode Rejection Ratio VS = 5V, VCM = V + 0.1V to V+
VS = 3V, VCM = V + 0.1V to V+
l
l
77
73
86
81
dB
dB
CMRR Match (Channel-to-Channel) (Note 5) VS = 5V, VCM = V + 0.1V to V+
VS = 3V, VCM = V + 0.1V to V+
l
l
72
69
86
83
dB
dB
PSRR Power Supply Rejection Ratio VS = 2.5V to 12V, VCM = VO = 0.5V l86 100 dB
PSRR Match (Channel-to-Channel) (Note 5) VS = 2.5V to 12V, VCM = VO = 0.5V l80 100 dB
VOL Output Voltage Swing (Low) (Note 6) No Load
ISINK = 0.5mA
ISINK = 2.5mA
l
l
l
18
45
110
40
80
220
mV
mV
mV
VOH Output Voltage Swing (High) (Note 6) No Load
ISOURCE = 0.5mA
ISOURCE = 2.5mA
l
l
l
3.5
60
170
15
120
300
mV
mV
mV
ISC Short-Circuit Current VS = 5V
VS = 3V
l
l
±7.5
±7.5
±15
±15
mA
mA
ISSupply Current per Amplifi er l2.0 2.7 mA
GBW Gain-Bandwidth Product (Note 7) l5.8 8.5 MHz
SR Slew Rate (Note 8) VS = 5V, AV = –1, RL = Open, VO = 4V
VS = 3V, AV = –1, RL = Open
l
l
2.2
1.9
3.6
3.2
V/μs
V/μs
LT1498/LT1499
14989fg
6
SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS
VOS Input Offset Voltage VCM = V+ – 0.5V
VCM = V + 0.5V
l
l
300
300
1100
1100
μV
μV
VOS TC Input Offset Voltage Drift (Note 3)
VCM = V+ – 0.5V
l
l
0.5
1.5
μV/°C
μV/°C
ΔVOS Input Offset Voltage Shift VCM = V + 0.5V to V+ – 0.5V l250 2300 μV
Input Offset Voltage Match (Channel-to-Channel) VCM = V + 0.5V, V+ – 0.5V (Note 5) l300 1900 μV
IBInput Bias Current VCM = V+ – 0.5V
VCM = V + 0.5V
l
l
0
–1100
450
–450
1100
0
nA
nA
ΔIBInput Bias Current Shift VCM = V + 0.5V to V+ – 0.5V l900 2200 nA
Input Bias Current Match (Channel-to-Channel) VCM = V+ – 0.5V (Note 5)
VCM = V + 0.5V (Note 5)
l
l
0
–400
40
–40
400
0
nA
nA
IOS Input Offset Current VCM = V+ – 0.5V
VCM = V + 0.5V
l
l
40
40
300
300
nA
nA
ΔIOS Input Offset Current Shift VCM = V + 0.5V to V+ – 0.5V l80 600 nA
AVOL Large-Signal Voltage Gain VS = 5V, VO = 0.5V to 4.5V, RL = 10k
VS = 3V, VO = 0.5V to 2.5V, RL = 10k
l
l
40
20
210
210
V/mV
V/mV
CMRR Common Mode Rejection Ratio VS = 5V, VCM = V + 0.5V to V+ – 0.5V
VS = 3V, VCM = V + 0.5V to V+ – 0.5V
l
l
66
62
80
75
dB
dB
CMRR Match (Channel-to-Channel) (Note 5) VS = 5V, VCM = V + 0.5V to V+ – 0.5V
VS = 3V, VCM = V + 0.5V to V+ – 0.5V
l
l
62
58
80
75
dB
dB
PSRR Power Supply Rejection Ratio VS = 2.5V to 12V, VCM = VO = 0.5V l86 100 dB
PSRR Match (Channel-to-Channel) (Note 5) VS = 2.5V to 12V, VCM = VO = 0.5V l80 100 dB
VOL Output Voltage Swing (Low) (Note 6) No Load
ISINK = 0.5mA
ISINK = 2.5mA
l
l
l
22
45
110
50
80
220
mV
mV
mV
VOH Output Voltage Swing (High) (Note 6) No Load
ISOURCE = 0.5mA
ISOURCE = 2.5mA
l
l
l
3.5
60
170
20
120
350
mV
mV
mV
ISC Short-Circuit Current VS = 5V
VS = 3V
l
l
±5
±5
±15
±15
mA
mA
ISSupply Current per Amplifi er l2.4 3.0 mA
GBW Gain-Bandwidth Product (Note 7) l5.8 8.5 MHz
SR Slew Rate (Note 8) VS = 5V, AV = –1, RL = Open, VO = 4V
VS = 3V, AV = –1, RL = Open
l
l
2.0
1.7
3.6
3.2
V/μs
V/μs
ELECTRICAL CHARACTERISTICS
The l denotes the specifi cations which apply over the temperature range
–40°C < TA < 125°C. VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless otherwise noted. (Note 4)
LT1498/LT1499
14989fg
7
ELECTRICAL CHARACTERISTICS
The l denotes the specifi cations which apply over the temperature range
–55°C < TA < 125°C. VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless otherwise noted. (Note 4)
SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS
VOS Input Offset Voltage VCM = V+ – 0.5V
VCM = V + 0.5V
l
l
300
300
1100
1100
μV
μV
VOS TC Input Offset Voltage Drift (Note 3)
VCM = V+ – 0.5V
l
l
0.5
1.5
μV/°C
μV/°C
ΔVOS Input Offset Voltage Shift VCM = V + 0.5V to V+ – 0.5V l250 2300 μV
Input Offset Voltage Match (Channel-to-Channel) VCM = V + 0.5V, V+ – 0.5V (Note 5) l300 1900 μV
IBInput Bias Current VCM = V+ – 0.5V
VCM = V + 0.5V
l
l
0
–1100
450
–450
1100
0
nA
nA
ΔIBInput Bias Current Shift VCM = V + 0.5V to V+ – 0.5V l900 2200 nA
Input Bias Current Match (Channel-to-Channel) VCM = V+ – 0.5V (Note 5)
VCM = V + 0.5V (Note 5)
l
l
0
–400
40
–40
400
0
nA
nA
IOS Input Offset Current VCM = V+ – 0.5V
VCM = V + 0.5V
l
l
40
40
300
300
nA
nA
ΔIOS Input Offset Current Shift VCM = V + 0.5V to V+ – 0.5V l80 600 nA
AVOL Large-Signal Voltage Gain VS = 5V, VO = 0.5V to 4.5V, RL = 10k
VS = 3V, VO = 0.5V to 2.5V, RL = 10k
l
l
40
20
210
210
V/mV
V/mV
CMRR Common Mode Rejection Ratio VS = 5V, VCM = V + 0.5V to V+ – 0.5V
VS = 3V, VCM = V + 0.5V to V+ – 0.5V
l
l
66
62
80
75
dB
dB
CMRR Match (Channel-to-Channel) (Note 5) VS = 5V, VCM = V + 0.5V to V+ – 0.5V
VS = 3V, VCM = V + 0.5V to V+ – 0.5V
l
l
62
58
80
75
dB
dB
PSRR Power Supply Rejection Ratio VS = 2.5V to 12V, VCM = VO = 0.5V l86 100 dB
PSRR Match (Channel-to-Channel) (Note 5) VS = 2.5V to 12V, VCM = VO = 0.5V l80 100 dB
VOL Output Voltage Swing (Low) (Note 6) No Load
ISINK = 0.5mA
ISINK = 2.5mA
l
l
l
22
45
110
50
80
220
mV
mV
mV
VOH Output Voltage Swing (High) (Note 6) No Load
ISOURCE = 0.5mA
ISOURCE = 2.5mA
l
l
l
3.5
60
170
20
120
350
mV
mV
mV
ISC Short-Circuit Current VS = 5V
VS = 3V
l
l
±5
±5
±15
±15
mA
mA
ISSupply Current per Amplifi er l2.4 3.0 mA
GBW Gain-Bandwidth Product (Note 7) l5.8 8.5 MHz
SR Slew Rate (Note 8) VS = 5V, AV = –1, RL = Open, VO = 4V
VS = 3V, AV = –1, RL = Open
l
l
2.0
1.7
3.6
3.2
V/μs
V/μs
LT1498/LT1499
14989fg
8
SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS
VOS Input Offset Voltage VCM = V+
VCM = V200
200
800
800
μV
μV
ΔVOS Input Offset Voltage Shift VCM = V to V+150 650 μV
Input Offset Voltage Match (Channel-to-Channel) VCM = V+, V (Note 5) 250 1400 μV
IBInput Bias Current VCM = V+
VCM = V0
–715
250
–250
715
0
nA
nA
ΔIBInput Bias Current Shift VCM = V to V+500 1430 nA
Input Bias Current Match (Channel-to-Channel) VCM = V+ (Note 5)
VCM = V (Note 5)
0
–120
12
–12
120
0
nA
nA
IOS Input Offset Current VCM = V+
VCM = V6
6
70
70
nA
nA
ΔIOS Input Offset Current Shift VCM = V to V+12 140 nA
Input Noise Voltage 0.1Hz to 10Hz 400 nVP-P
enInput Noise Voltage Density f = 1kHz 12 nV/√Hz
inInput Noise Current Density f = 1kHz 0.3 pA/√Hz
AVOL Large-Signal Voltage Gain VO = –14.5V to 14.5V, RL = 10k
VO = –10V to 10V, RL = 2k
1000
500
5200
2300
V/mV
V/mV
Channel Separation VO = –10V to 10V, RL = 2k 116 130 dB
CMRR Common Mode Rejection Ratio VCM = V to V+93 106 dB
CMRR Match (Channel-to-Channel) (Note 5) VCM = V to V+87 103 dB
PSRR Power Supply Rejection Ratio VS = ±5V to ±15V 89 110 dB
PSRR Match (Channel-to-Channel) (Note 5) VS = ±5V to ±15V 83 105 dB
VOL Output Voltage Swing (Low) (Note 6) No Load
ISINK = 0.5mA
ISINK = 10mA
18
40
230
30
80
500
mV
mV
mV
VOH Output Voltage Swing (High) (Note 6) No Load
ISOURCE = 0.5mA
ISOURCE = 10mA
2.5
55
420
10
120
800
mV
mV
mV
ISC Short-Circuit Current ±15 ±30 mA
ISSupply Current per Amplifi er 1.8 2.5 mA
GBW Gain-Bandwidth Product (Note 7) 6.8 10.5 MHz
SR Slew Rate AV = –1, RL = Open, VO = ±10V
Measure at VO = ±5V
3.5 6 V/μs
TA = 25°C. VS = ±15V, VCM = 0V, VOUT = 0V, unless otherwise noted.
ELECTRICAL CHARACTERISTICS
LT1498/LT1499
14989fg
9
ELECTRICAL CHARACTERISTICS
The l denotes the specifi cations which apply over the temperature range
0°C < TA < 70°C. VS = ±15V, VCM = 0V, VOUT = 0V, unless otherwise noted.
SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS
VOS Input Offset Voltage VCM = V+
VCM = V + 0.1V
l
l
200
200
900
900
μV
μV
VOS TC Input Offset Voltage Drift (Note 3)
VCM = V+
l
l
1.0
2.0
3.5
5.0
μV/°C
μV/°C
ΔVOS Input Offset Voltage Shift VCM = V + 0.1V to V+l200 750 μV
Input Offset Voltage Match (Channel-to-Channel) VCM = V + 0.1V, V+ (Note 5) l350 1500 μV
IBInput Bias Current VCM = V+
VCM = V + 0.1V
l
l
0
–875
300
–300
875
0
nA
nA
ΔIBInput Bias Current Shift VCM = V + 0.1V to V+l600 1750 nA
Input Bias Current Match (Channel-to-Channel) VCM = V+ (Note 5)
VCM = V + 0.1V (Note 5)
l
l
0
–180
20
–20
180
0
nA
nA
IOS Input Offset Current VCM = V+
VCM = V + 0.1V
l
l
15
15
90
90
nA
nA
ΔIOS Input Offset Current Shift VCM = V + 0.1V to V+l30 180 nA
AVOL Large-Signal Voltage Gain VO = –14.5V to 14.5V, RL = 10k
VO = –10V to 10V, RL = 2k
l
l
900
400
5000
2000
V/mV
V/mV
Channel Separation VO = –10V to 10V, RL = 2k l112 125 dB
CMRR Common Mode Rejection Ratio VCM = V + 0.1V to V+l92 103 dB
CMRR Match (Channel-to-Channel) (Note 5) VCM = V + 0.1V to V+l86 103 dB
PSRR Power Supply Rejection Ratio VS = ±5V to ±15V l88 103 dB
PSRR Match (Channel-to-Channel) (Note 5) VS = ±5V to ±15V l82 103 dB
VOL Output Voltage Swing (Low) (Note 6) No Load
ISINK = 0.5mA
ISINK = 10mA
l
l
l
18
45
270
40
90
520
mV
mV
mV
VOH Output Voltage Swing (High) (Note 6) No Load
ISOURCE = 0.5mA
ISOURCE = 10mA
l
l
l
3.5
60
480
15
120
1000
mV
mV
mV
ISC Short-Circuit Current l±12 ±28 mA
ISSupply Current per Amplifi er l1.9 2.8 mA
GBW Gain-Bandwidth Product (Note 7) l6.1 9 MHz
SR Slew Rate AV = –1, RL = Open, VO = ±10V
Measured at VO = ±5V
l3.4 5.3 V/μs
LT1498/LT1499
14989fg
10
ELECTRICAL CHARACTERISTICS
The l denotes the specifi cations which apply over the temperature range
–40°C < TA < 85°C. VS = ±15V, VCM = 0V, VOUT = 0V, unless otherwise noted. (Note 4)
SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS
VOS Input Offset Voltage VCM = V+
VCM = V + 0.1V
l
l
300
300
950
950
μV
μV
VOS TC Input Offset Voltage Drift (Note 3)
VCM = V+
l
l
1.0
2.0
3.5
5.0
μV/°C
μV/°C
ΔVOS Input Offset Voltage Shift VCM = V + 0.1V to V+l250 850 μV
Input Offset Voltage Match (Channel-to-Channel) VCM = V + 0.1V, V+ (Note 5) l350 1800 μV
IBInput Bias Current VCM = V+
VCM = V + 0.1V
l
l
0
–1050
350
–350
1050
0
nA
nA
ΔIBInput Bias Current Shift VCM = V + 0.1V to V+l700 2100 nA
Input Bias Current Match (Channel-to-Channel) VCM = V+ (Note 5)
VCM = V + 0.1V (Note 5)
l
l
0
–200
20
–20
200
0
nA
nA
IOS Input Offset Current VCM = V+
VCM = V + 0.1V
l
l
15
15
115
115
nA
nA
ΔIOS Input Offset Current Shift VCM = V + 0.1V to V+l30 230 nA
AVOL Large-Signal Voltage Gain VO = –14.5V to 14.5V, RL = 10k
VO = –10V to 10V, RL = 2k
l
l
800
350
5000
2000
V/mV
V/mV
Channel Separation VO = –10V to 10V, RL = 2k l110 120 dB
CMRR Common Mode Rejection Ratio VCM = V + 0.1V to V+l90 101 dB
CMRR Match (Channel-to-Channel) (Note 5) VCM = V + 0.1V to V+l86 100 dB
PSRR Power Supply Rejection Ratio VS = ±5V to ±15V l88 100 dB
PSRR Match (Channel-to-Channel) (Note 5) VS = ±5V to ±15V l82 100 dB
VOL Output Voltage Swing (Low) (Note 6) No Load
ISINK = 0.5mA
ISINK = 10mA
l
l
l
25
50
275
50
100
520
mV
mV
mV
VOH Output Voltage Swing (High) (Note 6) No Load
ISOURCE = 0.5mA
ISOURCE = 10mA
l
l
l
3.5
65
500
15
120
1000
mV
mV
mV
ISC Short-Circuit Current l±10 ±18 mA
ISSupply Current per Amplifi er l2.0 3.0 mA
GBW Gain-Bandwidth Product (Note 7) l5.8 8.5 MHz
SR Slew Rate AV = –1, RL = Open, VO = ±10V
Measure at VO = ±5V
l3 4.75 V/μs
LT1498/LT1499
14989fg
11
SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS
VOS Input Offset Voltage VCM = V+ – 0.5V
VCM = V + 0.5V
l
l
350
350
1300
1300
μV
μV
VOS TC Input Offset Voltage Drift (Note 3)
VCM = V+ – 0.5V
l
l
1.0
2.0
μV/°C
μV/°C
ΔVOS Input Offset Voltage Shift VCM = V + 0.5V to V+ – 0.5V l250 1500 μV
Input Offset Voltage Match (Channel-to-Channel) VCM = V + 0.5V, V+ – 0.5V (Note 5) l400 2200 μV
IBInput Bias Current VCM = V+ – 0.5V
VCM = V + 0.5V
l
l
0
–1200
500
–500
1200
0
nA
nA
ΔIBInput Bias Current Shift VCM = V + 0.5V to V+ – 0.5V l1000 2400 nA
Input Bias Current Match (Channel-to-Channel) VCM = V+ – 0.5V (Note 5)
VCM = V + 0.5V (Note 5)
l
l
0
–400
40
–40
400
0
nA
nA
IOS Input Offset Current VCM = V+ – 0.5V
VCM = V + 0.5V
l
l
40
40
300
300
nA
nA
ΔIOS Input Offset Current Shift VCM = V + 0.5V to V+ – 0.5V l80 600 nA
AVOL Large-Signal Voltage Gain VO = –14.5V to 14.5V, RL = 10k l40 400 V/mV
Channel Separation VO = –10V to 10V, RL = 2k l110 120 dB
CMRR Common Mode Rejection Ratio VCM = V + 0.5V to V+ – 0.5V l86 100 dB
CMRR Match (Channel-to-Channel) (Note 5) VCM = V + 0.5V to V+ – 0.5V l80 100 dB
PSRR Power Supply Rejection Ratio VS = ±5V to ±15V l88 100 dB
PSRR Match (Channel-to-Channel) (Note 5) VS = ±5V to ±15V l80 100 dB
VOL Output Voltage Swing (Low) (Note 6) No Load
ISINK = 0.5mA
ISINK = 10mA
l
l
l
25
50
275
75
100
520
mV
mV
mV
VOH Output Voltage Swing (High) (Note 6) No Load
ISOURCE = 0.5mA
ISOURCE = 10mA
l
l
l
3.5
65
500
20
120
1400
mV
mV
mV
ISC Short-Circuit Current l±7.5 ±12 mA
ISSupply Current per Amplifi er l2.5 3.2 mA
GBW Gain-Bandwidth Product (Note 7) l5.8 8.5 MHz
SR Slew Rate AV = –1, RL = Open, VO = ±10V
Measure at VO = ±5V
l2.2 4.75 V/μs
The l denotes the specifi cations which apply over the temperature range
–40°C < TA < 125°C. VS = ±15V, VCM = 0V, VOUT = 0V, unless otherwise noted. (Note 4)
ELECTRICAL CHARACTERISTICS
LT1498/LT1499
14989fg
12
ELECTRICAL CHARACTERISTICS
Note 1: Stresses beyond those listed under Absolute Maximum Ratings
may cause permanent damage to the device. Exposure to any Absolute
Maximum Rating condition for extended periods may affect device
reliability and lifetime.
Note 2: A heat sink may be required to keep the junction temperature
below the absolute maximum rating when the output is shorted
indefi nitely.
Note 3: This parameter is not 100% tested.
Note 4: The LT1498C/LT1499C are guaranteed to meet specifi ed
performance from 0°C to 70°C. The LT1498C/LT1499C are designed,
characterized and expected to meet specifi ed performance from –40°C
to 85°C but are not tested or QA sampled at these temperatures. The
LT1498I/LT1499I are guaranteed to meet specifi ed performance from
–40°C to 85°C. The LT1498H/LT1499H are guaranteed to meet specifi ed
performance from –40°C to 125°C. The LT1498MP is guaranteed to meet
specifi ed performance from –55°C to 125°C.
SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS
VOS Input Offset Voltage VCM = V+ – 0.5V
VCM = V + 0.5V
l
l
350
350
1300
1300
μV
μV
VOS TC Input Offset Voltage Drift (Note 3)
VCM = V+ – 0.5V
l
l
1.0
2.0
μV/°C
μV/°C
ΔVOS Input Offset Voltage Shift VCM = V + 0.5V to V+ – 0.5V l250 1500 μV
Input Offset Voltage Match (Channel-to-Channel) VCM = V + 0.5V, V+ – 0.5V (Note 5) l400 2200 μV
IBInput Bias Current VCM = V+ – 0.5V
VCM = V + 0.5V
l
l
0
–1200
500
–500
1200
0
nA
nA
ΔIBInput Bias Current Shift VCM = V + 0.5V to V+ – 0.5V l1000 2400 nA
Input Bias Current Match (Channel-to-Channel) VCM = V+ – 0.5V (Note 5)
VCM = V + 0.5V (Note 5)
l
l
0
–400
40
–40
400
0
nA
nA
IOS Input Offset Current VCM = V+ – 0.5V
VCM = V + 0.5V
l
l
40
40
300
300
nA
nA
ΔIOS Input Offset Current Shift VCM = V + 0.5V to V+ – 0.5V l80 600 nA
AVOL Large-Signal Voltage Gain VO = –14.5V to 14.5V, RL = 10k l40 400 V/mV
Channel Separation VO = –10V to 10V, RL = 2k l110 120 dB
CMRR Common Mode Rejection Ratio VCM = V + 0.5V to V+ – 0.5V l86 100 dB
CMRR Match (Channel-to-Channel) (Note 5) VCM = V + 0.5V to V+ – 0.5V l80 100 dB
PSRR Power Supply Rejection Ratio VS = ±5V to ±15V l88 100 dB
PSRR Match (Channel-to-Channel) (Note 5) VS = ±5V to ±15V l80 100 dB
VOL Output Voltage Swing (Low) (Note 6) No Load
ISINK = 0.5mA
ISINK = 10mA
l
l
l
25
50
275
75
100
520
mV
mV
mV
VOH Output Voltage Swing (High) (Note 6) No Load
ISOURCE = 0.5mA
ISOURCE = 10mA
l
l
l
3.5
65
500
20
120
1400
mV
mV
mV
ISC Short-Circuit Current l±7.5 ±12 mA
ISSupply Current per Amplifi er l2.5 3.2 mA
GBW Gain-Bandwidth Product (Note 7) l5.8 8.5 MHz
SR Slew Rate AV = –1, RL = Open, VO = ±10V
Measure at VO = ±5V
l2.2 4.75 V/μs
The l denotes the specifi cations which apply over the temperature range
–55°C < TA < 125°C. VS = ±15V, VCM = 0V, VOUT = 0V, unless otherwise noted. (Note 4)
Note 5: Matching parameters are the difference between amplifi ers A and
D and between B and C on the LT1499; between the two amplifi ers on the
LT1498.
Note 6: Output voltage swings are measured between the output and
power supply rails.
Note 7: VS = 3V, VS = ±15V GBW limit guaranteed by correlation to
5V tests.
Note 8: VS = 3V, VS = 5V slew rate limit guaranteed by correlation to
±15V tests.
LT1498/LT1499
14989fg
13
TYPICAL PERFORMANCE CHARACTERISTICS
Supply Current vs Supply Voltage Supply Current vs Temperature
Input Bias Current
vs Common Mode Voltage
Input Bias Current vs Temperature
Output Saturation Voltage
vs Load Current (Output High)
Output Saturation Voltage
vs Load Current (Output Low)
VOS Distribution, VCM = 0V
(PNP Stage)
VOS Distribution VCM = 5V
(NPN Stage) ΔVOS Shift for VCM = 0V to 5V
INPUT OFFSET VOLTAGE (μV)
–500
PERCENT OF UNITS (%)
15
20
25
300
14989 G01
10
5
0–300 –100 100 500
LT1498: N8, S8 PACKAGES
LT1499: S14 PACKAGE
VS = 5V, 0V
VCM = 0V
INPUT OFFSET VOLTAGE (μV)
–500
PERCENT OF UNITS (%)
15
20
25
300
14989 G02
10
5
0–300 –100 100 500
LT1498: N8, S8 PACKAGES
LT1499: S14 PACKAGE
VS = 5V, 0V
VCM = 5V
INPUT OFFSET VOLTAGE (μV)
–500
PERCENT OF UNITS (%)
15
20
25
300
14989 G03
10
5
0–300 –100 100 500
LT1498: N8, S8 PACKAGES
LT1499: S14 PACKAGE
VS = 5V, 0V
VCM = 0V TO 5V
TOTAL SUPPLY VOLTAGE (V)
0
SUPPLY CURRENT PER AMPLIFIER (mA)
1.0
1.5
32
14989 G04
0.5
0816 24
436
12 20 28
2.0
TA = 125°C
TA = 25°C
TA = –55°C
TEMPERATURE (°C)
–50
SUPPLY CURRENT PER AMPLIFIER (mA)
25
14989 G05
1.0
0.5
–25 0 50
0
2.0
1.5
75 100 125
VS = p15V
VS = 5V, 0V
COMMON MODE VOLTAGE (V)
–2
INPUT BIAS CURRENT (nA)
0
200
23456
14989 G06
–200
–400 –1 01
400
–100
100
–300
300
VS = 5V, 0V
TA = 125°C
TA = 25°C TA = –55°C
TEMPERATURE (°C)
–50
INPUT BIAS CURRENT (nA)
400
300
200
100
0
–100
–200
–300
–400 70
14989 G07
–20 10 40
–35 85
–5 25 55 100
VS = 5V, 0V
VCM = 5V
VS = 5V, 0V
VCM = 0V
VS = p15V
VCM = 15V
VS = p15V
VCM = –15V
NPN ACTIVE
PNP ACTIVE
LOAD CURRENT (mA)
10
SATURATION VOLTAGE (mV)
100
0.001 0.1 1 10
14989 G08
10.01
1000
TA = –55°C
TA = 25°C
TA = 125°C
LOAD CURRENT (mA)
10
SATURATION VOLTAGE (mV)
100
0.001 0.1 1 10
14989 G09
10.01
1000
TA = –55°C
TA = 25°C
TA = 125°C
LT1498/LT1499
14989fg
14
TYPICAL PERFORMANCE CHARACTERISTICS
Noise Current Spectrum Gain and Phase vs Frequency CMRR vs Frequency
PSRR vs Frequency
Gain Bandwidth and Phase
Margin vs Supply Voltage Channel Separation vs Frequency
Minimum Supply Voltage
0.1Hz to 10Hz
Output Voltage Noise Noise Voltage Spectrum
TOTAL SUPPLY VOLTAGE (V)
1
0
CHANGE IN OFFSET VOLTAGE (μV)
50
100
150
200
23 45
14989 G10
250
300
TA = 85°C
TA = 25°C
TA = 70°C
NONFUNCTIONAL
TA = –55°C
TIME (1s/DIV)
010
OUTPUT VOLTAGE (200nV/DIV)
14989 G11
VS = p2.5V
VCM = 0V
FREQUENCY (Hz)
1
80
NOISE VOLTAGE (nV/Hz)
100
120
140
160
10 100 1000
14989 G12
60
40
20
0
180
200 VS = 5V, 0V
VCM = 2.5V
PNP ACTIVE
VCM = 4V
NPN ACTIVE
FREQUENCY (Hz)
1
4
CURRENT NOISE (pA/
Hz
)
5
6
7
8
10 100 1000
14989 G13
3
2
1
0
9
10 VS = 5V, 0V
VCM = 2.5V
PNP ACTIVE
VCM = 4V
NPN ACTIVE
FREQUENCY (MHz)
–10
VOLTAGE GAIN (dB)
PHASE SHIFT (DEG)
10
30
20
50
70
–20
0
40
60
0.01 1 10 100
14989 G14
–30
–108
–36
36
0
108
180
–144
–72
72
144
–180
0.1
PHASE
GAIN
RL = 10k
VS = p1.5V
VS = p15V
FREQUENCY (kHz)
40
COMMON MODE REJECTION RATIO (dB)
60
80
70
100
120
30
50
90
110
1 100 1000 10000
14989 G15
20 10
VS = p15V
VS = p2.5V
FREQUENCY (kHz)
10
POWER SUPPLY REJECTION RATIO (dB)
30
50
40
70
90
0
20
60
80
1 100 1000 10000
14989 G16
–10 10
VS = p2.5V
POSITIVE SUPPLY
NEGATIVE SUPPLY
TOTAL SUPPLY VOLTAGE (V)
0
0
GAIN BANDWIDTH (MHz)
PHASE MARGIN (DEG)
4
6
8
10
12
14
510 15 20
14989 G17
25
16
18
20
2
0
20
30
40
50
60
70
80
90
100
10
30
PHASE MARGIN
GAIN BANDWIDTH
FREQUENCY (kHz)
0.01
–110
CHANNEL SEPARATION (dB)
–100
–90
–80
–70
0.1 1 10 100 1000
14989 G18
–120
–130
–140
–150
–60
–50 VS = p15V
VOUT = p1VP-P
RL = 2k
LT1498/LT1499
14989fg
15
TYPICAL PERFORMANCE CHARACTERISTICS
Open-Loop Gain Open-Loop Gain Warm-Up Drift vs Time
Total Harmonic Distortion + Noise
vs Peak-to-Peak Voltage
Total Harmonic Distortion + Noise
vs Frequency
Capacitive Load Handling Slew Rate vs Supply Voltage
Output Step
vs Settling Time to 0.01%
CAPACITIVE LOAD (pF)
20
OVERSHOOT (%)
50
70
40
10 1000 10000 100000
14989 G19
0100
60
30
10
VS = 5V, 0V
AV = 1
RL = 1k
TOTAL SUPPLY VOLTAGE (V)
0
3
SLEW RATE (V/μs)
4
6
7
8
816 20 36
14989 G20
5
412 24 28 32
9VOUT = 80% OF VS
AV = –1
RISING EDGE
FALLING EDGE
SETTLING TIME (μs)
1.5
–10
OUTPUT STEP (V)
–8
–4
–2
0
10
4
2.0 2.5
14989 G21
–6
6
8
2
3.0 3.5
VS = p15V
NONINVERTING
INVERTING
INVERTING
NONINVERTING
OUTPUT VOLTAGE (V)
–20 –15
INPUT VOLTAGE (μV)
0
10
20
14989 G22
–10
–20 –10 –5 05
10 15
20
–5
5
–15
15
VS = p15V
RL = 2k
RL = 10k
OUTPUT VOLTAGE (V)
0
INPUT VOLTAGE (μV)
–1
0
1
35
14989 G23
–2
–3
–4 12 4
2
3
4
6
VS = 5V, 0V
RL = 2k
RL = 10k
TIME AFTER POWER-UP (SEC)
0
CHANGE IN OFFSET VOLTAGE (μV)
–10
0
10
60 100 160
14989 G24
–20
–30
–40 20 40 80 120 140
S8 PACKAGE, VS = p2.5V
S8 PACKAGE, VS = p15V
N8 PACKAGE, VS = p15V
LT1499CS, VS = p15V
N8 PACKAGE, VS = p2.5V
LT1499CS, VS = p2.5V
INPUT VOLTAGE (VP-P)
0.001
THD + NOISE (%)
0.01
0.1
1
0234
0.0001 15
14989 G25
f = 1kHz
RL = 10k
AV = –1
VS = p1.5V
AV = 1
VS = p1.5V
AV = 1
VS = p2.5V
AV = –1
VS = p2.5V
FREQUENCY (kHz)
0.01
THD + NOISE (%)
0.01
0.1
1
0.1 1 10 100
14989 G26
0.001
VS = p1.5V
VIN = 2VP-P
RL = 10k
AV = 1
AV = –1
LT1498/LT1499
14989fg
16
TYPICAL PERFORMANCE CHARACTERISTICS
±15V Small-Signal Response ±15V Large-Signal Response
5V Small-Signal Response 5V Large-Signal Response
200ns/DIV
5mV/DIV
14989 G27
VS = 5V
AV = 1
VIN = 20mVP-P AT 50kHz
RL = 1k
2μs/DIV
1V/DIV
14989 G28
VS = 5V
AV = 1
VIN = 4VP-P AT 10kHz
RL = 1k
200ns/DIV
5mV/DIV
14989 G29
VS = p15V
AV = 1
VIN = 20mVP-P AT 50kHz
RL = 1k
2μs/DIV
5V/DIV
14989 G30
VS = p15V
AV = 1
VIN = 20VP-P AT 10kHz
RL = 1k
LT1498/LT1499
14989fg
17
APPLICATIONS INFORMATION
Figure 1. LT1498 Simplifi ed Schematic Diagram
Rail-to-Rail Input and Output
The LT1498/LT1499 are fully functional for an input and
output signal range from the negative supply to the posi-
tive supply. Figure 1 shows a simplifi ed schematic of the
amplifi er. The input stage consists of two differential am-
plifi ers, a PNP stage (Q1/Q2) and an NPN stage (Q3/Q4)
which are active over different ranges of input common
mode voltage. A complementary common emitter output
stage (Q14/Q15) is employed allowing the output to swing
from rail-to-rail. The devices are fabricated on Linear
Technologys proprietary complementary bipolar process
to ensure very similar DC and AC characteristics for the
output devices (Q14/Q15).
The PNP differential input pair is active for input com-
mon mode voltages, VCM, between the negative supply
to approximately 1.3V below the positive supply. As VCM
moves further toward the positive supply, the transistor
(Q5) will steer the tail current, I1, to the current mirror
(Q6/Q7) activating the NPN differential pair, and the PNP
differential pair becomes inactive for the rest of the input
common mode range up to the positive supply.
The output is confi gured with a pair of complementary
common emitter stages that enables the output to swing
from rail to rail. Capacitors (C1 and C2) form local
feedback loops that lower the output impedance at high
frequencies.
Input Offset Voltage
The offset voltage changes depending upon which input
stage is active. The input offsets are random, but are
trimmed to less than 475μV. To maintain the precision
characteristics of the amplifi er, the change of VOS over the
entire input common mode range (CMRR) is guaranteed
to be less than 425μV on a single 5V supply.
Input Bias Current
The input bias current polarity also depends on the input
common mode voltage, as described in the previous sec-
tion. When the PNP differential pair is active, the input bias
currents fl ow out of the input pins; they fl ow in opposite
direction when the NPN input stage is active. The offset error
due to input bias current can be minimized by equalizing
the noninverting and inverting input source impedances.
This will reduce the error since the input offset currents
are much less than the input bias currents.
Q4
Q6
VBIAS
D6D5
+IN
D2
Q3
Q7
Q1
I1
Q9
Q2
D4
D1
D3
–IN OUT
V
V+
Q5
Q12
Q10
Q8
Q14
14989 F01
C1
R1
R6
R3
VCC
R4 R5
C2
R2
Q11 Q13
Q15
BUFFER
AND
OUTPUT BIAS
R7
LT1498/LT1499
14989fg
18
APPLICATIONS INFORMATION
Overdrive Protection
To prevent the output from reversing polarity when the
input voltage exceeds the power supplies, two pair of
crossing diodes D1 to D4 are employed. When the input
voltage exceeds either power supply by approximately
700mV, D1/D2 or D3/D4 will turn on, forcing the output
to the proper polarity. For the phase reversal protection to
work properly, the input current must be less than 5mA.
If the amplifi er is to be severely overdriven, an external
resistor should be used to limit the overdrive current.
Furthermore, the LT1498/LT1499’s input stages are pro-
tected by a pair of back-to-back diodes, D5/D6. When a
differential voltage of more than 0.7V is applied to the
inputs, these diodes will turn on, preventing the Zener
breakdown of the input transistors. The current in D5/D6
should be limited to less than 10mA. Internal resistors R6
and R7 (700Ω total) limit the input current for differential
input signals of 7V or less. For larger input levels, a re-
sistor in series with either or both inputs should be used
to limit the current. Worst-case differential input voltage
usually occurs when the output is shorted to ground. In
addition, the amplifi er is protected against ESD strikes up
to 3kV on all pins.
Figure 2b. LT1498 Large-Signal Response
Figure 2a. LT1498 Small-Signal Response
CL = 10nF
CL = 500pF
CL = 0pF
14989 F02a
VS = 5V
AV = 1
CL = 10nF
CL = 500pF
CL = 0pF
14989 F02b
VS = 5V
AV = 1
Capacitive Load
The LT1498/LT1499 are designed for ease of use. The
amplifi er can drive a capacitive load of more than 10nF
without oscillation at unity gain. When driving a heavy
capacitive load, the bandwidth is reduced to maintain
stability. Figures 2a and 2b illustrate the stability of the
device for small-signal and large-signal conditions with
capacitive loads. Both the small-signal and large-signal
transient response with a 10nF capacitive load are well
behaved.
Feedback Components
To minimize the loading effect of feedback, it is possible
to use the high value feedback resistors to set the gain.
However, care must be taken to insure that the pole formed
by the feedback resistors and the total input capacitance
at the inverting input does not degrade the stability of the
amplifi er. For instance, the LT1498/LT1499 in a noninvert-
ing gain of 2, set with two 30k resistors, will probably
oscillate with 10pF total input capacitance (5pF input
capacitance + 5pF board capacitance). The amplifi er has
a 2.5MHz crossing frequency and a 60° phase margin at
6dB of gain. The feedback resistors and the total input
capacitance create a pole at 1.06MHz that induces 67° of
phase shift at 2.5MHz! The solution is simple, either lower
the value of the resistors or add a feedback capacitor of
10pF of more.
LT1498/LT1499
14989fg
19
1A Voltage Controlled Current Source
1A Voltage Controlled Current Sink
+
1/2 LT1498
1k
500pF
tr < 1μs 14989 TA03
Si9430DY
VIN
V+
RL
100Ω
0.5Ω
1k
IOUT =
IOUT
V+ – VIN
0.5Ω
1k
VIN
+
1/2 LT1498
500pF
14989 TA04
Si9410DY
V+
V+
RL
IOUT
100Ω
0.5Ω
1k
IOUT = VIN
0.5Ω
tr < 1μs
Input Bias Current Cancellation
TYPICAL APPLICATIONS
+
+
1M
1M
CANCELLATION
AMP
SIGNAL
AMP
22pF
INPUT BIAS CURRENT LESS THAN 50nA
FOR 500mV ≤ VIN ≤ (V+ – 500mV)
1/2 LT1498
1/2 LT1498
RF
VOUT
14989 TA05
VIN
RG
LT1498/LT1499
14989fg
20
PACKAGE DESCRIPTION
N8 Package
8-Lead PDIP (Narrow .300 Inch)
(Reference LTC DWG # 05-08-1510)
N8 1002
.065
(1.651)
TYP
.045 – .065
(1.143 – 1.651)
.130 p .005
(3.302 p 0.127)
.020
(0.508)
MIN
.018 p .003
(0.457 p 0.076)
.120
(3.048)
MIN
12 34
87 65
.255 p .015*
(6.477 p 0.381)
.400*
(10.160)
MAX
.008 – .015
(0.203 – 0.381)
.300 – .325
(7.620 – 8.255)
.325 +.035
–.015
+0.889
–0.381
8.255

NOTE:
1. DIMENSIONS ARE INCHES
MILLIMETERS
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)
.100
(2.54)
BSC
LT1498/LT1499
14989fg
21
PACKAGE DESCRIPTION
S8 Package
8-Lead Plastic Small Outline (Narrow .150 Inch)
(Reference LTC DWG # 05-08-1610)
.016 – .050
(0.406 – 1.270)
.010 – .020
(0.254 – 0.508)s 45o
0o– 8o TYP
.008 – .010
(0.203 – 0.254)
SO8 0303
.053 – .069
(1.346 – 1.752)
.014 – .019
(0.355 – 0.483)
TYP
.004 – .010
(0.101 – 0.254)
.050
(1.270)
BSC
1234
.150 – .157
(3.810 – 3.988)
NOTE 3
8765
.189 – .197
(4.801 – 5.004)
NOTE 3
.228 – .244
(5.791 – 6.197)
.245
MIN .160 p.005
RECOMMENDED SOLDER PAD LAYOUT
.045 p.005
.050 BSC
.030 p.005
TYP
INCHES
(MILLIMETERS)
NOTE:
1. DIMENSIONS IN
2. DRAWING NOT TO SCALE
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)
LT1498/LT1499
14989fg
22
PACKAGE DESCRIPTION
S Package
14-Lead Plastic Small Outline (Narrow .150 Inch)
(Reference LTC DWG # 05-08-1610)
1
N
234
.150 – .157
(3.810 – 3.988)
NOTE 3
14 13
.337 – .344
(8.560 – 8.738)
NOTE 3
.228 – .244
(5.791 – 6.197)
12 11 10 9
567
N/2
8
.016 – .050
(0.406 – 1.270)
.010 – .020
(0.254 – 0.508)s 45o
0o – 8o TYP
.008 – .010
(0.203 – 0.254)
S14 0502
.053 – .069
(1.346 – 1.752)
.014 – .019
(0.355 – 0.483)
TYP
.004 – .010
(0.101 – 0.254)
.050
(1.270)
BSC
.245
MIN
N
1 2 3 N/2
.160 p.005
RECOMMENDED SOLDER PAD LAYOUT
.045 p.005
.050 BSC
.030 p.005
TYP
INCHES
(MILLIMETERS)
NOTE:
1. DIMENSIONS IN
2. DRAWING NOT TO SCALE
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)
LT1498/LT1499
14989fg
23
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.
REVISION HISTORY
REV DATE DESCRIPTION PAGE NUMBER
E 10/09 Edit in Absolute Maximum Ratings 2
F 01/10 Added LT1498H/LT1499H (H-Grade) Parts. Refl ected throughout the data sheet. 2-24
G 03/10 Updated Part Markings in Order Information Section
Updated Conditions for AVOL in Electrical Characteristics Section
2
6, 7
(Revision history begins at Rev E)
LT1498/LT1499
14989fg
24
Linear Technology Corporation
1630 McCarthy Blvd., Milpitas, CA 95035-7417
(408) 432-1900 FAX: (408) 434-0507 www.linear.com
© LINEAR TECHNOLOGY CORPORATION 2009
LT 0410 REV G • PRINTED IN USA
RELATED PARTS
TYPICAL APPLICATION
Bidirectional Current Sensor
A bidirectional current sensor for battery-powered sys-
tems is shown in Figure 3. Two outputs are provided: one
proportional to charge current, the other proportional
to discharge current. The circuit takes advantage of the
LT1498’s rail-to-rail input range and its output phase
reversal protection. During the charge cycle, the op amp
A1 forces a voltage equal to (IL)(RSENSE) across RA. This
voltage is then amplifi ed at the Charge Out by the ratio of
RB over RA. In this mode, the output of A2 remains high,
keeping Q2 off and the Discharge Out low, even though
the (+) input of A2 exceeds the positive power supply.
During the discharge cycle, A2 and Q2 are active and the
operation is similar to the charge cycle.
Figure 3. Bidirectional Current Sensor
+
+
A1
1/2 LT1498
A2
1/2 LT1498
Q2
MTP23P06
VO = IL
= 1V/A
FOR RA = 1k, RB = 10k
RSENSE
DISCHARGE
OUT
CHARGE
OUT
Q1
MTP23P06
RA
RB
RB
RA
RA
RA
VBATTERY VBATTERY
14989 F03
DISCHARGE
IL
CHARGE
RA
RSENSE
0.1Ω
RB
()
VO
IL
PART NUMBER DESCRIPTION COMMENTS
LTC
®
1152 Rail-to-Rail Input and Output, Zero-Drift Op Amp High DC Accuracy, 10μV VOS(MAX), 100nV/°C Drift, 1MHz GBW, 1V/μs
Slew Rate, Max Supply Current 2.2mA
LT1211/LT1212 Dual/Quad 14MHz, 7V/μs, Single Supply Precision Op Amps Input Common Mode Includes Ground, 275μV VOS(MAX), 6μV/°C Max
Drift, Max Supply Current 1.8mA per Op Amp
LT1213/LT1214 Dual/Quad 28MHz, 12V/μs, Single Supply Precision Op Amps Input Common Mode Includes Ground, 275μV VOS(MAX), 6μV/°C Max
Drift, Max Supply Current 3.5mA per Op Amp
LT1215/LT1216 Dual/Quad 23MHz, 50V/μs, Single Supply Precision Op Amps Input Common Mode Includes Ground, 450μV VOS(MAX), Max Supply
Current 6.6mA per Op Amp
LT1366/LT1367 Dual/Quad Precision, Rail-to-Rail Input and Output Op Amps 475μV VOS(MAX), 400kHz GBW, 0.13V/μs Slew Rate, Max Supply
Current 520μA per Op Amp
LT1490/LT1491 Dual/Quad Micropower, Rail-to-Rail Input and Output Op Amps Max Supply Current 50μA per Op Amp, 200kHz GBW, 0.07V/μs Slew
Rate, Operates with Inputs 44V Above V Independent of V+
LT1884/LT1885 Dual/Quad, Rail-to-Rail Output Picoamp Input Precision Op Amps ICC = 650μA, VOS < 50μV, IB < 400pA