This is information on a product in full production.
October 2018 DS5944 Rev 11 1/107
STM32F100xC STM32F100xD
STM32F100xE
High-density value line, advanced Arm®-based 32-bit MCU with
256 to 512 KB Flash, 16 timers, ADC, DAC & 11 comm interfaces
Datasheet production data
Features
Core: Arm® 32-bit Cortex®-M3 CPU
24 MHz maximum frequency, 1.25 DMIPS
/MHz (Dhrystone 2.1) performance
Single-cycle multiplication and hardware
division
Memories
256 to 512 Kbytes of Flash memory
24 to 32 Kbytes of SRAM
Flexible static memory controller with 4
Chip Selects. Supports SRAM, PSRAM
and NOR memories
LCD parallel interface, 8080/6800 modes
Clock, reset and supply management
2.0 to 3.6 V application supply and I/Os
POR, PDR and programmable voltage
detector (PVD)
4-to-24 MHz crystal oscillator
Internal 8 MHz factory-trimmed RC
Internal 40 kHz RC
PLL for CPU clock
32 kHz oscillator for RTC with calibration
Low power
Sleep, Stop and Standby modes
–V
BAT supply for RTC and backup registers
Serial wire debug (SWD) and JTAG I/F
DMA
12-channel DMA controller
Peripherals supported: timers, ADC, SPIs,
I2Cs, USARTs and DACs
1 × 12-bit, 1.2 µs A/D converter (up to 16 ch.)
Conversion range: 0 to 3.6 V
Temperature sensor
2 × 12-bit D/A converters
Up to 112 fast I/O ports
51/80/112 I/Os, all mappable on 16
external interrupt vectors and almost all
5 V-tolerant
Up to 16 timers
Up to seven 16-bit timers, each with up to 4
IC/OC/PWM or pulse counter
One 16-bit, 6-channel advanced-control
timer: up to 6 channels for PWM output,
dead time generation and emergency stop
One 16-bit timer, with 2 IC/OC, 1
OCN/PWM, dead-time generation and
emergency stop
Two 16-bit timers, each with
IC/OC/OCN/PWM, dead-time generation
and emergency stop
Two watchdog timers
SysTick timer: 24-bit downcounter
Two 16-bit basic timers to drive the DAC
Up to 11 communications interfaces
Up to two I2C interfaces (SMBus/PMBus)
Up to 3 USARTs (ISO 7816 interface, LIN,
IrDA capability, modem control)
Up to 2 UARTs
Up to 3 SPIs (12 Mbit/s)
Consumer electronics control (CEC) I/F
CRC calculation unit, 96-bit unique ID
Table 1. Device summary
Reference Part number
STM32F100xC STM32F100RC, STM32F100VC,
STM32F100ZC
STM32F100xD STM32F100RD, STM32F100VD,
STM32F100ZD
STM32F100xE STM32F100RE, STM32F100VE,
STM32F100ZE
LQFP100
14 × 14 mm
LQFP144
20 × 20 mm LQFP64
10 × 10 mm
www.st.com
Contents STM32F100xC, STM32F100xD, STM32F100xE
2/107 DS5944 Rev 11
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
2.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Arm® Cortex®-M3 core with embedded Flash and SRAM . . . . . . . . . . 14
2.2.2 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . 14
2.2.4 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.5 FSMC (flexible static memory controller) . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.6 LCD parallel interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.7 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 15
2.2.8 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.9 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.10 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.11 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.12 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.13 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.14 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.15 DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.16 RTC (real-time clock) and backup registers . . . . . . . . . . . . . . . . . . . . . . 17
2.2.17 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.18 I²C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.19 Universal synchronous/asynchronous receiver transmitter (USART) . . 20
2.2.20 Universal asynchronous receiver transmitter (UART) . . . . . . . . . . . . . . 20
2.2.21 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.22 HDMI (high-definition multimedia interface) consumer
electronics control (CEC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.23 GPIOs (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.24 Remap capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.25 ADC (analog-to-digital converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.26 DAC (digital-to-analog converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.27 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.28 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 22
DS5944 Rev 11 3/107
STM32F100xC, STM32F100xD, STM32F100xE Contents
4
3 Pinouts and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 39
5.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 40
5.3.4 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3.6 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3.7 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3.8 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3.9 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3.10 FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3.12 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 69
5.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3.15 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3.16 TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3.17 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3.18 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3.19 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3.20 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Contents STM32F100xC, STM32F100xD, STM32F100xE
4/107 DS5944 Rev 11
6.1 LQFP144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2 LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.3 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.4 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.4.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.4.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 102
7 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
DS5944 Rev 11 5/107
STM32F100xC, STM32F100xD, STM32F100xE List of tables
6
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. STM32F100xx features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 3. Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 4. High-density STM32F100xx pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 5. FSMC pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 6. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 7. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 8. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 9. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 10. Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 11. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 12. Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 13. Maximum current consumption in Run mode, code with data processing
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 14. Maximum current consumption in Run mode, code with data processing
running from RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 15. STM32F100xxB maximum current consumption in Sleep mode, code
running from Flash or RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 16. Typical and maximum current consumptions in Stop and Standby modes . . . . . . . . . . . . 44
Table 17. Typical current consumption in Run mode, code with data processing
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 18. Typical current consumption in Sleep mode, code running from Flash or RAM. . . . . . . . . 46
Table 19. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 20. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 21. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 22. HSE 4-24 MHz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 23. LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 24. HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 25. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 26. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 27. PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 28. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 29. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 30. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . . 58
Table 31. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . 59
Table 32. Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 33. Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 34. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 35. Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 36. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 37. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 38. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 39. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 40. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 41. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 42. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 43. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 44. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
List of tables STM32F100xC, STM32F100xD, STM32F100xE
6/107 DS5944 Rev 11
Table 45. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 46. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 47. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 48. I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 49. SCL frequency (fPCLK1= 24 MHz, VDD = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 50. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 51. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 52. RAIN max for fADC = 12 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 53. ADC accuracy - limited test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 54. ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 55. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 56. TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 57. LQFP - 144-pin, 20 x 20 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 58. LQPF - 100-pin, 14 x 14 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 59. LQFP - 64-pin, 10 x 10 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 60. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table 61. Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 62. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
DS5944 Rev 11 7/107
STM32F100xC, STM32F100xD, STM32F100xE List of figures
8
List of figures
Figure 1. STM32F100 Value Line block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 2. Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 3. STM32F100 Value Line LQFP144 pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 4. STM32F100 Value Line LQFP100 pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 5. STM32F100 Value Line in LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 6. Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 7. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 8. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 9. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 10. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 11. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 12. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 13. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 14. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 15. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . . 57
Figure 16. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . . 59
Figure 17. Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 18. Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 19. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 20. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 21. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 22. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 23. Standard I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 24. Standard I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 25. 5 V tolerant I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 26. 5 V tolerant I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 27. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 28. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 29. I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 30. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Figure 31. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Figure 32. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure 33. ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Figure 34. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Figure 35. Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . . 87
Figure 36. Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . . 87
Figure 37. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Figure 38. LQFP - 144-pin, 20 x 20 mm low-profile quad flat
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Figure 39. LQFP - 144-pin, 20 x 20 mm low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Figure 40. LQFP144 marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Figure 41. LQFP – 14 x 14 mm 100 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 95
Figure 42. LQFP - 100-pin, 14 x 14 mm low-profile quad flat
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Figure 43. LQFP100 marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Figure 44. LQFP - 64 pin, 10 x 10 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . 98
Figure 45. LQFP - 64-pin, 10 x 10 mm low-profile quad flat recommended footprint . . . . . . . . . . . . . 99
List of figures STM32F100xC, STM32F100xD, STM32F100xE
8/107 DS5944 Rev 11
Figure 46. LQFP64 marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Figure 47. LQFP100 PD max vs. TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
DS5944 Rev 11 9/107
STM32F100xC, STM32F100xD, STM32F100xE Introduction
34
1 Introduction
This datasheet provides the ordering information and mechanical device characteristics of
the STM32F100xC, STM32F100xD and STM32F100xE value line microcontrollers. In the
rest of the document, the STM32F100xC, STM32F100xD and STM32F100xE are referred
to as high-density value line devices.
This STM32F100xC, STM32F100xD and STM32F100xE datasheet should be read in
conjunction with the STM32F100xx high-density Arm®-based 32-bit MCUs reference
manual (RM0059). For information on programming, erasing and protection of the internal
Flash memory please refer to the STM32F100xx high-density value line Flash programming
manual (PM0072). The reference and Flash programming manuals are both available from
the STMicroelectronics website www.st.com.
For information on the Arm®(a) Cortex®-M3 core, please refer to the Cortex®-M3 Technical
Reference Manual, available from the www.arm.com website.
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
Description STM32F100xC, STM32F100xD, STM32F100xE
10/107 DS5944 Rev 11
2 Description
The STM32F100 Value Line family incorporates the high-performance Arm® Cortex®-M3
32-bit RISC core operating at a 24 MHz frequency, high-speed embedded memories (Flash
memory up to 512 Kbytes and SRAM up to 32 Kbytes), a flexible static memory control
(FSMC) interface (for devices offered in packages of 100 pins and more) and an extensive
range of enhanced peripherals and I/Os connected to two APB buses. All devices offer
standard communication interfaces (up to two I2Cs, three SPIs, one HDMI CEC, up to three
USARTs and 2 UARTS), one 12-bit ADC, two 12-bit DACs, up to 9 general-purpose 16-bit
timers and an advanced-control PWM timer.
The STM32F100xx high-density value line family operates in the –40 to +85 °C and –40 to
+105 °C temperature ranges, from a 2.0 to 3.6 V power supply. A comprehensive set of
power-saving mode allows the design of low-power applications.
The STM32F100 Value Line family includes devices in three different packages ranging
from 64 pins to 144 pins. Depending on the device chosen, different sets of peripherals are
included, the description below gives an overview of the complete range of peripherals
proposed in this family.
These features make the STM32F100xx value line microcontroller family suitable for a wide
range of applications such as motor drives, application control, medical and handheld
equipment, PC and gaming peripherals, GPS platforms, industrial applications, PLCs,
inverters, printers, scanners, alarm systems, video intercoms, and HVACs.
DS5944 Rev 11 11/107
STM32F100xC, STM32F100xD, STM32F100xE Description
34
2.1 Device overview
Table 2. STM32F100xx features and peripheral counts
Peripheral STM32F100Rx STM32F100Vx STM32F100Zx
Flash - Kbytes 256 384 512 256 384 512 256 384 512
SRAM - Kbytes 24 32 32 24 32 32 24 32 32
FSMC No Yes(1) Yes
Timers
Advanced-control 111
General-purpose 10 10 10
Communication
interfaces
SPI 333
I2C222
USART 333
UART 222
CEC 111
12-bit synchronized ADC
number of channels
1
16 channels
1
16 channels
1
16 channels
GPIOs 51 80 112
12-bit DAC
Number of channels
2
2
2
2
2
2
CPU frequency 24 MHz
Operating voltage 2.0 to 3.6 V
Operating temperatures Ambient operating temperature: –40 to +85 °C /–40 to +105 °C
Junction temperature: –40 to +125 °C
Packages LQFP64 LQFP100 LQFP144
1. For the LQFP100 package, only FSMC Bank1 is available. Bank1 can only support a multiplexed NOR/PSRAM memory.
Description STM32F100xC, STM32F100xD, STM32F100xE
12/107 DS5944 Rev 11
Figure 1. STM32F100 Value Line block diagram
1. AF = alternate function on I/O port pin.
2. TA = –40 °C to +85 °C (junction temperature up to 105 °C) or TA = –40 °C to +105 °C (junction temperature
up to 125 °C).
PA[15:0]
EXT.I T
WWDG
12-bit ADC1
16 ADC channels
(ADC_INx)
JTDI
JTCK/SWCLK
JTMS/SWDIO
NJTRST
JTDO
NRST
VDD= 2.0 V to 3.6 V
80 AF
PB[15:0]
PC[15:0]
AHB2
WKUP
GPIO port A
GPIO port B
GPIO port C
Fmax : 24 MHz
V
SS
VREF+
GP DMA
TIM2
TIM3
XTAL OSC
4-24 MHz
XTAL 32 kHz
OSC_IN
OSC_OUT
OSC32_OUT
OSC32_IN
APB1: Fmax = 24 MHz
HCLK
PCLK1
Flash 512 KB
Voltage reg.
3.3 V to 1.8 V
V
DD18
Power
Backup interface
as AF
TIM4
32 bit
RTC
AWU
RC HS
Cortex-M3 CPU
Ibus
Dbus
obl
USART1
USART2
SPI2
12 channels
Backup
register
TIM15
I2C1
RX,TX, CTS, RTS,
USART3
Temp sensor
PD[15:0] GPIO port D
PE[15:0] GPIO port E
FCLK
RC LS
Standby
IWDG
@VDD33
@VBAT
POR / PDR
Supply
supervision
@VDDA
VDDA
VSSA
@VDDA
VBAT = 1.8 V to 3.6 V.
CK as AF
RX, TX, CTS, RTS, CK
as AF
RX,TX, CTS, RTS,
CK as AF
SPI1
IF
interface
@VDDA
PVD
Reset
Int
@VDD
AHB2
APB2 APB1
POR
TAM PER-RTC
System
TIM16
Reset &
clock
control PCLK2
PLL
12-bit DAC1
IF
12-bit DAC2
@VDDA
DAC1_OUT as AF
DAC2 _OUT as AF
SRAM
32 KB
TIM6
TIM7
(ALARM OUT)
NVIC
TRACECLK
TRACED[0:3]
as AF
TIM17
JTAG & SW pbus Trace
controller
AHB : F
max
=
I2C2
HDMI CEC HDMI CEC as AF
4 channels
as AF
4 channels
as AF
4 channels
as AF
MOSI, MISO,
SCK, NSS as AF
MOSI, MISO, SCK, NSS
as AF
VREF–
2 channels, 1 compl. channel
and BKIN as AF
Flash
interface
Bus matrix
SCL, SDA, SMBA as AF
SCL, SDA, SMBA as AF
ai17515b
TIM1
4 channels, 3 compl. channels,
ETR and BKIN as AF
24 MHz
1 channel, 1 compl. channel
and BKIN as AF
1 channel, 1 compl. channel
and BKIN as AF
TIM12
TIM13
TIM14
2 channels
as AF
1 channel
as AF
1 channel
as AF
TIM5 4 channels
UART4 RX,TX, CTS, RTS,
CK as AF
UART5 RX,TX, CTS, R
CK as AF
SPI3 MOSI, MISO,
SCK, NSS as AF
APB2: Fmax = 24 MHz
FSMC
A[25:0]
D[15:0]
CLK
NOE
NWE
NE[3:0]
NBL[1:0]
NWAIT
NADV
as AF
GPIO port F
GPIO port G
PF[15:0]
PG[15:0]
DS5944 Rev 11 13/107
STM32F100xC, STM32F100xD, STM32F100xE Description
34
Figure 2. Clock tree
1. To obtain an ADC conversion time of 1.2 µs, APB2 must be at 24 MHz.
(3%/3#
-(Z
/3#?).
/3#?/54
/3#?).
/3#?/54
,3%/3#
K(Z
(3)2#
-(Z
,3)2#
K(Z
TOINDEPENDENTWATCHDOG)7$'
0,,
XXX
0,,-5,
(3%(IGHSPEEDEXTERNALCLOCKSIGNAL
,3%,OWSPEEDEXTERNALCLOCKSIGNAL
,3),OWSPEEDINTERNALCLOCKSIGNAL
(3) (IGHSPEEDINTERNALCLOCKSIGNAL
,EGEND
-#/
CLOC KOUT PUT
-AIN
X !("
0RESCALER

 0,,#,+
(3)
(3%
!0"
0RESCALER

!$#
0RESCALER
 !$##,+-(ZMAX
0#,+
(#,+
0,,#,+
TO!("BUSCORE
MEMORYAND$-!
TO!$#
,3%
,3)
(3)


(3)
(3%
PERIPHERALS
TO!0"
0ERIPHERAL#LOCK
%NABLE
%NABLE
0ERIPHERAL#LOCK
!0"
0RESCALER

0#,+
4)-TIMERS TO4)-4)-
4)-AND4)-
PERIPHERALSTO!0"
0ERIPHERAL#LOCK
%NABLE
%NABLE
0ERIPHERAL#LOCK
-(ZMAX
-(Z
-(ZMAX
-(ZMAX
TO24#
0,,32# 37
-#/
#33
TO#ORTEX3YSTEMTIMER

#LOCK
%NABLE
393#,+
MAX
24##,+
24#3%,;=
4)-X#,+
4)-X#,+
)7$'#,+
393#,+
&#,+#ORTEX
FREERUNNINGCLOCK
AI
)F!0"PRESCALERX
ELSEX
)F!0"PRESCALERX
ELSEX
02%$)6


%NABLE
&3-#,+ TO&3-#
0ERIPHERALCLOCK
4)- TO4)-
TO&LASHPROGRAMMINGINTERFACE
&,)4&#,+
Description STM32F100xC, STM32F100xD, STM32F100xE
14/107 DS5944 Rev 11
2.2 Overview
2.2.1 Arm® Cortex®-M3 core with embedded Flash and SRAM
The Arm Cortex®-M3 processor is the latest generation of Arm processors for embedded
systems. It has been developed to provide a low-cost platform that meets the needs of MCU
implementation, with a reduced pin count and low-power consumption, while delivering
outstanding computational performance and an advanced system response to interrupts.
The Arm Cortex®-M3 32-bit RISC processor features exceptional code-efficiency, delivering
the high-performance expected from an Arm core in the memory size usually associated
with 8- and 16-bit devices.
The STM32F100 Value Line family having an embedded Arm core, is therefore compatible
with all Arm tools and software.
2.2.2 Embedded Flash memory
Up to 512 Kbytes of embedded Flash memory is available for storing programs and data.
2.2.3 CRC (cyclic redundancy check) calculation unit
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit
data word and a fixed generator polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at link-
time and stored at a given memory location.
2.2.4 Embedded SRAM
Up to 32 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait
states.
2.2.5 FSMC (flexible static memory controller)
The FSMC is embedded in the high-density value line family. It has four Chip Select outputs
supporting the following modes: SRAM, PSRAM, and NOR.
Functionality overview:
The three FSMC interrupt lines are ORed in order to be connected to the NVIC
No read FIFO
Code execution from external memory
No boot capability
The targeted frequency is HCLK/2, so external access is at 12 MHz when HCLK is at
24 MHz
2.2.6 LCD parallel interface
The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It
supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to
DS5944 Rev 11 15/107
STM32F100xC, STM32F100xD, STM32F100xE Description
34
specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost-
effective graphic applications using LCD modules with embedded controllers or high-
performance solutions using external controllers with dedicated acceleration.
2.2.7 Nested vectored interrupt controller (NVIC)
The STM32F100 Value Line embeds a nested vectored interrupt controller able to handle
up to 60 maskable interrupt channels (not including the 16 interrupt lines of Cortex®-M3)
and 16 priority levels.
Closely coupled NVIC gives low latency interrupt processing
Interrupt entry vector table address passed directly to the core
Closely coupled NVIC core interface
Allows early processing of interrupts
Processing of late arriving higher priority interrupts
Support for tail-chaining
Processor state automatically saved
Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimal interrupt
latency.
2.2.8 External interrupt/event controller (EXTI)
The external interrupt/event controller consists of 18 edge detector lines used to generate
interrupt/event requests. Each line can be independently configured to select the trigger
event (rising edge, falling edge, both) and can be masked independently. A pending register
maintains the status of the interrupt requests. The EXTI can detect an external line with a
pulse width shorter than the Internal APB2 clock period. Up to 112 GPIOs can be connected
to the 16 external interrupt lines.
2.2.9 Clocks and startup
System clock selection is performed on startup, however the internal RC 8 MHz oscillator is
selected as default CPU clock on reset. An external 4-24 MHz clock can be selected, in
which case it is monitored for failure. If failure is detected, the system automatically switches
back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full
interrupt management of the PLL clock entry is available when necessary (for example on
failure of an indirectly used external crystal, resonator or oscillator).
Several prescalers allow the configuration of the AHB frequency, the high-speed APB
(APB2) and the low-speed APB (APB1) domains. The maximum frequency of the AHB and
the APB domains is 24 MHz.
2.2.10 Boot modes
At startup, boot pins are used to select one of three boot options:
Boot from user Flash
Boot from system memory
Boot from embedded SRAM
Description STM32F100xC, STM32F100xD, STM32F100xE
16/107 DS5944 Rev 11
The boot loader is located in System Memory. It is used to reprogram the Flash memory by
using USART1. For further details please refer to AN2606.
2.2.11 Power supply schemes
VDD = 2.0 to 3.6 V: External power supply for I/Os and the internal regulator.
Provided externally through VDD pins.
VSSA, VDDA = 2.0 to 3.6 V: External analog power supplies for ADC, DAC, Reset
blocks, RCs and PLL (minimum voltage to be applied to VDDA is 2.4 V when the ADC or
DAC is used).
VDDA and VSSA must be connected to VDD and VSS, respectively.
VBAT = 1.8 to 3.6 V: Power supply for RTC, external clock 32 kHz oscillator and backup
registers (through power switch) when VDD is not present.
2.2.12 Power supply supervisor
The device has an integrated power on reset (POR)/power down reset (PDR) circuitry. It is
always active, and ensures proper operation starting from/down to 2 V. The device remains
in reset mode when VDD is below a specified threshold, VPOR/PDR, without the need for an
external reset circuit.
The device features an embedded programmable voltage detector (PVD) that monitors the
VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be
generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is
higher than the VPVD threshold. The interrupt service routine can then generate a warning
message and/or put the MCU into a safe state. The PVD is enabled by software.
2.2.13 Voltage regulator
The regulator has three operation modes: main (MR), low power (LPR) and power down.
MR is used in the nominal regulation mode (Run)
LPR is used in the Stop mode
Power down is used in Standby mode: the regulator output is in high impedance: the
kernel circuitry is powered down, inducing zero consumption (but the contents of the
registers and SRAM are lost)
This regulator is always enabled after reset. It is disabled in Standby mode, providing high
impedance output.
2.2.14 Low-power modes
The STM32F100 Value Line supports three low-power modes to achieve the best
compromise between low power consumption, short startup time and available wakeup
sources:
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
Stop mode
Stop mode achieves the lowest power consumption while retaining the content of
SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC
and the HSE crystal oscillators are disabled. The voltage regulator can also be put
DS5944 Rev 11 17/107
STM32F100xC, STM32F100xD, STM32F100xE Description
34
either in normal or in low power mode.
The device can be woken up from Stop mode by any of the EXTI line. The EXTI line
source can be one of the 16 external lines, the PVD output or the RTC alarm.
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal
voltage regulator is switched off so that the entire 1.8 V domain is powered off. The
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering
Standby mode, SRAM and register contents are lost except for registers in the Backup
domain and Standby circuitry.
The device exits Standby mode when an external reset (NRST pin), a IWDG reset, a
rising edge on the WKUP pin, or an RTC alarm occurs.
Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop
or Standby mode.
2.2.15 DMA
The flexible 12-channel general-purpose DMA is able to manage memory-to-memory,
peripheral-to-memory and memory-to-peripheral transfers. The two DMA controllers support
circular buffer management avoiding the generation of interrupts when the controller
reaches the end of the buffer.
Each channel is connected to dedicated hardware DMA requests, with support for software
trigger on each channel. Configuration is made by software and transfer sizes between
source and destination are independent.
The DMA can be used with the main peripherals: SPI, DAC, I2C, USART, all timers and
ADC.
2.2.16 RTC (real-time clock) and backup registers
The RTC and the backup registers are supplied through a switch that takes power either on
VDD supply when present or through the VBAT pin. The backup registers are ten 16-bit
registers used to store 20 bytes of user application data when VDD power is not present.
The real-time clock provides a set of continuously running counters which can be used with
suitable software to provide a clock calendar function, and provides an alarm interrupt and a
periodic interrupt. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the
internal low power RC oscillator or the high-speed external clock divided by 128. The
internal low power RC has a typical frequency of 40 kHz. The RTC can be calibrated using
an external 512 Hz output to compensate for any natural crystal deviation. The RTC
features a 32-bit programmable counter for long term measurement using the Compare
register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by
default configured to generate a time base of 1 second from a clock at 32.768 kHz.
2.2.17 Timers and watchdogs
The STM32F100xx devices include an advanced-control timer, nine general-purpose
timers, two basic timers and two watchdog timers.
Table 3 compares the features of the advanced-control, general-purpose and basic timers.
Description STM32F100xC, STM32F100xD, STM32F100xE
18/107 DS5944 Rev 11
Advanced-control timer (TIM1)
The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on 6
channels. It has complementary PWM outputs with programmable inserted dead times. It
can also be seen as a complete general-purpose timer. The 4 independent channels can be
used for:
Input capture
Output compare
PWM generation (edge or center-aligned modes)
One-pulse mode output
If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If
configured as the 16-bit PWM generator, it has full modulation capability (0-100%).
The counter can be frozen in debug mode.
Many features are shared with those of the standard TIM timers which have the same
architecture. The advanced control timer can therefore work together with the TIM timers via
the Timer Link feature for synchronization or event chaining.
General-purpose timers (TIM2..5, TIM12..17)
There are ten synchronizable general-purpose timers embedded in the STM32F100xx
devices (see Table 3 for differences). Each general-purpose timer can be used to generate
PWM outputs, or as simple time base.
Table 3. Timer feature comparison
Timer Counter
resolution
Counter
type
Prescaler
factor
DMA request
generation
Capture/compare
channels
Complementary
outputs
TIM1 16-bit
Up,
down,
up/down
16 bits Yes 4 Yes
TIM2,
TIM3,
TIM4,
TIM5
16-bit
Up,
down,
up/down
Any integer
between 1
and 65536
Yes 4 No
TIM12 16-bit Up
Any integer
between 1
and 65536
No 2 No
TIM13,
TIM14 16-bit Up
Any integer
between 1
and 65536
No 1 No
TIM15 16-bit Up
Any integer
between 1
and 65536
Yes 2 Yes
TIM16,
TIM17 16-bit Up
Any integer
between 1
and 65536
Yes 1 Yes
TIM6,
TIM7 16-bit Up
Any integer
between 1
and 65536
Yes 0 No
DS5944 Rev 11 19/107
STM32F100xC, STM32F100xD, STM32F100xE Description
34
TIM2, TIM3, TIM4, TIM5
STM32F100xx devices feature four synchronizable 4-channel general-purpose timers.
These timers are based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler.
They feature 4 independent channels each for input capture/output compare, PWM or one-
pulse mode output. This gives up to 12 input captures/output compares/PWMs on the
largest packages.
The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together or with the TIM1
advanced-control timer via the Timer Link feature for synchronization or event chaining.
TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation.
These timers are capable of handling quadrature (incremental) encoder signals and the
digital outputs from 1 to 3 hall-effect sensors.
Their counters can be frozen in debug mode.
TIM12, TIM13 and TIM14
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.
TIM12 has two independent channels, whereas TIM13 and TIM14 feature one single
channel for input capture/output compare, PWM or one-pulse mode output.
Their counters can be frozen in debug mode.
TIM15, TIM16 and TIM17
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.
TIM15 has two independent channels, whereas TIM16 and TIM17 feature one single
channel for input capture/output compare, PWM or one-pulse mode output.
The TIM15, TIM16 and TIM17 timers can work together, and TIM15 can also operate with
TIM1 via the Timer Link feature for synchronization or event chaining.
TIM15 can be synchronized with TIM16 and TIM17.
TIM15, TIM16, and TIM17 have a complementary output with dead-time generation and
independent DMA request generation
Their counters can be frozen in debug mode.
Basic timers TIM6 and TIM7
These timers are mainly used for DAC trigger generation. They can also be used as a
generic 16-bit time base.
Independent watchdog
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 40 kHz internal RC and as it operates independently from the
main clock, it can operate in Stop and Standby modes. It can be used as a watchdog to
reset the device when a problem occurs, or as a free running timer for application timeout
management. It is hardware or software configurable through the option bytes. The counter
can be frozen in debug mode.
Description STM32F100xC, STM32F100xD, STM32F100xE
20/107 DS5944 Rev 11
Window watchdog
The window watchdog is based on a 7-bit downcounter that can be set as free running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from
the main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.
SysTick timer
This timer is dedicated for OS, but could also be used as a standard down counter. It
features:
A 24-bit down counter
Autoreload capability
Maskable system interrupt generation when the counter reaches 0.
Programmable clock source
2.2.18 I²C bus
The I²C bus interface can operate in multimaster and slave modes. It can support standard
and fast modes.
It supports dual slave addressing (7-bit only) and both 7/10-bit addressing in master mode.
A hardware CRC generation/verification is embedded.
The interface can be served by DMA and it supports SM Bus 2.0/PM Bus.
2.2.19 Universal synchronous/asynchronous receiver transmitter (USART)
The STM32F100 Value Line embeds three universal synchronous/asynchronous receiver
transmitters (USART1, USART2 and USART3).
The available USART interfaces communicate at up to 3 Mbit/s. They provide hardware
management of the CTS and RTS signals, they support IrDA SIR ENDEC, the
multiprocessor communication mode, the single-wire half-duplex communication mode and
have LIN Master/Slave capability.
The USART interfaces can be served by the DMA controller.
2.2.20 Universal asynchronous receiver transmitter (UART)
The STM32F100 Value Line embeds 2 universal asynchronous receiver transmitters
(UART4, and UART5).
The available UART interfaces support IrDA SIR ENDEC, the multiprocessor
communication mode, the single-wire half-duplex communication mode and have LIN
Master/Slave capability.
The UART interfaces can be served by the DMA controller.
2.2.21 Serial peripheral interface (SPI)
Up to three SPIs are able to communicate up to 12 Mbit/s in slave and master modes in full-
duplex and simplex communication modes. The 3-bit prescaler gives 8 master mode
frequencies and the frame is configurable to 8 bits or 16 bits.
The SPIs can be served by the DMA controller.
DS5944 Rev 11 21/107
STM32F100xC, STM32F100xD, STM32F100xE Description
34
2.2.22 HDMI (high-definition multimedia interface) consumer
electronics control (CEC)
The STM32F100xx value line embeds a HDMI-CEC controller that provides hardware
support of consumer electronics control (CEC) (Appendix supplement 1 to the HDMI
standard).
This protocol provides high-level control functions between all audiovisual products in an
environment. It is specified to operate at low speeds with minimum processing and memory
overhead.
2.2.23 GPIOs (general-purpose inputs/outputs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the
GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current
capable.
The I/Os alternate function configuration can be locked if needed following a specific
sequence in order to avoid spurious writing to the I/Os registers.
2.2.24 Remap capability
This feature allows the use of a maximum number of peripherals in a given application.
Indeed, alternate functions are available not only on the default pins but also on other
specific pins onto which they are remappable. This has the advantage of making board
design and port usage much more flexible.
For details refer to Table 4: High-density STM32F100xx pin definitions; it shows the list of
remappable alternate functions and the pins onto which they can be remapped. See the
STM32F100xx reference manual for software considerations.
2.2.25 ADC (analog-to-digital converter)
The 12-bit analog to digital converter has up to 16 external channels and performs
conversions in single-shot or scan modes. In scan mode, automatic conversion is performed
on a selected group of analog inputs.
The ADC can be served by the DMA controller.
An analog watchdog feature allows very precise monitoring of the converted voltage of one,
some or all selected channels. An interrupt is generated when the converted voltage is
outside the programmed thresholds.
2.2.26 DAC (digital-to-analog converter)
The two 12-bit buffered DAC channels can be used to convert two digital signals into two
analog voltage signal outputs. The chosen design structure is composed of integrated
resistor strings and an amplifier in noninverting configuration.
Description STM32F100xC, STM32F100xD, STM32F100xE
22/107 DS5944 Rev 11
This dual digital Interface supports the following features:
two DAC converters: one for each output channel
up to 10-bit output
left or right data alignment in 12-bit mode
synchronized update capability
noise-wave generation
triangular-wave generation
dual DAC channels’ independent or simultaneous conversions
DMA capability for each channel
external triggers for conversion
input voltage reference VREF+
Eight DAC trigger inputs are used in the STM32F100xx. The DAC channels are triggered
through the timer update outputs that are also connected to different DMA channels.
2.2.27 Temperature sensor
The temperature sensor has to generate a voltage that varies linearly with temperature. The
conversion range is between 2 V < VDDA < 3.6 V. The temperature sensor is internally
connected to the ADC1_IN16 input channel which is used to convert the sensor output
voltage into a digital value.
2.2.28 Serial wire JTAG debug port (SWJ-DP)
The Arm SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a
specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.
DS5944 Rev 11 23/107
STM32F100xC, STM32F100xD, STM32F100xE Pinouts and pin descriptions
34
3 Pinouts and pin descriptions
Figure 3. STM32F100 Value Line LQFP144 pinout
6
$$?
6
33?
0%
0%
0"
0"
"//4
0"
0"
0"
0"
0"
0'
6
$$?
6
33?
0'
0'
0'
0'
0'
0'
0$
0$
6
$$?
6
33?
0$
0$
0$
0$
0$
0$
0#
0#
0#
0!
0!
0% 6
$$?
0% 6
33?
0% .#
0% 0!
0% 0!
6"!4 0!
0#4!-0%224# 0!
0#/3#?). 0!
0#/3#?/54 0!
0& 0#
0& 0#
0& 0#
0& 0#
0& 6
$$?
0& 6
33?
6
33?
0'
6
$$?
0'
0& 0'
0& 0'
0& 0'
0& 0'
0& 0'
/3#?). 0$
/3#?/54 0$
.234 6
$$?
0# 6
33?
0# 0$
0# 0$
0# 0$
6
33!
0$
6
2%&
0$
6
2%&
0$
6
$$!
0"
0! 7 + 5 0 0"
0! 0"
0! 0"
0!
6
33?
6
$$?
0!
0!
0!
0!
0#
0#
0"
0"
0"
0&
0&
633?
6
$$?
0&
0&
0&
0'
0'
0%
0%
0%
6
33?
6
$$?
0%
0%
0%
0%
0%
0%
0"
0"
6
33?
6
$$?



























































































,1&0












































AI
Pinouts and pin descriptions STM32F100xC, STM32F100xD, STM32F100xE
24/107 DS5944 Rev 11
Figure 4. STM32F100 Value Line LQFP100 pinout
AI


































































6$$?
633?
.#
0!
0!
0!
0!
0!
0!
0#
0#
0#
0#
0$
0$
0$
0$
0$
0$
0$
0$
0"
0"
0"
0"
0!
633?
6$$?
0!
0!
0!
0!
0#
0#
0"
0"
0"
0%
0%
0%
0%
0%
0%
0%
0%
0%
0"
0"
633?
6$$?
6$$?
633?
0%
0%
0"
0"
"//4
0"
0"
0"
0"
0"
0$
0$
0$
0$
0$
0$
0$
0$
0#
0#
0#
0!
0!

























0%
0%
0%
0%
0%
6"!4
0#4!-0%224#
0#/3#?).
0#/3#?/54
633?
6$$?
/3#?).
/3#?/54
.234
0#
0#
0#
0#
633!
62%&
62%&
6$$!
0! 7 + 5 0
0!
0!
,1&0
DS5944 Rev 11 25/107
STM32F100xC, STM32F100xD, STM32F100xE Pinouts and pin descriptions
34
Figure 5. STM32F100 Value Line in LQFP64 pinout
ϲϰ ϲϯ ϲϮ ϲϭ ϲϬ ϱϵ ϱϴ ϱϳ ϱϲ ϱϱ ϱϰ ϱϯ ϱϮ ϱϭ ϱϬ ϰϵ
ϰϴ
ϰϳ
ϰϲ
ϰϱ
ϰϰ
ϰϯ
ϰϮ
ϰϭ
ϰϬ
ϯϵ
ϯϴ
ϯϳ
ϯϲ
ϯϱ
ϯϰ
ϯϯ
ϭϳ ϭϴ ϭϵ ϮϬ Ϯϭ ϮϮ Ϯϯ Ϯϰ Ϯϵ ϯϬ ϯϭ ϯϮϮϱ Ϯϲ Ϯϳ Ϯϴ
ϭ
Ϯ
ϯ
ϰ
ϱ
ϲ
ϳ
ϴ
ϵ
ϭϬ
ϭϭ
ϭϮ
ϭϯ
ϭϰ
ϭϱ
ϭϲ
sd
WϭϯͲdDWZͲZd
W ϭϰ ͲK ^ ϯϮͺ/E
W ϭϱ ͲK ^ ϯϮͺKh d
W ϬͲK^ ͺ/E
W ϭͲK^ ͺKhd
EZ^d
WϬ
Wϭ
WϮ
Wϯ
s^^
s
W Ϭ Ͳ t < h W
W ϭ
W Ϯ
sͺϯ
s^^ͺϯ
W ϵ
W ϴ
KK d Ϭ
W ϳ
W ϲ
W ϱ
W ϰ
W ϯ
WϮ
WϭϮ
Wϭϭ
WϭϬ
W ϭ ϱ
W ϭ ϰ
sͺϮ
s^^ͺϮ
W ϭ ϯ
W ϭ Ϯ
W ϭ ϭ
W ϭ Ϭ
W ϵ
W ϴ
Wϵ
Wϴ
Wϳ
Wϲ
W ϭϱ
W ϭϰ
W ϭϯ
W ϭϮ
W ϯ
s^^ͺϰ
sͺϰ
W ϰ
W ϱ
W ϲ
W ϳ
Wϰ
Wϱ
W Ϭ
W ϭ
W Ϯ
Wϭ Ϭ
Wϭ ϭ
s^^ͺϭ
sͺϭ
>Y&Wϲϰ
DL
Table 4. High-density STM32F100xx pin definitions
Pins
Pin name
Type(1)
I/O Level(2)
Main
function(3)
(after reset)
Alternate functions(4)
LQFP144
LQFP100
LQFP64
Default Remap
1 1 - PE2 I/O FT PE2 TRACECK/ FSMC_A23 -
2 2 - PE3 I/O FT PE3 TRACED0/FSMC_A19 -
3 3 - PE4 I/O FT PE4 TRACED1/FSMC_A20 -
4 4 - PE5 I/O FT PE5 TRACED2/FSMC_A21 -
5 5 - PE6 I/O FT PE6 TRACED3/FSMC_A22 -
661 V
BAT S- V
BAT --
772
PC13-TAMPER-
RTC(5) I/O - PC13(6) TAMPER-RTC -
883 PC14-
OSC32_IN(5) I/O - PC14(6) OSC32_IN -
994 PC15-
OSC32_OUT(5) I/O - PC15(6) OSC32_OUT -
10 - - PF0 I/O FT PF0 FSMC_A0 -
11 - - PF1 I/O FT PF1 FSMC_A1 -
12 - - PF2 I/O FT PF2 FSMC_A2 -
13 - - PF3 I/O FT PF3 FSMC_A3 -
Pinouts and pin descriptions STM32F100xC, STM32F100xD, STM32F100xE
26/107 DS5944 Rev 11
14 - - PF4 I/O FT PF4 FSMC_A4 -
15 - - PF5 I/O FT PF5 FSMC_A5 -
16 10 - VSS_5 S- V
SS_5 --
17 11 - VDD_5 S- V
DD_5 --
18 - - PF6 I/O - PF6 - -
19 - - PF7 I/O - PF7 - -
20 - - PF8 I/O - PF8 - -
21 - - PF9 I/O - PF9 - -
22 - - PF10 I/O - PF10 - -
23 12 5 OSC_IN I - OSC_IN - PD0(7)
24 13 6 OSC_OUT O - OSC_OUT - PD1(7)
25 14 7 NRST I/O - NRST - -
26 15 8 PC0 I/O - PC0 ADC_IN10 -
27 16 9 PC1 I/O - PC1 ADC_IN11 -
28 17 10 PC2 I/O - PC2 ADC_IN12 -
29 18 11 PC3 I/O - PC3 ADC_IN13 -
30 19 12 VSSA S- V
SSA --
31 20 - VREF- S- V
REF- --
32 21 - VREF+ S- V
REF+ --
33 22 13 VDDA S- V
DDA --
34 23 14 PA0-WKUP I/O - PA0
WKUP/USART2_CTS(8)
ADC_IN0
TIM2_CH1_ETR
TIM5_CH1
-
35 24 15 PA1 I/O - PA1
USART2_RTS(8)
ADC_IN1/
TIM5_CH2/TIM2_CH2(8)
-
36 25 16 PA2 I/O - PA2
USART2_TX(8)/TIM5_CH3
ADC_IN2/ TIM15_CH1
TIM2_CH3 (8)
-
37 26 17 PA3 I/O - PA3
USART2_RX(8)/TIM5_CH4
ADC_IN3/TIM2_CH4(8) /
TIM15_CH2
-
38 27 18 VSS_4 S- V
SS_4 --
39 28 19 VDD_4 S- V
DD_4 --
Table 4. High-density STM32F100xx pin definitions (continued)
Pins
Pin name
Type(1)
I/O Level(2)
Main
function(3)
(after reset)
Alternate functions(4)
LQFP144
LQFP100
LQFP64
Default Remap
DS5944 Rev 11 27/107
STM32F100xC, STM32F100xD, STM32F100xE Pinouts and pin descriptions
34
40 29 20 PA4 I/O - PA4
SPI1_NSS(8)/
USART2_CK(8)
DAC_OUT1/ADC_IN4
-
41 30 21 PA5 I/O - PA5 SPI1_SCK(8)
DAC_OUT2/ADC_IN5 -
42 31 22 PA6 I/O - PA6
SPI1_MISO(8)/
ADC_IN6 /
TIM3_CH1(8)
TIM1_BKIN /
TIM16_CH1
43 32 23 PA7 I/O - PA7
SPI1_MOSI(8)/
ADC_IN7 /
TIM3_CH2(8)
TIM1_CH1N/
TIM17_CH1
44 33 24 PC4 I/O - PC4 ADC_IN14 / TIM12_CH1 -
45 34 25 PC5 I/O - PC5 ADC_IN15 / TIM12_CH2 -
46 35 26 PB0 I/O - PB0 ADC_IN8/TIM3_CH3 TIM1_CH2N /
TIM13_CH1
47 36 27 PB1 I/O - PB1 ADC_IN9/TIM3_CH4(8) TIM1_CH3N /
TIM14_CH1
48 37 28 PB2 I/O FT PB2/BOOT1 - -
49 - - PF11 I/O FT PF11 - -
50 - - PF12 I/O FT PF12 FSMC_A6 -
51 - - VSS_6 S- V
SS_6 --
52 - - VDD_6 S- V
DD_6 --
53 - - PF13 I/O FT PF13 FSMC_A7 -
54 - - PF14 I/O FT PF14 FSMC_A8 -
55 - - PF15 I/O FT PF15 FSMC_A9 -
56 - - PG0 I/O FT PG0 FSMC_A10 -
57 - - PG1 I/O FT PG1 FSMC_A11 -
58 38 - PE7 I/O FT PE7 FSMC_D4 TIM1_ETR
59 39 - PE8 I/O FT PE8 FSMC_D5 TIM1_CH1N
60 40 - PE9 I/O FT PE9 FSMC_D6 TIM1_CH1
61 - - VSS_7 S- V
SS_7 --
62 - - VDD_7 S- V
DD_7 --
63 41 - PE10 I/O FT PE10 FSMC_D7 TIM1_CH2N
64 42 - PE11 I/O FT PE11 FSMC_D8 TIM1_CH2
65 43 - PE12 I/O FT PE12 FSMC_D9 TIM1_CH3N
Table 4. High-density STM32F100xx pin definitions (continued)
Pins
Pin name
Type(1)
I/O Level(2)
Main
function(3)
(after reset)
Alternate functions(4)
LQFP144
LQFP100
LQFP64
Default Remap
Pinouts and pin descriptions STM32F100xC, STM32F100xD, STM32F100xE
28/107 DS5944 Rev 11
66 44 - PE13 I/O FT PE13 FSMC_D10 TIM1_CH3
67 45 - PE14 I/O FT PE14 FSMC_D11 TIM1_CH4
68 46 - PE15 I/O FT PE15 FSMC_D12 TIM1_BKIN
69 47 29 PB10 I/O FT PB10 I2C2_SCL/USART3_TX(8) TIM2_CH3 /
HDMI_CEC
70 48 30 PB11 I/O FT PB11 I2C2_SDA/USART3_RX(8) TIM2_CH4
71 49 31 VSS_1 S- V
SS_1 --
72 50 32 VDD_1 S- V
DD_1 --
73 51 33 PB12 I/O FT PB12
SPI2_NSS/
I2C2_SMBA/
USART3_CK(8)/
TIM1_BKIN(8)
TIM12_CH1
74 52 34 PB13 I/O FT PB13
SPI2_SCK/
USART3_CTS(8)/
TIM1_CH1N
TIM12_CH2
75 53 35 PB14 I/O FT PB14 SPI2_MISO/TIM1_CH2N
USART3_RTS(8)/ TIM15_CH1
76 54 36 PB15 I/O FT PB15
SPI2_MOSI/
TIM1_CH3N(8)/
TIM15_CH1N
TIM15_CH2
77 55 - PD8 I/O FT PD8 FSMC_D13 USART3_TX
78 56 - PD9 I/O FT PD9 FSMC_D14 USART3_RX
79 57 - PD10 I/O FT PD10 FSMC_D15 USART3_CK
80 58 - PD11 I/O FT PD11 FSMC_A16 USART3_CTS
81 59 - PD12 I/O FT PD12 FSMC_A17 TIM4_CH1 /
USART3_RTS
82 60 - PD13 I/O FT PD13 FSMC_A18 TIM4_CH2
83 - - VSS_8 S- V
SS_8 --
84 - - VDD_8 S- V
DD_8 --
85 61 - PD14 I/O FT PD14 FSMC_D0 TIM4_CH3
86 62 - PD15 I/O FT PD15 FSMC_D1 TIM4_CH4
87 - - PG2 I/O FT PG2 FSMC_A12 -
88 - - PG3 I/O FT PG3 FSMC_A13 -
89 - - PG4 I/O FT PG4 FSMC_A14 -
90 - - PG5 I/O FT PG5 FSMC_A15 -
Table 4. High-density STM32F100xx pin definitions (continued)
Pins
Pin name
Type(1)
I/O Level(2)
Main
function(3)
(after reset)
Alternate functions(4)
LQFP144
LQFP100
LQFP64
Default Remap
DS5944 Rev 11 29/107
STM32F100xC, STM32F100xD, STM32F100xE Pinouts and pin descriptions
34
91 - - PG6 I/O FT PG6 - -
92 - - PG7 I/O FT PG7 - -
93 - - PG8 I/O FT PG8 - -
94 - - VSS_9 S- V
SS_9 --
95 - - VDD_9 S- V
DD_9 --
96 63 37 PC6 I/O FT PC6 - TIM3_CH1
97 64 38 PC7 I/O FT PC7 - TIM3_CH2
98 65 39 PC8 I/O FT PC8 TIM13_CH1 TIM3_CH3
99 66 40 PC9 I/O FT PC9 TIM14_CH1 TIM3_CH4
100 67 41 PA8 I/O FT PA8 USART1_CK/
TIM1_CH1(8)/MCO -
101 68 42 PA9 I/O FT PA9 USART1_TX(8)/
TIM1_CH2(8) / TIM15_BKIN -
102 69 43 PA10 I/O FT PA10 USART1_RX(8)/
TIM1_CH3(8) / TIM17_BKIN -
103 70 44 PA11 I/O FT PA11 USART1_CTS / TIM1_CH4(8) -
104 71 45 PA12 I/O FT PA12 USART1_RTS / TIM1_ETR(8) -
105 72 46 PA13 I/O FT JTMS-SWDIO - -
106 73 - Not connected -
107 74 47 VSS_2 S- V
SS_2 --
108 75 48 VDD_2 S- V
DD_2 --
109 76 49 PA14 I/O FT JTCK-SWCLK - -
110 77 50 PA15 I/O FT JTDI SPI3_NSS TIM2_CH1_ETR
/
SPI1_NSS
111 78 51 PC10 I/O FT PC10 UART4_TX USART3_TX
112 79 52 PC11 I/O FT PC11 UART4_RX USART3_RX
113 80 53 PC12 I/O FT PC12 UART5_TX USART3_CK
114 81 - PD0 I/O FT PD0 FSMC_D2(9) -
115 82 - PD1 I/O FT PD1 FSMC_D3(9) -
116 83 54 PD2 I/O FT PD2 TIM3_ETR/UART5_RX -
117 84 - PD3 I/O FT PD3 FSMC_CLK USART2_CTS
118 85 - PD4 I/O FT PD4 FSMC_NOE USART2_RTS
119 86 - PD5 I/O FT PD5 FSMC_NWE USART2_TX
Table 4. High-density STM32F100xx pin definitions (continued)
Pins
Pin name
Type(1)
I/O Level(2)
Main
function(3)
(after reset)
Alternate functions(4)
LQFP144
LQFP100
LQFP64
Default Remap
Pinouts and pin descriptions STM32F100xC, STM32F100xD, STM32F100xE
30/107 DS5944 Rev 11
120 - - VSS_10 S- V
SS_10 --
121 - - VDD_10 S- V
DD_10 --
122 87 - PD6 I/O FT PD6 FSMC_NWAIT USART2_RX
123 88 - PD7 I/O FT PD7 FSMC_NE1 USART2_CK
124 - - PG9 I/O FT PG9 FSMC_NE2 -
125 - - PG10 I/O FT PG10 FSMC_NE3 -
126 - - PG11 I/O FT PG11 - -
127 - - PG12 I/O FT PG12 FSMC_NE4 -
128 - - PG13 I/O FT PG13 FSMC_A24 -
129 - - PG14 I/O FT PG14 FSMC_A25 -
130 - - VSS_11 S- V
SS_11 --
131 - - VDD_11 S- V
DD_11 --
132 - - PG15 I/O FT PG15 - -
133 89 55 PB3/ I/O FT JTDO SPI3_SCK
PB3/TRACESWO
TIM2_CH2 /
SPI1_SCK
134 90 56 PB4 I/O FT NJTRST SPI3_MISO TIM3_CH1
SPI1_MISO
135 91 57 PB5 I/O - PB5 I2C1_SMBA/ SPI3_MOSI
TIM16_BKIN
TIM3_CH2 /
SPI1_MOSI
136 92 58 PB6 I/O FT PB6 I2C1_SCL(8)/ TIM4_CH1(8) /
TIM16_CH1N USART1_TX
137 93 59 PB7 I/O FT PB7 I2C1_SDA(8) / FSMC_NADV /
TIM4_CH2(8) / TIM17_CH1N USART1_RX
138 94 60 BOOT0 I - BOOT0 - -
139 95 61 PB8 I/O FT PB8 TIM4_CH3(8)/TIM16_CH1 /
HDMI_CEC I2C1_SCL
140 96 62 PB9 I/O FT PB9 TIM4_CH4(8)/ TIM17_CH1 I2C1_SDA
141 97 - PE0 I/O FT PE0 TIM4_ETR / FSMC_NBL0 -
142 98 - PE1 I/O FT PE1 FSMC_NBL1 -
143 99 63 VSS_3 S- V
SS_3 --
144 100 64 VDD_3 S- V
DD_3 --
1. I = input, O = output, S = supply.
2. FT = 5 V tolerant.
Table 4. High-density STM32F100xx pin definitions (continued)
Pins
Pin name
Type(1)
I/O Level(2)
Main
function(3)
(after reset)
Alternate functions(4)
LQFP144
LQFP100
LQFP64
Default Remap
DS5944 Rev 11 31/107
STM32F100xC, STM32F100xD, STM32F100xE Pinouts and pin descriptions
34
3. Function availability depends on the chosen device.
4. If several peripherals share the same I/O pin, to avoid conflict between these alternate functions only one peripheral should
be enabled at a time through the peripheral clock enable bit (in the corresponding RCC peripheral clock enable register).
5. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3
mA), the use of GPIOs PC13 to PC15 in output mode is limited: the speed should not exceed 2 MHz with a maximum load
of 30 pF and these IOs must not be used as a current source (e.g. to drive an LED).
6. Main function after the first backup domain power-up. Later on, it depends on the contents of the Backup registers even
after reset (because these registers are not reset by the main reset). For details on how to manage these IOs, refer to the
Battery backup domain and BKP register description sections in the STM32F100xx reference manual, available from the
STMicroelectronics website: www.st.com.
7. For the LQFP64 package, the pins number 5 and 6 are configured as OSC_IN/OSC_OUT after reset, however the
functionality of PD0 and PD1 can be remapped by software on these pins. For the LQFP100 and LQFP144 packages, PD0
and PD1 are available by default, so there is no need for remapping. For more details, refer to Alternate function I/O and
debug configuration section in the STM32F100xx reference manual.
8. This alternate function can be remapped by software to some other port pins (if available on the used package). For more
details, refer to the Alternate function I/O and debug configuration section in the STM32F100xx reference manual, available
from the STMicroelectronics website: www.st.com.
9. For devices delivered in LQFP64 packages, the FSMC function is not available.
Table 5. FSMC pin definition
Pins
FSMC
LQFP100(1)
NOR/PSRAM/SRAM NOR/PSRAM Mux
PE2 A23 A23 Yes
PE3 A19 A19 Yes
PE4 A20 A20 Yes
PE5 A21 A21 Yes
PE6 A22 A22 Yes
PF0 A0 - -
PF1 A1 - -
PF2 A2 - -
PF3 A3 - -
PF4 A4 - -
PF5 A5 - -
PF6 - - -
PF7 - - -
PF8 - - -
PF9 - - -
PF10 - - -
PF11 - - -
PF12 A6 - -
PF13 A7 - -
PF14 A8 - -
PF15 A9 - -
Pinouts and pin descriptions STM32F100xC, STM32F100xD, STM32F100xE
32/107 DS5944 Rev 11
PG0 A10 - -
PG1 A11 - -
PE7 D4 DA4 Yes
PE8 D5 DA5 Yes
PE9 D6 DA6 Yes
PE10 D7 DA7 Yes
PE11 D8 DA8 Yes
PE12 D9 DA9 Yes
PE13 D10 DA10 Yes
PE14 D11 DA11 Yes
PE15 D12 DA12 Yes
PD8 D13 DA13 Yes
PD9 D14 DA14 Yes
PD10 D15 DA15 Yes
PD11 A16 A16 Yes
PD12 A17 A17 Yes
PD13 A18 A18 Yes
PD14 D0 DA0 Yes
PD15 D1 DA1 Yes
PG2 A12 - -
PG3 A13 - -
PG4 A14 - -
PG5 A15 - -
PG6 - - -
PG7 - - -
PD0 D2 DA2 Yes
PD1 D3 DA3 Yes
PD3 CLK CLK Yes
PD4 NOE NOE Yes
PD5 NWE NWE Yes
PD6 NWAIT NWAIT Yes
PD7 NE1 NE1 Yes
PG9 NE2 NE2 -
Table 5. FSMC pin definition (continued)
Pins
FSMC
LQFP100(1)
NOR/PSRAM/SRAM NOR/PSRAM Mux
DS5944 Rev 11 33/107
STM32F100xC, STM32F100xD, STM32F100xE Pinouts and pin descriptions
34
PG10 NE3 NE3 -
PG11 - - -
PG12 NE4 NE4 -
PG13 A24 A24 -
PG14 A25 A25 -
PB7 NADV NADV Yes
PE0 NBL0 NBL0 Yes
PE1 NBL1 NBL1 Yes
1. Ports F and G are not available in devices delivered in 100-pin packages.
Table 5. FSMC pin definition (continued)
Pins
FSMC
LQFP100(1)
NOR/PSRAM/SRAM NOR/PSRAM Mux
Memory mapping STM32F100xC, STM32F100xD, STM32F100xE
34/107 DS5944 Rev 11
4 Memory mapping
The memory map is shown in Figure 6.
Figure 6. Memory map
APB memory space
DMA1
RTC
WWDG
IWDG
SPI2
USART2
USART3
ADC1
USART1
SPI1
EXTI
RCC
0
1
2
3
4
5
6
7
Peripherals
SRAM
reserved
reserved
Option Bytes
Reserved
0x4000 0000
0x4000 0400
0x4000 0800
0x4000 0C00
0x4000 2800
0x4000 2C00
0x4000 3000
0x4000 3400
0x4000 3800
0x4000 3C00
0x4000 4400
0x4000 4800
0x4000 4C00
0x4000 5400
0x4000 5800
0x4000 6C00
0x4000 7000
0x4000 7400
0x4001 0000
0x4001 0400
0x4001 0800
0x4001 0C00
0x4001 1000
0x4001 1400
0x4001 1800
0x4001 2400
0x4001 2800
0x4001 2C00
0x4001 3000
0x4001 3400
0x4001 3800
0x4001 3C00
0x4002 0000
0x4002 0400
0x4002 1000
0x4002 1400
0x4002 2000
0x4002 2400
0x4002 3000
0x4002 3400
0xFFFF FFFF
reserved
CRC
reserved
reserved
Flash interface
DMA2
reserved
reserved
TIM1
reserved
Port F
DAC
Port D
Port C
Port B
Port A
AFIO
PWR
BKP
I2C2
I2C1
reserved
TIM4
TIM3
TIM2
0xFFFF FFFF
0xE010 0000
0xE000 0000
0xC000 0000
0xA000 0000
0x8000 0000
0x6000 0000
0x4000 0000
0x2000 0000
0x0000 0000
0x1FFF FFFF
0x1FFF F80F
0x1FFF F800
0x1FFF F000
0x0801 FFFF
0x0800 0000
System memory
Flash memory
Cortex-M3 internal
peripherals
ai18400
0x0000 0000
Aliased to Flash or
system memory
depending on
BOOT pins
UART4
Port E
0x4001 1C00
0x4001 4C00
0x4001 4800
0x4001 4400
0x4001 4000
reserved
TIM17
TIM16
TIM15
0x4000 7C00
0x4000 7800
CEC
reserved
reserved
0x4000 5C00
TIM6
TIM7
TIM12
0x4000 1000
0x4000 1400
0x4000 1800
Port G
0x4001 2000
0x4000 5000
UART5
SPI3
TIM13
TIM14
0x4000 1C00
0x4000 2000
FSMC
external
memory
0x7000 0000
FSMC regs
TIM5
DS5944 Rev 11 35/107
STM32F100xC, STM32F100xD, STM32F100xE Electrical characteristics
106
5 Electrical characteristics
5.1 Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
5.1.1 Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean±3Σ).
5.1.2 Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.3 V (for the
2 V VDD 3.6 V voltage range). They are given only as design guidelines and are not
tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean±2Σ).
5.1.3 Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
5.1.4 Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 7.
5.1.5 Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 8.
Electrical characteristics STM32F100xC, STM32F100xD, STM32F100xE
36/107 DS5944 Rev 11
5.1.6 Power supply scheme
Figure 9. Power supply scheme
Caution: In Figure 9, the 4.7 µF capacitor must be connected to VDD3.
Figure 7. Pin loading conditions Figure 8. Pin input voltage
ai14123b
C = 50 pF
STM32F10xxx pin
ai14124b
STM32F10xxx pin
VIN
AIE
9''

$QDORJ
5&V3//

3RZHU VZL WFK
9
%$7
*3 ,2 V
287
,1
.HUQHOORJLF
&38
'LJLWDO
0HPRULHV
%DFNXSFLUFXLWU\
26&.57&
%DFNXSUHJLVWHUV
:DNHXSORJLF
îQ)
î)
9
5HJXODWRU
966

9''$
95()
95()
966$
!$#$!#
/HYHOVKLIWHU
,2
/RJLF
9''
Q)
)
95()
Q)
)
9''
DS5944 Rev 11 37/107
STM32F100xC, STM32F100xD, STM32F100xE Electrical characteristics
106
5.1.7 Current consumption measurement
Figure 10. Current consumption measurement scheme
5.2 Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 6: Voltage characteristics,
Table 7: Current characteristics, and Table 8: Thermal characteristics may cause permanent
damage to the device. These are stress ratings only and functional operation of the device
at these conditions is not implied. Exposure to maximum rating conditions for extended
periods may affect device reliability.
Table 6. Voltage characteristics
Symbol Ratings Min Max Unit
VDD VSS
External main supply voltage (including
VDDA and VDD)(1)
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
–0.3 4.0
V
VIN(2)
2. VIN maximum must always be respected. Refer to Table 7: Current characteristics for the maximum
allowed injected current values.
Input voltage on five volt tolerant pin VSS 0.3 VDD + 4.0
Input voltage on any other pin VSS 0.3 4.0
|ΔVDDx| Variations between different VDD power pins - 50
mV
|VSSX VSS|Variations between all the different ground
pins -50
VESD(HBM)
Electrostatic discharge voltage (human body
model)
see Section 5.3.12: Absolute
maximum ratings (electrical
sensitivity)
-
Electrical characteristics STM32F100xC, STM32F100xD, STM32F100xE
38/107 DS5944 Rev 11
5.3 Operating conditions
5.3.1 General operating conditions
Table 7. Current characteristics
Symbol Ratings Max. Unit
IVDD Total current into VDD/VDDA power lines (source)(1)
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
150
mA
IVSS Total current out of VSS ground lines (sink)(1) 150
IIO
Output current sunk by any I/O and control pin 25
Output current source by any I/Os and control pin 25
IINJ(PIN)(2)
2. Negative injection disturbs the analog performance of the device. See Note: on page 85.
Injected current on five volt tolerant pins(3)
3. Positive injection is not possible on these I/Os. A negative injection is induced by VIN<VSS. IINJ(PIN) must
never be exceeded. Refer to Table 6: Voltage characteristics for the maximum allowed input voltage
values.
-5 / +0
Injected current on any other pin(4)
4. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. IINJ(PIN) must
never be exceeded. Refer to Table 6: Voltage characteristics for the maximum allowed input voltage
values.
± 5
ΣIINJ(PIN) Total injected current (sum of all I/O and control pins)(5)
5. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the
positive and negative injected currents (instantaneous values).
± 25
Table 8. Thermal characteristics
Symbol Ratings Value Unit
TSTG Storage temperature range –65 to +150 °C
TJMaximum junction temperature 150 °C
Table 9. General operating conditions
Symbol Parameter Conditions Min Max Unit
fHCLK Internal AHB clock frequency - 0 24
MHzfPCLK1 Internal APB1 clock frequency - 0 24
fPCLK2 Internal APB2 clock frequency - 0 24
VDD Standard operating voltage - 2 3.6 V
VDDA(1)
Analog operating voltage
(ADC not used) Must be the same potential
as VDD
23.6
V
Analog operating voltage
(ADC used) 2.4 3.6
VBAT Backup operating voltage - 1.8 3.6 V
DS5944 Rev 11 39/107
STM32F100xC, STM32F100xD, STM32F100xE Electrical characteristics
106
Note: It is recommended to power VDD and VDDA from the same source. A maximum difference of
300 mV between VDD and VDDA can be tolerated during power-up and operation
5.3.2 Operating conditions at power-up / power-down
Subject to general operating conditions for TA.
PD
Power dissipation at TA =
85 °C for suffix 6 or TA =
105 °C for suffix 7(2)
LQFP144 - 666
mWLQFP100 - 434
LQFP64 - 444
TA
Ambient temperature for 6
suffix version
Maximum power dissipation –40 85
°C
Low power dissipation(3) –40 105
Ambient temperature for 7
suffix version
Maximum power dissipation –40 105
°C
Low power dissipation(3) –40 125
TJ Junction temperature range
6 suffix version –40 105
°C
7 suffix version –40 125
1. When the ADC is used, refer to Table 51: ADC characteristics.
2. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Section 6.4:
Thermal characteristics on page 101).
3. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see
Section 6.4: Thermal characteristics on page 101).
Table 9. General operating conditions (continued)
Symbol Parameter Conditions Min Max Unit
Table 10. Operating conditions at power-up / power-down
Symbol Parameter Min Max Unit
tVDD
VDD rise time rate 0
µs/V
VDD fall time rate 20
Electrical characteristics STM32F100xC, STM32F100xD, STM32F100xE
40/107 DS5944 Rev 11
5.3.3 Embedded reset and power control block characteristics
The parameters given in Table 11 are derived from tests performed under the ambient
temperature and VDD supply voltage conditions summarized in Table 9.
. Table 11. Embedded reset and power control block characteristics
Symbol Parameter Conditions Min Typ Max Unit
VPVD
Programmable voltage
detector level selection
PLS[2:0]=000 (rising edge) 2.1 2.18 2.26 V
PLS[2:0]=000 (falling edge) 2 2.08 2.16 V
PLS[2:0]=001 (rising edge) 2.19 2.28 2.37 V
PLS[2:0]=001 (falling edge) 2.09 2.18 2.27 V
PLS[2:0]=010 (rising edge) 2.28 2.38 2.48 V
PLS[2:0]=010 (falling edge) 2.18 2.28 2.38 V
PLS[2:0]=011 (rising edge) 2.38 2.48 2.58 V
PLS[2:0]=011 (falling edge) 2.28 2.38 2.48 V
PLS[2:0]=100 (rising edge) 2.47 2.58 2.69 V
PLS[2:0]=100 (falling edge) 2.37 2.48 2.59 V
PLS[2:0]=101 (rising edge) 2.57 2.68 2.79 V
PLS[2:0]=101 (falling edge) 2.47 2.58 2.69 V
PLS[2:0]=110 (rising edge) 2.66 2.78 2.9 V
PLS[2:0]=110 (falling edge) 2.56 2.68 2.8 V
PLS[2:0]=111 (rising edge) 2.76 2.88 3 V
PLS[2:0]=111 (falling edge) 2.66 2.78 2.9 V
VPVDhyst(2) PVD hysteresis - - 100 - mV
VPOR/PDR
Power on/power down
reset threshold
Falling edge 1.8(1)
1. The product behavior is guaranteed by design down to the minimum VPOR/PDR value.
1.88 1.96 V
Rising edge 1.84 1.92 2.0 V
VPDRhyst(2) PDR hysteresis - - 40 - mV
tRSTTEMPO(2)
2. Guaranteed by design, not tested in production.
Reset temporization - 1.5 2.5 4.5 ms
DS5944 Rev 11 41/107
STM32F100xC, STM32F100xD, STM32F100xE Electrical characteristics
106
5.3.4 Embedded reference voltage
The parameters given in Table 12 are derived from tests performed under the ambient
temperature and VDD supply voltage conditions summarized in Table 9.
5.3.5 Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 10: Current consumption
measurement scheme.
All Run-mode current consumption measurements given in this section are performed with a
reduced code that gives a consumption equivalent to Dhrystone 2.1 code.
Maximum current consumption
The MCU is placed under the following conditions:
All I/O pins are in input mode with a static value at VDD or VSS (no load)
All peripherals are disabled except if it is explicitly mentioned
Prefetch in on (reminder: this bit must be set before clock setting and bus prescaling)
When the peripherals are enabled fPCLK1 = fHCLK/2, fPCLK2 = fHCLK
The parameters given in Table 13 are derived from tests performed under the ambient
temperature and VDD supply voltage conditions summarized in Table 9.
Table 12. Embedded internal reference voltage
Symbol Parameter Conditions Min Typ Max Unit
VREFINT Internal reference voltage
–40 °C < TA < +105 °C 1.16 1.20 1.26 V
–40 °C < TA < +85 °C 1.16 1.20 1.24 V
TS_vrefint(1)
1. Shortest sampling time can be determined in the application by multiple iterations.
ADC sampling time when
reading the internal
reference voltage
- - 5.1 17.1(2)
2. Guaranteed by design, not tested in production.
µs
VRERINT(2)
Internal reference voltage
spread over the temperature
range
VDD = 3 V ±10 mV - - 10 mV
TCoeff(2) Temperature coefficient - - - 100 ppm/°C
Electrical characteristics STM32F100xC, STM32F100xD, STM32F100xE
42/107 DS5944 Rev 11
Table 13. Maximum current consumption in Run mode, code with data processing
running from Flash
Symbol Parameter Conditions fHCLK
Max(1)
1. Based on characterization, not tested in production.
Unit
TA = 85 °C TA = 105 °C
IDD
Supply
current in
Run mode
External clock (2), all
peripherals enabled
2. External clock or HSI frequency is 8 MHz and PLL is on when fHCLK > 8 MHz.
24 MHz 19.7 20
mA
16 MHz 14.6 14.7
8 MHz 8.2 8.6
External clock(2), all
peripherals disabled
24 MHz 11.3 11.6
16 MHz 8.7 8.9
8 MHz 5.6 6
HSI clock(2), all peripherals
enabled
24 MHz 19 19
16 MHz 13.1 13.2
8 MHz 10.1 10.1
HSI clock(2), all peripherals
disabled
24 MHz 9.4 9.6
16 MHz 6.7 7
8 MHz 5.4 5.6
Table 14. Maximum current consumption in Run mode, code with data processing
running from RAM
Symbol Parameter Conditions fHCLK
Max(1)
1. Based on characterization, tested in production at VDD max, fHCLK max.
Unit
TA = 85 °C TA = 105 °C
IDD
Supply current
in Run mode
External clock (2), all
peripherals enabled
2. External clock or HSI frequency is 8 MHz and PLL is on when fHCLK > 8 MHz.
24 MHz 18.5 19
mA
16 MHz 13.1 13.5
8 MHz 7.3 7.6
External clock(2) all
peripherals disabled
24 MHz 10.9 11.5
16 MHz 7.3 7.7
8 MHz 4.8 5.2
HSI clock(2), all
peripherals enabled
24 MHz 17.2 17.2
16 MHz 11.7 11.8
8 MHz 8.9 9
HSI clock(2), all
peripherals disabled
24 MHz 8.1 8.3
16 MHz 5.6 5.8
8 MHz 4.3 4.5
DS5944 Rev 11 43/107
STM32F100xC, STM32F100xD, STM32F100xE Electrical characteristics
106
Table 15. STM32F100xxB maximum current consumption in Sleep mode, code
running from Flash or RAM
Symbol Parameter Conditions fHCLK
Max(1)
1. Based on characterization, tested in production at VDD max and fHCLK max with peripherals enabled.
Unit
TA = 85 °C TA = 105 °C
IDD
Supply current
in Sleep mode
External clock(2) all
peripherals enabled
2. External clock or HSI frequency is 8 MHz and PLL is on when fHCLK > 8 MHz.
24 MHz 14.1 14.3
mA
16 MHz 9.7 10.3
8 MHz 5.9 6.2
External clock(2), all
peripherals disabled
24 MHz 4.2 4.6
16 MHz 3.7 4.1
8 MHz 2.9 3.4
HSI clock(2), all
peripherals enabled
24 MHz 12.5 12.7
16 MHz 8.2 8.5
8 MHz 6.4 6.6
HSI clock(2), all
peripherals disabled
24 MHz 2.3 2.5
16 MHz 1.7 2
8 MHz 1.4 1.7
Electrical characteristics STM32F100xC, STM32F100xD, STM32F100xE
44/107 DS5944 Rev 11
Typical current consumption
The MCU is placed under the following conditions:
All I/O pins are in input mode with a static value at VDD or VSS (no load)
All peripherals are disabled except if it is explicitly mentioned
When the peripherals are enabled fPCLK1 = fHCLK/4, fPCLK2 = fHCLK/2, fADCCLK =
fPCLK2/4
The parameters given in Table 17 are derived from tests performed under the ambient
temperature and VDD supply voltage conditions summarized in Table 9.
Table 16. Typical and maximum current consumptions in Stop and Standby modes
Symbol Parameter Conditions
Typ(1) Max
Unit
VDD/VBAT
= 2.0 V
VDD/ VBAT
= 2.4 V
VDD/VBAT
= 3.3 V
TA =
85 °C
TA =
105 °C
IDD
Supply current
in Stop mode
Regulator in Run mode,
Low-speed and high-speed
internal RC oscillators and
high-speed oscillator OFF (no
independent watchdog)
- - 31 320 670
µA
Regulator in Low-Power mode,
Low-speed and high-speed
internal RC oscillators and
high-speed oscillator OFF (no
independent watchdog)
- - 24 305 650
Supply current
in Standby
mode
Low-speed internal RC
oscillator and independent
watchdog ON
--3.2--
Low-speed internal RC
oscillator ON, independent
watchdog OFF
--3.1--
Low-speed internal RC
oscillator and independent
watchdog OFF, low-speed
oscillator and RTC OFF
--2.23.95.7
IDD_VBAT
Backup
domain supply
current
Low-speed oscillator and RTC
ON 1.0 1.2 1.4 2 2.3
1. Typical values are measured at TA = 25 °C.
DS5944 Rev 11 45/107
STM32F100xC, STM32F100xD, STM32F100xE Electrical characteristics
106
Table 17. Typical current consumption in Run mode, code with data processing
running from Flash
Symbol Parameter Conditions fHCLK
Typical values(1)
1. Typical values are measures at TA = 25 °C, VDD = 3.3 V.
Unit
All peripherals
enabled(2)
2. Add an additional power consumption of 0.8 mA for the ADC and of 0.5 mA for the DAC analog part. In
applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).
All peripherals
disabled
IDD
Supply
current in
Run mode
Running on high-speed
external clock with an
8 MHz crystal(3)
3. An 8 MHz crystal is used as the external clock source. The AHB prescaler is used to reduce the frequency
when fHCLK < 8 MHz, the PLL is used when fHCLK > 8 MHz.
24 MHz 14.1 9.5
mA
16 MHz 10 6.85
8 MHz 5.8 4.05
4 MHz 3.6 2.65
2 MHz 2.3 1.85
1 MHz 1.7 1.46
500 kHz 1.4 1.3
125 kHz 1.15 1.1
Running on high-speed
internal RC (HSI)
24 MHz 13.4 8.7
16 MHz 9.3 6.2
8 MHz 5.2 3.45
4 MHz 2.95 2.1
2 MHz 1.7 1.3
1 MHz 1.1 0.9
500 kHz 0.8 0.7
125 kHz 0.6 0.55
Electrical characteristics STM32F100xC, STM32F100xD, STM32F100xE
46/107 DS5944 Rev 11
Table 18. Typical current consumption in Sleep mode, code running from Flash or
RAM
Symbol Parameter Conditions fHCLK
Typical values(1)
1. Typical values are measures at TA = 25 °C, VDD = 3.3 V.
Unit
All peripherals
enabled(2)
2. Add an additional power consumption of 0.8 mA for the ADC and of 0.5 mA for the DAC analog part. In
applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).
All peripherals
disabled
IDD
Supply
current in
Sleep
mode
Running on high-speed
external clock with an
8 MHz crystal(3)
3. An 8 MHz crystal is used as the external clock source. The AHB prescaler is used to reduce the frequency
when fHCLK > 8 MHz, the PLL is used when fHCLK > 8 MHz.
24 MHz 8.7 2.75
mA
16 MHz 6.1 2.1
8 MHz 3.3 1.3
4 MHz 2.25 1.2
2 MHz 1.65 1.15
1 MHz 1.35 1.1
500 kHz 1.2 1.07
125 kHz 1.1 1.05
Running on high-speed
internal RC (HSI)
24 MHz 8 2.15
16 MHz 5.5 1.5
8 MHz 2.7 0.75
4 MHz 1.65 0.6
2 MHz 1.1 0.55
1 MHz 0.8 0.5
500 kHz 0.65 0.49
125 kHz 0.53 0.47
DS5944 Rev 11 47/107
STM32F100xC, STM32F100xD, STM32F100xE Electrical characteristics
106
On-chip peripheral current consumption
The current consumption of the on-chip peripherals is given in Table 19. The MCU is placed
under the following conditions:
all I/O pins are in input mode with a static value at VDD or VSS (no load)
all peripherals are disabled unless otherwise mentioned
the given value is calculated by measuring the current consumption
with all peripherals clocked off
with only one peripheral clocked on
ambient operating temperature and VDD supply voltage conditions summarized in
Table 6.
Table 19. Peripheral current consumption
Peripheral Typical consumption at 25 °C Unit
AHB (up to 24MHz)
DMA1 12.50
µA/MHz
DMA2 8.33
FSMC 28.33
CRC 1.25
BusMatrix(1) 16.67
Electrical characteristics STM32F100xC, STM32F100xD, STM32F100xE
48/107 DS5944 Rev 11
APB1 (up to 24 MHz)
APB1-Bridge 3.75
µA/MHz
TIM2 17.08
TIM3 17.50
TIM4 17.08
TIM5 17.08
TIM6 4.58
TIM7 4.17
TIM12 10.42
TIM13 7.08
TIM14 7.08
SPI2/I2S2 4.58
SPI3/I2S3 4.58
USART2 12.08
USART3 12.08
UART4 11.25
UART5 10.83
I2C1 10.42
I2C2 10.42
CEC 5.42
DAC(2) 7.92
WWDG 2.92
PWR 1.25
BKP 2.08
IWDG 3.33
Table 19. Peripheral current consumption (continued)
Peripheral Typical consumption at 25 °C Unit
DS5944 Rev 11 49/107
STM32F100xC, STM32F100xD, STM32F100xE Electrical characteristics
106
5.3.6 External clock source characteristics
High-speed external user clock generated from an external source
The characteristics given in Table 20 result from tests performed using an high-speed
external clock source, and under the ambient temperature and supply voltage conditions
summarized in Table 9.
APB2 (up to 24 MHz)
APB2-Bridge 4.17
µA/MHz
GPIOA 6.67
GPIOB 6.25
GPIOC 6.67
GPIOD 6.67
GPIOE 6.67
GPIOF 5.42
GPIOG 6.67
SPI1 4.17
USART1 12.08
TIM1 22.08
TIM15 14.17
TIM16 10.00
TIM17 10.00
ADC1(3) 15.83
1. The BusMatrix is automatically active when at least one master is ON.(CPU, DMA1 or DMA2).
2. When DAC_OUT1 or DAC_OUT2 is enabled, there is an additional current consumption equal to 0,42 mA
3. Specific conditions for measuring ADC current consumption: fHCLK = 24 MHz, fAPB1 = fHCLK, fAPB2 = fHCLK,
fADCCLK = fAPB2/2. When ADON bit in the ADC_CR2 register is set to 1, a current consumption of analog
part equal to 0.82 mA must be added.
Table 19. Peripheral current consumption (continued)
Peripheral Typical consumption at 25 °C Unit
Electrical characteristics STM32F100xC, STM32F100xD, STM32F100xE
50/107 DS5944 Rev 11
Low-speed external user clock generated from an external source
The characteristics given in Table 21 result from tests performed using an low-speed
external clock source, and under the ambient temperature and supply voltage conditions
summarized in Table 9.
Table 20. High-speed external user clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
fHSE_ext
User external clock source
frequency(1)
1. Guaranteed by design, not tested in production.
-
1824MHz
VHSEH
OSC_IN input pin high level
voltage(1) 0.7VDD -V
DD
V
VHSEL
OSC_IN input pin low level
voltage(1) VSS -0.3V
DD
tw(HSE)
tw(HSE)
OSC_IN high or low time(1) 5- -
ns
tr(HSE)
tf(HSE)
OSC_IN rise or fall time(1) --20
Cin(HSE) OSC_IN input capacitance(1) --5-pF
DuCy(HSE) Duty cycle(1) -45-55%
ILOSC_IN Input leakage current VSS VIN VDD --±1µA
Table 21. Low-speed external user clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
fLSE_ext
User external clock source
frequency(1)
1. Guaranteed by design, not tested in production.
-
- 32.768 1000 kHz
VLSEH
OSC32_IN input pin high level
voltage(1) 0.7VDD -V
DD
V
VLSEL
OSC32_IN input pin low level
voltage(1) VSS -0.3V
DD
tw(LSE)
tw(LSE)
OSC32_IN high or low time(1) 450 - -
ns
tr(LSE)
tf(LSE)
OSC32_IN rise or fall time(1) --50
Cin(LSE) OSC32_IN input capacitance(1) -5-pF
DuCy(LSE) Duty cycle(1) 30 - 70 %
ILOSC32_IN Input leakage current VSS VIN VDD --±1µA
DS5944 Rev 11 51/107
STM32F100xC, STM32F100xD, STM32F100xE Electrical characteristics
106
Figure 11. High-speed external clock source AC timing diagram
Figure 12. Low-speed external clock source AC timing diagram
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 24 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 22. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
Table 22. HSE 4-24 MHz oscillator characteristics(1)(2)
Symbol Parameter Conditions Min Typ Max Unit
fOSC_IN Oscillator frequency - 4 8 24 MHz
RFFeedback resistor - - 200 - kΩ
DLE
26&B,1
([WHUQDOFORFNVRXUFH
670)[[[
9+6(+
W
:+6(
,/


7
+6(
W
W
U+6(
W
:+6(
I
+6(BH[W
9+6(/
ai14140c
OSC32_IN
External
STM32F10xxx
clock source
VLSEH
tf(LSE) tW(LSE)
IL
90%
10%
TLSE
t
tr(LSE) tW(LSE)
fLSE_ext
VLSEL
Electrical characteristics STM32F100xC, STM32F100xD, STM32F100xE
52/107 DS5944 Rev 11
Figure 13. Typical application with an 8 MHz crystal
1. REXT value depends on the crystal characteristics.
Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 23. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
Note: For CL1 and CL2 it is recommended to use high-quality ceramic capacitors in the 5 pF to
15 pF range selected to match the requirements of the crystal or resonator. CL1 and CL2, are
usually the same size. The crystal manufacturer typically specifies a load capacitance which
CL1
CL2(3)
Recommended load capacitance
versus equivalent serial
resistance of the crystal (RS)(4)
RS = 30 Ω -30-pF
i2HSE driving current
VDD = 3.3 V
VIN = VSS with 30 pF
load
--1mA
gmOscillator transconductance Startup 25 - - mA/V
tSU(HSE)
(5) Startup time VDD is stabilized - 2 - ms
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
2. Based on characterization, not tested in production.
3. It is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.),
designed for high-frequency applications, and selected to match the requirements of the crystal or
resonator. CL1 and CL2, are usually the same size. The crystal manufacturer typically specifies a load
capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be
included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2.
4. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a
humid environment, due to the induced leakage and the bias condition change. However, it is
recommended to take this point into account if the MCU is used in tough humidity conditions.
5. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly
with the crystal manufacturer
Table 22. HSE 4-24 MHz oscillator characteristics(1)(2)
Symbol Parameter Conditions Min Typ Max Unit
DLE
26&B28 7
26&B,1 I+6(
&/
5)
670)[[[
0+]
UHVRQDWRU
5HVRQDWRUZLWK
LQWHJUDWHGFDSDFLWRUV
%LDV
FRQWUROOHG
JDLQ
5(;7
&/
DS5944 Rev 11 53/107
STM32F100xC, STM32F100xD, STM32F100xE Electrical characteristics
106
is the series combination of CL1 and CL2.
Load capacitance CL has the following formula: CL = CL1 x CL2 / (CL1 + CL2) + Cstray where
Cstray is the pin capacitance and board or trace PCB-related capacitance. Typically, it is
between 2 pF and 7 pF.
For further details, refer to the application note AN2867 “Oscillator design guide for ST
microcontrollers” available from the ST website www.st.com.
Caution: To avoid exceeding the maximum value of CL1 and CL2 (15 pF) it is strongly recommended
to use a resonator with a load capacitance CL
7 pF. Never use a resonator with a load
capacitance of 12.5 pF.
Example: if you choose a resonator with a load capacitance of CL = 6 pF, and Cstray = 2 pF,
then CL1 = CL2 = 8 pF.
Table 23. LSE oscillator characteristics (fLSE = 32.768 kHz)(1)
Symbol Parameter Conditions Min Typ Max Unit
RFFeedback resistor - - 5 - MΩ
CL1
CL2(2)
Recommended load capacitance
versus equivalent serial
resistance of the crystal (RS)(3)
RS = 30 KΩ--15pF
I2LSE driving current VDD = 3.3 V
VIN = VSS
--1.4µA
gmOscillator transconductance - 5 - - µA/V
tSU(LSE)(4) Startup time VDD is
stabilized
TA = 50 °C - 1.5 -
s
TA = 25 °C - 2.5 -
TA = 10 °C - 4 -
TA = 0 °C - 6 -
TA = -10 °C - 10 -
TA = -20 °C - 17 -
TA = -30 °C - 32 -
TA = -40 °C - 60 -
1. Based on characterization, not tested in production.
2. Refer to the note and caution paragraphs above the table.
3. The oscillator selection can be optimized in terms of supply current using an high quality resonator with small RS value for
example MSIV-TIN32.768 kHz. Refer to crystal manufacturer for more details
4. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is
reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer
Electrical characteristics STM32F100xC, STM32F100xD, STM32F100xE
54/107 DS5944 Rev 11
Figure 14. Typical application with a 32.768 kHz crystal
5.3.7 Internal clock source characteristics
The parameters given in Table 24 are derived from tests performed under the ambient
temperature and VDD supply voltage conditions summarized in Table 9.
High-speed internal (HSI) RC oscillator
Low-speed internal (LSI) RC oscillator
DLE
26&B28 7
26&B,1 I/6(
&/
5)
670)[[[
.+]
UHVRQDWRU
5HVRQDWRUZLWK
LQWHJUDWHGFDSDFLWRUV
%LDV
FRQWUROOHG
JDLQ
&/
Table 24. HSI oscillator characteristics(1)
1. VDD = 3.3 V, TA = –40 to 105 °C °C unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Unit
fHSI Frequency - - 8 - MHz
ACCHSI Accuracy of HSI oscillator
TA = –40 to 105 °C(2)
2. Based on characterization, not tested in production.
-2.4 - 2.5 %
TA = –10 to 85 °C(2) -2.2 - 1.3 %
TA = 0 to 70 °C(2) -1.9 - 1.3 %
TA = 25 °C -1 - 1 %
tsu(HSI)(3)
3. Guaranteed by design. Not tested in production
HSI oscillator startup time - 1 - 2 µs
IDD(HSI)(3) HSI oscillator power consumption - - 80 100 µA
Table 25. LSI oscillator characteristics (1)
1. VDD = 3 V, TA = –40 to 105 °C °C unless otherwise specified.
Symbol Parameter Min Typ Max Unit
fLSI Frequency 30 40 60 kHz
tsu(LSI)(2)
2. Guaranteed by design, not tested in production.
LSI oscillator startup time - - 85 µs
IDD(LSI)(2) LSI oscillator power consumption - 0.65 1.2 µA
DS5944 Rev 11 55/107
STM32F100xC, STM32F100xD, STM32F100xE Electrical characteristics
106
Wakeup time from low-power mode
The wakeup times given in Table 26 are measured on a wakeup phase with an 8-MHz HSI
RC oscillator. The clock source used to wake up the device depends from the current
operating mode:
Stop or Standby mode: the clock source is the RC oscillator
Sleep mode: the clock source is the clock that was set before entering Sleep mode.
All timings are derived from tests performed under the ambient temperature and VDD supply
voltage conditions summarized in Table 9.
5.3.8 PLL characteristics
The parameters given in Table 27 are derived from tests performed under the ambient
temperature and VDD supply voltage conditions summarized in Table 9.
5.3.9 Memory characteristics
Flash memory
The characteristics are given at TA = –40 to 105 °C unless otherwise specified.
Table 26. Low-power mode wakeup timings
Symbol Parameter Typ Unit
tWUSLEEP(1)
1. The wakeup times are measured from the wakeup event to the point at which the user application code
reads the first instruction.
Wakeup from Sleep mode 1.8 µs
tWUSTOP(1) Wakeup from Stop mode (regulator in run mode) 3.6
µs
Wakeup from Stop mode (regulator in low-power mode) 5.4
tWUSTDBY(1) Wakeup from Standby mode 50 µs
Table 27. PLL characteristics
Symbol Parameter
Value
Unit
Min(1) Typ Max(1)
1. Based on device characterization, not tested in production.
fPLL_IN
PLL input clock(2)
2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with
the range defined by fPLL_OUT
.
18.024MHz
PLL input clock duty cycle 40 - 60 %
fPLL_OUT PLL multiplier output clock 16 - 24 MHz
tLOCK PLL lock time - - 200 µs
Jitter Cycle-to-cycle jitter - - 300 ps
Electrical characteristics STM32F100xC, STM32F100xD, STM32F100xE
56/107 DS5944 Rev 11
5.3.10 FSMC characteristics
Asynchronous waveforms and timings
Figure 15 through Figure 18 represent asynchronous waveforms and Table 30 through
Table 33 provide the corresponding timings. The results shown in these tables are obtained
with the following FSMC configuration:
AddressSetupTime = 0
AddressHoldTime = 1
DataSetupTime = 1
Table 28. Flash memory characteristics
Symbol Parameter Conditions Min(1)
1. Guaranteed by design, not tested in production.
Typ Max(1) Unit
tprog 16-bit programming time TA = –40 to +105 °C 40 52.5 70 µs
tERASE Page (2 KB) erase time TA = –40 to +105 °C 20 - 40 ms
tME Mass erase time TA = –40 to +105 °C 20 - 40 ms
IDD Supply current
Read mode
fHCLK = 24 MHz, VDD = 3.3 V --20mA
Write / Erase modes
fHCLK = 24 MHz, VDD = 3.3 V --5mA
Power-down mode / Halt,
VDD = 3.0 to 3.6 V - - 50 µA
Vprog Programming voltage - 2 - 3.6 V
Table 29. Flash memory endurance and data retention
Symbol Parameter Conditions
Value
Unit
Min(1)
1. Based on characterization not tested in production.
Typ Max
NEND Endurance TA = –40 to +85 °C (6 suffix versions)
TA = –40 to +105 °C (7 suffix versions) 10 - - kcycles
tRET Data retention
1 kcycle(2) at TA = 85 °C
2. Cycling performed over the whole temperature range.
30 - -
Years1 kcycle(2) at TA = 105 °C 10 - -
10 kcycles(2) at TA = 55 °C 20 - -
DS5944 Rev 11 57/107
STM32F100xC, STM32F100xD, STM32F100xE Electrical characteristics
106
Figure 15. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms
1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.
'DWD
)60&B1(
)60&B1%/>@
)60&B'>@
W
Y%/B1(
WK'DWDB1(
)60&B12(
$GGUHVV
)60&B$>@
W
Y$B1(
)60&B1:(
WVX'DWDB1(
069
Z12(
W
WY12(B1(
WK1(B12(
WK'DWDB12(
WK$B12(
WK%/B12(
WVX'DWDB12(
)60&B1$'9
WY1$'9B1(
WZ1$'9
Electrical characteristics STM32F100xC, STM32F100xD, STM32F100xE
58/107 DS5944 Rev 11
Table 30. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings(1) (2)
1. CL = 15 pF.
2. Preliminary values.
Symbol Parameter Min Max Unit
tw(NE) FSMC_NE low time 5THCLK – 1.5 5THCLK + 2 ns
tv(NOE_NE) FSMC_NEx low to FSMC_NOE low 0.5 1.5 ns
tw(NOE) FSMC_NOE low time 5THCLK – 1.5 5THCLK + 1.5 ns
th(NE_NOE) FSMC_NOE high to FSMC_NE high hold time –1.5 - ns
tv(A_NE) FSMC_NEx low to FSMC_A valid - 0 ns
th(A_NOE) Address hold time after FSMC_NOE high 0.1 - ns
tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 0 ns
th(BL_NOE) FSMC_BL hold time after FSMC_NOE high 0 - ns
tsu(Data_NE) Data to FSMC_NEx high setup time 2THCLK + 25 - ns
tsu(Data_NOE) Data to FSMC_NOEx high setup time 2THCLK + 25 - ns
th(Data_NOE) Data hold time after FSMC_NOE high 0 - ns
th(Data_NE) Data hold time after FSMC_NEx high 0 - ns
tv(NADV_NE) FSMC_NEx low to FSMC_NADV low - 5 ns
tw(NADV) FSMC_NADV low time - THCLK + 1.5 ns
DS5944 Rev 11 59/107
STM32F100xC, STM32F100xD, STM32F100xE Electrical characteristics
106
Figure 16. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms
1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.
Table 31. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings(1)(2)
1. CL = 15 pF.
2. Preliminary values.
Symbol Parameter Min Max Unit
tw(NE) FSMC_NE low time 3THCLK – 1 3THCLK + 2 ns
tv(NWE_NE) FSMC_NEx low to FSMC_NWE low THCLK – 0.5 THCLK + 1.5 ns
tw(NWE) FSMC_NWE low time THCLK – 0.5 THCLK + 1.5 ns
th(NE_NWE) FSMC_NWE high to FSMC_NE high hold time THCLK -ns
tv(A_NE) FSMC_NEx low to FSMC_A valid - 7.5 ns
th(A_NWE) Address hold time after FSMC_NWE high THCLK -ns
tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 1.5 ns
th(BL_NWE) FSMC_BL hold time after FSMC_NWE high THCLK – 0.5 - ns
tv(Data_NE) FSMC_NEx low to Data valid - THCLK + 7 ns
th(Data_NWE) Data hold time after FSMC_NWE high THCLK -ns
tv(NADV_NE) FSMC_NEx low to FSMC_NADV low - 5.5 ns
tw(NADV) FSMC_NADV low time - THCLK + 1.5 ns
NBL
Data
FSMC_NEx
FSMC_NBL[3:0]
FSMC_D[15:0]
t
v(BL_NE)
th(Data_NWE)
FSMC_NOE
Address
FSMC_A[25:0]
t
v(A_NE)
tw(NWE)
FSMC_NWE
tv(NWE_NE) th(NE_NWE)
th(A_NWE)
th(BL_NWE)
tv(Data_NE)
tw(NE)
ai14990
FSMC_NADV(1)
tv(NADV_NE)
tw(NADV)
Electrical characteristics STM32F100xC, STM32F100xD, STM32F100xE
60/107 DS5944 Rev 11
Figure 17. Asynchronous multiplexed PSRAM/NOR read waveforms
Table 32. Asynchronous multiplexed PSRAM/NOR read timings(1)(2)
1. CL = 15 pF.
2. Preliminary values.
Symbol Parameter Min Max Unit
tw(NE) FSMC_NE low time 7THCLK – 2 7THCLK + 2 ns
tv(NOE_NE) FSMC_NEx low to FSMC_NOE low 3THCLK – 0.5 3THCLK + 1.5 ns
tw(NOE) FSMC_NOE low time 4THCLK – 1 4THCLK + 2 ns
th(NE_NOE) FSMC_NOE high to FSMC_NE high hold time –1 - ns
tv(A_NE) FSMC_NEx low to FSMC_A valid - 0 ns
tv(NADV_NE) FSMC_NEx low to FSMC_NADV low 3 5 ns
tw(NADV) FSMC_NADV low time THCLK –1.5 THCLK + 1.5 ns
th(AD_NADV)
FSMC_AD (address) valid hold time after
FSMC_NADV high THCLK - ns
th(A_NOE) Address hold time after FSMC_NOE high THCLK - ns
th(BL_NOE) FSMC_BL hold time after FSMC_NOE high 0 - ns
tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 0 ns
tsu(Data_NE) Data to FSMC_NEx high setup time 2THCLK + 24 - ns
tsu(Data_NOE) Data to FSMC_NOE high setup time 2THCLK + 25 - ns
th(Data_NE) Data hold time after FSMC_NEx high 0 - ns
th(Data_NOE) Data hold time after FSMC_NOE high 0 - ns
.",
$ATA
&3-#?.",;=
&3-#?!$;=
T
V",?.%
TH$ATA?.%
!DDRESS
&3-#?!;=
T
V!?.%
&3-#?.7%
TV!?.%
AIB
!DDRESS
&3-#?.!$6
TV.!$6?.%
TW.!$6
TSU$ATA?.%
T
H!$?.!$6
&3-#?.%
&3-#?./%
TW.%
TW./%
TV./%?.% TH.%?./%
TH!?./%
TH",?./%
TSU$ATA?./% TH$ATA?./%
DS5944 Rev 11 61/107
STM32F100xC, STM32F100xD, STM32F100xE Electrical characteristics
106
Figure 18. Asynchronous multiplexed PSRAM/NOR write waveforms
Table 33. Asynchronous multiplexed PSRAM/NOR write timings(1)(2)
1. CL = 15 pF.
2. Preliminary values.
Symbol Parameter Min Max Unit
tw(NE) FSMC_NE low time 5THCLK – 1 5THCLK + 2 ns
tv(NWE_NE) FSMC_NEx low to FSMC_NWE low 2THCLK 2THCLK + 1 ns
tw(NWE) FSMC_NWE low time 2THCLK – 1 2THCLK + 2 ns
th(NE_NWE) FSMC_NWE high to FSMC_NE high hold time THCLK – 1 - ns
tv(A_NE) FSMC_NEx low to FSMC_A valid - 7 ns
tv(NADV_NE) FSMC_NEx low to FSMC_NADV low 3 5 ns
tw(NADV) FSMC_NADV low time THCLK – 1 THCLK + 1 ns
th(AD_NADV)
FSMC_AD (address) valid hold time after
FSMC_NADV high THCLK – 3 - ns
th(A_NWE) Address hold time after FSMC_NWE high 4THCLK -ns
tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 1.6 ns
th(BL_NWE) FSMC_BL hold time after FSMC_NWE high THCLK – 1.5 - ns
tv(Data_NADV) FSMC_NADV high to Data valid - THCLK + 1.5 ns
th(Data_NWE) Data hold time after FSMC_NWE high THCLK – 5 - ns
1%/
'DWD
)60&B1([
)60&B1%/>@
)60&B$'>@
W
Y%/B1(
WK'DWDB1:(
)60&B12(
$GGUHVV
)60&B$>@
W
Y$B1(
WZ1:(
)60&B1:(
WY1:(B1( WK1(B1:(
WK$B1:(
WK%/B1:(
WY$B1(
WZ1(
DL%
$GGUHVV
)60&B1$'9
WY1$'9B1(
WZ1$'9
WY'DWDB1$'9
W
K$'B1$'9
Electrical characteristics STM32F100xC, STM32F100xD, STM32F100xE
62/107 DS5944 Rev 11
Synchronous waveforms and timings
Figure 19 through Figure 22 represent synchronous waveforms and Table 35 through
Table 37 provide the corresponding timings. The results shown in these tables are obtained
with the following FSMC configuration:
BurstAccessMode = FSMC_BurstAccessMode_Enable;
MemoryType = FSMC_MemoryType_CRAM;
WriteBurst = FSMC_WriteBurst_Enable;
CLKDivision = 1; (0 is not supported, see the STM32F10xxx reference manual)
DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM
Figure 19. Synchronous multiplexed NOR/PSRAM read timings
&3-#?#,+
&3-#?.%X
&3-#?.!$6
&3-#?!;=
&3-#?./%
&3-#?!$;= !$;= $ $
&3-#?.7!)4
7!)4#&'B7!)40/,B
&3-#?.7!)4
7!)4#&'B7!)40/,B
TW#,+ TW#,+
$ATALATENCY
"53452.
TD#,+,.%X, TD#,+,.%X(
TD#,+,.!$6,
TD#,+,!6
TD#,+,.!$6(
TD#,+,!)6
TD#,+(./%, TD#,+,./%(
TD#,+,!$6
TD#,+,!$)6
TSU!$6#,+(
TH#,+(!$6
TSU!$6#,+( TH#,+(!$6
TSU.7!)46#,+( TH#,+(.7!)46
TSU.7!)46#,+( TH#,+(.7!)46
TSU.7!)46#,+( TH#,+(.7!)46
AII
$
DS5944 Rev 11 63/107
STM32F100xC, STM32F100xD, STM32F100xE Electrical characteristics
106
Table 34. Synchronous multiplexed NOR/PSRAM read timings(1)(2)
1. CL = 15 pF.
2. Preliminary values.
Symbol Parameter Min Max Unit
tw(CLK) FSMC_CLK period 27.7 - ns
td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x = 0...2) - 1.5 ns
td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x = 0...2) 2 - ns
td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 4 ns
td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 5 - ns
td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x = 16...25) - 0 ns
td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x = 16...25) 2 - ns
td(CLKH-NOEL) FSMC_CLK high to FSMC_NOE low - 1 ns
td(CLKL-NOEH) FSMC_CLK low to FSMC_NOE high 0.5 - ns
td(CLKL-ADV) FSMC_CLK low to FSMC_AD[15:0] valid - 12 ns
td(CLKL-ADIV) FSMC_CLK low to FSMC_AD[15:0] invalid 0 - ns
tsu(ADV-CLKH)
FSMC_A/D[15:0] valid data before FSMC_CLK
high 6- ns
th(CLKH-ADV) FSMC_A/D[15:0] valid data after FSMC_CLK high 0 - ns
tsu(NWAITV-CLKH) FSMC_NWAIT valid before FSMC_CLK high 8 - ns
th(CLKH-NWAITV) FSMC_NWAIT valid after FSMC_CLK high 2 - ns
Electrical characteristics STM32F100xC, STM32F100xD, STM32F100xE
64/107 DS5944 Rev 11
Figure 20. Synchronous multiplexed PSRAM write timings
&3-#?#,+
&3-#?.%X
&3-#?.!$6
&3-#?!;=
&3-#?.7%
&3-#?!$;= !$;= $ $
&3-#?.7!)4
7!)4#&'B7!)40/,B
TW#,+ TW#,+
$ATALATENCY
"53452.
TD#,+,.%X, TD#,+,.%X(
TD#,+,.!$6,
TD#,+,!6
TD#,+,.!$6(
TD#,+,!)6
TD#,+,.7%(
TD#,+,.7%,
TD#,+,.",(
TD#,+,!$6
TD#,+,!$)6 TD#,+,$ATA
TSU.7!)46#,+( TH#,+(.7!)46
AIH
TD#,+,$ATA
&3-#?.",
DS5944 Rev 11 65/107
STM32F100xC, STM32F100xD, STM32F100xE Electrical characteristics
106
Table 35. Synchronous multiplexed PSRAM write timings(1)(2)
1. CL = 15 pF.
2. Preliminary values
Symbol Parameter Min Max Unit
tw(CLK) FSMC_CLK period 27.7 - ns
td(CLKL-NExL) FSMC_CLK low to FSMC_Nex low (x = 0...2) - 2 ns
td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x = 0...2) 2 - ns
td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 4 ns
td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 5 - ns
td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x = 16...25) - 0 ns
td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x = 16...25) 2 - ns
td(CLKL-NWEL) FSMC_CLK low to FSMC_NWE low - 1 ns
td(CLKL-NWEH) FSMC_CLK low to FSMC_NWE high 1 - ns
td(CLKL-ADV) FSMC_CLK low to FSMC_AD[15:0] valid - 12 ns
td(CLKL-ADIV) FSMC_CLK low to FSMC_AD[15:0] invalid 3 - ns
td(CLKL-Data) FSMC_A/D[15:0] valid after FSMC_CLK low - 6 ns
tsu(NWAITV-CLKH) FSMC_NWAIT valid before FSMC_CLK high 7 - ns
th(CLKH-NWAITV) FSMC_NWAIT valid after FSMC_CLK high 2 - ns
td(CLKL-NBLH) FSMC_CLK low to FSMC_NBL high 1 - ns
Electrical characteristics STM32F100xC, STM32F100xD, STM32F100xE
66/107 DS5944 Rev 11
Figure 21. Synchronous non-multiplexed NOR/PSRAM read timings
Table 36. Synchronous non-multiplexed NOR/PSRAM read timings(1)(2)
1. CL = 15 pF.
2. Preliminary values.
Symbol Parameter Min Max Unit
tw(CLK) FSMC_CLK period 27.7 - ns
td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x = 0...2) - 1.5 ns
td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x = 0...2) 2 - ns
td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 4 ns
td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 5 - ns
td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x = 0...25) - 0 ns
td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x = 0...25) 4 - ns
td(CLKH-NOEL) FSMC_CLK high to FSMC_NOE low - 1.5 ns
td(CLKL-NOEH) FSMC_CLK low to FSMC_NOE high 1.5 - ns
tsu(DV-CLKH)
FSMC_D[15:0] valid data before FSMC_CLK
high 6.5 - ns
th(CLKH-DV) FSMC_D[15:0] valid data after FSMC_CLK high 7 - ns
tsu(NWAITV-CLKH) FSMC_NWAIT valid before FSMC_SMCLK high 7 - ns
th(CLKH-NWAITV) FSMC_NWAIT valid after FSMC_CLK high 2 - ns
&3-#?#,+
&3-#?.%X
&3-#?!;=
&3-#?./%
&3-#?$;= $ $
&3-#?.7!)4
7!)4#&'B7!)40/,B
&3-#?.7!)4
7!)4#&'B7!)40/,B
TW#,+ TW#,+
$ATALATENCY
"53452.
TD#,+,.%X, TD#,+,.%X(
TD#,+,!6 TD#,+,!)6
TD#,+(./%, TD#,+,./%(
TSU$6#,+( TH#,+($6
TSU$6#,+( TH#,+($6
TSU.7!)46#,+( TH#,+(.7!)46
TSU.7!)46#,+( TH#,+(.7!)46
TSU.7!)46#,+( TH#,+(.7!)46
AIH
&3-#?.!$6
TD#,+,.!$6, TD#,+,.!$6(
$
DS5944 Rev 11 67/107
STM32F100xC, STM32F100xD, STM32F100xE Electrical characteristics
106
Figure 22. Synchronous non-multiplexed PSRAM write timings
Table 37. Synchronous non-multiplexed PSRAM write timings(1)(2)
1. CL = 15 pF.
2. Preliminary values.
Symbol Parameter Min Max Unit
tw(CLK) FSMC_CLK period 27.7 - ns
td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x = 0...2) - 2 ns
td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x = 0...2) 2 - ns
td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 4 ns
td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 5 - ns
td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x = 16...25) - 0 ns
td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x = 16...25) 2 - ns
td(CLKL-NWEL) FSMC_CLK low to FSMC_NWE low - 1 ns
td(CLKL-NWEH) FSMC_CLK low to FSMC_NWE high 1 - ns
td(CLKL-Data) FSMC_D[15:0] valid data after FSMC_CLK low - 6 ns
tsu(NWAITV-CLKH) FSMC_NWAIT valid before FSMC_CLK high 7 - ns
th(CLKH-NWAITV) FSMC_NWAIT valid after FSMC_CLK high 2 - ns
td(CLKL-NBLH) FSMC_CLK low to FSMC_NBL high 1 - ns
&3-#?#,+
&3-#?.%X
&3-#?!;=
&3-#?.7%
&3-#?$;= $ $
&3-#?.7!)4
7!)4#&'B7!)40/,B
TW#,+ TW#,+
$ATALATENCY
"53452.
TD#,+,.%X, TD#,+,.%X(
TD#,+,!6 TD#,+,!)6
TD#,+,.7%(
TD#,+,.7%,
TD#,+,$ATA
TSU.7!)46#,+(
TH#,+(.7!)46
AII
&3-#?.!$6
TD#,+,.!$6, TD#,+,.!$6(
TD#,+,$ATA
&3-#?.",
TD#,+,.",(
Electrical characteristics STM32F100xC, STM32F100xD, STM32F100xE
68/107 DS5944 Rev 11
5.3.11 EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (Electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and
VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is
compliant with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 38. They are based on the EMS levels and classes
defined in application note AN1709.
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and pre
qualification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical Data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second. To complete these trials, ESD stress can be applied directly on the device, over the
range of specification values. When unexpected behavior is detected, the software can be
hardened to prevent unrecoverable errors occurring (see application note AN1015).
Table 38. EMS characteristics
Symbol Parameter Conditions Level/Class
VFESD
Voltage limits to be applied on any I/O pin to
induce a functional disturbance
VDD = 3.3 V, TA = +25 °C,
fHCLK = 24 MHz, LQFP144
package, conforms to
IEC 61000-4-2
2B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS pins
to induce a functional disturbance
VDD = 3.3 V, TA = +25 °C,
fHCLK = 24 MHz, LQFP144
package, conforms to
IEC 61000-4-4
4A
DS5944 Rev 11 69/107
STM32F100xC, STM32F100xD, STM32F100xE Electrical characteristics
106
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device is monitored while a simple application is
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with
IEC 61967-2 standard which specifies the test board and the pin loading.
5.3.12 Absolute maximum ratings (electrical sensitivity)
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the JESD22-A114/C101 standard.
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up
performance:
A supply overvoltage is applied to each power supply pin
A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with EIA/JESD78 IC latch-up standard.
Table 39. EMI characteristics
Symbol Parameter Conditions Monitored
frequency band
Max vs. [fHSE/fHCLK]
Unit
8/24 MHz
SEMI Peak level
VDD = 3.6 V, TA = 25°C,
LQFP144 package
compliant with SAE
J1752/3
0.1 MHz to 30 MHz 16
dBµV30 MHz to 130 MHz 25
130 MHz to 1GHz 25
SAE EMI Level 4 -
Table 40. ESD absolute maximum ratings
Symbol Ratings Conditions Class Maximum
value(1)
1. Based on characterization results, not tested in production.
Unit
VESD(HBM)
Electrostatic discharge
voltage (human body model)
TA = +25 °C
conforming to JESD22-A114 2 2000
V
VESD(CDM)
Electrostatic discharge
voltage (charge device model)
TA = +25 °C
conforming to JESD22-C101 II 500
Table 41. Electrical sensitivities
Symbol Parameter Conditions Class
LU Static latch-up class TA = +105 °C conforming to JESD78 II level A
Electrical characteristics STM32F100xC, STM32F100xD, STM32F100xE
70/107 DS5944 Rev 11
5.3.13 I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard, 3 V-capable I/O pins) should be avoided during normal product
operation. However, in order to give an indication of the robustness of the microcontroller in
cases when abnormal injection accidentally happens, susceptibility tests are performed on a
sample basis during device characterization.
Functional susceptibilty to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (>5
LSB TUE), out of spec current injection on adjacent pins or other functional failure (for
example reset, oscillator frequency deviation).
The test results are given in Table 42
Table 42. I/O current injection susceptibility
Symbol Description
Functional susceptibility
Unit
Negative
injection
Positive
injection
IINJ
Injected current on OSC_IN32,
OSC_OUT32, PA4, PA5, PC13 -0 +0
mA
Injected current on all FT pins -5 +0
Injected current on any other pin -5 +5
DS5944 Rev 11 71/107
STM32F100xC, STM32F100xD, STM32F100xE Electrical characteristics
106
5.3.14 I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 43 are derived from tests
performed under the conditions summarized in Table 9. All I/Os are CMOS and TTL
compliant.
All I/Os are CMOS and TTL compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters. The
coverage of these requirements is shown in Figure 23 and Figure 24 for standard I/Os, and
in Figure 25 and Figure 26 for 5 V tolerant I/Os.
Table 43. I/O static characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL
Standard I/O input low
level voltage
-
–0.3 - 0.28*(VDD–2 V)+0.8 V
V
I/O FT(1) input low
level voltage –0.3 - 0.32*(VDD–2 V)+0.75 V
VIH
Standard I/O input
high level voltage 0.41*(VDD–2 V) +1.3 V - VDD+0.3
I/O FT(1) input high
level voltage
VDD > 2 V
0.42*(VDD–2)+1 V -
5.5
VDD 2 V 5.2
Vhys
Standard I/O Schmitt
trigger voltage
hysteresis(2) -
200 - - mV
I/O FT Schmitt trigger
voltage hysteresis(2) 5% VDD(3) --mV
Ilkg
Input leakage
current(4)
VSS VIN VDD
Standard I/Os --±1
µA
VIN = 5 V
I/O FT --3
RPU
Weak pull-up
equivalent resistor(5) VIN = VSS 30 40 50 kΩ
RPD
Weak pull-down
equivalent resistor(5) VIN = VDD 30 40 50 kΩ
CIO I/O pin capacitance - - 5 - pF
1. FT = 5V tolerant. To sustain a voltage higher than VDD+0.3 the internal pull-up/pull-down resistors must be disabled.
2. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by design, not tested in production.
3. With a minimum of 100 mV.
4. Leakage could be higher than max. if negative current is injected on adjacent pins.
5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This
PMOS/NMOS contribution to the series resistance is minimum (~10% order).
Electrical characteristics STM32F100xC, STM32F100xD, STM32F100xE
72/107 DS5944 Rev 11
Figure 23. Standard I/O input characteristics - CMOS port
Figure 24. Standard I/O input characteristics - TTL port
AIB
6$$6



)NPUTRANGE
NOTGUARANTEED


6)(6$$

#-/3STANDARDREQUIREMENT6)(6$$

6)(6),6
#-/3STANDARDREQUIREMENT6),6$$





 
7),MAX
7)(MIN
6
$$
6
),
AI

)NPUTRANGE
NOTGUARANTEED
6)(6),6






44,REQUIREMENTS 6)( 6
6)(6$$
6),6$$
44,REQUIREMENTS 6),
6
6$$6
7
),MAX
7
)(MIN
DS5944 Rev 11 73/107
STM32F100xC, STM32F100xD, STM32F100xE Electrical characteristics
106
Figure 25. 5 V tolerant I/O input characteristics - CMOS port
Figure 26. 5 V tolerant I/O input characteristics - TTL port
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or
source up to +/- 20 mA (with a relaxed VOL/VOH) except PC13, PC14 and PC15 it can sink
or source up to +/-3mA. When using the GPIOs PC13 to PC15 in output mode, the speed
should not exceed 2 MHz with a maximum load of 30 pF.
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 5.2:
The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
IVDD (see Table 7).
The sum of the currents sunk by all the I/Os on VSS plus the maximum Run
consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating
IVSS (see Table 7).
6$$


#-/3STANDARDREQUIREMENTS6)(6$$
#-/3STANDARDREQUIRMENT6),6$$











6)(6),6
6$$6
)NPUTRANGE
NOTGUARANTEED
AIB
6)(6$$
6),6$$



NOTGUARANTEED
)NPUTRANGE


44,REQUIREMENT6)(6
6)(6$$
6),6$$
44,REQUIREMENTS6),6
6)(6),6
6$$6
7),MAX
7)(MIN
AI
Electrical characteristics STM32F100xC, STM32F100xD, STM32F100xE
74/107 DS5944 Rev 11
Output voltage levels
Unless otherwise specified, the parameters given in Table 44 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 9. All I/Os are CMOS and TTL compliant.
Table 44. Output voltage characteristics
Symbol Parameter Conditions Min Max Unit
VOL(1)
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 7
and the sum of IIO (I/O ports and control pins) must not exceed IVSS.
Output Low level voltage for an I/O pin
when 8 pins are sunk at the same time CMOS port(2),
IIO = +8 mA,
2.7 V < VDD < 3.6 V
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
-0.4
V
VOH(3)
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in
Table 7 and the sum of IIO (I/O ports and control pins) must not exceed IVDD.
Output High level voltage for an I/O pin
when 8 pins are sourced at the same time VDD–0.4 -
VOL(1) Output low level voltage for an I/O pin
when 8 pins are sunk at the same time TTL port(2)
IIO = +8 mA
2.7 V < VDD < 3.6 V
-0.4
V
VOH(3) Output high level voltage for an I/O pin
when 8 pins are sourced at the same time 2.4 -
VOL(1) Output low level voltage for an I/O pin
when 8 pins are sunk at the same time IIO = +20 mA(4)
2.7 V < VDD < 3.6 V
4. Based on characterization data, not tested in production.
-1.3
V
VOH (3) Output high level voltage for an I/O pin
when 8 pins are sourced at the same time VDD–1.3 -
VOL(1) Output low level voltage for an I/O pin
when 8 pins are sunk at the same time IIO = +6 mA(4)
2 V < VDD < 2.7 V
-0.4
V
VOH(3) Output high level voltage for an I/O pin
when 8 pins are sourced at the same time VDD–0.4 -
DS5944 Rev 11 75/107
STM32F100xC, STM32F100xD, STM32F100xE Electrical characteristics
106
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 27 and
Table 45, respectively.
Unless otherwise specified, the parameters given in Table 45 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 9.
Table 45. I/O AC characteristics(1)
1. The I/O speed is configured using the MODEx[1:0] bits. Refer to the STM32F100xx reference manual for a
description of GPIO Port configuration register.
MODEx
[1:0] bit
value(1)
Symbol Parameter Conditions Max Unit
10
fmax(IO)out Maximum frequency(2)
2. The maximum frequency is defined in Figure 27.
CL = 50 pF, VDD = 2 V to 3.6 V 2(3) MHz
tf(IO)out
Output high to low level fall
time
CL = 50 pF, VDD = 2 V to 3.6 V
125(3)
3. Guaranteed by design, not tested in production.
ns
tr(IO)out
Output low to high level rise
time 125(3)
01
fmax(IO)out Maximum frequency(2) CL= 50 pF, VDD = 2 V to 3.6 V 10(3) MHz
tf(IO)out
Output high to low level fall
time
CL= 50 pF, VDD = 2 V to 3.6 V
25(3)
ns
tr(IO)out
Output low to high level rise
time 25(3)
11
fmax(IO)out Maximum frequency(2) CL = 50 pF, VDD = 2 V to 3.6 V 24 MHz
tf(IO)out
Output high to low level fall
time
CL = 30 pF, VDD = 2.7 V to 3.6 V 5(3)
ns
CL = 50 pF, VDD = 2.7 V to 3.6 V 8(3)
CL = 50 pF, VDD = 2 V to 2.7 V 12(3)
tr(IO)out
Output low to high level rise
time
CL = 30 pF, VDD = 2.7 V to 3.6
V5(3)
CL = 50 pF, VDD = 2.7 V to 3.6 V 8(3)
CL = 50 pF, VDD = 2 V to 2.7 V 12(3)
-t
EXTIpw
Pulse width of external
signals detected by the
EXTI controller
-10
(3) ns
Electrical characteristics STM32F100xC, STM32F100xD, STM32F100xE
76/107 DS5944 Rev 11
Figure 27. I/O AC characteristics definition
5.3.15 NRST pin characteristics
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up
resistor, RPU (see Table 43).
Unless otherwise specified, the parameters given in Table 46 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 9.
AIC



TR)/OUT
/54054
%84%2.!,
/.P&
-AXIMUMFREQUENCYISACHIEVEDIFTRTF4ANDIFTHEDUTYCYCLEIS



WHENLOADEDBYP&
4
TF)/OUT
Table 46. NRST pin characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL(NRST)(1)
1. Guaranteed by design, not tested in production.
NRST Input low level voltage - –0.5 - 0.8
V
VIH(NRST)(1) NRST Input high level voltage - 2 - VDD+0.5
Vhys(NRST)
NRST Schmitt trigger voltage
hysteresis - - 200 - mV
RPU Weak pull-up equivalent resistor(2)
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to
the series resistance must be minimum (~10% order).
VIN = VSS 30 40 50 kΩ
VF(NRST)(1) NRST Input filtered pulse - - - 100 ns
VNF(NRST)(1) NRST Input not filtered pulse - 300 - - ns
DS5944 Rev 11 77/107
STM32F100xC, STM32F100xD, STM32F100xE Electrical characteristics
106
Figure 28. Recommended NRST pin protection
1. The reset network protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 46. Otherwise the reset will not be taken into account by the device.
ai14132d
STM32F10xxx
RPU
NRST
(2)
VDD
Filter
Internal Reset
0.1 µF
External
reset circuit
(1)
Electrical characteristics STM32F100xC, STM32F100xD, STM32F100xE
78/107 DS5944 Rev 11
5.3.16 TIMx characteristics
The parameters given in Table 47 are guaranteed by design.
Refer to Section 5.3.13: I/O current injection characteristics for details on the input/output
alternate function characteristics (output compare, input capture, external clock, PWM
output).
5.3.17 Communications interfaces
I2C interface characteristics
Unless otherwise specified, the parameters given in Table 48 are preliminary values derived
from tests performed under the ambient temperature, fPCLK1 frequency and VDD supply
voltage conditions summarized in Table 9.
The STM32F100xx value line I2C interface meets the requirements of the standard I2C
communication protocol with the following restrictions: the I/O pins SDA and SCL are
mapped to are not “true” open-drain. When configured as open-drain, the PMOS connected
between the I/O pin and VDD is disabled, but is still present.
The I2C characteristics are described in Table 48. Refer also to Section 5.3.13: I/O current
injection characteristics for more details on the input/output alternate function characteristics
(SDA and SCL).
Table 47. TIMx characteristics
Symbol Parameter Conditions(1)
1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3, TIM4, TIM5, TIM15, TIM16 and TIM17
timers.
Min Max Unit
tres(TIM) Timer resolution time
-1-t
TIMxCLK
fTIMxCLK = 24 MHz 41.7 - ns
fEXT
Timer external clock
frequency on CHx(2)
2. CHx is used as a general term to refer to CH1 to CH4 for TIM1, TIM2, TIM3, TIM4 and TIM5, to the CH1 to
CH2 for TIM15, and to CH1 for TIM16 and TIM17.
0f
TIMxCLK/2 MHz
fTIMxCLK = 24 MHz 0 12 MHz
ResTIM Timer resolution - - 16 bit
tCOUNTER
16-bit counter clock period
when the internal clock is
selected
- 1 65536 tTIMxCLK
fTIMxCLK = 24 MHz - 2730 µs
tMAX_COUNT Maximum possible count
- - 65536 × 65536 tTIMxCLK
fTIMxCLK = 24 MHz - 178 s
DS5944 Rev 11 79/107
STM32F100xC, STM32F100xD, STM32F100xE Electrical characteristics
106
Table 48. I2C characteristics
Symbol Parameter
Standard mode I2C(1)
1. Guaranteed by design, not tested in production.
Fast mode I2C(1)(2)
2. fPCLK1 must be at least 2 MHz to achieve standard mode I2C frequencies. It must be at least 4 MHz to
achieve fast mode I2C frequencies. It must be a multiple of 10 MHz to reach the 400 kHz maximum I2C
fast mode clock.
Unit
Min Max Min Max
tw(SCLL) SCL clock low time 4.7 - 1.3 -
µs
tw(SCLH) SCL clock high time 4.0 - 0.6 -
tsu(SDA) SDA setup time 250 - 100 -
ns
th(SDA) SDA data hold time 0 - 0 900(3)
3. The maximum Data hold time has only to be met if the interface does not stretch the low period of SCL
signal.
tr(SDA)
tr(SCL)
SDA and SCL rise time - 1000 - 300
tf(SDA)
tf(SCL)
SDA and SCL fall time - 300 - 300
th(STA) Start condition hold time 4.0 - 0.6 -
µs
tsu(STA)
Repeated Start condition setup
time 4.7 - 0.6 -
tsu(STO) Stop condition setup time 4.0 - 0.6 - µs
tw(STO:STA)
Stop to Start condition time (bus
free) 4.7 - 1.3 - µs
CbCapacitive load for each bus line - 400 - 400 pF
Electrical characteristics STM32F100xC, STM32F100xD, STM32F100xE
80/107 DS5944 Rev 11
Figure 29. I2C bus AC waveforms and measurement circuit
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
Table 49. SCL frequency (fPCLK1= 24 MHz, VDD = 3.3 V)(1)(2)
1. RP = External pull-up resistance, fSCL = I2C speed,
2. For speeds around 400 kHz, the tolerance on the achieved speed is of ±2%. For other speed ranges, the
tolerance on the achieved speed ±1%. These variations depend on the accuracy of the external
components used to design the application.
fSCL (kHz)(3)
3. Guaranteed by design, not tested in production.
I2C_CCR value
RP = 4.7 kΩ
400 0x8011
300 0x8016
200 0x8021
100 0x0064
50 0x00C8
20 0x01F4
DLI
6WDUW
6' $
,ð&EXV
9''B,&
9''B,&
670)[
6'$
6&/
WI6'$ WU6'$
6&/
WK67$
WZ6&/+
WZ6&//
WVX6'$
WU6&/ WI6&/
WK6'$
6WDUWUHSHDWHG
6WDUW
WVX67$
WVX672
6WRS WVX67267$
5S 5S 5V
5V
DS5944 Rev 11 81/107
STM32F100xC, STM32F100xD, STM32F100xE Electrical characteristics
106
SPI interface characteristics
Unless otherwise specified, the parameters given in Table 50 are preliminary values derived
from tests performed under the ambient temperature, fPCLKx frequency and VDD supply
voltage conditions summarized in Table 9.
Refer to Section 5.3.13: I/O current injection characteristics for more details on the
input/output alternate function characteristics (NSS, SCK, MOSI, MISO).
Table 50. SPI characteristics
Symbol Parameter Conditions Min Max Unit
fSCK
1/tc(SCK)
SPI clock frequency
Master mode - 12
MHz
Slave mode - 12
tr(SCK)
tf(SCK)
SPI clock rise and fall
time Capacitive load: C = 30 pF 8 ns
DuCy(SCK) SPI slave input clock
duty cycle Slave mode 30 70 %
tsu(NSS)(1)
1. Preliminary values.
NSS setup time Slave mode 4tPCLK -
ns
th(NSS)(1) NSS hold time Slave mode 2tPCLK -
tw(SCKH)(1)
tw(SCKL)(1) SCK high and low time Master mode, fPCLK = 24 MHz,
presc = 4 50 60
tsu(MI) (1)
tsu(SI)(1) Data input setup time
Master mode 5 -
Slave mode 5 -
th(MI) (1)
Data input hold time
Master mode 5 -
th(SI)(1) Slave mode 4 -
ta(SO)(1)(2)
2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate
the data.
Data output access time Slave mode, fPCLK = 24 MHz 0 3tPCLK
tdis(SO)(1)(3)
3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put
the data in Hi-Z
Data output disable time Slave mode 2 10
tv(SO) (1) Data output valid time Slave mode (after enable edge) - 25
tv(MO)(1) Data output valid time Master mode (after enable
edge) -5
th(SO)(1)
Data output hold time
Slave mode (after enable edge) 15 -
th(MO)(1) Master mode (after enable
edge) 2-
Electrical characteristics STM32F100xC, STM32F100xD, STM32F100xE
82/107 DS5944 Rev 11
Figure 30. SPI timing diagram - slave mode and CPHA = 0
Figure 31. SPI timing diagram - slave mode and CPHA = 1
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
DLE
166LQSXW
W
68166
W
F6&.
W
K166
6&.LQSXW
&3+$ 
&32/ 
&3+$ 
&32/ 
W
Z6&.+
W
Z6&./
W
D62
W
Y62
W
K62
W
U6&.
W
I6&.
W
GLV62
0,62
287387
026,
,1387
W
VX6,
W
K6,
06%287
06%,1
%,7287 /6%287
/6%,1
%,7,1
DS5944 Rev 11 83/107
STM32F100xC, STM32F100xD, STM32F100xE Electrical characteristics
106
Figure 32. SPI timing diagram - master mode
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
HDMI consumer electronics control (CEC)
Refer to Section 5.3.13: I/O current injection characteristics for more details on the
input/output alternate function characteristics.
5.3.18 12-bit ADC characteristics
Unless otherwise specified, the parameters given in Table 51 are preliminary values derived
from tests performed under the ambient temperature, fPCLK2 frequency and VDDA supply
voltage conditions summarized in Table 9.
Note: It is recommended to perform a calibration after each power-up.
DLF
6&.2XWSXW
&3+$
026,
287387
0,62
,13 87
&3+$
/6%287
/6%,1
&32/ 
&32/ 
% , 7287
166LQSXW
WF6&.
WZ6&.+
WZ6&./
WU6&.
WI6&.
WK0,
+LJK
6&.2XWSXW
&3+$
&3+$
&32/ 
&32/ 
WVX0,
WY02 WK02
06%,1 %,7,1
06%287
Electrical characteristics STM32F100xC, STM32F100xD, STM32F100xE
84/107 DS5944 Rev 11
Equation 1: RAIN max formula:
The above formula (Equation 1) is used to determine the maximum external impedance allowed for an
error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).
Table 51. ADC characteristics
Symbol Parameter Conditions Min Typ Max Unit
VDDA Power supply - 2.4 - 3.6 V
VREF+ Positive reference voltage - 2.4 - VDDA V
IVREF
Current on the VREF input
pin - - 160(1) 220(1) µA
fADC ADC clock frequency - 0.6 - 12 MHz
fS(2) Sampling rate - 0.05 - 1 MHz
fTRIG(2) External trigger frequency
fADC = 12 MHz - - 823 kHz
---171/f
ADC
VAIN(3) Conversion voltage range - 0 (VSSA tied to
ground) -V
REF+ V
RAIN(2) External input impedance See Equation 1 and
Table 52 for details --50kΩ
RADC(2) Sampling switch resistance - - - 1 kΩ
CADC(2) Internal sample and hold
capacitor ---8pF
tCAL(2) Calibration time
fADC = 12 MHz 5.9 µs
-831/f
ADC
tlat(2) Injection trigger conversion
latency
fADC = 12 MHz - - 0.214 µs
---3
(4) 1/fADC
tlatr(2) Regular trigger conversion
latency
fADC = 12 MHz - - 0.143 µs
---2
(4) 1/fADC
tS(2) Sampling time fADC = 12 MHz
0.125 - 17.1 µs
1.5 - 239.5 1/fADC
tSTAB(2) Power-up time - 0 0 1 µs
tCONV(2) Total conversion time
(including sampling time)
fADC = 12 MHz 1.17 - 21 µs
-14 to 252 (tS for sampling +12.5 for
successive approximation) 1/fADC
1. Preliminary values.
2. Guaranteed by design, not tested in production.
3. VREF+ is internally connected to VDDA
4. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 51.
RAIN
TS
fADC CADC 2N2+
()ln××
----------------------------------------------------------------RADC
<
DS5944 Rev 11 85/107
STM32F100xC, STM32F100xD, STM32F100xE Electrical characteristics
106
Note: ADC accuracy vs. negative injection current: Injecting a negative current on any analog
input pins should be avoided as this significantly reduces the accuracy of the conversion
being performed on another analog input. It is recommended to add a Schottky diode (pin to
ground) to analog pins which may potentially inject negative currents.
Table 52. RAIN max for fADC = 12 MHz(1)
1. Guaranteed by design, not tested in production.
Ts (cycles) tS (µs) RAIN max (kΩ)
1.5 0.125 0.4
7.5 0.625 5.9
13.5 1.125 11.4
28.5 2.375 25.2
41.5 3.45 37.2
55.5 4.625 50
71.5 5.96 NA
239.5 20 NA
Table 53. ADC accuracy - limited test conditions(1)(2)
1. ADC DC accuracy values are measured after internal calibration.
2. Preliminary values.
Symbol Parameter Test conditions Typ Max Unit
ET Total unadjusted error fPCLK2 = 24 MHz,
fADC = 12 MHz, RAIN < 10 kΩ,
VDDA = 3 V to 3.6 V
VREF+ = VDDA
TA = 25 °C
Measurements made after
ADC calibration
±1.5 ±2.5
LSB
EO Offset error ±1 ±2
EG Gain error ±0.5 ±1.5
ED Differential linearity error ±1.5 ±2
EL Integral linearity error ±1.5 ±2
Table 54. ADC accuracy(1) (2) (3)
1. ADC DC accuracy values are measured after internal calibration.
2. Better performance could be achieved in restricted VDD, frequency, VREF and temperature ranges.
3. Preliminary values.
Symbol Parameter Test conditions Typ Max Unit
ET Total unadjusted error fPCLK2 = 24 MHz,
fADC = 12 MHz, RAIN < 10 kΩ,
VDDA = 2.4 V to 3.6 V
TA = Full operating range
Measurements made after
ADC calibration
±2 ±5
LSB
EO Offset error ±1.5 ±2.5
EG Gain error ±1.5 ±3
ED Differential linearity error ±1.5 ±2.5
EL Integral linearity error ±1.5 ±4.5
Electrical characteristics STM32F100xC, STM32F100xD, STM32F100xE
86/107 DS5944 Rev 11
Note: Any positive injection current within the limits specified for IINJ(PIN) and
Σ
IINJ(PIN) in
Section 5.3.13 does not affect the ADC accuracy.
Figure 33. ADC accuracy characteristics
Figure 34. Typical connection diagram using the ADC
1. Refer to Table 51 for the values of RAIN, RADC and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy
this, fADC should be reduced.
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 35 or Figure 36,
depending on whether VREF+ is connected to VDDA or not. The 10 nF capacitors should be
ceramic (good quality). They should be placed them as close as possible to the chip.
([DPSOHRIDQDFWX DOWUDQVIHUFXUYH
7KHLGHDO WUDQV IHUFX UYH
(QGSRLQWFRUUHODWLRQOLQH



     



DLH
(7 7RWDOXQDGMXVWHG(UURUPD[LPXPGHYLDWLRQ
EHWZHHQWKHDFWXDODQGWKHLGHDOWUDQVIHUFXUYHV
(2 2IIVHW(UURUGHYLDWLRQEHWZHHQWKHILUVWDFWXDO
WUDQVLWLRQDQGWKHODVWDFWXDORQH
(* *DLQ(UURUGHYLDWLRQEHWZHHQWKHODVWLGHDO
WUDQVLWLRQDQGWKHODVWDFWXDORQH
(' 'LIIHUHQWLDO/LQHDULW\(UURUPD[LPXPGHYLDWLRQ
EHWZHHQDFWXDOVWHSVDQGWKHLGHDORQH
(/ ,QWHJUDO/LQHDULW\(UURUPD[LPXPGHYLDWLRQ
EHWZHHQDQ\DFWXDOWUDQVLWLRQDQGWKHHQGSRLQW
FRUUHODWLRQOLQH
966$ 9''$
/6%,'($/
('
(/
(2
(7
(*
>/6%,'($/ 
95()

9''$

RUGHSHQGLQJRQSDFNDJH
DLG
670)[[[
9''
$,1[
,/$
9
97
5$,1
&SDUDVLWLF
9$,1
9
97
5$'&
&
$'&
ELW
FRQYHUWHU
6DPSOHDQGKROG$'&
FRQYHUWHU
DS5944 Rev 11 87/107
STM32F100xC, STM32F100xD, STM32F100xE Electrical characteristics
106
Figure 35. Power supply and reference decoupling (VREF+ not connected to VDDA)
1. VREF+ is available on 100-pin packages and on TFBGA64 packages. VREF- is available on 100-pin
packages only.
Figure 36. Power supply and reference decoupling (VREF+ connected to VDDA)
1. VREF+ and VREF- inputs are available only on 100-pin packages.
VREF+
STM32F10xxx
VDDA
VSSA/V REF-
1 µF // 10 nF
1 µF // 10 nF
ai14380b
V
REF+
/V
DDA
STM32F10xxx
1 µF // 10 nF
V
REF–
/V
SSA
ai14381b
Electrical characteristics STM32F100xC, STM32F100xD, STM32F100xE
88/107 DS5944 Rev 11
5.3.19 DAC electrical specifications
Table 55. DAC characteristics
Symbol Parameter Min Typ Max(1) Unit Comments
VDDA Analog supply voltage 2.4 - 3.6 V -
VREF+ Reference supply voltage 2.4 - 3.6 V VREF+ must always be below
VDDA
VSSA Ground 0 - 0 V -
RLOAD(1) Resistive load with buffer ON 5 - - kΩ-
RO(1) Impedance output with buffer OFF - - 15 kΩ
When the buffer is OFF, the
Minimum resistive load
between DAC_OUT and VSS to
have a 1% accuracy is 1.5 MΩ
CLOAD(1) Capacitive load - - 50 pF
Maximum capacitive load at
DAC_OUT pin (when the buffer
is ON).
DAC_OUT
min(1)
Lower DAC_OUT voltage with buffer
ON 0.2 - - V
It gives the maximum output
excursion of the DAC.
It corresponds to 12-bit input
code (0x0E0) to (0xF1C) at
VREF+ = 3.6 V and (0x155) and
(0xEAB) at VREF+ = 2.4 V
DAC_OUT
max(1)
Higher DAC_OUT voltage with buffer
ON --
VDDA
0.2 V
DAC_OUT
min(1)
Lower DAC_OUT voltage with buffer
OFF -0.5 - mV
It gives the maximum output
excursion of the DAC.
DAC_OUT
max(1)
Higher DAC_OUT voltage with buffer
OFF --
VREF+
– 1LSB V
IDDVREF+
DAC DC current consumption in
quiescent mode (Standby mode) - - 220 µA
With no load, worst code
(0xF1C) at VREF+ = 3.6 V in
terms of DC consumption on
the inputs
IDDA
DAC DC current consumption in
quiescent mode (2)
- - 380 µA With no load, middle code
(0x800) on the inputs
- - 480 µA
With no load, worst code
(0xF1C) at VREF+ = 3.6 V in
terms of DC consumption on
the inputs
DNL(1) Differential non linearity Difference
between two consecutive code-1LSB)
--±0.5 LSB
Given for the DAC in 10-bit
configuration
--±2 LSB
Given for the DAC in 12-bit
configuration
INL(1)
Integral non linearity (difference
between measured value at Code i
and the value at Code i on a line
drawn between Code 0 and last Code
1023)
--±1 LSB
Given for the DAC in 10-bit
configuration
--±4 LSB
Given for the DAC in 12-bit
configuration
DS5944 Rev 11 89/107
STM32F100xC, STM32F100xD, STM32F100xE Electrical characteristics
106
Figure 37. 12-bit buffered /non-buffered DAC
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external
loads directly without the use of an external operational amplifier. The buffer can be bypassed by
configuring the BOFFx bit in the DAC_CR register.
Offset(1)
Offset error
(difference between measured value
at Code (0x800) and the ideal value =
VREF+/2)
--±10mV
Given for the DAC in 12-bit
configuration
--±3 LSB
Given for the DAC in 10-bit at
VREF+ = 3.6 V
--±12LSB
Given for the DAC in 12-bit at
VREF+ = 3.6 V
Gain
error(1) Gain error - - ±0.5 % Given for the DAC in 12-bit
configuration
tSETTLING(1)
Settling time (full scale: for a 10-bit
input code transition between the
lowest and the highest input codes
when DAC_OUT reaches final value
±1LSB
-3 4 µs C
LOAD 50 pF, RLOAD 5 kΩ
Update
rate(1)
Max frequency for a correct
DAC_OUT change when small
variation in the input code (from code i
to i+1LSB)
--1 MS/sC
LOAD 50 pF, RLOAD 5 kΩ
tWAKEUP(1)
Wakeup time from off state (Setting
the ENx bit in the DAC Control
register)
- 6.5 10 µs
CLOAD 50 pF, RLOAD 5 kΩ
input code between lowest and
highest possible ones.
PSRR+ (1) Power supply rejection ratio (to VDDA)
(static DC measurement - –67 –40 dB No RLOAD, CLOAD = 50 pF
1. Preliminary values.
2. Quiescent mode refer to the state of the DAC keeping steady value on the output, so no dynamic consumption is involved.
Table 55. DAC characteristics (continued)
Symbol Parameter Min Typ Max(1) Unit Comments

%XIIHU
ELW
GLJLWDOWR
DQDORJ
FRQYHUWHU
%XIIHUHGQRQEXIIHUHG'$&
'$&[B287
5/2$'
&/2$'
DLG
Electrical characteristics STM32F100xC, STM32F100xD, STM32F100xE
90/107 DS5944 Rev 11
5.3.20 Temperature sensor characteristics
Table 56. TS characteristics
Symbol Parameter Min Typ Max Unit
TL(1) VSENSE linearity with temperature - ±1±C
Avg_Slope(1) Average slope 4.0 4.3 4.6 mV/°C
V25(1) Voltage at 25°C 1.32 1.41 1.50 V
tSTART(2) Startup time 4 - 10 µs
TS_temp(3)(2) ADC sampling time when reading the temperature - - 17.1 µs
1. Guaranteed by characterization, not tested in production.
2. Guaranteed by design, not tested in production.
3. Shortest sampling time can be determined in the application by multiple iterations.
DS5944 Rev 11 91/107
STM32F100xC, STM32F100xD, STM32F100xE Package information
106
6 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
6.1 LQFP144 package information
Figure 38. LQFP - 144-pin, 20 x 20 mm low-profile quad flat
package outline
1. Drawing is not to scale.
H
,'(17,),&$7,21
3,1
*$8*(3/$1(
PP
6($7,1*
3/$1(
'
'
'
(
(
(
.
FFF &
&




 

$B0(B9
$
$
$
/
/
F
E
$
Package information STM32F100xC, STM32F100xD, STM32F100xE
92/107 DS5944 Rev 11
Table 57. LQFP - 144-pin, 20 x 20 mm low-profile quad flat package
mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 21.800 22.000 22.200 0.8583 0.8661 0.8740
D1 19.800 20.000 20.200 0.7795 0.7874 0.7953
D3 - 17.500 - - 0.6890 -
E 21.800 22.000 22.200 0.8583 0.8661 0.8740
E1 19.800 20.000 20.200 0.7795 0.7874 0.7953
E3 - 17.500 - - 0.6890 -
e - 0.500 - - 0.0197 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0°3.5°7° 0°3.5°7°
ccc - - 0.080 - - 0.0031
DS5944 Rev 11 93/107
STM32F100xC, STM32F100xD, STM32F100xE Package information
106
Figure 39. LQFP - 144-pin, 20 x 20 mm low-profile quad flat package
recommended footprint
1. Dimensions are expressed in millimeters.


 




DLH






Package information STM32F100xC, STM32F100xD, STM32F100xE
94/107 DS5944 Rev 11
Device marking for LQFP144
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which also depend on supply chain operations,
are not indicated below.
Figure 40.LQFP144 marking example (package top view)
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
06Y9
'DWHFRGH
3LQLGHQWLILHU
)
$
3URGXFWLGHQWLILFDWLRQ
5HYLVLRQFRGH
<::
2SWLRQDOJDWHPDUN
=&7%
DS5944 Rev 11 95/107
STM32F100xC, STM32F100xD, STM32F100xE Package information
106
6.2 LQFP100 package information
Figure 41. LQFP – 14 x 14 mm 100 pin low-profile quad flat package outline
1. Drawing is not to scale.
Table 58. LQPF - 100-pin, 14 x 14 mm low-profile quad flat package
mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 15.800 16.000 16.200 0.6220 0.6299 0.6378
D1 13.800 14.000 14.200 0.5433 0.5512 0.5591
D3 - 12.000 - - 0.4724 -
E 15.800 16.000 16.200 0.6220 0.6299 0.6378
E1 13.800 14.000 14.200 0.5433 0.5512 0.5591
E
)$%.4)&)#!4)/.
0).
'!5'%0,!.%
MM
3%!4).'0,!.%
$
$
$
%
%
%
+
CCC #
#




 

,?-%?6
!
!
!
,
,
C
B
!
Package information STM32F100xC, STM32F100xD, STM32F100xE
96/107 DS5944 Rev 11
Figure 42. LQFP - 100-pin, 14 x 14 mm low-profile quad flat
recommended footprint
1. Dimensions are expressed in millimeters.
E3 - 12.000 - - 0.4724 -
e - 0.500 - - 0.0197 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0.0° 3.5° 7.0° 0.0° 3.5° 7.0°
ccc - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 58. LQPF - 100-pin, 14 x 14 mm low-profile quad flat package
mechanical data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
 
 

 
 




AIC
DS5944 Rev 11 97/107
STM32F100xC, STM32F100xD, STM32F100xE Package information
106
Device marking for LQFP100
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which also depend on supply chain operations,
are not indicated below.
Figure 43.LQFP100 marking example (package top view)
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
06Y9
^dDϯϮ&ϭϬϬ
sdϲ y
3URGXFWLGHQWLILFDWLRQ
5HYLVLRQFRGH
tt
z
'DWHFRGH
2SWLRQDOJDWH
PDUN
3LQLGHQWLILHU
Package information STM32F100xC, STM32F100xD, STM32F100xE
98/107 DS5944 Rev 11
6.3 LQFP64 package information
Figure 44.LQFP - 64 pin, 10 x 10 mm low-profile quad flat package outline
1. Drawing is not in scale.
Table 59. LQFP - 64-pin, 10 x 10 mm low-profile quad flat package
mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D - 12.000 - - 0.4724 -
D1 - 10.000 - - 0.3937 -
D3 - 7.500 - - 0.2953 -
E - 12.000 - - 0.4724 -
E1 - 10.000 - - 0.3937 -
E3 - 7.500 - - 0.2953 -
:B0(B9
$
$
$
6($7,1*3/$1(
FFF &
E
&
F
$
/
/
.
,'(17,),&$7,21
3,1
'
'
'
H







(
(
(
*$8*(3/$1(
PP
DS5944 Rev 11 99/107
STM32F100xC, STM32F100xD, STM32F100xE Package information
106
Figure 45.LQFP - 64-pin, 10 x 10 mm low-profile quad flat recommended footprint
1. Dimensions are in millimeters.
e - 0.500 - - 0.0197 -
K 0°3.5°7° 0°3.5°7°
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
ccc - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 59. LQFP - 64-pin, 10 x 10 mm low-profile quad flat package
mechanical data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max



 










AIC
Package information STM32F100xC, STM32F100xD, STM32F100xE
100/107 DS5944 Rev 11
Device marking for LQFP64
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which also depend on supply chain operations,
are not indicated below.
Figure 46.LQFP64 marking example (package top view)
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
06Y9
^dDϯϮ&ϭϬϬ
y
ztt
5HYLVLRQFRGH
'DWHFRGH
3LQLGHQWLILHU
3URGXFWLGHQWLILFDWLRQ
Zdϲ
DS5944 Rev 11 101/107
STM32F100xC, STM32F100xD, STM32F100xE Package information
106
6.4 Thermal characteristics
The maximum chip junction temperature (TJmax) must never exceed the values given in
Table 9: General operating conditions on page 38.
The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max x Θ
JA)
Where:
TA max is the maximum ambient temperature in °C,
•Θ
JA is the package junction-to-ambient thermal resistance, in °C/W,
PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),
PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
6.4.1 Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org.
Table 60. Package thermal characteristics
Symbol Parameter Value Unit
Θ
JA
Thermal resistance junction-ambient
LQFP 144 - 20 × 20 mm / 0.5 mm pitch 35
°C/W
Thermal resistance junction-ambient
LQFP 100 - 14 × 14 mm / 0.5 mm pitch 40
Thermal resistance junction-ambient
LQFP 64 - 10 × 10 mm / 0.5 mm pitch 49
Package information STM32F100xC, STM32F100xD, STM32F100xE
102/107 DS5944 Rev 11
6.4.2 Selecting the product temperature range
When ordering the microcontroller, the temperature range is specified in the ordering
information scheme shown in Table 61: Ordering information.
Each temperature range suffix corresponds to a specific guaranteed ambient temperature at
maximum dissipation and, to a specific maximum junction temperature.
As applications do not commonly use the STM32F100xx at maximum dissipation, it is useful
to calculate the exact power consumption and junction temperature to determine which
temperature range will be best suited to the application.
The following examples show how to calculate the temperature range needed for a given
application.
Example: high-performance application
Assuming the following application conditions:
Maximum ambient temperature TAmax = 82 °C (measured according to JESD51-2),
IDDmax = 50 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low
level with IOL = 8 mA, VOL= 0.4 V and maximum 8 I/Os used at the same time in output
mode at low level with IOL = 20 mA, VOL= 1.3 V
PINTmax = 50 mA × 3.5 V= 175 mW
PIOmax = 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW
This gives: PINTmax = 175 mW and PIOmax = 272 mW
PDmax = 175 + 272 = 447 mW
Thus: PDmax = 447 mW
Using the values obtained in Table 60 TJmax is calculated as follows:
For LQFP64, 49 °C/W
TJmax = 82 °C + (49 °C/W × 447 mW) = 82 °C + 20.1 °C = 102.1 °C
This is within the range of the suffix 6 version parts (–40 < TJ < 105 °C).
In this case, parts must be ordered at least with the temperature range suffix 6 (see
Table 61: Ordering information).
Example 2: High-temperature application
Using the same rules, it is possible to address applications that run at high ambient
temperatures with a low dissipation, as long as junction temperature TJ remains within the
specified range.
Assuming the following application conditions:
Maximum ambient temperature TAmax = 115 °C (measured according to JESD51-2),
IDDmax = 20 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low
level with IOL = 8 mA, VOL= 0.4 V
PINTmax = 20 mA × 3.5 V= 70 mW
PIOmax = 20 × 8 mA × 0.4 V = 64 mW
This gives: PINTmax = 70 mW and PIOmax = 64 mW:
PDmax = 70 + 64 = 134 mW
Thus: PDmax = 134 mW
DS5944 Rev 11 103/107
STM32F100xC, STM32F100xD, STM32F100xE Package information
106
Using the values obtained in Table 60 TJmax is calculated as follows:
For LQFP100, 40 °C/W
TJmax = 115 °C + (40 °C/W × 134 mW) = 115 °C + 5.4 °C = 120.4 °C
This is within the range of the suffix 7 version parts (–40 < TJ < 125 °C).
In this case, parts must be ordered at least with the temperature range suffix 7 (see
Table 61: Ordering information).
Figure 47. LQFP100 PD max vs. TA
0
100
200
300
400
500
600
700
65 75 85 95 105 115 125 135
TA (°C)
PD (mW)
Suffix 6
Suffix 7
Ordering information STM32F100xC, STM32F100xD, STM32F100xE
104/107 DS5944 Rev 11
7 Ordering information
For a list of available options (speed, package, etc.) or for further information on any aspect
of this device, please contact your nearest ST sales office.
Table 61. Ordering information
Example: STM32 F 100 V C T 6 B xxx
Device family
STM32 = Arm-based 32-bit microcontroller
Product type
F = General-purpose
Device subfamily
100 = value line
Pin count
R = 64 pins
V = 100 pins
Z = 144 pins
Flash memory size
C = 256 Kbytes of Flash memory
D = 384 Kbytes of Flash memory
E = 512 Kbytes of Flash memory
Package
T = LQFP
Temperature range
6 = Industrial temperature range, –40 to 85 °C
7 = Industrial temperature range, –40 to 105 °C
Internal code
B
Options
xxx = programmed parts
TR = tape and real
DS5944 Rev 11 105/107
STM32F100xC, STM32F100xD, STM32F100xE Revision history
106
8 Revision history
Table 62. Document revision history
Date Revision Changes
09-Oct-2008 1 Initial release.
31-Mar-2009 2
I/O information clarified on page 1.
Table 5: High-density STM32F100xx pin definitions modified.
Figure 5: Memory map on page 26 modified.
Note modified in Table 13: Maximum current consumption in Run
mode, code with data processing running from Flash and Table 15:
Maximum current consumption in Sleep mode, code running from
Flash or RAM.
Table 20: High-speed external user clock characteristics and Table
21: Low-speed user external clock characteristics modified. ACCHSI
max values modified in Table 24: HSI oscillator characteristics.
Note modified in Table 13: Maximum current consumption in Run
mode, code with data processing running from Flash and Table 15:
Maximum current consumption in Sleep mode, code running from
Flash or RAM.
Figure 10, Figure 11 and Figure 12 show typical curves (titles
changed).
Small text changes.
01-Sep-2010 3
Major revision of whole document.
Added LQFP144 package and additional peripherals (SPI3, UART4,
UART, TIM5, 12, 14, 13, FSMC).
18-Oct-2010 4 Updated Power consumption data in Table 13 to Table 16
Updated Section 5.3.11: EMC characteristics on page 68
11-Apr-2011 5
Added Section 2.2.6: LCD parallel interface on page 13
In Table 4 on page 24 moved TIM15_BKIN and TIM17_BKIN from
remap to default column. Updated description of PA3, PA5 and PF6
to PF10.
Updated footnotes below Table 6: Voltage characteristics on page 37
and Table 7: Current characteristics on page 38
Added VBAT values in Table 16: Typical and maximum current
consumptions in Stop and Standby modes on page 44
Updated tw min in Table 20: High-speed external user clock
characteristics on page 50
Updated startup time in Table 23: LSE oscillator characteristics (fLSE
= 32.768 kHz) on page 53
Added HSI clock accuracy values in Table 24: HSI oscillator
characteristics on page 54
Updated FSMC Synchronous waveforms and timings on page 62
Updated Table 43: I/O static characteristics on page 71
Added Section 5.3.13: I/O current injection characteristics on
page 70
Corrected TTL and CMOS designations in Table 44: Output voltage
characteristics on page 74
Revision history STM32F100xC, STM32F100xD, STM32F100xE
106/107 DS5944 Rev 11
08-Jun-2012 6
Updated Table 7: Current characteristics on page 38
Corrected “CLKL-NOEL” in Section 5.3.10: FSMC characteristics on
page 56
Updated Table 48: I2C characteristics on page 79
Corrected note “non-robust “ in Section 5.3.18: 12-bit ADC
characteristics on page 83
Updated Figure 1: STM32F100xx value line block diagram on
page 11
Updated Section 5.3.14: I/O port characteristics on page 71
Updated Section 2.2.22: GPIOs (general-purpose inputs/outputs) on
page 20
Updated Table 4: High-density STM32F100xx pin definitions on
page 24
Updated Section 5.3.1: General operating conditions on page 38
Updated PD0 and PD1 in Table 4: High-density STM32F100xx pin
definitions on page 24
17-Sep-2012 7
Updated PD max specifications in Table 9: General operating
conditions
Added footnote to IDDA parameter description in Table 55: DAC
characteristics
10-Mar-2015 8
Updated Table 57: LQFP - 144-pin, 20 x 20 mm low-profile quad flat
package mechanical data, Table 58: LQPF - 100-pin, 14 x 14 mm
low-profile quad flat package mechanical data, Table 59: LQFP - 64-
pin, 10 x 10 mm low-profile quad flat package mechanical data
Updated Figure 38: LQFP - 144-pin, 20 x 20 mm low-profile quad flat
package outline on page 91, Figure 39: LQFP - 144-pin, 20 x 20 mm
low-profile quad flat package recommended footprint on page 93,
Figure 41: LQFP – 14 x 14 mm 100 pin low-profile quad flat package
outline on page 95, Figure 42: LQFP - 100-pin, 14 x 14 mm low-
profile quad flat recommended footprint on page 96, Figure 44:
LQFP - 64 pin, 10 x 10 mm low-profile quad flat package outline on
page 98, Figure 45: LQFP - 64-pin, 10 x 10 mm low-profile quad flat
recommended footprint on page 99
Added Figure 40: LQFP144 marking example (package top view) on
page 94, Figure 43: LQFP100 marking example (package top view)
on page 97, Figure 46: LQFP64 marking example (package top
view) on page 100
23-Sep-2015 9 Updated Table 19: Peripheral current consumption
Updated Section 6: Package information
29-Mar-2016 10 Updated Table 14: Maximum current consumption in Run mode,
code with data processing running from RAM
15-Oct-2018 11
Updated:
Section 1: Introduction
Section 2.2.23: GPIOs (general-purpose inputs/outputs)
Section 6: Package information
Table 62. Document revision history (continued)
Date Revision Changes
DS5944 Rev 11 107/107
STM32F100xC, STM32F100xD, STM32F100xE
107
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2018 STMicroelectronics – All rights reserved