Automotive Power
Data Sheet
Rev. 1.0, 2017-03-03
TLE9861QXA20
Microcontroller with PWM Interface and H-Bridge MOSFET Driver for Automotive
Applications
BF-Step
TLE9861QXA20
Table of Contents
Data Sheet 2 Rev. 1.0, 2017-03-03
1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 Device Pinout and Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1 Device Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5 Power Management Unit (PMU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2.1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2.2 PMU Modes Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.3 Power Supply Generation Unit (PGU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3.1 Voltage Regulator 5.0V (VDDP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3.2 Voltage Regulator 1.5V (VDDC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3.3 External Voltage Regulator 5.0V (VDDEXT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6 System Control Unit - Digital Modules (SCU-DM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2.1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.3 Clock Generation Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.3.1 Low Precision Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.3.2 High Precision Oscillator Circuit (OSC_HP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.3.2.1 External Input Clock Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.3.2.2 External Crystal Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7 System Control Unit - Power Modules (SCU-PM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.2.1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
8 ARM Cortex-M3 Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
8.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
8.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
8.2.1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
9DMA Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
9.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
9.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
9.2.1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
9.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
9.3.1 DMA Mode Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
10 Address Space Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
11 Memory Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
11.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
11.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
11.2.1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
11.3 NVM Module (Flash Memory) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table of Contents
TLE9861QXA20
Table of Contents
Data Sheet 3 Rev. 1.0, 2017-03-03
12 Interrupt System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
12.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
12.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
12.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
13 Watchdog Timer (WDT1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
13.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
13.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
14 GPIO Ports and Peripheral I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
14.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
14.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
14.2.1 Port 0 and Port 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
14.2.2 Port 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
14.3 TLE9861QXA20 Port Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
14.3.1 Port 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
14.3.1.1 Port 0 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
14.3.2 Port 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
14.3.2.1 Port 1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
14.3.3 Port 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
14.3.3.1 Port 2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
15 General Purpose Timer Units (GPT12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
15.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
15.1.1 Features Block GPT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
15.1.2 Features Block GPT2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
15.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
15.2.1 Block Diagram GPT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
15.2.2 Block Diagram GPT2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
16 Timer2 and Timer21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
16.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
16.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
16.2.1 Timer2 and Timer21 Modes Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
17 Timer3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
17.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
17.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
17.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
17.3.1 Timer3 Modes Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
18 Capture/Compare Unit 6 (CCU6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
18.1 Feature Set Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
18.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
18.2.1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
19 UART1/UART2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
19.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
19.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
19.2.1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
19.3 UART Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
20 High Voltage PWM Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
20.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
20.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
20.2.1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
TLE9861QXA20
Table of Contents
Data Sheet 4 Rev. 1.0, 2017-03-03
21 High-Speed Synchronous Serial Interface (SSC1/SSC2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
21.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
21.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
21.2.1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
22 Measurement Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
22.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
22.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
22.2.1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
23 Measurement Core Module (incl. ADC2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
23.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
23.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
23.2.1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
23.2.2 Measurement Core Module Modes Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
24 10-Bit Analog Digital Converter (ADC1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
24.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
24.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
24.2.1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
25 High-Voltage Monitor Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
25.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
25.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
25.2.1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
26 Bridge Driver (incl. Charge Pump) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
26.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
26.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
26.2.1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
26.2.2 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
27 Current Sense Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
27.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
27.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
27.2.1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
28 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
28.1 H-Bridge Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
28.2 ESD Immunity According to IEC61000-4-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
29 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
29.1 General Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
29.1.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
29.1.2 Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
29.1.3 Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
29.1.4 Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
29.1.5 Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
29.2 Power Management Unit (PMU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
29.2.1 PMU I/O Supply (VDDP) Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
29.2.2 PMU Core Supply (VDDC) Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
29.2.3 VDDEXT Voltage Regulator (5.0V) Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
29.2.4 VPRE Voltage Regulator (PMU Subblock) Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
29.2.4.1 Load Sharing Scenarios of VPRE Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
29.2.5 Power Down Voltage Regulator (PMU Subblock) Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
29.3 System Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
TLE9861QXA20
Table of Contents
Data Sheet 5 Rev. 1.0, 2017-03-03
29.3.1 Oscillators and PLL Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
29.3.2 External Clock Parameters XTAL1, XTAL2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
29.4 Flash Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
29.4.1 Flash Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
29.5 Parallel Ports (GPIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
29.5.1 Description of Keep and Force Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
29.5.2 DC Parameters of Port 0, Port 1, TMS and Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
29.5.3 DC Parameters of Port 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
29.6 PWM Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
29.6.1 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
29.7 High-Speed Synchronous Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
29.7.1 SSC Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
29.8 Measurement Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
29.8.1 System Voltage Measurement Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
29.8.2 Central Temperature Sensor Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
29.8.3 ADC2-VBG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
29.8.3.1 ADC2 Reference Voltage VBG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
29.8.3.2 ADC2 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
29.9 ADC1 Reference Voltage - VAREF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
29.9.1 Electrical Characteristics VAREF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
29.9.2 Electrical Characteristics ADC1 (10-Bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
29.10 Reserved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
29.11 High-Voltage Monitoring Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
29.11.1 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
29.12 MOSFET Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
29.12.1 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
29.13 Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
29.13.1 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
30 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
31 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
VQFN-48-31
Type Package Marking
TLE9861QXA20 VQFN-48-31
Data Sheet 6 Rev. 1.0, 2017-03-03
Microcontroller with PWM Interface and H-Bridge
MOSFET Driver for Automotive Applications
TLE9861QXA20
1Overview
Summary of Features
32 bit ARM Cortex M3 Core
up to 24 MHz clock frequency
one clock per machine cycle architecture
On-chip memory
36 kByte Flash including
4 kByte EEPROM (emulated in Flash)
1024 Byte 100 Time Programmable Memory (100TP)
3 kByte RAM
Boot ROM for startup firmware and Flash routines
On-chip OSC and PLL for clock generation
PLL loss-of-lock detection
MOSFET driver including charge pump
10 general-purpose I/O Ports (GPIO)
5 analog inputs, 10-bit A/D Converter (ADC1)
16-bit timers - GPT12, Timer 2, Timer 21 and Timer 3
Capture/compare unit for PWM signal generation (CCU6)
2 full duplex serial interfaces (UART)
2 synchronous serial channels (SSC)
On-chip debug support via 2-wire SWD
Bidirectional PWM interface
1 high voltage monitoring input
Single power supply from 5.5 V to 27 V
Extended power supply voltage range from 3 V to 28 V
Low-dropout voltage regulators (LDO)
High speed operational amplifier for motor current sensing via shunt
5 V voltage supply for external loads (e.g. Hall sensor)
Core logic supply at 1.5 V
Programmable window watchdog (WDT1) with independent on-chip clock source
Power saving modes
MCU slow-down Mode
Sleep Mode
Stop Mode
Cyclic wake-up Sleep Mode
Power-on and undervoltage/brownout reset generator
TLE9861QXA20
Overview
Data Sheet 7 Rev. 1.0, 2017-03-03
Overtemperature protection
Short circuit protection
Loss of clock detection with fail safe mode entry for low system power consumption
Temperature Range Tj = -40 °C to +150 °C
Package VQFN-48 with LTI feature
Green package (RoHS compliant)
AEC qualified
TLE9861QXA20
Overview
Data Sheet 8 Rev. 1.0, 2017-03-03
1.1 Abbreviations
The following acronyms and terms are used within this document. List see in Table 1.
Table 1 Acronyms
Acronyms Name
AHB Advanced High-Performance Bus
APB Advanced Peripheral Bus
CCU6 Capture Compare Unit 6
CGU Clock Generation Unit
CMU Cyclic Management Unit
CP Charge Pump for MOSFET driver
CSA Current Sense Amplifier
DPP Data Post Processing
ECC Error Correction Code
EEPROM Electrically Erasable Programmable Read Only Memory
EIM Exceptional Interrupt Measurement
FSM Finite State Machine
GPIO General Purpose Input Output
H-Bridge Half Bridge
ICU Interrupt Control Unit
IEN Interrupt Enable
IIR Infinite Impulse Response
LDM Load Instruction
LDO Low DropOut voltage regulator
LSB Least Significant Bit
LTI Lead Tip Inspection
MCU Memory Control Unit
MF Measurement Functions
MSB Most Significant Bit
MPU Memory Protection Unit
MRST Master Receive Slave Transmit
MTSR Master Transmit Slave Receive
MU Measurement Unit
NMI Non Maskable Interrupt
NVIC Nested Vector Interrupt Controller
NVM Non-Volatile Memory
OTP One Time Programmable
OSC Oscillator
PBA Peripheral Bridge
PCU Power Control Unit
TLE9861QXA20
Overview
Data Sheet 9 Rev. 1.0, 2017-03-03
PD Pull Down
PGU Power supply Generation Unit
PLL Phase Locked Loop
PPB Private Peripheral Bus
PU Pull Up
PWM Pulse Width Modulation
RAM Random Access Memory
RCU Reset Control Unit
RMU Reset Management Unit
ROM Read Only Memory
SCU-DM System Control Unit - Digital Modules
SCU-PM System Control Unit - Power Modules
SFR Special Function Register
SOW Short Open Window (for WDT)
SPI Serial Peripheral Interface
SSC Synchronous Serial Channel
STM Store Instruction
SWD ARM Serial Wire Debug
TCCR Temperature Compensation Control Register
TMS Test Mode Select
TSD Thermal Shut Down
UART Universal Asynchronous Receiver Transmitter
VBG Voltage reference Band Gap
VCO Voltage Controlled Oscillator
VPRE Pre Regulator
WDT Watchdog Timer in SCU-DM
WDT1 Watchdog Timer in SCU-PM
WMU Wake-up Management Unit
100TP 100 Time Programmable
Table 1 Acronyms
Acronyms Name
TLE9861QXA20
Block Diagram
Data Sheet 10 Rev. 1.0, 2017-03-03
2 Block Diagram
Figure 1 Block Diagram
CP1L
CP2L
CP2H
CP1H
TLE9861_block_diagram_bus_architecture.vsd
TEST / DEBUG
INTERFACE
ARM
CORTEX-M3 FLASH SRAM ROM
Multilayer AHB Matrix
PBA0
MOSFET
Driver
PMU –
Power
Control
System
Functions
MON
PBA1
UART1
UART2
SSC1
SSC2
T2
T21
PLL
GPIO P0.1 P0.4
P1.0 P1.4
GH2
MON
MU
MF / ADC2
PWM
T3
uDMA
Controller VDDC
VDDP
VDDEXT
RESET
VS
GND_PWM
PWM_IO
SH2
GL2
GH1
GL1
SH1
VDH
systembus slave slave slave
slaveslave
MICRO DMA
CONTROLLER
slave
P0.0
TMS
GPT12
CCU6
CP
VSD
VCP
SL
DPP2
OP AMP OP2
OP1
SCU_DM
SCU_PM
WDT1/
CLKWDT
WDT
ADC 1
DPP1
P2.0, P2.2, P2.3, P2.4, P2.5
(AN0, AN2, AN3, AN4, AN5)
GND_REF
VAREF
MU-VAREF
OP AMP
VBAT_SENSE
OP AMP
SCU_DM
XTAL1
XTAL2
TLE9861QXA20
Device Pinout and Pin Configuration
Data Sheet 11 Rev. 1.0, 2017-03-03
3 Device Pinout and Pin Configuration
3.1 Device Pinout
Figure 2 Device Pinout
VS 45
VDH 44
PWM_IO 43
14 MON
17 P1.2
18 P0. 4
19 GND
20 TMS
22 RESET
21 P0.0
23 P0.1
24 P0.3
25 P0.2
26 P1.3
27 P1.4
28 GND
29 P2.0/XTAL1
30 P2.2/XTAL2
31 P2.5
32 P2.4
33 GND_REF
35 P2.3
36 OP 2
34 VA RE F
GL2 12
nu 11
SL 10
GH1 9
SH1 8
GH2 7
GND 39
13 GL 1
VDDEXT 41
GND_PWM 42
nu 5
SH2 6
VDDC 38
OP1 37
15 P1.0
16 P1.1
VDDP 40
EP
TLE 9861
EP
VSD 47
CP 1L 1
VCP 2
CP2H 3
CP2L 4
CP1H 48
VBAT _SENSE 46
Note: = Low voltage pins
TLE9861QXA20
Device Pinout and Pin Configuration
Data Sheet 12 Rev. 1.0, 2017-03-03
3.2 Pin Configuration
After reset, all pins are configured as input (except supply pin) with one of the following settings:
Pull-up device enabled only (PU)
Pull-down device enabled only (PD)
Input with both pull-up and pull-down devices disabled (I)
Output with output stage deactivated = high impedance state (Hi-Z)
The functions and default states of the TLE9861QXA20 external pins are provided in the following table.
Type: indicates the pin type.
I/O: Input or output
I: Input only
O: Output only
P: Power supply
Not all alternate functions listed.
Table 2 Pin Definitions and Functions
Symbol Pin Number Type Reset
State1)
Function
P0 Port 0
Port 0 is a 5-bit bidirectional general purpose I/O port. Alternate
functions can be assigned and are listed in the port description.
Main function is listed below.
P0.0 21 I/O I/PU SWD Serial Wire Debug Clock
P0.1 23 I/O I/PU GPIO General Purpose IO
Alternate function mapping see Table 8
P0.2 25 I/O I/PD GPIO General Purpose IO
Alternate function mapping see Table 8
Note: For a functional SWD connection this
GPIO must be tied to zero!
P0.3 24 I/O I/PU GPIO General Purpose IO
Alternate function mapping see Table 8
P0.4 18 I/O I/PD GPIO General Purpose IO
Alternate function mapping see Table 8
P1 Port 1
Port 1 is a 5-bit bidirectional general purpose I/O port. Alternate
functions can be assigned and are listed in the Port description.
The principal functions are listed below.
P1.0 15 I/O I GPIO General Purpose IO
Alternate function mapping see Table 9
P1.1 16 I/O I GPIO General Purpose IO
Alternate function mapping see Table 9
P1.2 17 I/O I GPIO General Purpose IO
Alternate function mapping see Table 9
P1.3 26 I/O I GPIO General Purpose IO, used for Inrush Transistor
Alternate function mapping see Table 9
P1.4 27 I/O I GPIO General Purpose IO
Alternate function mapping see Table 9
TLE9861QXA20
Device Pinout and Pin Configuration
Data Sheet 13 Rev. 1.0, 2017-03-03
P2 Port 2
Port 2 is a 5-bit general purpose input-only port.
Alternate functions can be assigned and are listed in the Port
description. Main function is listed below.
P2.0/XTAL1 29 I/I I AN0 ADC analog input 0
Alternate function mapping see Table 10
P2.2/XTAL2 30 I/O I AN2 ADC analog input 2
Alternate function mapping see Table 10
P2.3 35 I I AN3 ADC analog input 3
Alternate function mapping see Table 10
P2.4 32 I I AN4 ADC analog input 4
Alternate function mapping see Table 10
P2.5 31 I I AN5 ADC analog input 5
Alternate function mapping see Table 10
Power Supply
VS 45 P Battery supply input
VDDP 40 P 2)I/O port supply (5.0 V). Connect external buffer capacitor.
VDDC 38 P 3)Core supply (1.5 V during Active Mode).
Do not connect external loads, connect external buffer
capacitor.
VDDEXT 41 P External voltage supply output (5.0 V, 20 mA)
GND 19 P GND digital
GND 28 P GND digital
GND 39 P GND analog
Monitor Input
MON 14 I High Voltage Monitor Input
PWM Interface
PWM_IO 43 I/O PWM interface input/output
GND_PWM 42 P PWM ground
Charge Pump
CP1H 48 P Charge Pump Capacity 1 High, connect external C
CP1L 1 P Charge Pump Capacity 1 Low, connect external C
CP2H 3 P Charge Pump Capacity 2 High, connect external C
CP2L 4 P Charge Pump Capacity 2 Low, connect external C
VCP 2 P Charge Pump Capacity
VSD 47 P Battery supply input for Charge Pump
MOSFET Driver
VDH 44 P Voltage Drain High Side MOSFET Driver
SH2 6 P Source High Side FET 2
GH2 7 P Gate High Side FET 2
Table 2 Pin Definitions and Functions (cont’d)
Symbol Pin Number Type Reset
State1)
Function
TLE9861QXA20
Device Pinout and Pin Configuration
Data Sheet 14 Rev. 1.0, 2017-03-03
SH1 8 P Source High Side FET 1
GH1 9 P Gate High Side FET 1
SL 10 P Source Low Side FET
GL2 12 P Gate Low Side FET 2
GL1 13 P Gate Low Side FET 1
Others
GND_REF 33 P GND for VAREF
VAREF 34 I/O 5V ADC1 reference voltage, optional buffer or input
OP1 37 I Negative operational amplifier input
OP2 36 I Positive operational amplifier input
TMS 20 I
I/O
I/PD TMS
SWD
Test Mode Select input
Serial Wire Debug input/output
RESET 22 I/O Reset input, not available during Sleep Mode
VBAT_SENSE 46 I Battery supply voltage sense input
EP Exposed Pad, connect to GND
1) Only valid for digital IOs
2) Also named VDD5V.
3) Also named VDD1V5.
Table 2 Pin Definitions and Functions (cont’d)
Symbol Pin Number Type Reset
State1)
Function
TLE9861QXA20
Modes of Operation
Data Sheet 15 Rev. 1.0, 2017-03-03
4 Modes of Operation
This highly integrated circuit contains analog and digital functional blocks. An embedded 32-bit microcontroller is
available for system and interface control. On-chip, low-dropout regulators are provided for internal and external
power supply. An internal oscillator provides a cost effective clock that is particularly well suited for PWM
communications. A PWM interface is available as a communication interface. Driver stages for an H-Bridge with
external MOSFET are integrated, featuring PWM capability, protection features and a charge pump for operation
at low supply voltage. A 10-bit SAR ADC is implemented for high precision sensor measurement. An 8-bit ADC is
used for diagnostic measurements.
The Micro Controller Unit supervision and system protection (including a reset feature) is complemented by a
programmable window watchdog. A cyclic wake-up circuit, supply voltage supervision and integrated temperature
sensors are available on-chip.
All relevant modules offer power saving modes in order to support automotive applications connected to terminal
30. A wake-up from power-save mode is possible via a PWM interface, via the monitoring input or using a
programmable time period (cyclic wake-up).
Featuring LTI, the integrated circuit is available in a VQFN-48-31 package with 0.5 mm pitch, and is designed to
withstand the severe conditions of automotive applications.
The TLE9861QXA20 has several operation modes mainly to support low power consumption requirements.
Reset Mode
The Reset Mode is a transition mode used e.g. during power-up of the device after a power-on reset, or after wake-
up from Sleep Mode. In this mode, the on-chip power supplies are enabled and all other modules are initialized.
Once the core supply VDDC is stable, the device enters Active Mode. If the watchdog timer WDT1 fails more than
four times, the device performs a fail-safe transition to Sleep Mode.
Active Mode
In Active Mode, all modules are activated and the TLE9861QXA20 is fully operational.
Stop Mode
Stop Mode is one of two major low power modes. The transition to the low power modes is performed by setting
the corresponding bits in the mode control register. In Stop Mode the embedded microcontroller is still powered,
allowing faster wake-up response times. Wake-up from this mode is possible through LIN bus activity, by using
the high-voltage monitoring pin or the corresponding 5V GPIOs.
Stop Mode with Cyclic Wake-Up
The Cyclic Wake-Up Mode is a special operating mode of the Stop Mode. The transition to the Cyclic Wake-Up
Mode is done by first setting the corresponding bits in the mode control register followed by the Stop Mode
command. In addition to the cyclic wake-up behavior (wake-up after a programmable time period), asynchronous
wake events via the activated sources (LIN and/or MON) are available, as in normal Stop Mode.
Sleep Mode
The Sleep Mode is a low-power mode. The transition to the low-power mode is done by setting the corresponding
bits in the MCU mode control register or in case of failure, see below. In Sleep Mode the embedded microcontroller
power supply is deactivated allowing the lowest system power consumption. A wake-up from this mode is possible
by PWM Interface activity, the High Voltage Monitor Input pin or Cyclic Wake-up.
Sleep Mode in Case of Failure
TLE9861QXA20
Modes of Operation
Data Sheet 16 Rev. 1.0, 2017-03-03
Sleep Mode is activated after 5 consecutive watchdog failures or in case of supply failure (5 times). In this case,
MON is enabled as the wake source and Cyclic Wake-Up is activated with 1s of wake time.
Sleep Mode with Cyclic Wake-Up
The Cyclic Wake-Up Mode is a special operating mode of the Sleep Mode. The transition to Cyclic Wake-Up Mode
is performed by first setting the corresponding bits in the mode control register followed by the Sleep and Stop
Mode command. In addition to the cyclic wake-up behavior (wake-up after a programmable time period),
asynchronous wake events via the activated sources (PWM interface and/or MON) are available, as in normal Sleep
Mode.
When using Sleep Mode with cyclic wake-up the voltage regulator is switched off and started again with the wake.
A limited number of registers is buffered during sleep, and can be used by SW e.g. for counting sleep/wake cycles.
MCU Slow Down Mode
In MCU Slow Down Mode the MCU frequency is reduced for saving power during operation. PWM communication
is still possible. LS MOSFET can be activated.
Wake-Up Source Prioritization
All wake-up sources have the same priority. In order to handle the asynchronous nature of the wake-up sources,
the first wake-up signal will initiate the wake-up sequence. Nevertheless all wake-up sources are latched in order
to provide all wake-up events to the application software. The software can clear the wake-up source flags. This
is to ensure that no wake-up event is lost.
As default wake-up source, the MON input is activated after power-on reset only. Additionally, the device is in
Cyclic Wake-Up Mode with the max. configurable dead time setting.
The following table shows the possible power mode configurations including the Stop Mode.
Table 3 Power Mode Configurations
Module/Function Active Mode Stop Mode Sleep Mode Comment
VDDEXT ON/OFF ON (no dynamic
load)/OFF
OFF
Bridge Driver ON/OFF OFF OFF
PWM TRx ON/OFF wake-up only/
OFF
wake-up only/
OFF
VS sense ON/OFF
brownout
detection
brownout detection POR on VS brownout det. done in
PCU
VBAT_SENSE ON/OFF OFF OFF
GPIO 5V (wake-up) n.a. disabled/static OFF
GPIO 5V (active) ON ON OFF
WDT1 ON OFF OFF
CYCLIC WAKE n.a. cyclic wake-up/
cyclic sense/OFF
cyclic wake-up/
OFF
Measurement ON1) OFF OFF
MCU ON/slow-
down/STOP
STOP2) OFF
CLOCK GEN (MC) ON OFF OFF
TLE9861QXA20
Modes of Operation
Data Sheet 17 Rev. 1.0, 2017-03-03
Wake-Up Levels and Transitions
The wake-up can be triggered by rising, falling or both signal edges for the monitor input, by PWM interface or by
cyclic wake-up.
LP_CLK (18 MHz) ON OFF OFF WDT1
LP_CLK2 (100 kHz) ON/OFF ON/OFF ON/OFF for cyclic wake-up
1) May not be switched off due to safety reasons
2) MC PLL clock disabled, MC supply reduced to 1.1 V
Table 3 Power Mode Configurations (cont’d)
Module/Function Active Mode Stop Mode Sleep Mode Comment
TLE9861QXA20
Power Management Unit (PMU)
Data Sheet 18 Rev. 1.0, 2017-03-03
5 Power Management Unit (PMU)
5.1 Features
System modes control (startup, sleep, stop and active)
Power management (cyclic wake-up)
Control of system voltage regulators with diagnosis (overload, short, overvoltage)
Fail safe mode detection and operation in case of system errors (watchdog fail)
Wake-up sources configuration and management (PWM Interface, MON, GPIOs)
System error logging
5.2 Introduction
The power management unit is responsible for generating all required voltage supplies for the embedded MCU
(VDDC, VDDP) and the external supply (VDDEXT). The power management unit is designed to ensure fail-safe
behavior of the system IC by controlling all system modes including the corresponding transitions. Additionally, the
PMU provides well defined sequences for the system mode transitions and generates hierarchical reset priorities.
The reset priorities control the reset behavior of all system functionalities especially the reset behavior of the
embedded MCU. All these functions are controlled by a state machine. The system master functionality of the
PMU make use of an independent logic supply and system clock. For this reason, the PMU has an "Internal logic
supply and system clock" module which works independently of the MCU clock.
TLE9861QXA20
Power Management Unit (PMU)
Data Sheet 19 Rev. 1.0, 2017-03-03
5.2.1 Block Diagram
The following figure shows the structure of the Power Management Unit. Table 4 describes the submodules in
more detail.
Figure 3 Power Management Unit Block Diagram
Table 4 Description of PMU Submodules
Mod.
Name
Modules Functions
Power Down
Supply
Independent supply voltage
generation for PMU
This supply is dedicated to the PMU to ensure an
independent operation from generated power supplies
(VDDP, VDDC).
LP_CLK
(= 18 MHz)
- Clock source for all PMU
submodules
- Backup clock source for System
- Clock source for WDT1
This ultra low power oscillator generates the clock for the
PMU.
This clock is also used as backup clock for the system in
case of PLL Clock failure and as an independent clock
source for WDT1.
LP_CLK2
(= 100 kHz)
Clock source for PMU This ultra low power oscillator generates the clock for the
PMU in Stop Mode and in the cyclic modes.
Peripherals Peripheral blocks of PMU These blocks include the analog peripherals to ensure a
stable and fail-safe PMU startup and operation (bandgap,
bias).
Power_Management_7x.vsd
Power Down Supply
LP_CLK
LP_CLK2
Peripherals
Power Supply Generation Unit
(PGU)
LDO for External Supply
VDDEXT
PMU-WMU
P1.0...P1.4
P0.0...P0.4
LIN
MON
PMU-PCU PMU-SFR
PMU-RMU
PMU-CMU
e.g. for WDT 1
e.g. for cyclic
wake and sense
VS
VDDP
VDDC
VDDEXT
Power Management Unit
PMU-Control
I
N
T
E
R
N
A
L
B
U
S
TLE9861QXA20
Power Management Unit (PMU)
Data Sheet 20 Rev. 1.0, 2017-03-03
Power Supply
Generation
Unit (PGU)
Voltage regulators for VDDP and
VDDC
This block includes the voltage regulators for the pad
supply (VDDP) and the core supply (VDDC).
VDDEXT Voltage regulator for VDDEXT to
supply external modules (e.g.
sensors)
This voltage regulator is a dedicated supply for external
modules and can also be used for cyclic sense operations
(e.g. with hall sensor).
PMU-SFR All Extended Special Function
registers that are relevant to the
PMU.
This module contains all registers needed to control and
monitor the PMU.
PMU-PCU Power Control Unit of the PMU This block is responsible for controlling all power related
actions within the PGU Module. It also contains all
regulator related diagnostics such as undervoltage and
overvoltage detection as well as overcurrent and short
circuit diagnostics.
PMU-WMU Wake-Up Management Unit of the
PMU
This block is responsible for controlling all wake-up related
actions within the PMU Module.
PMU-CMU Cyclic Management Unit of the PMU This block is responsible for controlling all actions in cyclic
mode.
PMU-RMU Reset Management Unit of the PMU This block generates resets triggered by the PMU such as
undervoltage or short circuit reset, and passes all resets to
the relevant modules and their register.
Table 4 Description of PMU Submodules (cont’d)
Mod.
Name
Modules Functions
TLE9861QXA20
Power Management Unit (PMU)
Data Sheet 21 Rev. 1.0, 2017-03-03
5.2.2 PMU Modes Overview
The following state diagram shows the available modes of the device.
Figure 4 Power Management Unit System Modes
start-up
active
stop
sleep
Stop
command
(from MCU)
LIN-wake or
MON-wake or
GPIO-wake or
cyclic _wake or
PMU_PIN = 1 or
SUP_TMOUT = 1
VDDC =stable and
error_supp<5
error_supp=5
V
S
> 4V and V
S
ramp up
or
V
S
< 3V and V
S
ramp down
LIN-wake or
MON-wake
or
cyclic -wake
VDDC / VDDP =
fail (short circuit)
Æerror_supp ++
Sleep command (from MCU) or
WDT1_SEQ_FAIL = 1 (Æerror_wdt = 5)
or
VDDC / VDDP = overload PMU_PIN = 1 or
PMU_SOFT = 1 or
(PMU_Ext_WDT = 1 and
WDT1_SEQ_FAIL = 0
Æerror_wdt ++)
cyclic -sense
TLE9861QXA20
Power Management Unit (PMU)
Data Sheet 22 Rev. 1.0, 2017-03-03
5.3 Power Supply Generation Unit (PGU)
5.3.1 Voltage Regulator 5.0V (VDDP)
This module represents the 5 V voltage regulator, which provides the pad supply for the parallel port pins and other
5 V analog functions (e.g. PWM Interface).
Features
5 V low-drop voltage regulator
Overcurrent monitoring and shutdown with MCU signaling (interrupt)
Overvoltage monitoring with MCU signaling (interrupt)
Undervoltage monitoring with MCU signaling (interrupt)
Undervoltage monitoring with reset (Undervoltage Reset, VDDPUV)
Pre-Regulator for VDDC Regulator
GPIO Supply
Pull Down Current Source at the output for Sleep Mode only (typ. 5 mA)
The output capacitor CVDDP is mandatory to ensure proper regulator functionality.
Figure 5 Module Block Diagram of VDDP Voltage Regulator
5V LDO
LDO Supervision
VS
PMU_5V_OVERLOAD
PMU_5V_OVERVOLT
VDDP Regulator
V
I
A
VPRE VDDP
CVDDP
GND (Pin 39)
TLE9861QXA20
Power Management Unit (PMU)
Data Sheet 23 Rev. 1.0, 2017-03-03
5.3.2 Voltage Regulator 1.5V (VDDC)
This module represents the 1.5 V voltage regulator, which provides the supply for the microcontroller core, the
digital peripherals and other internal analog 1.5 V functions (e.g. ADC2) of the chip. To further reduce the current
consumption of the MCU during Stop Mode the output voltage can be lowered to 1.1 V.
Features
1.5 V low-drop voltage regulator
Overcurrent monitoring and shutdown with MCU signaling (interrupt)
Overvoltage monitoring with MCU signaling (interrupt)
Undervoltage monitoring with MCU signaling (interrupt)
Undervoltage monitoring with reset
Pull Down Current Source at the output for Sleep Mode only (typ. 100 A)
The output capacitor CVDDC is mandatory to ensure a proper regulator functionality.
Figure 6 Module Block Diagram of VDDC Voltage Regulator
1.5V LDO
VDDC (1.5V)
LDO Supervision
VDDP (5V)
PMU_1V5_OVERLOAD
PMU_1V5_OVERVOLT
C
VDDP
C
VDDC
VDDC Regulator
A
I
V
GND (Pin 39)
TLE9861QXA20
Power Management Unit (PMU)
Data Sheet 24 Rev. 1.0, 2017-03-03
5.3.3 External Voltage Regulator 5.0V (VDDEXT)
This module represents the 5 V voltage regulator, which serves as a supply for external circuits. It can be used
e.g. to supply an external sensor, LEDs or potentiometers.
Features
Switchable +5 V, low-drop voltage regulator
Switch-on overcurrent blanking time in order to drive small capacitive loads
Overcurrent monitoring and shutdown with MCU signaling (interrupt)
Overvoltage monitoring with MCU signaling (interrupt)
Undervoltage monitoring with MCU signaling (interrupt)
Pull Down current source at the output for Sleep Mode only (typ. 100 A)
Cyclic sense option together with GPIOs
The output capacitor CVDDEXT is mandatory to ensure a proper regulator functionality.
Figure 7 Module Block Diagram of External Voltage Regulator
5V LDO
LDO Supervision
VS
VDDEXT_OVERLOAD
VDDEXT_OVERVOLT
VDDEXT Regulator
V
I
A
VPRE VDDEXT
C
VDDEXT
GND (Pin 39)
VDDEXT_SHORT
TLE9861QXA20
System Control Unit - Digital Modules (SCU-DM)
Data Sheet 25 Rev. 1.0, 2017-03-03
6 System Control Unit - Digital Modules (SCU-DM)
6.1 Features
Flexible clock configuration features
Reset management of all system resets
System modes control for all power modes (active, power down, sleep)
Interrupt enabling for many system peripherals
General purpose input output control
Debug mode control of system peripherals
6.2 Introduction
The System Control Unit (SCU) supports all central control tasks in the TLE9861QXA20. The SCU is made up of
the following sub-modules:
Clock System and Control
Reset Control
Power Management
Interrupt Management
General Port Control
Flexible Peripheral Management
Module Suspend Control
Watchdog Timer
Error Detection and Correction in Data Memory
Miscellaneous Control
TLE9861QXA20
System Control Unit - Digital Modules (SCU-DM)
Data Sheet 26 Rev. 1.0, 2017-03-03
6.2.1 Block Diagram
Figure 8 System Control Unit - Digital Modules Block Diagram
AHB (Advanced High-Performance Bus)
PMCU (Power Module Control Unit)
WDT (Watchdog Timer in SCU-DM)
fSYS System clock
CGU (Clock Generation Unit)
fSYS System clock
fPCLK Peripheral clock
TLE9861QXA20
System Control Unit - Digital Modules (SCU-DM)
Data Sheet 27 Rev. 1.0, 2017-03-03
fMI_CLK Measurement interface clock
fTFILT_CLK Analog module filter clock
LP_CLK Clock source for all PMU submodules and WDT1
ICU (Interrupt Control Unit)
NMI (Non-Maskable Interrupt)
INTISR<15,13:4,1,0> External interrupt signals
RCU (Reset Control Unit)
PMU_1V5DidPOR Undervoltage reset of power down supply
PMU_PIN Reset generated by reset pin
PMU_ExtWDT WDT1 reset
PMU_IntWDT WDT (SCU) reset
PMU_SOFT Software reset
PMU_Wake Sleep Mode/Stop Mode exit with reset
RESET_TYPE_3 Peripheral reset (contains all resets)
RESET_TYPE_4 Peripheral reset (without SOFT and WDT reset)
Port Control
P0_POCONy.PDMx driver strength control
P1_POCONy.PDMx driver strength control
MISC Control
MODPISELx Mode selection registers for UART (source section) and Timer (trigger or count selection)
6.3 Clock Generation Unit
The Clock Generation Unit (CGU) enables a flexible clock generation for TLE9861QXA20. During user program
execution, the frequency can be modified to optimize the performance/power consumption ratio, allowing power
consumption to be adapted to the actual application state.
The CGU in the TLE9861QXA20 consists of one oscillator circuit (OSC_HP), a Phase-Locked Loop (PLL) module
with an internal oscillator (OSC_PLL), and a Clock Control Unit (CCU). The CGU can convert a low-frequency
input/external clock signal to a high-frequency internal clock.
The system clock fSYS is generated from of the following selectable clocks:
PLL clock output fPLL
Direct clock from oscillator OSC_HP fOSC
Low precision clock fLP_CLK (HW-enabled for startup after reset and during power-down wake-up sequence)
TLE9861QXA20
System Control Unit - Digital Modules (SCU-DM)
Data Sheet 28 Rev. 1.0, 2017-03-03
Figure 9 Clock Generation Unit Block Diagram
The following sections describe the different parts of the CGU.
6.3.1 Low Precision Clock
The clock source LP_CLK is a low-precision RC oscillator (LP-OSC) with a nominal frequency of 18 MHz that is
enabled by hardware as an independent clock source for the TLE9861QXA20 startup after reset and during the
power-down wake-up sequence. fLP_CLK is not user configurable.
6.3.2 High Precision Oscillator Circuit (OSC_HP)
The high precision oscillator circuit, designed to work with both an external crystal oscillator or an external stable
clock source, consists of an inverting amplifier with XTAL1 as the input, and XTAL2 as the output.
Figure 10 shows the recommended external circuitry for both operating modes, External Crystal Mode and
External Input Clock Mode.
6.3.2.1 External Input Clock Mode
When supplying the clock signal directly, not using an external crystal and bypassing the oscillator, the input
frequency needs to be equal or greater than 4 MHz if the PLL VCO part is used.
When using an external clock signal it must be connected to XTAL1. XTAL2 is left open (unconnected).
6.3.2.2 External Crystal Mode
When using an external crystal, its frequency can be within the range of 4 MHz to 25 MHz. An external oscillator
load circuitry must be used, connected to both pins, XTAL1 and XTAL2. It normally consists of the two load
capacitances C1 and C2. A series damping resistor could be required for some crystals. The exact values and the
corresponding operating ranges depend on the crystal and have to be determined and optimized in cooperation
with the crystal vendor using the negative resistance method. The following load cap values can be used as
starting point for the evaluation:
HPOSCCON
OSC_HP
CGU
CCU
PLL
CMCON
PLLCON
fPLL
CGU_block
SYSCON0
OSC_CON
LP_CLK
fLP_CLK
fSYS
fOSC
PMU
LP_CLK
XTAL1
XTAL2
TLE9861QXA20
System Control Unit - Digital Modules (SCU-DM)
Data Sheet 29 Rev. 1.0, 2017-03-03
Figure 10 TLE9861QXA20 External Circuitry for the OSC_HP
Table 5 External CAP Capacitors
Fundamental Mode Crystal Frequency (approx., MHz) Load Caps C1, C2 (pF)
433
818
12 12
16 10
20 10
25 8
ext_Osc.vsd
OSC_HP
4 - 25 MHz
C
2
OSC_HP
XTAL1
XTAL2
External
Clock
Signal
Fundamental Mode Crystal
External Crystal Mode External Input Clock Mode
V
SS
= GND = PIN 39
V
SS
f
OSC
V
DDP
f
OSC
XTAL1
XTAL2
V
SS
V
DDP
C
1
TLE9861QXA20
System Control Unit - Power Modules (SCU-PM)
Data Sheet 30 Rev. 1.0, 2017-03-03
7 System Control Unit - Power Modules (SCU-PM)
7.1 Features
Clock Watchdog Unit (CWU): supervision of all clocks with NMI signaling relevant to power modules
Interrupt Control Unit (ICU): all interrupt flags and status flags with system relevance
Power Control Unit (PCU): takes over control when device enters and exits Sleep and Stop Mode
External Watchdog (WDT1): independent system watchdog for monitoring system activity
7.2 Introduction
7.2.1 Block Diagram
The System Control Unit of the power modules consists of the sub-modules in the figure shown below:
Figure 11 Block diagram of System Control Unit - Power Modules
AHB (Advanced High-Performance Bus)
CWU (Clock Watchdog Unit)
fsys system frequency: PLL output
MI_CLK measurement interface clock (analog clock): derived from fsys using division factors 1/2/3/4
TFILT_CLK clock used for digital filters: derived from fsys using configurable division factors
System Control Unit -Power Modules
PCU
AHB
On signals to analog
peripherals;
status signals from
analog peripherals
CWU
fsys
MI_CLK
TFILT_CLK
WDT1
ICU
I
N
T
E
R
N
A
L
B
U
S
PREWARN_SUP_NMI
PREWARN_SUP_INT
INT<n:0>
LP_CLK
TLE9861QXA20
System Control Unit - Power Modules (SCU-PM)
Data Sheet 31 Rev. 1.0, 2017-03-03
WDT1 (System Watchdog)
LP_CLK clock source for all PMU submodules and WDT1
ICU (Interrupt Control Unit)
PREWARN_SUP_NMI supply prewarning NMI request
PREWARN_SUP_INT supply prewarning interrupt
grouping of peripheral interrupts for external interupt nodes:
grouping single peripheral interrupts for interrupt node INT<2> (Measurement Unit (MU))
grouping single peripheral interrupts for interrupt node INT<3> (ADC1-VAREF)
grouping single peripheral interrupts for interrupt node INT<10> (UART1-PWM Interface)
grouping single peripheral interrupts for interrupt node INT<14> (Bridge Driver)
TLE9861QXA20
ARM Cortex-M3 Core
Data Sheet 32 Rev. 1.0, 2017-03-03
8 ARM Cortex-M3 Core
8.1 Features
The key features of the Cortex-M3 implemented are listed below.
Processor Core; a low gate count core, with low latency interrupt processing:
A subset of the Thumb®-2 Instruction Set
Banked stack pointer (SP) only
32-bit hardware divide instructions, SDIV and UDIV (Thumb-2 instructions)
Handler and Thread Modes
Thumb and debug states
Interruptible-continued instructions LDM/STM, Push/Pop for low interrupt latency
Automatic processor state saving and restoration for low latency Interrupt Service Routine (ISR) entry and exit
ARM architecture v7-M Style BE8/LE support
ARMv6 unaligned accesses
Nested Vectored Interrupt Controller (NVIC) closely integrated with the processor core to achieve low
latency interrupt processing:
Interrupts, configurable from 1 to 16
Bits of priority (4)
Dynamic reprioritization of interrupts
Priority grouping. This enables selection of preemptive interrupt levels and non-preemptive interrupt levels
Support for tail-chaining and late arrival of interrupts. This enables back-to-back interrupt processing without
the overhead of state saving and restoration between interrupts.
Processor state automatically saved on interrupt entry, and restored on interrupt exit, with no instruction
overhead
Bus interfaces
Advanced High-performance Bus-Lite (AHB-Lite) interfaces: ICode, DCode, and System bus interface
Memory access alignment
Write buffer for buffering of write data
TLE9861QXA20
ARM Cortex-M3 Core
Data Sheet 33 Rev. 1.0, 2017-03-03
8.2 Introduction
The ARM Cortex-M3 processor is a leading 32-bit processor and provides a high-performance and cost-optimized
platform for a broad range of applications including microcontrollers, automotive body systems and industrial
control systems. Like the other Cortex family processors, the Cortex-M3 processor implements the Thumb®-2
instruction set architecture. With the optimized feature set the Cortex-M3 delivers 32-bit performance in an
application space that is usually associated with 8- and 16-bit microcontrollers.
8.2.1 Block Diagram
Figure 12 shows the functional blocks of the Cortex-M3.
Figure 12 Cortex-M3 Block Diagram
Cortex_M3 _Block_diagram .vsd
AHB
Access Port
(AHB-AP) Bus Matrix
Cortex-M3
Processor
Core
Nested Vectored
Interrupt
Controller
(NVIC)
Serial-Wire
(SW-DP)
Cortex-M3 Processor
Serial-Wire Debug
Interface
Interrupt and
Power Control
ICode
AHB-Lite
Instruction
Interface
System Bus
ICode
PBA0
PBA1
DCode
AHB-Lite
Data
Interface
TLE9861QXA20
DMA Controller
Data Sheet 34 Rev. 1.0, 2017-03-03
9 DMA Controller
Figure 13 shows the Top Level Block Diagram of the TLE9861QXA20.
The bus matrix allows the DMA to access the PBA0, PBA1 and RAM.
9.1 Features
The principal features of the DMA Controller are that:
it is compatible with AHB-Lite for the DMA transfers
it is compatible with APB for programming the registers
it has a single AHB-Lite master for transferring data using a 32-bit address bus and 32-bit data bus
it supports 13 DMA channels
each DMA channel has dedicated handshake signals
each DMA channel has a programmable priority level
each priority level arbitrates using a fixed priority that is determined by the DMA channel number. The DMA
also supports multiple transfer types:
- memory-to-memory
- memory-to-peripheral
- peripheral-to-memory
it supports multiple DMA cycle types
it supports multiple DMA transfer data widths
each DMA channel can access a primary, and alternate, channel control data structure
all the channel control data is stored in system memory (RAM) in little-endian format
it performs all DMA transfers using the single AHB-Lite burst type. The destination data width is equal to the
source data width.
the number of transfers in a single DMA cycle can be programmed from 1 to 1024
the transfer address increment can be greater than the data width
TLE9861QXA20
DMA Controller
Data Sheet 35 Rev. 1.0, 2017-03-03
9.2 Introduction
Please also refer to Chapter 9.3, Functional Description.
9.2.1 Block Diagram
Figure 13 DMA Controller Top Level Block Diagram
DMA Controller
ARM Core
APB Interface
Bus Matrix
AHB lite
SSC1 ADC1
interrupts
SCU_DM
interrupts AHB lite
AHB lite
AHB lite
DMA requests DMA requests
PBA1
AHB lite AHB2APB
M
M
M
M
MS
S
S
S
S
AHB lite
RAM
PBA0
AHB lite
M
M
S
S
DMA requests
Timer3
TLE9861QXA20
DMA Controller
Data Sheet 36 Rev. 1.0, 2017-03-03
9.3 Functional Description
9.3.1 DMA Mode Overview
The DMA controller implements the following 13 hardware DMA requests:
ADC1 complete sequence 1 done: DMA transfer is requested on completion of the ADC1 channel conversion
sequence.
ADC1 exceptional sequence 2 (ESM) done: DMA transfer is requested on completion of the ADC1 conversion
sequence triggered by an exceptional measurement request.
SSC1/2 transmit byte: DMA transfer is requested upon the completion of data transmission via SSC1/2
SSC1/2: receive byte: DMA transfer is requested upon the completion of data reception via SSC1/2.
ADC1 channel 0 conversion done: DMA transfer is requested on completion of the ADC1 channel 0
conversion.
ADC1 channel 1 conversion done: DMA transfer is requested on completion of the ADC1 channel 1
conversion.
ADC1 channel 2 conversion done: DMA transfer is requested on completion of the ADC1 channel 2
conversion.
ADC1 channel 3 conversion done: DMA transfer is requested on completion of the ADC1 channel 3
conversion.
ADC1 channel 4 conversion done: DMA transfer is requested on completion of the ADC1 channel 4
conversion.
ADC1 channel 5 conversion done: DMA transfer is requested on completion of the ADC1 channel 5
conversion.
ADC1 channel 6 conversion done: DMA transfer is requested on completion of the ADC1 channel 6
conversion.
ADC1 channel 7 conversion done: DMA transfer is requested on completion of the ADC1 channel 7
conversion.
Timer3 ccu6_int: DMA transfer is requested following a timer trigger.
TLE9861QXA20
Address Space Organization
Data Sheet 37 Rev. 1.0, 2017-03-03
10 Address Space Organization
The TLE9861QXA20 manipulates operands in the following memory spaces:
36 KByte of Flash memory in code space
32 KByte Boot ROM memory in code space (used for boot code and IP storage)
3 KByte RAM memory in code space and data space (RAM can be read/written as program memory or
external data memory)
Special function registers (SFRs) in peripheral space
The figure below shows the detailed address alignment of TLE9861QXA20:
Figure 14 TLE9861QXA20 Memory Map
/ E00FFFFF
H
E0000000
H
Reserved (BootROM)
00000000
H
Flash, 36K
00008000
H
/ 10FFFFFF
H
11000000
H
/ 11008FFF
H
SRAM, 3K
18000000
H
/ 18000BFF
H
Reserved
18000C00
H
/ 3FFFFFFF
H
PBA0
40000000
H
/ 47FFFFFF
H
PBA1
48000000
H
/ 5FFFFFFF
H
Reserved
60000000
H
/ DFFFFFFF
H
Private Peripheral Bus
Reserved
Reserved
11009000
H
/ 17FFFFFF
H
FFFFFFFF
H
TLE9861QXA20
Memory Control Unit
Data Sheet 38 Rev. 1.0, 2017-03-03
11 Memory Control Unit
11.1 Features
Handles all system memories and their interaction with the CPU
Memory protection functions for all system memories (D-Flash, P-Flash, RAM)
Address management with access violation detection including reporting
Linear address range for all memories (no paging)
11.2 Introduction
11.2.1 Block Diagram
The Memory Control Unit (MCU) is divided in the following sub-modules:
NVM memory module (embedded Flash Memory)
RAM memory module
BootROM memory module
Memory Protection Unit (MPU) module
Peripheral Bridge PBA0
TLE9861QXA20
Memory Control Unit
Data Sheet 39 Rev. 1.0, 2017-03-03
Figure 15 MCU Block View
MCU_Block_Diagram_overview.vsd
Bus Matrix
RAM BROM
S0
Memory Protection
Unit
S1 S2
NVM
Code/ Data
M1 M2
RAM
Code/ Data
ROM
Code/ Data
M0
PBA0
S3
M3
Sx: Bus Slave
Mx: Bus Master
NVM
TLE9861QXA20
Memory Control Unit
Data Sheet 40 Rev. 1.0, 2017-03-03
11.3 NVM Module (Flash Memory)
The Flash Memory provides an embedded user-programmable non-volatile memory, allowing fast and reliable
storage of user code and data.
Features
In-system programming via PWM Interface (Flash Mode) and SWD
Error Correction Code (ECC) for detection of single-bit and double-bit errors and dynamic correction of single
Bit errors.
Interrupts and signals double-bit error by NMI
Program width of 128 byte (page)
Minimum erase width of 128 bytes (page)
Integrated hardware support for EEPROM emulation
8 byte read access
Physical read access time: 75 ns
Code read access acceleration integrated; read buffer and automatic pre-fetch
Page program time: 3 ms
Page erase (128 bytes) and sector erase (4K bytes) time: 4ms
Note: The user has to ensure that no flash operations which change the content of the flash get interrupted at any
time.
The clock for the NVM is supplied with the system frequency fsys. Integrated firmware routines are provided to
erase NVM, and other operations including EEPROM emulation are provided as well.
Data Sheet 41 Rev. 1.0, 2017-03-03
TLE9861QXA20
Interrupt System
12 Interrupt System
12.1 Features
Up to 16 interrupt nodes for on-chip peripherals
Up to 8 NMI nodes for critical system events
Maximum flexibility for all 16 interrupt nodes
12.2 Introduction
Before enabling an interrupt, all corresponding interrupt status flags should be cleared.
12.2.1 Overview
The TLE9861QXA20 supports 16 interrupt vectors with 16 priority levels. Fifteen of these interrupt vectors are
assigned to the on-chip peripherals: GPT12, SSC, CCU6, DMA, Bridge Driver and A/D Converter are each
assigned to one dedicated interrupt vector; while UART1 and Timer2 or UART2, External Interrupt 2 and Timer21
share interrupt vectors. Two vectors are dedicated for External Interrupt 0 and 1.
Table 6 Interrupt Vector Table
Service Request Node ID Description
GPT12 0/1 GPT interrupt (T2-T6, CAPIN)
MU- ADC8/T3 2 Measurement Unit, VBG, Timer3
ADC1 3 ADC1 interrupt / VREF5V Overload / VREF5V OV/UV, 10-bit ADC
CCU0 4 CCU6 node 0 interrupt
CCU1 5 CCU6 node 1 interrupt
CCU2 6 CCU6 node 2 interrupt
CCU3 7 CCU6 node 3 interrupt
SSC1 8 SSC1 interrupt (receive, transmit, error)
SSC2 9 SSC2 interrupt (receive, transmit, error)
UART1 10 UART1 interrupt (receive, transmit), Timer2, PWM-Interface
UART2 11 UART2 interrupt (receive, transmit), Timer21, External interrupt
(EINT2)
EXINT0 12 External interrupt (EINT0), MON
EXINT1 13 External interrupt (EINT1)
BDRV/CP 14 Bridge Driver / Charge Pump
DMA 15 DMA Controller
Table 7 NMI Interrupt Table
Service Request Node Description
Watchdog Timer NMI NMI Watchdog Timer overflow
PLL NMI NMI PLL Loss-of-Lock
NVM Operation
Complete NMI
NMI NVM Operation Complete
Overtemperature NMI NMI System Overtemperature
Data Sheet 42 Rev. 1.0, 2017-03-03
TLE9861QXA20
Interrupt System
Oscillator Watchdog
NMI
NMI Oscillator Watchdog / MI_CLK Watchdog Timer Overflow
NVM Map Error NMI NMI NVM Map Error
ECC Error NMI NMI RAM / NVM Uncorrectable ECC Error
Supply Prewarning NMI NMI Supply Prewarning
Table 7 NMI Interrupt Table
Service Request Node Description
TLE9861QXA20
Watchdog Timer (WDT1)
Data Sheet 43 Rev. 1.0, 2017-03-03
13 Watchdog Timer (WDT1)
13.1 Features
There are two watchdog timers in the system. The Watchdog Timer (WDT) within the System Control Unit - Digital
Modules (see SCU_DM) and the Watchdog Timer (WDT1) located within the System Control Unit - Power
Modules (see SCU_PM). The Watchdog Timer WDT1 is described in this section.
In Active Mode, the WDT1 acts as a windowed watchdog timer, which provides a highly reliable and safe way to
recover from software or hardware failures.
The WDT1 is always enabled in Active Mode. In Sleep Mode, Low Power Mode and SWD Mode the WDT1 is
automatically disabled.
Functional Features
Windowed Watchdog Timer with programmable timing in Active Mode
Long open window (typ. 80ms) after power-up, reset, wake-up
Short open window (typ. 30ms) to facilitate Flash programming
Disabled during debugging
Safety shutdown to Sleep Mode after 5 missed WDT1 services
TLE9861QXA20
Watchdog Timer (WDT1)
Data Sheet 44 Rev. 1.0, 2017-03-03
13.2 Introduction
The behavior of the Watchdog Timer in Active Mode is illustrated in Figure 16.
Figure 16 Watchdog Timer Behavior
Tr igger &
count_SOW = 0
always
Timeout
RESET
RESET
RESET
Trigger SOW &
count_SOW++
Trigger SOW &
count_SOW++
Trigger &
count_SOW = 0
Timeout
or
Trigger in closed window
Reset
Power-up
Timeout
Long
Open Window
Normal
windowed“
operation
Short
open window
& SOW
Tr igger &
count_SOW = 0
Maximum number
of count_SOW
Trigger SOW
Data Sheet 45 Rev. 1.0, 2017-03-03
TLE9861QXA20
GPIO Ports and Peripheral I/O
14 GPIO Ports and Peripheral I/O
The TLE9861QXA20 has 15 port pins organized into three parallel ports: Port 0 (P0), Port 1 (P1) and Port 2 (P2).
Each port pin has a pair of internal pull-up and pull-down devices that can be individually enabled or disabled. P0
and P1 are bidirectional and can be used as general purpose input/output (GPIO) or to perform alternate
input/output functions for the on-chip peripherals. When configured as an output, the open drain mode can be
selected. On Port 2 (P2) analog inputs are shared with general purpose input.
14.1 Features
Bidirectional Port Features (P0, P1)
Configurable pin direction
Configurable pull-up/pull-down devices
Configurable open drain mode
Configurable drive strength
Transfer of data through digital inputs and outputs (general purpose I/O)
Alternate input/output for on-chip peripherals
Analog Port Features (P2)
Configurable pull-up/pull-down devices
Transfer of data through digital inputs
Alternate inputs for on-chip peripherals
14.2 Introduction
14.2.1 Port 0 and Port 1
Figure 17 shows the block diagram of an TLE9861QXA20 bidirectional port pin. Each port pin is equipped with a
number of control and data bits, thus enabling very flexible usage of the pin. By defining the contents of the control
register, each individual pin can be configured as an input or an output. The user can also configure each pin as
an open drain pin with or without internal pull-up/pull-down device.
Each bidirectional port pin can be configured for input or output operation. Switching between input and output
mode is accomplished through the register Px_DIR (x = 0 or 1), which enables or disables the output and input
drivers. A port pin can only be configured as either input or output mode at any one time.
In input mode (default after reset), the output driver is switched off (high-impedance). The voltage level present at
the port pin is translated into a logic 0 or 1 via a Schmitt trigger device and can be read via the register Px_DATA.
In output mode, the output driver is activated and drives the value supplied through the multiplexer to the port pin.
In the output driver, each port line can be switched to open drain mode or normal mode (push-pull mode) via the
register Px_OD.
The output multiplexer in front of the output driver enables the port output function to be used for different
purposes. If the pin is used for general purpose output, the multiplexer is switched by software to the data register
Px_DATA. Software can set or clear the bit in Px_DATA and therefore directly influence the state of the port pin.
If an on-chip peripheral uses the pin for output signals, alternate output lines (AltDataOut) can be switched via the
multiplexer to the output driver circuitry. Selection of the alternate output function is defined in registers
Px_ALTSEL0 and Px_ALTSEL1. When a port pin is used as an alternate function, its direction must be set
accordingly in the register Px_DIR.
Data Sheet 46 Rev. 1.0, 2017-03-03
TLE9861QXA20
GPIO Ports and Peripheral I/O
Each pin can also be programmed to activate an internal weak pull-up or pull-down device. Register Px_PUDSEL
selects whether a pull-up or the pull-down device is activated while register Px_PUDEN enables or disables the
pull device.
Figure 17 General Structure of Bidirectional Port (P0, P1)
OD
Open Drain
Control Register
Px_DATA
Data Register
AltDataOut 3
AltDataOut 2
ALTSEL0
Alternate Select
Register 0
ALTSEL1
Alternate Select
Register 1
AltDataIn
PUDEN
Pull-up / Pull-down
Enable Register
DIR
Direction Register
PUDSEL
Pull-up / Pull-down
Select Register Pull-up / Pull-down
Control Logic
AltDataOut 1
Pad
Out
In
Pull Device
Output
Driver
Input
Driver
Schmitt
Trigger
Px_POCONy
Port Output
Driver Control Registers
TCCR
Temperature Compensation
Control Register
I
N
T
E
R
N
A
L
B
U
S
11
10
00
01
Data Sheet 47 Rev. 1.0, 2017-03-03
TLE9861QXA20
GPIO Ports and Peripheral I/O
14.2.2 Port 2
Figure 18 shows the structure of an input-only port pin. Each P2 pin can only function in input mode. Register
P2_DIR is provided to enable or disable the input driver. When the input driver is enabled, the actual voltage level
present at the port pin is translated into a logic 0 or 1 via a Schmitt trigger device and can be read via register
P2_DATA. Each pin can also be programmed to activate an internal weak pull-up or pull-down device. Register
P2_PUDSEL selects whether a pull-up or the pull-down device is activated while register P2_PUDEN enables or
disables the pull device. The analog input (AnalogIn) bypasses the digital circuitry and Schmitt trigger device for
direct feed-through to the ADC input channels.
Figure 18 General Structure of Input Port (P2)
DATA
Data Register
AltDataIn
PUDEN
Pull-up / Pull-down
Enable Register
PUDSEL
Pull-up / Pull-down
Select Register Pull-up / Pull-down
Control Logic
AnalogIn
Pad
In
Pull Device
Input
Driver
Schmitt
Trigger
I
N
T
E
R
N
A
L
B
U
S
Data Sheet 48 Rev. 1.0, 2017-03-03
TLE9861QXA20
GPIO Ports and Peripheral I/O
14.3 TLE9861QXA20 Port Module
14.3.1 Port 0
14.3.1.1 Port 0 Functions
Table 8 Port 0 Input/Output Functions
Port Pin Input/Output Select Connected Signal(s) From/to Module
P0.0 Input GPI P0_DATA.P0
INP1 SWCLK / TCK_0 SW
INP2 T12HR_0 CCU6
INP3 T4INA GPT12T4
INP4 T2_0 Timer 2
INP5 –
INP6 EXINT2_3 SCU
Output GPO P0_DATA.P0
ALT1 T3OUT GPT12T3
ALT2 EXF21_0 Timer 21
ALT3 RXDO_2 UART2
P0.1 Input GPI P0_DATA.P1
INP2 T13HR_0 CCU6
INP3 TxD1 PWM_TxD
INP4 CAPINA GPT12CAP
INP5 T21_0 Timer 21
INP6 T4INC GPT12T4
INP7 MRST_1_2 SSC1
INP8 EXINT0_2 SCU
Output GPO P0_DATA.P1
ALT1 TxD1 UART1 / PWM_TxD
ALT2
ALT3 T6OUT GPT12T6
Data Sheet 49 Rev. 1.0, 2017-03-03
TLE9861QXA20
GPIO Ports and Peripheral I/O
P0.2 Input GPI P0_DATA.P2
INP1 CCPOS2_1 CCU6
INP2 T2EUDA GPT12T2
INP3 MTSR_1 SSC1
INP4 T21EX_0 Timer 21
INP5 T6INA GPT12T6
Output GPO P0_DATA.P2
ALT1 COUT60_0 CCU6
ALT2 MTSR_1 SSC1
ALT3 EXF2_0 Timer 2
P0.3 Input GPI P0_DATA.P3
INP1 SCK_1 SSC1
INP2 CAPINB GPT12
INP3 T5INA GPT12T5
INP4 T4EUDA GPT12T4
INP5 CCPOS0_1 CCU6
Output GPO P0_DATA.P3
ALT1 SCK_1 SSC1
ALT2 EXF21_2 Timer 21
ALT3 T6OUT GPT12T6
P0.4 Input GPI P0_DATA.P4
INP1 MRST_1_0 SSC1
INP2 CC60_0 CCU6
INP3 T21_2 Timer 21
INP4 EXINT2_2 SCU
INP5 T3EUDA GPT12T3
INP6 CCPOS1_1 CCU6
Output GPO P0_DATA.P4
ALT1 MRST_1_0 SSC1
ALT2 CC60_0 CCU6
ALT3 CLKOUT_0 SCU
Table 8 Port 0 Input/Output Functions (cont’d)
Port Pin Input/Output Select Connected Signal(s) From/to Module
Data Sheet 50 Rev. 1.0, 2017-03-03
TLE9861QXA20
GPIO Ports and Peripheral I/O
14.3.2 Port 1
14.3.2.1 Port 1 Functions
Table 9 Port 1 Input / Output Functions
Port Pin Input/Output Select Connected Signal(s) From/to Module
P1.0 Input GPI P1_DATA.P0
INP1 T3INC GPT12T3
INP2 T4EUDB GPT12T4
INP3 CC61_0 CCU6
INP4 SCK_2 SSC2
INP5 EXINT1_2 SCU
Output GPO P1_DATA.P0
ALT1 SCK_2 SSC2
ALT2 CC61_0 CCU6
ALT3 EXF21_3 Timer 21
P1.1 Input GPI P1_DATA.P1
INP1
INP2 T6EUDA GPT12T6
INP3 – -
INP4 MTSR_2 SSC2
INP5 T21_1 Timer 21
INP6 EXINT1_0 SCU
Output GPO P1_DATA.P1
ALT1 MTSR_2 SSC2
ALT2 COUT61_0 CCU6
ALT3 TXD2_0 UART2
P1.2 Input GPI P1_DATA.P2
INP1 T2INA GPT12T2
INP2 T2EX_1 Timer 2
INP3 T21EX_3 Timer 21
INP4 MRST_2_0 SSC2
INP5 RXD2_0 UART2
INP6 CCPOS2_2 CCU6
INP7 EXINT0_1 SCU
Output GPO P1_DATA.P2
ALT1 MRST_2_0 SSC2
ALT2 COUT63_0 CCU6
ALT3 T3OUT GPT12T3
Data Sheet 51 Rev. 1.0, 2017-03-03
TLE9861QXA20
GPIO Ports and Peripheral I/O
P1.3 Input GPI P1_DATA.P3
INP1 T6INB GPT12T6
INP2 –
INP3 CC62_0 CCU6
INP4 T6EUDB GPT12T6
INP5 –
INP6 CCPOS0_2 CCU6
INP7 EXINT1_1 SCU
Output GPO P1_DATA.P3
ALT1 EXF21_1 Timer 21
ALT2 CC62_0 CCU6
ALT3 TXD2_1 UART2
P1.4 Input GPI P1_DATA.P4
INP1 EXINT2_1 SCU
INP2 T21EX_1 Timer 21
INP3 T5EUDA GPT12T5
INP4 RxD1 UART1
INP5 T2INB GPT12T2
INP6 CCPOS1_2 CCU6
INP7 MRST_1_3 SSC1
Output GPO P1_DATA.P4
ALT1 CLKOUT_1 SCU
ALT2 COUT62_0 CCU6
ALT3 RxD1 UART1 / PWM_RxD
Table 9 Port 1 Input / Output Functions (cont’d)
Port Pin Input/Output Select Connected Signal(s) From/to Module
Data Sheet 52 Rev. 1.0, 2017-03-03
TLE9861QXA20
GPIO Ports and Peripheral I/O
14.3.3 Port 2
14.3.3.1 Port 2 Functions
Table 10 Port 2 Input Functions
Port Pin Input/Output Select Connected Signal(s) From/to Module
P2.0 Input GPI P2_DATA.P0
INP1 CCPOS0_3 CCU6
INP2 - -
INP3 T12HR_2 CCU6
INP4 EXINT0_0 SCU
INP5 CC61_2 CCU6
ANALOG AN0 ADC
XTAL (in) XTAL
P2.2 Input GPI P2_DATA.P2
INP1 CCPOS2_3 CCU6
INP2 T13HR_2 CCU6
INP3 –
INP4 CC62_2 CCU6
ANALOG AN2 ADC
OUT XTAL (out) XTAL
P2.3 Input GPI P2_DATA.P3
INP1 CCPOS1_0 CCU6
INP2 CTRAP#_1 CCU6
INP3 T21EX_2 Timer 21
INP4 CC60_1 CCU6
INP5 EXINT0_3 SCU
ANALOG AN3 ADC
P2.4 Input GPI P2_DATA.P4
INP1 CTRAP#_0 CCU6
INP2 T2EUDB GPT12T2
INP3 MRST_1_1 SSC1
INP4 EXINT1_3 SCU
ANALOG AN4 ADC
P2.5 Input GPI P2_DATA.P5
INP1 RXD2_1 UART2
INP2 T3EUDB GPT12T3
INP3 MRST_2_1 SSC2
INP4 T2_1 Timer 2
ANALOG AN5 ADC
Data Sheet 53 Rev. 1.0, 2017-03-03
TLE9861QXA20
General Purpose Timer Units (GPT12)
15 General Purpose Timer Units (GPT12)
15.1 Features
15.1.1 Features Block GPT1
The following list summarizes the supported features:
fGPT/4 maximum resolution
3 independent timers/counters
Timers/counters can be concatenated
4 operating modes:
–Timer Mode
Gated Timer Mode
Counter Mode
Incremental Interface Mode
Reload and Capture functionality
Shared interrupt: Node 0
15.1.2 Features Block GPT2
The following list summarizes the supported features:
fGPT/2 maximum resolution
2 independent timers/counters
Timers/counters can be concatenated
3 operating modes:
–Timer Mode
Gated Timer Mode
Counter Mode
Extended capture/reload functions via 16-bit capture/reload register CAPREL
Shared interrupt: Node 1
15.2 Introduction
The General Purpose Timer Unit blocks GPT1 and GPT2 have very flexible multifunctional timer structures which
may be used for timing, event counting, pulse width measurement, pulse generation, frequency multiplication, and
other purposes.
They incorporate five 16-bit timers that are grouped into the two timer blocks GPT1 and GPT2. Each timer in each
block may operate independently in a number of different modes such as Gated timer or Counter Mode, or may
be concatenated with another timer of the same block.
Each block has alternate input/output functions and specific interrupts associated with it. Input signals can be
selected from several sources by register PISEL.
The GPT module is clocked with clock fGPT. fGPT is a clock derived from fSYS.
Data Sheet 54 Rev. 1.0, 2017-03-03
TLE9861QXA20
General Purpose Timer Units (GPT12)
15.2.1 Block Diagram GPT1
Block GPT1 contains three timers/counters: The core timer T3 and the two auxiliary timers T2 and T4. The
maximum resolution is fGPT/4. The auxiliary timers of GPT1 may optionally be configured as reload or capture
registers for the core timer.
Figure 19 GPT1 Block Diagram (n = 2 … 5)
T3
Mode
Control
2
n
: 1
f
GPT
T2
Mode
Control
T4
Mode
Control
Aux. Timer T4
Reload
Capture
Core Timer T3 T3OTL
T4IN
T4EUD
Toggle Latch
U/D
Interrupt Request
(T2IRQ)
Interrupt Request
(T3IRQ)
Interrupt Request
(T4IRQ)
T3OUT
Basic clock
T3CON.BPS1
MC_GPT0101_bldiax1.vsd
T3IN
T3EUD
U/D
T2IN
T2EUD
Aux. Timer T2
Reload
Capture
U/D
Data Sheet 55 Rev. 1.0, 2017-03-03
TLE9861QXA20
General Purpose Timer Units (GPT12)
15.2.2 Block Diagram GPT2
Block GPT2 contains two timers/counters: The core timer T6 and the auxiliary timer T5. The maximum resolution
is fGPT/2. An additional Capture/Reload register (CAPREL) supports capture and reload operation with extended
functionality.
Figure 20 GPT2 Block Diagram (n = 1 … 4)
CAPREL
Mode
Control
2
n
: 1f
GPT
T2
Mode
Control
T6
Mode
Control
GPT2 Timer T6
Reload
Clear
GPT2 CAPREL
T6OTL
T6IN
T6EUD
Toggle FF
U/D
Interrupt Request
(T5IRQ)
T6OUF
Interrupt Request
(T6IRQ)
T6OUT
Basic clock
T6CON.BPS2
CAPIN
T3IN/
T3EUD
T5IN
T5EUD Clear
Capture
U/D GPT2 Timer T5
Interrupt Request
(CRIRQ)
Data Sheet 56 Rev. 1.0, 2017-03-03
TLE9861QXA20
Timer2 and Timer21
16 Timer2 and Timer21
16.1 Features
16-bit auto-reload mode
selectable up or down counting
One channel 16-bit capture mode
16.2 Introduction
The timer modules are general-purpose 16-bit timers. Timer 2/21 can function as a timer or counter in each of its
modes. As a timer, it counts with an input clock of fPCLK/12 (if prescaler is disabled). As a counter, Timer 2 counts
1-to-0 transitions on pin T2. In the counter mode, the maximum resolution for the count is fPCLK/24 (if prescaler is
disabled).
16.2.1 Timer2 and Timer21 Modes Overview
Table 11 Timer2 and Timer21 Modes
Mode Description
Auto-reload Up/Down Count Disabled
Count up only
Start counting from 16-bit reload value, overflow at FFFFH
Reload event configurable for trigger by overflow condition only, or by
negative/positive edge at input pin T2EX as well
Programmable reload value in register RC2
Interrupt is generated with reload events.
Auto-reload Up/Down Count Enabled
Count up or down, direction determined by level at input pin T2EX
No interrupt is generated
Count up
Start counting from 16-bit reload value, overflow at FFFFH
Reload event triggered by overflow condition
Programmable reload value in register RC2
Count down
Start counting from FFFFH, underflow at value defined in register RC2
Reload event triggered by underflow condition
Reload value fixed at FFFFH
Channel capture Count up only
Start counting from 0000H, overflow at FFFFH
Reload event triggered by overflow condition
Reload value fixed at 0000H
Capture event triggered by falling/rising edge at pin T2EX
Captured timer value stored in register RC2
Interrupt is generated by reload or capture events
TLE9861QXA20
Timer3
Data Sheet 57 Rev. 1.0, 2017-03-03
17 Timer3
17.1 Features
16-bit incremental timer/counter (counting up)
Counting frequency up to fsys
Selectable clock prescaler
6 modes of operation
Interrupt up on overflow
Interrupt on compare
17.2 Introduction
The possible applications for the timer include measuring the time interval between events, counting events and
generating a signal at regular intervals.
Timer3 can function as timer or counter. When functioning as a timer, Timer3 is incremented in periods based on
the MI_CLK or LP_CLK clock. When functioning as a counter, Timer3 is incremented in response to a 1-to-0
transition (falling edge) at its respective input. Timer3 can be configured in four different operating modes to use
in a variety of applications, see Table 12.
Several operating modes can be used for different tasks such as the following:
simple time measurement between two events
triggering of the measuring unit upon PWM/CCU6 unit
measurement of the 100kHz LP_CLK2
17.3 Functional Description
Six modes of operation are provided to fulfill various tasks using this timer. In every mode the clocking source can
be selected between MI_CLK and LP_CLK. A prescaler provides in addition capability to divide the selected clock
source by 2, 4 or 8. The timer counts upwards, starting with the value in the timer count registers, until the
maximum count value which depends on the selected mode of operation. Timer 3 provides two individual
interrupts upon counter overflow, one for the low-byte and one for the high-byte counter register.
17.3.1 Timer3 Modes Overview
The following table provides an overview of the timer modes together with the reasonable configuration options in
Table 12.
Table 12 Timer3 Modes
Mode Sub-
Mode
Operation
0 No Sub-
Mode
13-bit Timer
The timer is essentially an 8-bit counter with a divide-by-32 prescaler.
1 a 16-bit Timer
The timer registers, TL3 and TH3, are concatenated to form a 16-bit counter.
1 b 16-bit Timer triggered by an event
The timer registers, TL3 and TH3, are concatenated to form a 16-bit counter, which is
triggered by an event to enable a single shot measurement on a preset channel with the
measurement unit.
TLE9861QXA20
Timer3
Data Sheet 58 Rev. 1.0, 2017-03-03
2 No Sub-
Mode
8-bit Timer with auto-reload
The timer register TL3 is reloaded with a user-defined 8-bit value in TH3 upon overflow.
3 a Timer3 operates as two 8-bit timers
The timer registers TL3 and TH3, operate as two separate 8-bit counters.
3 b Timer3 operates as Two 8-bit timers for clock measurement
The timer registers, TL3 and TH3 operate as two separate 8-bit counters. In this mode the
LP_CLK2 Low Power Clock can be measured. TL3 acts as an edge counter for the clock
edges and TH3 as a counter which counts the time between the edges.
Table 12 Timer3 Modes (cont’d)
Mode Sub-
Mode
Operation
TLE9861QXA20
Capture/Compare Unit 6 (CCU6)
Data Sheet 59 Rev. 1.0, 2017-03-03
18 Capture/Compare Unit 6 (CCU6)
18.1 Feature Set Overview
This section gives an overview over the different building blocks and their main features.
Timer 12 Block Features
Three capture/compare channels, each channel can be used either as capture or as compare channel
Generation of a three-phase PWM supported (six outputs, individual signals for high-side and low-side
switches)
16-bit resolution, maximum count frequency = peripheral clock
Dead-time control for each channel to avoid short-circuits in the power stage
Concurrent update of T12 registers
Center-aligned and edge-aligned PWM can be generated
Single-shot mode supported
Start can be controlled by external events
Capability of counting external events
Multiple interrupt request sources
Hysteresis-like control mode
Timer 13 Block Features
One independent compare channel with one output
16-bit resolution, maximum count frequency = peripheral clock
Concurrent update of T13 registers
Can be synchronized to T12
Interrupt generation at period-match and compare-match
Single-shot mode supported
Start can be controlled by external events
Capability of counting external events
Additional Specific Functions
Block commutation for brushless DC-drives implemented
Position detection via hall-sensor pattern
Noise filter supported for position input signals
Automatic rotational speed measurement and commutation control for block commutation
Integrated error handling
Fast emergency stop without CPU load via external signal (CTRAP)
Control modes for multi-channel AC-drives
Output levels can be selected and adapted to the power stage
18.2 Introduction
The CCU6 unit is made up of a Timer T12 block with three capture/compare channels and a Timer T13 block with
one compare channel. The T12 channels can independently generate PWM signals or accept capture triggers, or
they can jointly generate control signal patterns to drive DC-motors or inverters.
A rich set of status bits, synchronized updating of parameter values via shadow registers, and flexible generation
of interrupt request signals provide efficient software-control.
TLE9861QXA20
Capture/Compare Unit 6 (CCU6)
Data Sheet 60 Rev. 1.0, 2017-03-03
Note: The capture/compare module itself is referred to as CCU6 (capture/compare unit 6). A capture/compare
channel inside this module is referred to as CC6x.
The timer T12 can work in capture and/or compare mode for its three channels. The modes can also be combined
(e.g. a channel works in compare mode, whereas another channel works in capture mode). The timer T13 can
work in compare mode only. The multi-channel control unit generates output patterns which can be modulated by
T12 and/or T13. The modulation sources can be selected and combined for the signal modulation.
18.2.1 Block Diagram
Figure 21 CCU6 Block Diagram
CCU6 Module Kernel
Input / Output Control
Port Control
Compare
Compare
22
Compare
Output Select
3
Hall Input
Output Select
1
Trap Input
3
Capture
T13 CC63
Start
21
Multi-
channel
Control
Trap
Control
Dead-
Time
Control
CC60
CC61
Compare
1
1
1
T12
CC62
COUT60
COUT63
T13HR
T12HR
CCPOS0
CCPOS1
CCPOS2
CTRAP
Clock
Control
Interrupt
Control
f
CC 6
SR[3:0]
CC61
COUT61
CC62
COUT62
CC60
Debug
Suspend T13SUSP
T12SUSP
P0.x P1.x P2.x
Compare
CCU6_MCB05506.vsd
Data Sheet 61 Rev. 1.0, 2017-03-03
TLE9861QXA20
UART1/UART2
19 UART1/UART2
19.1 Features
Full-duplex asynchronous modes
8-bit or 9-bit data frames, LSB first
fixed or variable baud rate
Receive buffered
Multiprocessor communication
Interrupt generation on the completion of a data transmission or reception
Baud-rate generator with fractional divider for generating a wide range of baud rates
Hardware logic for break and synch byte detection
19.2 Introduction
The UART provides a full-duplex asynchronous receiver/transmitter, i.e., it can transmit and receive
simultaneously. It is also receive-buffered, i.e., it can commence reception of a second byte before a previously
received byte has been read from the receive register. However, if the first byte still has not been read by the time
reception of the second byte is complete, one of the bytes will be lost. The serial port receive and transmit registers
are both accessed at Special Function Register (SFR) SBUF. Writing to SBUF loads the transmit register, and
reading SBUF accesses a physically separate receive register.
19.2.1 Block Diagram
Figure 22 UART Block Diagram
SCU_DM
UART disreq from SCU _DM
UART
Module
RI
TI
Clock
Control
Address
Decoder
f
UART2
SCU_D
M
Interrupt
Control
UART AHB Interface
RXD
TXD
Port Control
GPIOs
fBR Baud Rate
Generator
URIOS
TXD
RXD_1
SCU_DM
RXDO _2
P0.x
P1.x
P2.x
RXD_0
Data Sheet 62 Rev. 1.0, 2017-03-03
TLE9861QXA20
UART1/UART2
19.3 UART Modes
The UART can be used in four different modes. In mode 0, it operates as an 8-bit shift register. In mode 1, it
operates as an 8-bit serial port. In modes 2 and 3, it operates as a 9-bit serial port. The only difference between
mode 2 and mode 3 is the baud rate, which is fixed in mode 2 but variable in mode 3. The variable baud rate is
set by the underflow rate on the dedicated baud-rate generator.
The different modes are selected by setting bits SM0 and SM1 to their corresponding values, as shown in
Table 13.
The UART1 is connected to the integrated PWM interface, and to GPIO for test purpose. The UART2 is connected
to GPIO only.
Table 13 UART Modes
SM0 SM1 Operating Mode Baud Rate
0 0 Mode 0: 8-bit shift register fPCLK/2
0 1 Mode 1: 8-bit shift UART Variable
1 0 Mode 2: 9-bit shift UART fPCLK/64
1 1 Mode 3: 9-bit shift UART Variable
TLE9861QXA20
High Voltage PWM Interface
Data Sheet 63 Rev. 1.0, 2017-03-03
20 High Voltage PWM Interface
20.1 Features
General Functional Features
Bidirectional High Voltage PWM interface
Special Features
PWM interface can be used as a high voltage input/output with dedicated SFR control bits.
Operation Modes Features
High Voltage Input / Output Mode (HVIO)
Supported Baudrates
up to 57.6 kHz
Slope Modes Features
Normal Slope Mode (10 kHz)
Low Slope Mode (5.2 kHz)
Flash Mode (57.6 kHz)
Wake-Up Features
High Voltage PWM Interface wake-up
20.2 Introduction
The high voltage bidirectional PWM Module is a robust physical layer interface for PWM communication.
The bidirectional PWM Module offers two different operation modes, including a Sleep Mode and the High Voltage
Input Output Mode.
TLE9861QXA20
High Voltage PWM Interface
Data Sheet 64 Rev. 1.0, 2017-03-03
20.2.1 Block Diagram
Figure 23 PWM Interface Block Diagram
Driver +
Curr. Limit. +
TSD
High Voltage PWM Interface
Sleep Comparator
GND_PWM
RxD_1
to Timer 2 &
LIN_CTRL_STS
.LIN_RXD
Receiver
VS
TxD_1
from SFR
LIN_CTRL_STS.
LIN_TXD
PWM_Wake
30 k LIN_CTRL _STS
PWM-FSM
PWM_IO
GND_PWM
PWM_Block_Diagram_Customer.vsd
STATUS
CTRL
STATUS
CTRL
Filter
Filter
Transmitter
Data Sheet 65 Rev. 1.0, 2017-03-03
TLE9861QXA20
High-Speed Synchronous Serial Interface (SSC1/SSC2)
21 High-Speed Synchronous Serial Interface (SSC1/SSC2)
21.1 Features
Master and Slave Mode operation
Full-duplex or half-duplex operation
Transmit and receive buffered
Flexible data format
Programmable number of data bits: 2 to 16 bits
Programmable shift direction: Least Significant Bit (LSB) or Most Significant Bit (MSB) shift first
Programmable clock polarity: idle low or high state for the shift clock
Programmable clock/data phase: data shift with leading or trailing edge of the shift clock
Variable baud rate
Compatible with Serial Peripheral Interface (SPI)
Interrupt generation
On a transmitter empty condition
On a “receiver full” condition
On an error condition (receive, phase, baud rate, transmission error)
Data Sheet 66 Rev. 1.0, 2017-03-03
TLE9861QXA20
High-Speed Synchronous Serial Interface (SSC1/SSC2)
21.2 Introduction
The High-Speed Synchronous Serial Interface (SSC) supports both full-duplex and half-duplex serial synchronous
communication. The serial clock signal can be generated by the SSC internally (master mode), using its own 16-
bit baud rate generator, or can be received from an external master (slave mode). Data width, shift direction, clock
polarity, and phase are programmable. This allows communication with SPI-compatible devices or devices using
other synchronous serial interfaces.
Data is transmitted or received on TXD and RXD lines, which are normally connected to the MTSR
(MasterTransmit/Slave Receive) and MRST (Master Receive/Slave Transmit) pins. The clock signal is output via
line MS_CLK (Master Serial Shift Clock) or input via line SS_CLK (Slave Serial Shift Clock). Both lines are
normally connected to the pin SCLK. Transmission and reception of data are double-buffered.
21.2.1 Block Diagram
Figure 24 shows all functional relevant interfaces associated with the SSC Kernel.
Figure 24 SSC Interface Diagram
SSC
Module
EIR
TIR
Clock
Control
Address
Decoder
RIR
Slave
f
hw_clk
SCLK
SCLKA
SCLKB
Master
SCU_DM
Interrupt
Control
Module Product InterfaceAHB Interface
P0.x
P1.x
P2.x
Port
Control
SSC_interface_overview.vsd
Master
MRSTA
MRSTB
MTSR
Slave
MTSRA
MTSRB
MRST
TLE9861QXA20
Measurement Unit
Data Sheet 67 Rev. 1.0, 2017-03-03
22 Measurement Unit
22.1 Features
1 x 8-bit ADC with 10 Inputs including attenuator allowing measurement of high voltage input signals
Supply Voltage Attenuators with attenuation of VBAT_SENSE, VS, VDDP and VDDC.
VBG monitoring of 8-bit ADC to guarantee functional safety requirements.
Bridge Driver Diagnosis Measurement (VDH, VCP).
Temperature Sensor for monitoring the chip temperature and PMU Regulator temperature.
Supplement Block with Reference Voltage Generation, Bias Current Generation, Voltage Buffer for NVM
Reference Voltage, Voltage Buffer for Analog Module Reference Voltage and Test Interface.
22.2 Introduction
The measurement unit is a functional unit that comprises the following associated sub-modules:
Table 14 Measurement Functions and Associated Modules
Module
Name
Modules Functions
Central Functions
Unit
Bandgap reference circuit The bandgap-reference sub-module provides two
reference voltages
1. a trimmable reference voltage for the 8-bit ADCs. A
local dedicated bandgap circuit is implemented to avoid
deterioration of the reference voltage arising e.g. from
crosstalk or ground voltage shift.
2. the reference voltage for the NVM module
8-bit ADC (ADC2) 8-bit ADC module with 10
multiplexed inputs, including HV
input attenuator
5 high voltage full supply range capable inputs
(2.5V...30,7V(FS))
2 medium voltage inputs (0..5V/7V FS).
3 low voltage inputs (0..1.2V/1.6V FS)
(allocation see following overview figure)
10-bit ADC
(ADC1)
10-bit ADC module with 8
multiplexed inputs
Five (5V) analog inputs from Port 2.x
VDH Input
Voltage
Attenuator
VDH input voltage attenuator Scales down V(VDH) to the input voltage range of
ADC1.CH6
Temperature
Sensor
Temperature sensor with two
multiplexed sensing elements:
PMU located sensor
Central chip located sensor
Generates output voltage which is a linear function of
the local chip (junction) temperature.
Measurement
Core Module
Digital signal processing and ADC2
control unit
1. Generates the control signal for the 8-bit ADC2 and
the synchronous clock for the switched capacitor
circuits,
2. Performs digital signal processing functions and
provides status outputs for interrupt generation.
TLE9861QXA20
Measurement Unit
Data Sheet 68 Rev. 1.0, 2017-03-03
22.2.1 Block Diagram
Figure 25 Measurement Unit-Overview (with opamp)
8 Bit ADC + DPP2
10 Bit ADC + DPP1
MUX
CH8
CH7
CH6
CH5
CH4
CH3
CH2
CH1
CH0
CH9
A D
VS
VSD
MUX
CH6
CH5
CH4
CH3
CH2
CH1
CH0
CH7
VREF
A D
Channel sequencer
/
10
/
8
calibration & filter unit
with
upper / lower
threshold
detection / interrupt
1.23
V
P2.0
VAREF
x 0.055
x 0.039
x 0.039
SFR
SFR
5 V
ADC 1
ADC 2
GND_SENSE
VAGND
Temperature
Sensor
PMU-VBG
VDDP
VDDC
x 0.164
x 0.75
x 0.219
Programmable
range setting
VAREF
OP1
OP2
x 0.226
x 0.166 rfu
P2.2
P2.3
P2.4
P2.5
VDH
VCP x 0.023
G = 10/20/40/60
x 0.039
OP
Measurement-Unit
VBAT_SENSE x 0.055
x 0.039
MON
TLE9861QXA20
Measurement Core Module (incl. ADC2)
Data Sheet 69 Rev. 1.0, 2017-03-03
23 Measurement Core Module (incl. ADC2)
23.1 Features
8 individually programmable channels split into two groups of user configurable and non user configurable
Individually programmable channel prioritization scheme for measurement unit
Two independent filter stages with programmable low-pass and time filter characteristics for each channel
Two channel configurations:
Programmable upper- and lower trigger thresholds comprising a fully programmable hysteresis
Two individually programmable trigger thresholds with limit hysteresis settings
Individually programmable interrupts and statuses for all channel thresholds
23.2 Introduction
The basic function of this block is the digital postprocessing of several analog digitized measurement signals by
means of filtering, level comparison and interrupt generation. The measurement postprocessing block consists of
ten identical channel units attached to the outputs of the 10-channel 8-bit ADC (ADC2). It processes ten channels,
where the channel sequence and prioritization is programmable within a wide range.
23.2.1 Block Diagram
Figure 26 Module Block Diagram
Digital Signal Processing
1st Order IIR
MUX
VS
VSD
VAREF
Temperature Sensor
VDDP
CH8
CH7
CH6
CH5
CH4
CH3
CH2
CH1
CH0
CH9
VREF Calibration Unit:
y= a + (1+b)*x
+
-
+
-
/
Channel Controller
(Sequencer)
MUX_SEL<3:0>
A D
UP_X_STS
LOW_X_STS
4
/
8
+ / -
+ / -
/
10
/
8
/
1
/
1
8 Bit ADC
ADC2 - SFR
VDDC
VCP
TSENSE
COEFF A
COEFF_B
MUX_CTRL
EN
COEFF_IIR
MUX_CTRL
EN
FILT_OUT x. OUT _CH x
MUX_CTRL
FILTE NUP
FILTENLOW
FILTENLOW
HYSLOW
HYSUP
MMODE
CNTLOW
CNTUP
EN
CTRL_STS
SQ0 – SQ9
TSENS_SEL
PMU-VBG
VBAT_SENSE
TH y_z_ UPPER .
CHx
TH y_z_ LOWER .
CHx
Measurement Core Module
MON
TLE9861QXA20
Measurement Core Module (incl. ADC2)
Data Sheet 70 Rev. 1.0, 2017-03-03
23.2.2 Measurement Core Module Modes Overview
The basic function of this unit, is the digital signal processing of several analog digitized measurement signals by
means of filtering, level comparison and interrupt generation. The Measurement Core module processes ten
channels in a quasi parallel process.
As shown in the figure above, the ADC2 postprocessing unit consists of a channel controller (Sequencer), an 10-
channel demultiplexer and the signal processing block, which filters and compares the sampled ADC2 values for
each channel individually. The channel control block controls the multiplexer sequencing on the analog side before
the ADC2 and on the digital domain after the ADC2. As described in the following section, the channel sequence
can be controlled in a flexible way, which allows a certain degree of channel prioritization.
This capability can be used e.g. to set a higher priority to supply voltage channels compared to the other channel
measurements. The Measurement Core Module offers additionally two different post-processing measurement
modes for over-/undervoltage detection and for two-level threshold detection.
The channel controller (sequencer) runs in one of the following modes:
“Normal Sequencer Mode” – channels are selected according to the 10 sequence registers which contain
individual enablers for each of the 10 channels.
“Exceptional Interrupt Measurement” – following a hardware event, a high priority channel is inserted into the
current sequence. The current actual measurement is not destroyed.
“Exceptional Sequence Measurement” – following a hardware event, a complete sequence is inserted after the
current measurement is finished. The current sequence is interrupted by the exception sequence.
TLE9861QXA20
10-Bit Analog Digital Converter (ADC1)
Data Sheet 71 Rev. 1.0, 2017-03-03
24 10-Bit Analog Digital Converter (ADC1)
24.1 Features
The principal features of the ADC1 are:
Up to 8 analog input channels (channel 7 reserved for future use)
Flexible results handling
- 8-bit and 10-bit resolution
Flexible source selection due to sequencer
- insert one exceptional sequence (ESM)
- insert one interrupt measurement into the current sequence (EIM), single or up to 128 times
- software mode
Conversion sample time (separate for each channel) adjustable to adapt to sensors and reference
Standard external reference (VAREF) to support ratiometric measurements and different signal scales
DMA support, transfer ADC conversion results via DMA into RAM
Support of suspend and power saving modes
Result data protection for slow CPU access (wait-for-read mode)
Programmable clock divider
Integrated sample and hold circuitry
24.2 Introduction
The TLE9861QXA20 includes a high-performance 10-bit Analog-to-Digital Converter (ADC1) with eight
multiplexed analog input channels. The ADC1 uses a successive approximation technique to convert the analog
voltage levels from up to eight different sources. The analog input channels of the ADC1 are available at AN0,
AN2 - AN5.
TLE9861QXA20
10-Bit Analog Digital Converter (ADC1)
Data Sheet 72 Rev. 1.0, 2017-03-03
24.2.1 Block Diagram
Figure 27 ADC1 Top Level Block Diagram
As shown in the figure above, the ADC1 postprocessing consists of a channel controller (Sequencer) and an 8-
channel demultiplexer. The channel control block controls the multiplexer sequencing on the analog side before
the ADC1 and on the digital domain after the ADC1. As described in the following section, the channel sequence
can be controlled in a flexible way, which allows a certain degree of channel prioritization.
This capability can be used e.g. to give a higher priority to some channels compared to the other channel
measurements.
MUX
CH0
MUX_SEL <2:0>
Channel Controller
(Sequencer)
Settings
ADC1
Settings
ADC1 - SFR
MUX
/
3
/
3
/
10
P2.0
CH1
CH2
P2.2
P2.3 CH3
CH4
P2.4
P2.5 CH5
CH6
VDH
rfu CH7
/
10
DA
ADC1_OUT_CH0
EoC - SoC
/
10 ADC1_OUT_CH1
/
10 ADC1_OUT_CH2
/
10 ADC1_OUT_CH3
/
10 ADC1_OUT_CH4
/
10 ADC1_OUT_CH5
/
10 ADC1_OUT_CH6
/
10 ADC1_OUT_CH7
/
10 ADC1_OUT_CH0
/
10 ADC1_OUT_CH1
/
10 ADC1_OUT_CH2
/
10 ADC1_OUT_CH3
10 ADC1_OUT_CH4
/
10 ADC1_OUT_CH5
/
10 ADC1_OUT_CH6
/
10 ADC1_OUT_CH7
/
10 ADC1_RES_OUT_EIM
OPA
OP1
OP2
TLE9861QXA20
High-Voltage Monitor Input
Data Sheet 73 Rev. 1.0, 2017-03-03
25 High-Voltage Monitor Input
25.1 Features
High-voltage input with VS/2 threshold voltage
Integrated selectable pull-up and pull-down current sources
Wake capability for power saving modes
Level change sensitivity configurable for transitions from low to high, high to low or both directions
25.2 Introduction
This module is dedicated to monitor external voltage levels above or below a specified threshold or it can be used
to detect a wake-up event at the high-voltage MON pin in low-power mode. The input is sensitive to a input level
monitoring, this is available when the module is switched to active mode with the SFR bit EN.
To use the Wake function during low power mode of the IC, the monitoring pin is switched to Sleep Mode via the
SFR bit EN.
25.2.1 Block Diagram
Figure 28 Monitoring Input Block Diagram
MONx_Input_Circuit_ext.vsd
SFR
Logic
Filter
MON
+
-
to internal
circuitry
MON
VS
TLE9861QXA20
Bridge Driver (incl. Charge Pump)
Data Sheet 74 Rev. 1.0, 2017-03-03
26 Bridge Driver (incl. Charge Pump)
26.1 Features
The MOSFET Driver is intended to drive external normal level NFET transistors in bridge configuration. The driver
provides many diagnostic possibilities to detect faults.
Functional Features
External Power NFET Transistor Driver Stage with driver capability for max. 100 nC gate charge @ 25 kHz
switching frequency.
Implemented adjustable cross conduction protection.
Supply voltage (VSD) monitoring incl. adjustable over- and undervoltage shutdown with configurable interrupt
signalling.
VSD operating range down to 5.4 V
VDS comparators for short circuit detection in on- and off-state
Open-Load detection in off-state
26.2 Introduction
The MOSFET Driver Stage can be used for controlling external Power NFET Transistors (normal level). The
module output is controlled by SFR or System PWM Machine (CCU6).
TLE9861QXA20
Bridge Driver (incl. Charge Pump)
Data Sheet 75 Rev. 1.0, 2017-03-03
26.2.1 Block Diagram
Figure 29 Driver Module Block Diagram (incl. system connections)
26.2.2 General
The Driver can be controlled in two different ways:
In Normal Mode the output stage is fully controllable through the SFR registers CTRLx (x = 1,2,3). Protection
functions such as overcurrent and open-load detection are available.
The PWM Mode can also be enabled by the corresponding bit in CTRL1 and CTRL2. The PWM must be
configured in the System PWM Module (CCU6). All protection functions are available in PWM mode as well.
Protection Functions
Overcurrent detection and shutdown feature for external MOSFET by Drain Source measurement
Programmable minimum cross current protection time
Open-load detection feature in Off-state for external MOSFET.
VCP
PreDriver_Customer.vsd
VDH
GHx
SHx
High Side
Driver
+
-
VDS
SFR
SL
+
-
VDS
VREF
VREF
Low Side
Driver
Pre-Driver
PWM-Unit
CCU6
(not part of the module )
Spike
Filter
Blank
Filter
Spike
Filter
Blank
Filter
DRV.TRIM_DRVx.
LS_HS_BT _TFILT_SEL
DRV.TRIM_DRVx.
LSDRV_DS_TFILT_SEL
DRV.TRIM_DRVx.
LS_HS_BT_TFILT_SEL
DRV.TRIM_DRVx.
LSDRV_DS_TFILT_SEL
DRV.CTRL3.
DSMONVTH
DRV.CTRL3.
DSMONVTH
GLx
1
0
DRV.CTRL1.HSx_PWM
1
0
DRV.CTRL1.LSx_PWM
R
GGND
R
GGND
TLE9861QXA20
Current Sense Amplifier
Data Sheet 76 Rev. 1.0, 2017-03-03
27 Current Sense Amplifier
27.1 Features
Main Features
Programmable gain settings: G = 10, 20, 40, 60
Differential input voltage: ± 1.5V / G
Wide common mode input range ± 2 V
Low setting time < 1.4 µs
27.2 Introduction
The current sense amplifier in Figure 30 can be used to measure near ground differential voltages via the 10-bit
ADC. Its gain is digitally programmable through internal control registers.
Linear calibration has to be applied to achieve high gain accuracy, e.g. end-of-line calibration including the shunt
resistor.
Figure 30 shows how the current sense amplifier can be used as a low-side current sense amplifier where the
motor current is converted to a voltage by means of a shunt resistor RSH. A differential amplifier input is used in
order to eliminate measurement errors due to voltage drop across the stray resistance RStray and differences
between the external and internal ground. If the voltage at one or both inputs is out of the operating range, the
input circuit is overloaded and requires a certain specified recovery time.
In general, the external low pass filter should provide suppression of EMI.
27.2.1 Block Diagram
Figure 30 Simplified Application Diagram
Current_Sense_Amplifier.vsd
M
Ext. GND
V
BAT
OP2
OP1
LP Filter Amplifier
configurable
Gain: 10, 20, 40, 60
10-bit ADC
V
AREF
5V
Motor
Current
VP
VN
V
ZERO
Vzero + (VOP2 -VOP1) * G
CSA_CTRL
ROPAFILT
RSH COPAFILT
RStray
ROPAFILT
/
10 ADC1_OUT_CH1
TLE9861QXA20
Application Information
Data Sheet 77 Rev. 1.0, 2017-03-03
28 Application Information
28.1 H-Bridge Driver
Figure 31 shows the TLE9861QXA20 in an electric drive application setup controlling an H-Bridge motor.
Note: The following information is given as a hint for the implementation of the device only and shall not be
regarded as a description or warranty of a certain functionality, condition or quality of the device.
Figure 31 Simplified Application Diagram Example
Note: This is a very simplified example of an application circuit and bill of materials. The function must be verified
in the actual application.
TLE9861
EMC Filter
VBAT_SENSE
PWM_IO
VDD_EXT
VDDC
VS CP1H
CP1L
VCP
CP2L
GND_PWM
VAREF
GND_REF
CP2H
VDH
GH1
GL1
VDDP
VBAT
GL2
SH1
GH2
SH2
SL
GND
VSD
OP1
OP2
R
VD H
C
VB AT_ SEN SE
R
VB AT_ SEN SE
C
VD D _EX T1
C
CPS1
C
CPS2
C
VC P
C
VS D
C
VDH
C
PH 1
C
PH 2
C
EM C
C
EM C
L
PF ILT
R
GATE
R
GATE
C
OPAFILT
R
OPAFILT
R
OPAFILT
C
VA R EF
C
ADC
R
AD C
R
VDDPU
P0.3
Temp Sensor
P2.2
P1.2
P1.0
P0.4
P2.5
P1.3
R
VS D
R
GATE
R
GATE
C
VD D P2
C
VD D C2
C
VD D C1
C
VDDP1
C
VS 1
D
VS
C
VS 2
T
L2
T
H2
T
H1
C
VDD_EX T2
C
PF ILT 1
C
PF ILT 1
PWM
TMS
P0.0
Debug Connector
R
TMS
R
GATE
TLE4946-2K
Hall
R
GATE
T
L1
M
R
SWI TC H
C
GS
G
D
S
R
GS
C
GS
G
D
S
R
GS
C
GS
G
D
S
R
GS
C
GS
G
D
S
R
GS
GND
H-Bridge System
Switch
R
Shu n t
C
PWM _ IO
C
MON
R
MON
MON
P0.1
Rev . Polar ity Prot ection
TLE9861QXA20
Application Information
Data Sheet 78 Rev. 1.0, 2017-03-03
Table 15 External Components (BOM)
Symbol Function Component
CVS1 Blocking capacitor at VS pin 100 nF Ceramic, ESR < 1
CVS2 Blocking capacitor at VS pin > 2.2 µF Elco1)
CVDDP Blocking capacitor at VDDP pin 470 nF + 100 nF Ceramic, ESR < 1
CVDD_EXT Blocking capacitor at VDDEXT pin 100nF, Ceramic ESR < 1
CVDDC Blocking capacitor at VDDC pin 470 nF + 100 nF Ceramic, ESR < 1
CVAREF Blocking capacitor at VAREF pin 100 nF, Ceramic ESR < 1
CPWM_IO Standard C for PWM Interface slave
CVSD Filter C for charge pump end driver 1 µF
CCPS1 Charge pump capacitor 220 nF
CCP2S Charge pump capacitor 220 nF
CVCP Charge pump capacitor 470 nF
CMON1 Filter C for ISO pulses 10 nF
CVDH Capacitor 1 nF
CPH1 Capacitor 220 µF
CPH2 Capacitor 220 µF
COPAFILT Capacitor 100 nF
CEMCP1 Capacitor 1 nF
CEMCP2 Capacitor 1 nF
CPFILT1, CPFILT2 Capacitor 10 µF
CVBAT_SENSE Capacitor 10 nF
RMON Resistor at MON pin 1 k
RVSD Limitation of reverse current due to
transient (-2V, 8ms)
max. ratings of the VSD pin has to be
met, alternatively the resistor shall be
replaced by a diode
2
RVDH Resistor 1 k
RGATE Resistor 2
ROPAFILT Resistor 12
RVBAT_SENSE Resistor
RSH1 Resistor optional
RSH2 Resistor optional
LPFILT
DVS Reverse-polarity protection diode
1) The capacitor must be dimensioned so as to ensure that flash operations modifying the content of the flash are never
interrupted (e.g. in case of power loss).
TLE9861QXA20
Application Information
Data Sheet 79 Rev. 1.0, 2017-03-03
28.2 ESD Immunity According to IEC61000-4-2
Note: Tests for ESD immunity according to IEC61000-4-2 “Gun test” (150pF, 330) has been performed. The
results and test condition will be available in a test report.
Table 16 ESD “Gun Test”
Performed Test Result Unit Remarks
ESD at pin PWM_IO,
versus GND1)
1) ESD test “ESD GUN” is specified with external components; see application diagram:
CMON = 100 nF, RMON = 1 k, CPWM_IO = 220 pF, CVS = >20 µF ELCO + 100 nF ESR < 1 , CVSD = 1 µF, RVSD = 2 .
> 6 kV 2)positive pulse
2) ESD susceptibility “ESD GUN” according to LIN EMC Test Specification, Section 4.3 (IEC 61000-4-2). Tested by external
test house (IBEE Zwickau, EMC Test report Nr. 09-07-14)
ESD at pin PWM_IO,
versus GND1)
< -6 kV 2)negative pulse
TLE9861QXA20
Electrical Characteristics
Data Sheet 80 Rev. 1.0, 2017-03-03
29 Electrical Characteristics
This chapter includes all relevant electrical characteristics of the product TLE9861QXA20.
29.1 General Characteristics
29.1.1 Absolute Maximum Ratings
Table 17 Absolute Maximum Ratings1)
Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter Symbol Values Unit Note /
Test Condition
Number
Min. Typ. Max.
Voltages Supply Pins
Supply voltage – VS VS-0.3 40 V Load dump P_1.1.1
Supply voltage – VSD VSD -0.3 48 V P_1.1.2
Supply voltage – VSD VSD_max_exten
d
-2.8 48 V Series resistor RVSD =
2.2 , t = 8 ms 2)
P_1.1.32
Voltage range – VDDP VDDP -0.3 5.5 V P_1.1.3
Voltage range – VDDP VDDP_max_ext
end
-0.3 7 V In case of voltage
transients on VS with
dVS/dt 1V/µs;
duration: t 150µs;
CVDDP 570 nF
P_1.1.41
Voltage range – VDDEXT VDDEXT -0.3 5.5 V P_1.1.4
Voltage range – VDDEXT VDDEXT_max_
extend
-0.3 7 V In case of voltage
transients on VS with
dVS/dt 1V/µs;
duration: t 150µs;
CVDDEXT 570 nF
P_1.1.42
Voltage range – VDDC VDDC -0.3 1.6 V P_1.1.5
Voltages High Voltage Pins
Battery voltage VBAT_SENSE VBAT_SENSE -28 40 V 3) P_1.1.6
Input voltage at PWM_IO VPWM_IO -28 40 V P_1.1.7
Input voltage at MON VMON_maxrate -28 40 V 4) P_1.1.8
Input voltage at VDH VVDH_maxrate -2.8 40 V 5) P_1.1.38
Voltage range at GHx VGH -8.0 48 V 6) P_1.1.9
Voltage range at GHx vs. SHx VGHvsSH 14 V P_1.1.44
Voltage range at SHx VSH -8.0 48 V P_1.1.11
Voltage range at GLx VGL -8.0 48 V 7) P_1.1.13
Voltage range at GLx vs. SL VGLvsSL 14 V P_1.1.45
TLE9861QXA20
Electrical Characteristics
Data Sheet 81 Rev. 1.0, 2017-03-03
Voltage range at charge pump
pins CP1H, CP1L, CP2H, CP2L,
VCP
VCPx -0.3 48 V 8) P_1.1.15
Voltages GPIOs
Voltage on any port pin9) Vin -0.3 VDDP
+0.3
VVIN < VDDPmax10) P_1.1.16
Current at VCP Pin
Max. current at VCP pin IVCP -15 mA P_1.1.35
Injection Current at GPIOs
Injection current on any port pin IGPIONM -5 5 mA 11) P_1.1.34
Sum of all injected currents in
Normal Mode
IGPIOAM_sum -50 50 mA 11) P_1.1.30
Sum of all injected currents in
Power Down Mode (Stop Mode)
IGPIOPD_sum -5000 50 µA 11) P_1.1.36
Sum of all injected currents in
Sleep Mode
IGPIOSleep_su
m
-5 5 mA 11) P_1.1.37
Other Voltages
Input voltage VAREF VAREF -0.3 VDDP
+0.3
V P_1.1.17
Input voltage
OP1, OP2
VOAI -7 7 V P_1.1.23
Temperatures
Junction temperature Tj-40 150 °C P_1.1.18
Storage temperature Tstg -55 150 °C P_1.1.19
ESD Susceptibility
ESD susceptibility
all pins
VESD1 -2 2 kV HBM 12) P_1.1.20
ESD susceptibility
pins MON, VS, VSD,
VBAT_SENSE vs.GND
VESD2 -4 4 kV HBM 13) P_1.1.21
ESD susceptibility
pins PWM_IO vs. GND_PWM
VESD3 -6 6 kV HBM 12) P_1.1.22
ESD susceptibility CDM
all pins vs. GND
VESD_CDM1 -500 500 V 14) P_1.1.28
ESD susceptibility CDM
pins 1, 12, 13, 24, 25, 36, 37, 48
(corner pins) vs. GND
VESD_CDM2 -750 750 V 14) P_1.1.43
1) Not subject to production test, specified by design.
2) Conditions and min. value is derived from application condition for reverse polarity event.
Table 17 Absolute Maximum Ratings1) (cont’d)
Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter Symbol Values Unit Note /
Test Condition
Number
Min. Typ. Max.
TLE9861QXA20
Electrical Characteristics
Data Sheet 82 Rev. 1.0, 2017-03-03
Notes
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the
data sheet. Fault conditions are considered as “outsidenormal operating range. Protection functions are not
designed for continuous repetitive operation.
3) Min voltage -28V with external 3.9k series resistor only.
4) Min voltage -28V with external 3.9k series resistor only.
5) Min voltage -2.8V with external 1k series resistor only.
6) To achieve max. ratings on this pin, Parameter P_1.1.44 has to be taken into account resulting in the following dependency:
VGH < VSH + VGHvsSH_min and additionally VSH < VGH + 0.3V.
7) To achieve max. ratings on this pin, Parameter P_1.1.45 has to be taken into account resulting in the following dependency:
VGL < VSL + VGLvsSL_min and additionally VSL < VGL + 0.3V.
8) These limits can be kept if max current drawn out of pin does not exceed limit of 200 µA.
9) See XTAL parameter specification, when GPIOs (Port Pin P2.0 and P2.2) are used as XTAL.
10) Includes TMS and RESET.
11) Maximum rating for injection current of GPIO with VIN respected.
12) ESD susceptibility HBM according to ANSI/ESDA/JEDEC JS-001 (1.5k, 100pF)
13) MON with external circuitry of a series resistor of 3.9k and 10nF (at connector); VS with an external ceramic capacitor of
100nF; VSD with an external capacitor of 470nF; VDH with external circuitry of a series resistor of 1k and 3.3nF (at pin).
14) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JESD22-C101F
TLE9861QXA20
Electrical Characteristics
Data Sheet 83 Rev. 1.0, 2017-03-03
29.1.2 Functional Range
Table 18 Functional Range
Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter Symbol Values Unit Note /
Test Condition
Number
Min. Typ. Max.
Supply voltage in Active Mode VS_AM 5.5 28 V P_1.2.1
Extended supply voltage in Active
Mode
VS_AM_exte
nd
28 40 V 1) Functional with
parameter
deviation
1) This operation voltage range is only allowed for a short duration: tmax 400 ms (continuous operation at this voltage is not
allowed), fsys = 24 MHz, IVDDP = 10 mA, IVDDEXT = 5 mA. In addition, the power dissipation caused by the Charge Pump +
MOSFET driver have to be considered.
P_1.2.16
Supply voltage in Active Mode for
MOSFET Driver Supply
VSD_AM 5.4 28 V P_1.2.18
Extended supply voltage in Active
Mode for MOSFET Driver Supply
VSD_AM_ext
end
28 32 V 1)3)Functional
with parameter
deviation
P_1.2.17
Specified supply voltage for PWM
interface
VS_AM_PW
M_IO
5.5 18 V Parameter
Specification
P_1.2.2
Extended supply voltage for PWM
interface
VS_AM_PW
M_IO
4.8 28 V Functional with
parameter
deviation
P_1.2.14
Supply voltage in Active Mode with
reduced functionality (Microcontroller /
Flash with full operation)
VS_AMmin 3.0 5.5 V 2)
2) Reduced functionality (e.g. cranking pulse) - Parameter deviation possible.
P_1.2.3
Supply voltage in Sleep Mode VS_Sleep 3.0 28 V P_1.2.4
Supply voltage transients slew rate dVS/dt-1–1V/µs
3)
3) Not subject to production test, specified by design.
P_1.2.5
Output sum current for all GPIO pins IGPIO,sum -50 50 mA 3) P_1.2.7
Operating frequency fsys 5–24MHz
4)
4) Function not specified when limits are exceeded.
P_1.2.20
Junction temperature Tj-40 150 °C P_1.2.9
TLE9861QXA20
Electrical Characteristics
Data Sheet 84 Rev. 1.0, 2017-03-03
29.1.3 Current Consumption
Table 19 Electrical Characteristics
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter Symbol Values Unit Note / Test Condition Number
Min. Typ. Max.
Current Consumption @VS pin
Current consumption in
Active Mode at pin VS
IVs –30 35 mAfsys = 20 MHz
no loads on pins, PWM interface in
recessive state1)
P_1.3.1
Current consumption in
Active Mode at pin VSD
IVSD 40 mA 20 kHz
PWM on Bridge Driver
P_1.3.8
Current consumption in
Slow Down Mode
ISDM –– 30 mAfsys = 5 MHz; PWM communication
running; charge pump on (reverse
polarity FET on), external Low
Side FET static on (motor break
mode); VDDEXT on; all other
module set to power down;VS=
13.5V
P_1.3.6
Current consumption in
Sleep Mode
ISleep 30 35 µA System in Sleep Mode,
microcontroller not powered, Wake
capable via PWM interface and
MON; MON connected to VS or
GND;
GPIOs open (no loads) or
connected to GND:
TJ = -40°C to 85°C;
VS= 5.5 V to 18V;2)
P_1.3.3
Current consumption in
Sleep Mode extended
range
ISleep_exten
d
90 200 µA System in Sleep Mode,
microcontroller not powered, Wake
capable via PWM interface and
MON; MON connected to VS or
GND;
GPIOs open (no loads) or
connected to GND:
TJ = -40°C to 150°C;
VS= 5.5 V to 18V;2)
P_1.3.15
Current consumption in
Sleep Mode
ISleep 33 µA System in Sleep Mode,
microcontroller not powered, Wake
capable via PWM interface and
MON; MON connected to VS or
GND;
GPIOs open (no loads) or
connected to GND:
TJ = -40°C to 40°C;
VS= 5.5 V to 18V;2)
P_1.3.9
TLE9861QXA20
Electrical Characteristics
Data Sheet 85 Rev. 1.0, 2017-03-03
Note: Within the functional range, the IC operates as described in the circuit description. The electrical
characteristics are specified within the conditions given in the related electrical characteristics table.
Current consumption in
Sleep Mode with cyclic
wake
ICyclic 110 µA TJ = -40°C to 85°C;
VS= 5.5 V to 18V;
tCyclic_ON = 4ms;
tCyclic_OFF = 2048 ms;2)
P_1.3.4
Current consumption in
Stop Mode
IStop 110 160 µA System in Stop Mode,
microcontroller not clocked, Wake
capable via PWM interface and
MON; MON connected to VS or
GND;
GPIOs open (no loads) or
connected to GND; TJ = -
40°C to 85°C;
VS= 5.5 V to 18V
P_1.3.10
Current consumption in
Stop Mode-Extended
temperature range 1
IStop_extend 600 1800 µA System in Stop Mode,
microcontroller not clocked, Wake
capable via PWM interface and
MON; MON connected to VS or
GND;
GPIOs open (no loads) or
connected to GND;
TJ = -4Cto15C;
VS= 5.5 V to 18 V
P_1.3.20
1) Current on VS, ADC1/2 active, timer running, PWM interface active (recessive).
2) Incl. leakage currents form VBAT_SENSE, VDH, VSD and MON
Table 19 Electrical Characteristics (cont’d)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter Symbol Values Unit Note / Test Condition Number
Min. Typ. Max.
TLE9861QXA20
Electrical Characteristics
Data Sheet 86 Rev. 1.0, 2017-03-03
29.1.4 Thermal Resistance
29.1.5 Timing Characteristics
The transition times between the system modes are specified here. Generally the timings are defined from the
time when the corresponding bits in register PMCON0 are set until the sequence is terminated.
Table 20 Thermal Resistance
Parameter Symbol Values Unit Note /
Test Condition
Number
Min. Typ. Max.
Junction to Soldering Point RthJSP –6–K/W
1) measured to
Exposed Pad
1) Not subject to production test, specified by design.
P_1.4.1
Junction to Ambient RthJA –33–K/W
2)
2) According to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board. Board: 76.2x114.3x1.5mm³ with 2 inner
copper layers (35µm thick), with thermal via array under the exposed pad contacting the first inner copper layer and
300mm2 cooling area on the bottom layer (70µm).
P_1.4.2
Table 21 System Timing1)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
1) Not subject to production test, specified by design.
Parameter Symbol Values Unit Note / Test Condition Number
Min. Typ. Max.
Wake-up over battery tstart 3 ms Battery ramp-up time to code
execution
P_1.5.6
Wake-up over battery tstartSW 1.5 ms Battery ramp-up time to till
MCU reset is released; VS > 3
V and RESET = 1
P_1.5.1
Sleep-Exit tsleep - exit 1.5 ms Rising/falling edge of any
wake-up signal (PWM
interface, MON) till MCU reset
is released;
P_1.5.2
Sleep-Entry tsleep -
entry
–– 33s2)
2) Wake events during Sleep-Entry are stored and lead to wake-up after Sleep Mode is reached.
P_1.5.3
TLE9861QXA20
Electrical Characteristics
Data Sheet 87 Rev. 1.0, 2017-03-03
29.2 Power Management Unit (PMU)
This chapter includes all electrical characteristics of the Power Management Unit
29.2.1 PMU I/O Supply (VDDP) Parameters
This chapter describes all electrical parameters which are observable on SoC level. For this purpose only the pad-
supply VDDP and the transition times between the system modes are specified here.
Table 22 Electrical Characteristics
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter Symbol Values Unit Note / Test Condition Number
Min. Typ. Max.
Specified output current IVDDP 0–50mA
1) P_2.1.1
Specified output current IVDDP 0–30mA
1)2) P_2.1.22
Required decoupling
capacitance
CVDDP1 0.47 2.2 µF 3)4) ESR < 1; the
specified capacitor value
is a typical value.
P_2.1.2
Required buffer capacitance for
stability (load jumps)
CVDDP2 1–2.2µF
3)4) The specified
capacitor value is a
typical value.
P_2.1.20
Output voltage including line
and load regulation @ Active
Mode
VDDPOUT 4.9 5.0 5.1 V 5) Iload < 90mA; VS > 5.5V P_2.1.3
Output voltage including line
and load regulation @ Active
Mode
VDDPOUT 4.9 5.0 5.1 V 2)5) Iload < 70mA; VS >
5.5V
P_2.1.23
Output voltage including line
and load regulation @ Stop
Mode
VDDPOUTS
TOP
4.5 5.0 5.5 V 5) Iload is only internal;
VS > 5.5V
P_2.1.21
Output drop @ Active Mode VSVDDPout 50 400 mV IVDDP = 30mA6);
3.5V < VS<5.0V
P_2.1.4
Load regulation @ Active Mode VVDDPLOR -50 50 mV 2 ... 90mA; C = 570nF P_2.1.5
Line regulation @ Active Mode VVDDPLIR -50 50 mV VS = 5.5 ... 28V P_2.1.6
Overvoltage detection VDDPOV 5.14 5.4 V VS > 5.5V; Overvoltage
leads to SUPPLY_NMI
P_2.1.7
Overvoltage detection filter time tFILT_VDDP
OV
–735–µs
3)7) P_2.1.24
Voltage OK detection VDDPOK –3–V3) P_2.1.25
Voltage stable detection range8) VDDPSTB - 220 + 220 mV 3) P_2.1.26
Undervoltage reset VDDPUV 2.5 2.6 2.7 V P_2.1.8
Overcurrent diagnostic IVDDPOC 91 220 mA P_2.1.9
TLE9861QXA20
Electrical Characteristics
Data Sheet 88 Rev. 1.0, 2017-03-03
Overcurrent diagnostic filter
time
tFILT_VDDP
OC
–27–µs
3)7) P_2.1.27
Overcurrent diagnostic
shutdown time
tFILT_VDDP
OC_SD
–290–µs
3)7)9) P_2.1.28
1) Specified output current for port supply and additional other external loads already excluding VDDC current.
2) This use case applies to cases where output current on VDDEXT is max. 40 mA.
3) Not subject to production test, specified by design.
4) Ceramic capacitor.
5) Load current includes internal supply.
6) Output drop for IVDDP without internal supply current.
7) This filter time and its variation is derived from the time base tLP_CLK = 1 / fLP_CLK.
8) The absolute voltage value is the sum of parameters VDDP + VDDPSTB.
9) After tFILT_VDDCOC_SD is passed and the overcurrent condition is still present, the device will enter sleep mode.
Table 22 Electrical Characteristics (cont’d)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter Symbol Values Unit Note / Test Condition Number
Min. Typ. Max.
TLE9861QXA20
Electrical Characteristics
Data Sheet 89 Rev. 1.0, 2017-03-03
29.2.2 PMU Core Supply (VDDC) Parameters
This chapter describes all electrical parameters which are observable on SoC level. For this purpose only the core-
supply VDDC and the transition times between the system modes are specified here.
Table 23 Electrical Characteristics
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter Symbol Values Unit Note /
Test Condition
Number
Min. Typ. Max.
Required decoupling capacitance CVDDC1 0.1 1 µF 1)2) ESR < 1; the
specified capacitor
value is a typical
value.
1) Not subject to production test, specified by design.
2) Ceramic capacitor.
P_2.2.1
Required buffer capacitance for
stability (load jumps)
CVDDC2 0.33 1 µF 2)the specified
capacitor value is a
typical value.
P_2.2.17
Output voltage including line
regulation @ Active Mode
VDDCOUT 1.44 1.5 1.56 V Iload < 40mA P_2.2.2
Reduced output voltage including
line regulation @ Stop Mode
VDDCOUT_
Stop_Red
0.95 1.1 1.3 V with internal VDDC
load only: Iload_internal
< 1.5mA
P_2.2.23
Load Regulation @ Active Mode VDDCLOR -50 50 mV 2 ... 40mA; C =430nF P_2.2.3
Line regulation @ Active Mode VDDCLIR -25 25 mV VDDP = 2.5 ... 5.5V P_2.2.4
Overvoltage detection VDDCOV 1.59 1.62 1.68 V Overvoltage leads to
SUPPLY_NMI
P_2.2.5
Overvoltage detection filter time tFILT_VDDC
OV
–735 µs
1)3)
3) This filter time and its variation is derived from the time base tLP_CLK = 1 / fLP_CLK.
P_2.2.18
Voltage OK detection range4)
4) The absolute voltage value is the sum of parameters VDDC + VDDCSTB.
VDDCOK - 280 + 280 mV 1) P_2.2.19
Voltage stable detection range5)
5) The absolute voltage value is the sum of parameters VDDC + VDDCOK.
VDDCSTB - 110 + 110 mV 1) P_2.2.20
Undervoltage reset VDDVUV 1.136 1.20 1.264 V P_2.2.6
Overcurrent diagnostic IVDDCOC 45 100 mA P_2.2.7
Overcurrent diagnostic filter time tFILT_VDDC
OC
–27 µs
1)3) P_2.2.21
Overcurrent diagnostic shutdown
time
tFILT_VDDC
OC_SD
–290 µs
1)3)6)
6) After tFILT_VDDCOC_SD is passed and the overcurrent condition is still present the device will enter sleep mode.
P_2.2.22
TLE9861QXA20
Electrical Characteristics
Data Sheet 90 Rev. 1.0, 2017-03-03
29.2.3 VDDEXT Voltage Regulator (5.0V) Parameters
Table 24 Electrical Characteristics
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter Symbol Values Unit Note /
Test Condition
Number
Min. Typ. Max.
Specified output current IVDDEXT 0 20 mA P_2.3.1
Specified output current IVDDEXT 0–40mA
1)
1) This use case requires the reduced utilization of VDDP output current by 20 mA, see P_2.1.22.
P_2.3.21
Required decoupling capacitance CVDDEXT1 0.1 2.2 µF 3) 2)ESR < 1 ; the
specified capacitor
value is a typical
value.
2) Ceramic capacitor.
P_2.3.22
Required buffer capacitance for
stability (load jumps)
CVDDEXT2 1–2.2µF
3)2)the specified
capacitor value is a
typical value.
P_2.3.20
Output voltage including line and
load regulation
VDDEXT 4.9 5.0 5.1 V 3) Iload<20mA; VS >
5.5V
P_2.3.3
Output voltage including line and
load regulation
VDDEXT 4.8 5.0 5.2 V Iload<40mA; VS >
5.5V
P_2.3.23
Output drop @ Active Mode VS-VDDEXT 50 +300 mV 3) Iload <20mA;
3V < VS<5.0V
P_2.3.4
Output drop @ Active Mode VS-VDDEXT +400 mV Iload <40mA;
3V < VS<5.0V
P_2.3.14
Load regulation @ Active Mode VDDEXTLOR -50 50 mV 2 ... 40mA; C =200nF P_2.3.5
Line regulation @ Active Mode VVDDEXTLIR -50 50 mV VS = 5.5 ... 28V P_2.3.6
Power supply ripple rejection @
Active Mode
PSSRVDDEXT 50 dB 3) VS = 13.5V; f =0 ...
1KHz; Vr=2Vpp
3) Not subject to production test, specified by design.
P_2.3.7
Overvoltage detection VVDDEXTOV 5.18 5.4 V VS > 5.5V P_2.3.8
Overvoltage detection filter time tFILT_VDDEXT
OV
735 µs 3)4)
4) This filter time and its variation is derived from the time base tLP_CLK = 1 / fLP_CLK.
P_2.3.24
Voltage OK detection range VVDDEXTOK –3–V
3) P_2.3.25
Voltage stable detection range5) VVDDEXTST
B
- 220 + 220 mV 3) P_2.3.26
Undervoltage trigger VVDDEXTUV 2.6 2.8 3.0 V 6) P_2.3.9
Overcurrent diagnostic IVDDEXTOC 50 160 mA P_2.3.10
Overcurrent diagnostic filter time tFILT_VDDCOC –27–µs
3)4) P_2.3.27
Overcurrent diagnostic shutdown
time
tFILT_VDDCOC
_SD
290 µs 3)4) P_2.3.28
TLE9861QXA20
Electrical Characteristics
Data Sheet 91 Rev. 1.0, 2017-03-03
5) The absolute voltage value is the sum of parameters VDDEXT + VDDEXTSTB.
6) When the condition is met, the Bit VDDEXT_CTRL.bit.SHORT will be set.
TLE9861QXA20
Electrical Characteristics
Data Sheet 92 Rev. 1.0, 2017-03-03
29.2.4 VPRE Voltage Regulator (PMU Subblock) Parameters
The PMU VPRE Regulator acts as a supply of VDDP and VDDEXT voltage regulators.
29.2.4.1 Load Sharing Scenarios of VPRE Regulator
The figure below shows the possible load sharing scenarios of VPRE regulator.
Figure 32 Load Sharing Scenarios of VPRE Regulator
Table 25 Functional Range
Parameter Symbol Values Unit Note / Test Condition Number
Min. Typ. Max.
Specified output current IVPRE ––110mA
1)
1) Not subject to production test, specified by design.
P_2.4.1
Load_Sharing_VPRE.vsd
VDDP - 5V
1: max. 90 mA
2: max. 70 mA
VDDC - 1.5V
max. 40 mA
VPRE
max. 110 mA
VS
VDDP
GND (Pin 39)
VDDC
C
VDDC
GND (Pin 39)
Load Sharing VPRE – Scenarios 1 & 2
C
VDDP
VDDEXT - 5V
1: max. 20 mA
2: max. 40 mA
C
VDDEXT
GND (Pin 39)
VDDEXT
TLE9861QXA20
Electrical Characteristics
Data Sheet 93 Rev. 1.0, 2017-03-03
29.2.5 Power Down Voltage Regulator (PMU Subblock) Parameters
The PMU Power Down voltage regulator consists of two subblocks:
Power Down Pre regulator: VDD5VPD
Power Down Core regulator: VDD1V5_PD (Supply used for GPUDATAxy registers)
Both regulators are used as purely internal supplies. The following table contains all relevant parameters:
Table 26 Functional Range
Parameter Symbol Values Unit Note / Test Condition Number
Min. Typ. Max.
VDD1V5_PD
Power-On Reset Threshold VDD1V5_PD_
RSTTH
1.2 1.5 V 1)
1) Not subject to production test, specified by design
P_2.5.1
TLE9861QXA20
Electrical Characteristics
Data Sheet 94 Rev. 1.0, 2017-03-03
29.3 System Clocks
29.3.1 Oscillators and PLL Parameters
Table 27 Electrical Characteristics System Clocks
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter Symbol Values Unit Note / Test Condition Number
Min. Typ. Max.
PMU Oscillators (Power Management Unit)
Frequency of LP_CLK fLP_CLK 14 18 22 MHz This clock is used at startup
and can be used in case the
PLL fails
P_3.1.1
Frequency of LP_CLK2 fLP_CLK2 70 100 130 kHz This clock is used for cyclic
wake
P_3.1.2
CGU Oscillator (Clock Generation Unit Microcontroller)
Short term frequency
deviation1)
fTRIMST -0.4 +0.4 % 2)3) Within any 10 ms, e.g.
after synchronization to a
PWM signal (PLL settings
untouched within 10 ms)
P_3.1.3
Absolute accuracy fTRIMABSA -1.5 – +1.5 % Including temperature and
lifetime deviation
P_3.1.4
CGU-OSC Start-up
time
tOSC ––10µs
3) Startup time OSC from
Sleep Mode, power supply
stable
P_3.1.5
PLL (Clock Generation Unit Microcontroller) 3)
VCO frequency range
Mode 0
fVCO-0 48 112 MHz VCOSEL =”0” P_3.1.6
VCO frequency range
Mode 1
fVCO-1 96 160 MHz VCOSEL =”1” P_3.1.7
Input frequency range fOSC 4 16 MHz P_3.1.8
XTAL1 input freq. range fOSC 4 16 MHz P_3.1.9
Output freq. range fPLL 0.04687 80 MHz P_3.1.10
Free-running frequency
Mode 0
fVCOfree_0 38 MHz VCOSEL =”0” P_3.1.11
Free-running frequency
Mode 1
fVCOfree_1 76 MHz VCOSEL =”1” P_3.1.12
Input clock high/low
time
thigh/low 10 ns P_3.1.13
Peak period jitter tjp -500 500 ps 4) for K=1 P_3.1.14
Accumulated jitter jacc 5 ns 4) for K=1 P_3.1.15
Lock-in time tL 200 µs P_3.1.16
TLE9861QXA20
Electrical Characteristics
Data Sheet 95 Rev. 1.0, 2017-03-03
29.3.2 External Clock Parameters XTAL1, XTAL2
1) The typical oscillator frequency is 5 MHz
2) VDDC = 1.5 V, Tj = 25°C
3) Not subject to production test, specified by design.
4) This parameter is valid for PLL operation with an external clock source and thus reflects the real PLL performance.
Table 28 Functional Range
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)1)
1) This parameter table is not subject to production test, specified by design.
Parameter Symbol Values Unit Note /
Test Condition
Number
Min. Typ. Max.
Input voltage range limits
for signal on XTAL1
VIX1_SR -1.7 + VDDC –1.7 V
2)
2) Overload conditions must not occur on pin XTAL1.
P_3.2.1
Input voltage (amplitude) on
XTAL1
VAX1_SR 0.3 x VDDC –– V
3) Peak-to-peak
voltage
3) The amplitude voltage VAX1 refers to the offset voltage VOFF. This offset voltage must be stable during the operation and
the resulting voltage peaks must remain within the limits defined by VIX1.
P_3.2.2
XTAL1 input current IIL ––±20µA0V < VIN < VDDI P_3.2.3
Oscillator frequency fOSC 4 24 MHz Clock signal P_3.2.4
Oscillator frequency fOSC 4 16 MHz Crystal or
Resonator
P_3.2.5
High time t16 ns P_3.2.6
Low time t26 ns P_3.2.7
Rise time t3 8 8 ns P_3.2.8
Fall time t4 8 8 ns P_3.2.9
TLE9861QXA20
Electrical Characteristics
Data Sheet 96 Rev. 1.0, 2017-03-03
29.4 Flash Memory
This chapter includes the parameters for the 36 kByte embedded flash module.
29.4.1 Flash Parameters
Table 29 Flash Characteristics1)
VS = 3.0 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
1) Not subject for production test, specified by design.
Parameter Symbol Values Unit Note /
Test Condition
Number
Min. Typ. Max.
Programming time per 128 byte page tPR –3
2)
2) Programming and erase times depend on the internal Flash clock source. The control state machine needs a few system
clock cycles. The requirement is only relevant for extremely low system frequencies.
3.5 ms 3V < VS < 28V P_4.1.1
Erase time per sector/page tER –4
2) 4.5 ms 3V < VS < 28V P_4.1.2
Data retention time tRET 20 years 1,000 erase /
program cycles
P_4.1.3
Data retention time tRET 50 years 1,000 erase /
program cycles
Tj = 30°C3)
3) Derived by extrapolation of lifetime tests.
P_4.1.9
Flash erase endurance for user sectors NER 30 kcycles Data retention
time 5 years
P_4.1.4
Flash erase endurance for security
pages
NSEC 10––cycles
4)Data retention
time 20 years
4) Tj = 25 °C.
P_4.1.5
Drain disturb limit NDD 32 kcycles 5)
5) This parameter limits the number of subsequent programming operations within a physical sector without a given page in
this sector being (re-)programmed. The drain disturb limit is applicable if wordline erase is used repeatedly. For normal
sector erase/program cycles this limit will not be violated. For data sectors the integrated EEPROM emulation firmware
routines handle this limit automatically, for wordline erases in code sectors (without EEPROM emulation) it is
recommended to execute a software based refresh, which may make use of the integrated random number generator
NVMBRNG to statistically start a refresh.
P_4.1.6
TLE9861QXA20
Electrical Characteristics
Data Sheet 97 Rev. 1.0, 2017-03-03
29.5 Parallel Ports (GPIO)
29.5.1 Description of Keep and Force Current
Figure 33 Pull-Up/Down Device
Figure 34 Pull-Up Keep and Forced Current
Pull-Up-Down.vsd
PU Device
PD Device
P1.x
P0.x
keeper
current
keeper
current
PUDSEL
\PUDSEL
V
SS
V
DDP
Logical "1"
Undefined
Logical "0"
Current_Diag.vsd
-I
PLK
-I
PLF
V
IH
-V
DDP
V
IL
-V
DDP
U
GPIO
I
7.5 kOhm (equivalent)
(1.5V / 200uA)
2.33 kOhm (equivalent)
(3.5V / 1.5mA)
TLE9861QXA20
Electrical Characteristics
Data Sheet 98 Rev. 1.0, 2017-03-03
Figure 35 Pull-Down Keep and Force Current
29.5.2 DC Parameters of Port 0, Port 1, TMS and Reset
Note: Operating Conditions apply.
Keeping signal levels within the limits specified in this table ensures operation without overload conditions.
For signal levels outside these specifications, also refer to the specification of the maximum allowed ocurrent
which can be taken out of VDDP.
Table 30 Current Limits for Port Output Drivers1)
1) Not subject to production test, specified by design.
Port Output Driver Mode Maximum Output Current
(IOLmax , - IOHmax)
Maximum Output Current
(IOLnom , - IOHnom)
Number
VDDP 4.5V 2.6V < VDDP <
4.5V
VDDP 4.5V 2.6V < VDDP <
4.5V
Strong driver2)
2) Not available for port pins P0.4, P1.0, P1.1 and P1.2
5 mA 3 mA 1.6 mA 1.0 mA P_5.1.15
Medium driver3) 3 mA 1.8 mA 1.0 mA 0.8 mA P_5.1.1
Weak driver3)
3) All P0.x and P1.x
0.5 mA 0.3 mA 0.25 mA 0.15 mA P_5.1.2
Table 31 DC Characteristics Port0, Port1
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter Symbol Values Unit Note /
Test Condition
Number
Min. Typ. Max.
Input hysteresis HYSP0_P1 0.11 x VDDP –– V
1) Series
resistance = 0 ;
4.5V VDDP
5.5V
P_5.1.5
Input hysteresis HYSP0_P1
_exend
0.09 x
VDDP
–V
1) Series
resistance = 0 ;
2.6V VDDP
4.5V
P_5.1.16
Logical "1"
Undefined
Logical "0"
Current_Diag-Pull_down.vsd
I
PLK
I
PLF
I
2.33 kOhm (equivalent)
(3.5V / 1.5mA)
7.5 kOhm (equivalent)
(1.5V / 200uA)
U
GPIO
V
IH
V
IL
TLE9861QXA20
Electrical Characteristics
Data Sheet 99 Rev. 1.0, 2017-03-03
Input low voltage VIL -0.3 0.3 x VDDP V2)4.5V VDDP
5.5V
P_5.1.3
Input low voltage VIL_extend -0.3 0.42 x
VDDP
–V
1)2.6V VDDP
4.5V
P_5.1.17
Input high voltage VIH 0.7 x VDDP VDDP + 0.3 V 2)4.5V VDDP
5.5V
P_5.1.4
Input high voltage VIH_extend 0.52 x
VDDP
VDDP + 0.3 V 1)2.6V VDDP
4.5V
P_5.1.18
Output low voltage VOL ––1.0V
3) 4) IOL IOLmax P_5.1.6
Output low voltage VOL ––0.4V
3) 5) IOL IOLnom P_5.1.7
Output high voltage VOH VDDP - 1.0 V 3) 4) IOH IOHmax P_5.1.8
Output high voltage VOH VDDP - 0.4 V 3) 5) IOH IOHnom P_5.1.9
Input leakage current IOZ_extend1 -500 +500 nA -40°C TJ
25°C,
0.45 V < VIN
< VDDP
P_5.1.20
Input leakage current IOZ1 -5 +5 µA 6) 25°C <
TJ85°C,
0.45 V < VIN
< VDDP
P_5.1.10
Input leakage current IOZ_extend2 -15 +15 µA 85°C < TJ
150°C,
0.45 V < VIN
< VDDP
P_5.1.11
Pull level keep current IPLK -200 +200 µA 7) VPIN VIH (up)
VPIN VIL (dn)
P_5.1.12
Pull level force current IPLF -1.5 +1.5 mA 7) VPIN VIL (up)
VPIN VIH (dn)
P_5.1.13
Pin capacitance CIO ––10pF
1) P_5.1.14
Reset Pin Timing
Reset Pin Input Filter Time tfilt_RESET –5µs
1) P_5.1.19
1) Not subject to production test, specified by design.
2) Tested at VDDP = 5V, specified for 4.5V < VDDP < 5.5V.
3) The maximum deliverable output current of a port driver depends on the selected output driver mode. The limit for pin
groups must be respected.
4) Tested at 4.9V < VDDP < 5.1V, IOL = 4mA, IOH = -4mA, specified for 4.5V < VDDP < 5.5V.
5) As a rule, with decreasing output current the output levels approach the respective supply level (VOLGND, VOHVDDP).
Tested at 4.9V < VDDP < 5.1V, IOL = 1mA, IOH = -1mA.
Table 31 DC Characteristics Port0, Port1 (cont’d)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter Symbol Values Unit Note /
Test Condition
Number
Min. Typ. Max.
TLE9861QXA20
Electrical Characteristics
Data Sheet 100 Rev. 1.0, 2017-03-03
29.5.3 DC Parameters of Port 2
These parameters apply to the IO voltage range, 4.5 V VDDP 5.5 V.
Note: Operating Conditions apply.
Keeping signal levels within the limits specified in this table ensures operation without overload conditions.
For signal levels outside these specifications, also refer to the specification of the overload current IOV.
6) The given values are worst-case values. In production tests, this leakage current is only tested at 150°C; other values are
ensured by correlation. For derating, please refer to the following descriptions:
Leakage derating depending on temperature (TJ = junction temperature [°C]):
IOZ = 0.05 × e(1.5 + 0.028×TJ) [µA]. For example, at a temperature of 95°C the resulting leakage current is 3.2 µA.
Leakage derating depending on voltage level (DV = VDDP - VPIN [V]):
IOZ = IOZtempmax - (1.6 × DV) [µA]
This voltage derating formula is an approximation which applies for maximum temperature.
7) Keep current: Limit the current through this pin to the indicated value so that the enabled pull device can keep the default
pin level: VPIN VIH for a pull-up; VPIN VIL for a pull-down.
Force current: Drive the indicated minimum current through this pin to change the default pin level driven by the enabled
pull device: VPIN VIL for a pull-up; VPINVIH for a pull-down.
These values apply to the fixed pull-devices in dedicated pins and to the user-selectable pull-devices in general purpose
IO pins.
Table 32 DC Characteristics Port 2
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter Symbol Values Unit Note /
Test Condition
Number
Min. Typ. Max.
Input low voltage VIL -0.3 0.3 x VDDP V1)4.5V VDDP
5.5V
P_5.2.1
Input low voltage VIL_extend -0.3 0.42 x
VDDP
–V
2)2.6V VDDP
4.5V
P_5.2.10
Input high voltage VIH 0.7 x VDDP VDDP + 0.3 V 1)4.5V VDDP
5.5V
P_5.2.2
Input high voltage VIH_extend 0.52 x
VDDP
VDDP + 0.3 V 2)2.6V VDDP
4.5V
P_5.2.11
Input hysteresis HYSP2 0.11 x VDDP –– V
2)Series
resistance = 0 ;
4.5V VDDP
5.5V
P_5.2.3
Input hysteresis HYSP2_ext
end
0.09 x
VDDP
–V
2)Series
resistance = 0 ;
2.6V VDDP <
4.5V
P_5.2.12
Input leakage current IOZ2 -400 +400 nA TJ85°C,
0V < VIN < VDDP
P_5.2.4
Pull level keep current IPLK -30 +30 µA 3) VPIN VIH (up)
VPIN VIL (dn)
P_5.2.5
TLE9861QXA20
Electrical Characteristics
Data Sheet 101 Rev. 1.0, 2017-03-03
Pull level force current IPLF -750 +750 µA 3) VPIN VIL (up)
VPIN VIH (dn)
P_5.2.6
Pin capacitance
(digital inputs/outputs)
CIO ––10pF
2) P_5.2.7
1) Tested at VDDP = 5V, specified for 4.5V < VDDP < 5.5V.
2) Not subject to production test, specified by design.
3) Keep current: Limit the current through this pin to the indicated value so that the enabled pull device can keep the default
pin level: VPIN VIH for a pull-up; VPIN VIL for a pull-down.
Force current: Drive the indicated minimum current through this pin to change the default pin level driven by the enabled
pull device: VPIN VIL for a pull-up; VPINVIH for a pull-down.
Table 32 DC Characteristics Port 2 (cont’d)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter Symbol Values Unit Note /
Test Condition
Number
Min. Typ. Max.
TLE9861QXA20
Electrical Characteristics
Data Sheet 102 Rev. 1.0, 2017-03-03
29.6 PWM Interface
29.6.1 Electrical Characteristics
Table 33 Electrical Characteristics PWM Interface
Vs = 5.5V to 18V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter Symbol Values Unit Note / Test Condition Number
Min. Typ. Max.
Bus Receiver Interface
Receiver threshold voltage,
recessive to dominant edge
Vth_dom 0.4 ×VS0.45 ×VS0.53 x VSV SAE J2602 P_6.1.1
Receiver dominant state VBUSdom -27 0.4 ×VSV P_6.1.2
Receiver threshold voltage,
dominant to recessive edge
Vth_rec 0.47 x
VS
0.55 ×VS0.6 ×VSV SAE J2602 P_6.1.3
Receiver recessive state VBUSrec 0.6 ×VS–1.15 ×VSV1) P_6.1.4
Receiver center voltage VBUS_CN
T
0.475
×VS
0.5 ×VS0.525
×VS
V2) P_6.1.5
Receiver hysteresis VHYS 0.07 VS0.12 ×VS0.175
×VS
V3) P_6.1.6
Wake-up threshold voltage VBUS,wk 0.4 ×VS0.5 ×VS0.6 ×VSV P_6.1.7
Dominant time for bus wake-
up (internal analog filter
delay)
tWK,bus 3 15 µs The overall dominant
time for bus wake-up is
a sum of tWK,bus +
adjustable digital filter
time.
P_6.1.8
Bus Transmitter Interface
Bus recessive output
voltage
VBUS,ro 0.8 ×VSVSVVTxD = high Level P_6.1.9
Bus short circuit current IBUS,sc 40 100 150 mA Current Limitation for
driver dominant state
driver on
VBUS = 18 V;
P_6.1.10
Bus short circuit filter time tBUS,sc –5 µs
9)The overall bus short
circuit filter time is a sum
of tBUS,sc + digital filter
time. The digital filter
time is 4 µs (typ.)
P_6.1.71
Leakage current (loss of
ground)
IBUS_NO_
GND
-1000 -450 1000 µA VS = 12 V; 0 < VBUS <
18 V;
P_6.1.11
Leakage current IBUS_NO_
BAT
–1020 µAVS = 0 V; VBUS = 18 V; P_6.1.12
TLE9861QXA20
Electrical Characteristics
Data Sheet 103 Rev. 1.0, 2017-03-03
Leakage current IBUS_PAS
_dom
-1 mA VS = 18 V; VBUS = 0 V; P_6.1.13
Leakage current IBUS_PAS
_rec
–– 20 µAVS = 8 V; VBUS = 18 V; P_6.1.14
Bus pull-up resistance RBUS 20 30 47 kNormal mode P_6.1.15
ON-State Resistance RON –20 7)VS > 5.5 V, Ids = 150
mA,
Tj = 27°C;
P_6.1.72
AC Characteristics - Transceiver Normal Slope Mode
Propagation delay
bus dominant to RxD LOW
td(L),R 0.1 – 6 µs P_6.1.16
Propagation delay
bus recessive to RxD HIGH
td(H),R 0.1 6 µs P_6.1.17
Receiver delay symmetry tsym,R -2 2 µs tsym,R = td(L),R - td(H),R; P_6.1.18
Duty cycle D1
Normal Slope Mode
(for worst case at 20 kbit/s)
tduty1 0.396 4) duty cycle 1
THRec(max) =
0.744 ×VS;
THDom(max) =
0.581 ×VS; VS = 5.5 …
18 V;
tbit = 50 µs;
D1 = tbus_rec(min)/2 tbit;
P_6.1.19
Duty cycle D2
Normal Slope Mode
(for worst case at 20 kbit/s)
tduty2 0.581 4) duty cycle 2
THRec(min) = 0.422 ×VS;
THDom(min) =
0.284 ×VS;
VS = 5.5 … 18 V;
tbit = 50 µs;
D2 = tbus_rec(max)/2 tbit;
P_6.1.20
AC Characteristics - Transceiver Low Slope Mode
Propagation delay
bus dominant to RxD LOW
td(L),R 0.1 6 µs P_6.1.21
Propagation delay
bus recessive to RxD HIGH
td(H),R 0.1 6 µs P_6.1.22
Receiver delay symmetry tsym,R -2 2 µs tsym,R = td(L),R - td(H),R;P_6.1.23
Table 33 Electrical Characteristics PWM Interface (cont’d)
Vs = 5.5V to 18V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter Symbol Values Unit Note / Test Condition Number
Min. Typ. Max.
TLE9861QXA20
Electrical Characteristics
Data Sheet 104 Rev. 1.0, 2017-03-03
Duty cycle D3
(for worst case at
10.4 kbit/s)
tduty1 0.417 4) duty cycle 3
THRec(max) =
0.778 ×VS;
THDom(max) =
0.616 ×VS; VS = 5.5 …
18 V;
tbit = 96 µs;
D3 = tbus_rec(min)/2 tbit;
P_6.1.24
Duty cycle D4
(for worst case at
10.4 kbit/s)
tduty2 0.590 4) duty cycle 4
THRec(min) = 0.389 ×VS;
THDom(min) =
0.251 ×VS;
VS = 5.5 … 18 V;
tbit = 96 µs;
D4 = tbus_rec(max)/2 tbit
P_6.1.25
AC Characteristics - Transceiver Fast Slope Mode
Propagation delay
bus dominant to RxD LOW
td(L),R 0.1 6 µs P_6.1.26
Propagation delay
bus recessive to RxD HIGH
td(H),R 0.1 6 µs P_6.1.27
Receiver delay symmetry tsym,R -1.5 1.5 µs tsym,R = td(L),R - td(H),R;P_6.1.28
AC Characteristics - Flash Mode
Propagation delay
bus dominant to RxD LOW
td(L),R 0.1 6 µs P_6.1.31
Propagation delay
bus recessive to RxD HIGH
td(H),R 0.1 6 µs P_6.1.32
Receiver delay symmetry tsym,R -1.0 1.5 µs tsym,R = td(L),R - td(H),R;P_6.1.33
Duty cycle D7 (for worst
case at 115 kbit/s)
for +1 µs Receiver delay
symmetry
tduty1 0.399 5) duty cycle D7
THRec(max) =
0.744 ×VS;
THDom(max) =
0.581 ×VS; VS = 13.5 V;
tbit = 8.7 µs;
D7 = tbus_rec(min)/2 tbit;
P_6.1.34
Duty cycle D8 (for worst
case at 115 kbit/s)
for +1 µs Receiver delay
symmetry
tduty2 0.578 6) duty cycle 8
THRec(min) = 0.422 ×VS;
THDom(min) =
0.284 ×VS;VS = 13.5 V;
tbit = 8.7 µs;
D8 = tbus_rec(max)/2 tbit;
P_6.1.35
PWM interface input
capacity
CPWM_IN –1530 pF
6) P_6.1.69
Table 33 Electrical Characteristics PWM Interface (cont’d)
Vs = 5.5V to 18V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter Symbol Values Unit Note / Test Condition Number
Min. Typ. Max.
TLE9861QXA20
Electrical Characteristics
Data Sheet 105 Rev. 1.0, 2017-03-03
TxD dominant time out ttimeout 61220 msVTxD = 0 V P_6.1.36
Thermal Shutdown (Junction Temperature)
Thermal shutdown temp. TjSD 190 200 215 °C 7) P_6.1.65
Thermal shutdown hyst. T–10 K
7) P_6.1.66
1) Maximum limit specified by design.
2) VBUS_CNT = (Vth_dom +Vth rec)/2
3) VHYS = VBUSrec - VBUSdom
4) Bus load :
Load 1 = 1 nF / 1 k = CBUS / RBUS
Load 2 = 6.8 nF / 660 = CBUS / RBUS
Load 3 = 10 nF / 500 = CBUS / RBUS
5) Bus load
Load 1 = 1 nF / 500 = CBUS / RBUS
6) Not subject to production test, specified by design.
Table 33 Electrical Characteristics PWM Interface (cont’d)
Vs = 5.5V to 18V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter Symbol Values Unit Note / Test Condition Number
Min. Typ. Max.
TLE9861QXA20
Electrical Characteristics
Data Sheet 106 Rev. 1.0, 2017-03-03
29.7 High-Speed Synchronous Serial Interface
29.7.1 SSC Timing Parameters
The table below provides the SSC timing in the TLE9861QXA20.
Figure 36 SSC Master Mode Timing
Table 34 SSC Master Mode Timing (Operating Conditions apply; CL = 50 pF)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter Symbol Values Unit Note /
Test Condition
Number
Min. Typ. Max.
SCLK clock period t01) 2 * TSSC
1) TSSCmin =T
CPU =1/fCPU. If fCPU = 20 MHz, t0 = 100 ns. TCPU is the CPU clock period.
–– 2) VDDP > 2.7 V
2) Not subject to production test, specified by design.
P_7.1.1
MTSR delay from SCLK t110 ––ns
2) VDDP > 2.7 V P_7.1.2
MRST setup to SCLK t210 ––ns
2) VDDP > 2.7 V P_7.1.3
MRST hold from SCLK t315 ––ns
2) VDDP > 2.7 V P_7.1.4
SSC_Tmg1
SCLK
1)
MTSR
1)
t1t1
MRST
1)
t3
Data
valid
t
2
t1
1) This timing is based on the following setup: CON.PH = CON.PO = 0.
t0
TLE9861QXA20
Electrical Characteristics
Data Sheet 107 Rev. 1.0, 2017-03-03
29.8 Measurement Unit
29.8.1 System Voltage Measurement Parameters
Table 35 Supply Voltage Signal Conditioning
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter Symbol Values Unit Note / Test Condition Number
Min. Typ. Max.
Measurement output
voltage range @ VAREF5
VA5 0 5 V P_8.1.15
Measurement output
voltage range @
VAREF1V2
VA1V2 0 1.23 V P_8.1.16
Battery / Supply Voltage Measurement VBAT_SENSE / VS
Input to output voltage
attenuation:
VS
ATTVS_1 0.055 SFR setting 1 P_8.1.41
Input to output voltage
attenuation:
VBAT_SENSE
ATTVBAT_SENSE
_1
0.055 SFR setting 1 P_8.1.60
Nominal operating input
voltage rangeVBAT_SENSE
and VS
VBAT_SENSE
,range1 , VS,range1
3– 22V
1)SFR setting 1;
Max. value corresponds
to typ. ADC full scale
input; 3V < VBAT_SENSE/ VS
< 28V
P_8.1.1
Accuracy of VBAT_SENSE/ VS
after calibration
ΔVBAT_SENSE
,range1 , VS,range1
-220 220 mV SFR setting 1, VS =5.5 V
to 18V
P_8.1.70
Input to output voltage
attenuation:
VS
ATTVS_2 0.039 SFR setting 2 P_8.1.42
Input to output voltage
attenuation:
VBAT_SENSE
ATTVBAT_SENSE
_2
0.039 SFR setting 2 P_8.1.61
Nominal operating input
voltage range VBAT_SENSE
and VS
VBAT_SENSE
,range2 ,VS,range2
3– 31V
1)SFR setting 2;
Max. value corresponds
to typ. ADC full scale input
3V < VBAT_SENSE/ VS <
28V
P_8.1.40
Accuracy of VBAT_SENSE /
VS after calibration
ΔVBAT_SENSE
,range2 , VS,range2
-370 370 mV SFR setting 2, VS = 5.5V
to 18V
P_8.1.44
TLE9861QXA20
Electrical Characteristics
Data Sheet 108 Rev. 1.0, 2017-03-03
Measurement input
leakage current for
VBAT_SENSE
Ileak_VBAT_SENSE
, measure
0 4.0 µA PD_N=0 (off-state),
VBAT_SENSE = 13.5V
P_8.1.72
Driver Supply Voltage Measurement VSD
Input to output voltage
attenuation:
VSD
ATTVSD 0.039 P_8.1.21
Nominal operating input
voltage range VSD
VSD,range 2.5 31 V 1) P_8.1.2
Accuracy of VSD sense
after calibration
VSD -440 440 mV VS = 5.5V to 18V P_8.1.47
Charge Pump Voltage Measurement VCP
Input to output voltage
attenuation:
VCP
ATTVCP 0.023 P_8.1.56
Nominal operating input
voltage range VCP
VCP,range 2.5 52 V 1) P_8.1.7
Accuracy of VCP sense
after calibration
VCP -747 747 mV VS = 5.5V to 18V P_8.1.62
Monitoring Input Voltage Measurement VMON
Input to output voltage
attenuation:
VMON
ATTVMON 0.039 P_8.1.49
Nominal operating input
voltage range VMON
VMON,range 2.5 31 V 1) P_8.1.8
Accuracy of VMON sense
after calibration
VMON -440 440 mV VS = 5.5V to 18V P_8.1.68
Pad Supply Voltage Measurement VVDDP
Input-to-output voltage
attenuation:
VDDP
ATTVDDP 0.164 P_8.1.33
Nominal operating input
voltage range VDDP
VDDP,range 0 7.50 V 1) P_8.1.50
Accuracy of VDDP sense
after calibration
VDDP_SENSE -105 105 mV 2)VS = 5.5 to 18V P_8.1.5
10-Bit ADC Reference Voltage Measurement VAREF
Input to output voltage
attenuation:
VAREF
ATTVAREF 0.219 P_8.1.22
Table 35 Supply Voltage Signal Conditioning (cont’d)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter Symbol Values Unit Note / Test Condition Number
Min. Typ. Max.
TLE9861QXA20
Electrical Characteristics
Data Sheet 109 Rev. 1.0, 2017-03-03
Nominal operating input
voltage range VAREF
VAREF,range 0 5.62 V 1) P_8.1.51
Accuracy of VAREF sense
after calibration
VAREF -79 79 mV VS = 5.5V to 18V P_8.1.48
8-Bit ADC Reference Voltage Measurement VBG
Input-to-output voltage
attenuation:
VBG
ATTVBG 0.75 P_8.1.57
Nominal operating input
voltage range VBG
VBG,range 0.8 1.64 V 1) P_8.1.52
Value of ADC2-VBG
measurement after
calibration
VBG_PMU 1.01 1.07 1.18 V P_8.1.73
Core supply Voltage Measurement VDDC
Input-to-output voltage
attenuation:
VDDC
ATTVDDC 0.75 P_8.1.34
Nominal operating input
voltage range VDDC
VDDC,range 0.8 1.64 V 1) P_8.1.53
Accuracy of VDDC sense
after calibration
VDDC_SENSE -22 22 mV VS = 5.5 to 18V P_8.1.6
VDH Input Voltage Measurement VVDH10BITADC
VDH Input to output
voltage attenuation:
ATTVDH_1 0.166 SFR setting 1 P_8.1.64
VDH Input to output
voltage attenuation:
ATTVDH_2 0.224 SFR setting 2 P_8.1.65
VDH Input to output
voltage attenuation:
ATTVDH_3 -0.226- 1)SFR setting 2
Tj = -40..85°C
P_8.1.75
Nominal operating input
voltage range VVDH, Range
1
VVDH,range1 30 SFR setting 1 P_8.1.66
Nominal operating input
voltage range VVDH, Range
2
VVDH,range2 20 SFR setting 2 P_8.1.67
VVDH 10-bit ADC, Range 1 VVDHADC10B -300 300 mV VDH= 5.5 to 17.5V,
Tj = -40..150°C
P_8.1.39
VVDH 10-bit ADC, Range 3 VVDHADC10B -200 200 mV 1)VDH= 5.5V to 17.5V,
Tj = -40..85°C
ATTVDH_3
P_8.1.71
Table 35 Supply Voltage Signal Conditioning (cont’d)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter Symbol Values Unit Note / Test Condition Number
Min. Typ. Max.
TLE9861QXA20
Electrical Characteristics
Data Sheet 110 Rev. 1.0, 2017-03-03
VVDH 10-bit ADC, Range 2 VVDHADC10B_ex
tend_T
-400 400 mV VDH= 5.5V to 17.5V,
Tj = -40..150°C
P_8.1.74
10-Bit ADC measurement
input resistance for VDH
Rin_VDH,measure 200 390 470 kPD_N=1 (on-state) P_8.1.3
Measurement input
leakage current for VVDH
Ileak_VDH, measure -0.05 2.0 µA PD_N=0 (off-state),
VVDH = 13.5V
P_8.1.10
1) Not subject to production test, specified by design.
2) Accuracy is valid for a calibrated device.
Table 35 Supply Voltage Signal Conditioning (cont’d)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter Symbol Values Unit Note / Test Condition Number
Min. Typ. Max.
TLE9861QXA20
Electrical Characteristics
Data Sheet 111 Rev. 1.0, 2017-03-03
29.8.2 Central Temperature Sensor Parameters
Table 36 Electrical Characteristics Temperature Sensor Module
VS = 3.0 V to 28 V, Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter Symbol Values Unit Note / Test Condition Number
Min. Typ. Max.
Output voltage VTEMP at
T0=273 K (0°C)
a 0.666 V 1)
T0=273 K (0°C)
1) Not subject to production test, specified by design
P_8.2.2
Temperature sensitivity b b 2.31 mV/K 1) P_8.2.4
Accuracy_1 Acc_1 -10 10 °C 2)1) -40°C < Tj < 85°C
2) Accuracy with reference to on-chip temperature calibration measurement, valid for Mode1
P_8.2.5
Accuracy_2 Acc_2 -10 10 °C 2)1) 125°C < Tj < 150°C P_8.2.6
Accuracy_3 Acc_3 -5 5 °C 2)1) 85°C < Tj < 125°C P_8.2.7
TLE9861QXA20
Electrical Characteristics
Data Sheet 112 Rev. 1.0, 2017-03-03
29.8.3 ADC2-VBG
29.8.3.1 ADC2 Reference Voltage VBG
29.8.3.2 ADC2 Specifications
Table 37 DC Specifications
VS = 3.0 V to 28 V, Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter Symbol Values Unit Note /
Test Condition
Number
Min. Typ. Max.
Reference Voltage VBG 1.199 1.211 1.223 V 1)
1) Not subject to production test, spedesign
P_8.3.1
Table 38 DC Specifications
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter Symbol Values Unit Note /
Test Condition
Number
Min. Typ. Max.
Resolution RES 8 Bits Full P_8.3.18
Guaranteed offset error EAOFF_8
Bit
-2.0 ±0.3 2.0 LSB not calibrated P_8.3.19
Gain error EAGain_8
Bit
-2.0 ±0.5 2.0 %FSR not calibrated P_8.3.20
Differential non-linearity
(DNL)
EADNL_8
Bit
-0.8 ±0 0.8 LSB Full P_8.3.21
Integral non-linearity (INL) EAINL_8Bi
t
-1.2 ±0 1.2 LSB P_8.3.22
TLE9861QXA20
Electrical Characteristics
Data Sheet 113 Rev. 1.0, 2017-03-03
29.9 ADC1 Reference Voltage - VAREF
29.9.1 Electrical Characteristics VAREF
Table 39 Electrical Characteristics VAREF
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter Symbol Values Unit Note / Test Condition Number
Min. Typ. Max.
Required buffer
capacitance
CVAREF 0.1–1µFESR < 1P_9.1.1
Reference output voltage VAREF 4.95 5 5.05 V VS > 5.5V P_9.1.2
DC supply voltage
rejection
DCPSRVAREF 30––dB
1)
1) Not subject to production test, specified by design.
P_9.1.3
Supply voltage ripple
rejection
ACPSRVAREF 26––dB
1) VS = 13.5V; f = 0 ... 1KHz;
Vr = 2Vpp
P_9.1.4
Turn ON time tso 200 µs 1) Cext = 100nF
PD_N to 99.9% of final value
P_9.1.5
Input resistance at VAREF
Pin
RIN,VAREF –100k1)input impedance in case of
VAREF is applied from
external
P_9.1.20
TLE9861QXA20
Electrical Characteristics
Data Sheet 114 Rev. 1.0, 2017-03-03
29.9.2 Electrical Characteristics ADC1 (10-Bit)
These parameters describe the conditions for optimum ADC performance.
Note: Operating Conditions apply.
Table 40 A/D Converter Characteristics
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter Symbol Values Unit Note /
Test Condition
Number
Min. Typ. Max.
Analog reference supply VAREF VAGND
+ 1.0
VDDPA
+ 0.05
V1) P_9.2.1
Analog reference ground VAGND VSS
- 0.05
1.5 V P_9.2.2
Analog input voltage
range
VAIN VAGND VAREF V2) P_9.2.3
Analog clock frequency fADCI 5–24MHz
3) P_9.2.4
Conversion time for 10-
bit result
tC10 (13 + STC)
× tADCI
+2xtSYS
(13 + STC
) × tADCI
+2xtSYS
(13 + STC
) × tADCI
+2xtSYS
1)4) P_9.2.5
Conversion time for 8-bit
result
tC8 (11 + STC)
× tADCI
+2×tSYS
(11 + STC
) × tADCI
+2×tSYS
(11 + STC
) × tADCI
+2×tSYS
1) P_9.2.6
Wakeup time from
analog powerdown, fast
mode
tWAF –4µs
1) P_9.2.7
Wakeup time from
analog powerdown, slow
mode
tWAS ––15µs
1)5) P_9.2.8
Total unadjusted error (8
bit)
TUE8B -2 ±1 +2 counts 6)7)Reference is
internal VAREF
P_9.2.9
Total unadjusted error
(10 bit)
TUE10B -12 ±6 +12 counts 7)8)Reference is
internal VAREF
P_9.2.22
DNL error EADNL -3 ±0.8 +3 counts P_9.2.10
INL error EAINL_int_V
AREF
-5 ±0.8 +5 counts Reference is
internal VAREF
P_9.2.11
Gain error EAGAIN_int_
VAREF
-10 ±0.4 +10 counts Reference is
internal VAREF
P_9.2.12
Offset error EAOFF -2 ±0.5 +2 counts P_9.2.13
Total capacitance
of an analog input
CAINT 10 pF 1)5)9) P_9.2.14
Switched capacitance
of an analog input
CAINS –4pF
1)5)9) P_9.2.15
Resistance of
the analog input path
RAIN –2k1)5)9) P_9.2.16
TLE9861QXA20
Electrical Characteristics
Data Sheet 115 Rev. 1.0, 2017-03-03
29.10 Reserved
Total capacitance
of the reference input
CAREFT 15 pF 1)5)9) P_9.2.17
Switched capacitance
of the reference input
CAREFS –7pF
1)5)9) P_9.2.18
Resistance of
the reference input path
RAREF –2k1)5)9) P_9.2.19
1) Not subject to production test, specified by design.
2) VAIN may exceed VAGND or VAREFx up to the absolute maximum ratings. However, the conversion result in these cases will
be 0000H or 03FFH, respectively.
3) The limit values for fADCI must not be exceeded when selecting the peripheral frequency and the prescaler setting.
4) This parameter includes the sample time (also the additional sample time specified by STC), the time to determine the
digital result and the time to load the result register with the conversion result.
5) The broken wire detection delay against VAGND is measured in numbers of consecutive precharge cycles at a conversion
rate of not more than 500 µs.
6) The total unadjusted error TUE is the maximum deviation from the ideal ADC transfer curve, not the sum of individual
errors.
All error specifications are based on measurement methods standardized by IEEE 1241.2000.
7) The specified TUE is valid only if the absolute sum of input overload currents (see IOV specification) does not exceed
10 mA, and if VAREF and VAGND remain stable during the measurement time.
8) The total unadjusted error TUE is the maximum deviation from the ideal ADC transfer curve, not the sum of individual
errors.
All error specifications are based on measurement methods standardized by IEEE 1241.2000.
9) These parameter values cover the complete operating range. Under relaxed operating conditions (temperature, supply
voltage) typical values can be used for calculation. At room temperature and nominal supply voltage the following typical
values can be used:
CAINTtyp = 12 pF, CAINStyp = 5 pF, RAINtyp = 1.0 k, CAREFTtyp = 15 pF, CAREFStyp = 10 pF, RAREFtyp = 1.0 k.
Table 40 A/D Converter Characteristics (cont’d)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter Symbol Values Unit Note /
Test Condition
Number
Min. Typ. Max.
TLE9861QXA20
Electrical Characteristics
Data Sheet 116 Rev. 1.0, 2017-03-03
29.11 High-Voltage Monitoring Input
29.11.1 Electrical Characteristics
Table 41 Electrical Characteristics Monitoring Input
Tj = -40 °C to +150 °C; VS = 5.5 V to 28 V, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter Symbol Values Unit Note / Test Condition Number
Min. Typ. Max.
MON Input Pin characteristics
Wake-up/monitoring
threshold voltage
VMONth 0.4*VS0.5*VS0.6*VSV Without external serial
resistor Rs (with Rs:DV =
IPD/PU * Rs); VS = 5.5V to
18V
P_11.1.1
Wake-up/monitoring
threshold voltage
extended range
VMONth_ext
end
0.44*VS0.53*V
S
0.64*VSV Without external serial
resistor Rs (with Rs:DV =
IPD/PU * Rs)
P_11.1.11
Threshold hysteresis VMONth,hys 0.015*
VS
0.05*
VS
0.1*VSV In all modes; without
external serial resistor Rs
(with Rs:dV = IPD/PU * Rs);
VS = 5.5V to 18V;
P_11.1.12
Threshold hysteresis VMONth,hys 0.02*VS0.06*
VS
0.12*VSV In all modes; without
external serial resistor Rs
(with Rs:dV = IPD/PU * Rs);
VS = 18V to 28V;
P_11.1.2
Pull-up current IPU, MON -20 -10 -1 µA 0.6*VS P_11.1.3
Pull-down current IPD, MON 31020µA0.4*VSP_11.1.4
Input leakage current ILK,MON -2.5 2.5 µA 1) 0V < VMON_IN < 28 V
1) Input leakage is valid for disabled state.
P_11.1.5
Timing
Wake-up filter time
(internal analog filter
delay)
tFT,MON 500 ns 2) The overall filter time for
MON wake-up is a sum of
tFT,MON + adjustable digital
filter time. The digital filter
time can be adjusted by
PMU.CNF_WAKE_FILTE
R.CNF_MON_FT;
2) With pull-up, pull down current disabled.
P_11.1.6
TLE9861QXA20
Electrical Characteristics
Data Sheet 117 Rev. 1.0, 2017-03-03
29.12 MOSFET Driver
29.12.1 Electrical Characteristics
Table 42 Electrical Characteristics MOSFET Driver
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter Symbol Values Unit Note / Test Condition Number
Min. Typ. Max.
MOSFET Driver Output
Maximum total charge driver
capability
Qtot_max 100 nC 1)Due to Charge Pump
currrent capability only 3 x
MOSFETs + additional
external capacitors with a
total charge of max. 100nC
can be driven
simultaneous at a PWM
frequency of 25 kHz.
P_12.1.20
Source current - Charge
current - High Side Driver
ISoumax_HS 230 345 450 mA VSD 8V, CLoad = 10 nF,
ISou = CLoad * slew rate ( =
20%-50% of VGHx1),
ICHARGE = IDISCHG =
31(max)
P_12.1.78
Sink current - Discharge
current-High Side Driver
ISinkmax_HS 230 330 450 mA VSD 8V, CLoad = 10 nF,
ISink = CLoad * slew rate ( =
50%-20% of VGHx1),
ICHARGE = IDISCHG =
31(max)
P_12.1.79
Source current - Charge
current - Low Side Driver
ISoumax_LS 200 295 375 mA VSD 8V, CLoad = 10 nF,
ISou = CLoad * slew rate ( =
20%-50% of VGLx1),
ICHARGE = IDISCHG =
31(max)
P_12.1.80
Sink current - Discharge
current-Low Side Driver
ISinkmax_LS 200 314 375 mA VSD 8V, CLoad = 10 nF,
ISink = CLoad * slew rate ( =
50%-20% of VGHx1),
ICHARGE = IDISCHG =
31(max)
P_12.1.81
High level output voltage
Gxx vs. Sxx
VGxx1 10 14 V VSD 8V, CLoad = 10 nF,
ICP=2.5 mA2).
P_12.1.3
High level output voltage
GHx vs. SHx
VGxx2 8–VVSD =6.4V
1), CLoad = 10
nF,
ICP=2.5 mA2)
P_12.1.4
High level output voltage
GHx vs. SHx
VGxx3 7–VVSD =5.4V, CLoad = 10 nF,
ICP=2.5 mA2)
P_12.1.5
TLE9861QXA20
Electrical Characteristics
Data Sheet 118 Rev. 1.0, 2017-03-03
High level output voltage
GLx vs. GND
VGxx6 8–VVSD =6.4V
1), CLoad = 10
nF,
ICP=2.5 mA2)
P_12.1.6
High level output voltage
GLx vs. GND
VGxx7 7–VVSD =5.4 V, CLoad = 10 nF,
ICP=2.5 mA2)
P_12.1.7
Rise time trise3_3nf –200ns
1)CLoad = 3.3 nF,
VSD 8V,
25-75% of VGxx1, ICHARGE =
IDISCHG = 31(max)
P_12.1.8
Fall time tfall3_3nf –200ns
1)CLoad =3.3nF,
VSD 8V,
75-25% of VGxx1, ICHARGE =
IDISCHG = 31(max)
P_12.1.9
Rise time trisemax 100 250 450 ns CLoad =10nF,
VSD 8 V,
25-75% of VGxx1, ICHARGE =
IDISCHG = 31(max)
P_12.1.57
Fall time tfallmax 100 250 450 ns CLoad =10nF,
VSD 8 V,
75-25% of VGxx1, ICHARGE =
IDISCHG = 31(max)
P_12.1.58
Rise time trisemin 1.25 2.5 5 µs 1)CLoad =10nF,
VSD 8 V,
25-75% of VGxx1,
ICHARGE = IDISCHG = 3(min)
P_12.1.14
Fall time tfallmin 1.25 2.5 5 µs 1)CLoad =10nF,
VSD 8 V,
75-25% of VGxx1,
ICHARGE = IDISCHG = 3(min)
P_12.1.15
Absolute rise - fall time
difference for all LSx
tr_f(diff)LSx 100 ns CLoad =10nF,
VSD 8 V,
25-75% of VGxx1, ICHARGE =
IDISCHG = 31(max)
P_12.1.35
Absolute rise - fall time
difference for all HSx
tr_f(diff)HSx 100 ns CLoad =10nF,
VSD 8 V,
25-75% of VGxx1, ICHARGE =
IDISCHG = 31(max)
P_12.1.36
Resistor between GHx/GLx
and GND
RGGND 30 40 50 k1) P_12.1.11
Table 42 Electrical Characteristics MOSFET Driver (cont’d)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter Symbol Values Unit Note / Test Condition Number
Min. Typ. Max.
TLE9861QXA20
Electrical Characteristics
Data Sheet 119 Rev. 1.0, 2017-03-03
Resistor between SHx and
GND
RSHGN 30 40 50 k1)3) This resistance is the
resistance between GHx
and GND connected
through a diode to SHx. As
a consequence, the
voltage at SHx can rise up
to 0,6V typ. before it is
discharged through the
resistor.
P_12.1.10
Low RDSON mode
(boosted discharge mode)
RONCCP –912VVSD =13.5V,
VVCP = VVSD + 14.0 V;
ICHARGE = IDISCHG =
31(max); 50mA forced into
Gx, Sx grounded
P_12.1.50
Resistance between VDH
and VSD
IBSH –4k1) P_12.1.24
Input propagation time (LS
on)
tP(ILN)min –1.53µs
1)CLoad = 10 nF,
ICharge =3(min),
25% of VGxx1
P_12.1.37
Input propagation time (LS
off)
tP(ILF)min –1.53µs
1)CLoad = 10 nF,
IDischarge =3(min),
75% of VGxx1
P_12.1.38
Input propagation time (HS
on)
tP(IHN)min –1.53µs
1)CLoad = 10 nF,
ICharge =3(min)
25% of VGxx1
P_12.1.39
Input propagation time (HS
off)
tP(IHF)min –1.53µs
1)CLoad = 10 nF,
IDisharge =3(min),
75% of VGxx1
P_12.1.40
Input propagation time (LS
on)
tP(ILN)max 200 350 ns CLoad = 10 nF,
ICharge =31(max),
25% of VGxx1
P_12.1.26
Input propagation time (LS
off)
tP(ILF)max 200 300 ns CLoad = 10 nF,
IDischarge =31(max),
75% of VGxx1
P_12.1.27
Input propagation time (HS
on)
tP(IHN)max 200 350 ns CLoad = 10 nF,
ICharge =31(max),
25% of VGxx1
P_12.1.28
Input propagation time (HS
off)
tP(IHF)max 200 300 ns CLoad = 10 nF,
IDischarge =31(max),
75% of VGxx1
P_12.1.29
Table 42 Electrical Characteristics MOSFET Driver (cont’d)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter Symbol Values Unit Note / Test Condition Number
Min. Typ. Max.
TLE9861QXA20
Electrical Characteristics
Data Sheet 120 Rev. 1.0, 2017-03-03
Absolute input propagation
time difference between
propagation times for all LSx
(LSx on)
tPon(diff)LSx 100 ns CLoad = 10 nF,
ICharge =31(max),
25% of VGxx1
P_12.1.30
Absolute input propagation
time difference between
propagation times for all LSx
(LSx off)
tPoff(diff)LSx 100 ns CLoad = 10 nF,
IDischarge =31(max),
75% of VGxx1
P_12.1.41
Absolute input propagation
time difference between
propagation times for all HSx
(HSx on)
tPon(diff)HSx 100 ns CLoad = 10 nF,
ICharge =31(max),
25% of VGxx1
P_12.1.42
Absolute input propagation
time difference between
propagation times for all HSx
(HSx off)
tPoff(diff)HSx 100 ns CLoad = 10 nF,
IDischarge =31(max),
75% of VGxx1
P_12.1.43
Drain source monitoring
Drain source monitoring
threshold
VDSMONVTH
0.07
0.35
0.55
0.65
0.90
1.00
1.20
1.40
0.25
0.50
0.75
1.00
1.25
1.5
1.75
2.00
0.40
0.650
0.90
1.25
1.45
1.80
2.10
2.40
V DRV_CTRL3.DSMONVT
H<2:0> xxx
000
001
010
011
100
101
110
111
P_12.1.46
Open load diagnosis currents
Pull-up diagnosis current IPUDiag -220 -370 -520 µA IDISCHG = 1; VSHx = 5.0 V P_12.1.47
Pull-down diagnosis current IPDDiag 650 900 1100 µA IDISCHG = 1; VSHx = 5.0 V P_12.1.48
Charge pump
Output voltage
VCP vs. VSD
VCPmin1 8.5 V VVSD =5.4V,
ICP=5 mA,
CCP1, CCP2 = 220 nF,
Bridge Driver enabled
P_12.1.53
Regulated output voltage
VCP vs. VSD
VCP 12 14 16 V 8 V VVSD 28,
ICP=10mA,
CCP1, CCP2=220 nF,
fCP=250kHz
P_12.1.49
Table 42 Electrical Characteristics MOSFET Driver (cont’d)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter Symbol Values Unit Note / Test Condition Number
Min. Typ. Max.
TLE9861QXA20
Electrical Characteristics
Data Sheet 121 Rev. 1.0, 2017-03-03
Turn ON Time tON_VCP 10 24 40 us 8 V VVSD 28,
ICP=2.5mA,
(25%) of VCP1)4),
CCP1, CCP2=220 nF,
fCP=250kHz
P_12.1.59
Rise time trise_VCP 20 60 88 us 8 V VVSD 28,
ICP=2.5mA,
(25-75%) of VCP1)5),
CCP1, CCP2=220 nF,
fCP=250kHz
P_12.1.60
1) Not subject to production test.
2) The condition ICP =2,5 mA emulates anH-Bridge Driver with 4 MOSFET switching at 20 KHz with a CLoad=3.3nF. Test
condition: IGx = - 100 µA, ICHARGE = IDISCHARGE = 31(max), IDISCHARGEDIV2_N = 1 and ICHARGEDIV2_N = 1.
3) This resistance is connected through a diode between SHx and GHx to ground.
4) This time applies when Bit DRV_CP_CTRL_STS.bit.CP_EN is set
5) This time applies when Bit DRV_CP_CLK_CTRL.bit.CPCLK_EN is set
Table 42 Electrical Characteristics MOSFET Driver (cont’d)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter Symbol Values Unit Note / Test Condition Number
Min. Typ. Max.
TLE9861QXA20
Electrical Characteristics
Data Sheet 122 Rev. 1.0, 2017-03-03
29.13 Operational Amplifier
29.13.1 Electrical Characteristics
Table 43 Electrical Characteristics Operational Amplifier
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter Symbol Values Unit Note / Test Condition Number
Min. Typ. Max.
Differential gain
(uncalibrated)
G
9.5
19
38
57
10
20
40
60
10.5
21
42
63
Gain settings GAIN<1:0>:
00
01
10
11
P_13.1.6
Differential input operating
voltage range OP2 - OP1
VIX -1.5 / G 1.5 / G V G is the Gain specified
below
P_13.1.1
Operating. common mode
input voltage range (referred
to GND (OP2 - GND) or
(OP1 - GND)
VCM -2.0 2.0 V Input common mode has
to be checked in
evaluation if it fits the
required range
P_13.1.2
Max. input voltage range
(referred to GND (OP_2 -
GND) or (OP1 - GND)
VIX_max -7.0 7.0 V Max. rating of operational
amplifier inputs, where
measurement is not done
P_13.1.3
Single ended output voltage
range (linear range)
VOUT VZERO
- 1.5
VZERO
+ 1.5
V1)2) typ. output offset
voltage 2 V ± 1.5V
P_13.1.4
Linearity error EPWM -15 15 mV Maximum deviation from
best fit straight line
divided by max. value of
differential output voltage
range (0.5V - 3.5V); this
parameter is determined
at G = 10.
P_13.1.5
Linearity error EPWM_% -1.0 1.0 % Maximum deviation from
best fit straight line
divided by max. value of
differential output voltage
range (0.5V - 3.5V); this
parameter is determined
at G = 10.
P_13.1.24
Gain drift -1 1 % Gain drift after calibration
at G = 10.
P_13.1.7
Adjusted output offset
voltage
VOOS -40 10 40 mV VAIP= VAIN = 0 V and
G = 40.
P_13.1.17
TLE9861QXA20
Electrical Characteristics
Data Sheet 123 Rev. 1.0, 2017-03-03
DC input voltage common
mode rejection ratio
DC-
CMRR
58 80 dB CMRR (in dB)=-20*log
(differential mode gain/
common mode gain)
VCMI= -2V... 2V,
VAIP-VAIN=0V
P_13.1.8
Settling time to 98% TSET 800 1400 ns Derived from 80 - 20 %
rise fall times for ± 2V
overload condition (3 Tau
value of settling time
constant)2)
P_13.1.9
Current Sense Amplifier
Input Resistance @ OP1,
OP2
Rin_OP1_
OP2
1 1.25 1.5 k2) P_13.1.25
Table 43 Electrical Characteristics Operational Amplifier (cont’d)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter Symbol Values Unit Note / Test Condition Number
Min. Typ. Max.
Data Sheet 124 Rev. 1.0, 2017-03-03
TLE9861QXA20
Package Outlines
30 Package Outlines
Figure 37 Package outline VQFN-48-31 (with LTI)
Notes
1. You can find all of our packages, sorts of packing and others in our Infineon Internet Page “Products”:
http://www.infineon.com/products.
2. Dimensions in mm.
PG-VQFN-48-29, -31-PO V05
7±0.1 A
6.8
7±0.1
B
11 x 0.5 = 5.5
0.5
0.5±0.07
0.1±0.05
0.13 ±0.05
0.26
0.15±0.05
(6)
(5.2)
0.9 MAX.
(0.65)
+0.03
1) 2)
48x
0.08
(0.2)
0.05 MAX.
C
(5.2)
(6)
0.1
±0.03
±0.05
0.23
M
48x
0.1 A B C
1) Vertical burr 0.03 max., all sides
2) These four metal areas have exposed diepad potential
Index Marking
SEATING PLANE
Index Marking
6.8
12 1
13
24
25 36
(0.35)
37
48
0.4 x 45°
TLE9861QXA20
Revision History
Data Sheet 125 Rev. 1.0, 2017-03-03
31 Revision History
Revision History
Page or Item Subjects (major changes since previous revision)
Rev. 1.0, 2017-03-03
All Initial release.
Trademarks of Infineon Technologies AG
µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™,
DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™,
HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™,
OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™,
SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™.
Trademarks updated November 2015
Other Trademarks
All referenced product or service names and trademarks are the property of their respective owners.
Edition 2017-03-03
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2017 Infineon Technologies AG.
All Rights Reserved.
Do you have a question about any
aspect of this document?
Email: erratum@infineon.com
IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics ("Beschaffenheitsgarantie").
With respect to any examples, hints or any typical
values stated herein and/or any information regarding
the application of the product, Infineon Technologies
hereby disclaims any and all warranties and liabilities
of any kind, including without limitation warranties of
non-infringement of intellectual property rights of any
third party.
In addition, any information given in this document is
subject to customer's compliance with its obligations
stated in this document and any applicable legal
requirements, norms and standards concerning
customer's products and any use of the product of
Infineon Technologies in customer's applications.
The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer's technical departments to
evaluate the suitability of the product for the intended
application and the completeness of the product
information given in this document with respect to
such application.
For further information on technology, delivery terms
and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
WARNINGS
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.
Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or any
consequences of the use thereof can reasonably be
expected to result in personal injury.
Please read the Important Notice and Warnings at the end of this document