TISP3125F3, TISP3150F3, TISP3180F3 MEDIUM-VOLTAGE DUAL BIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS TISP31xxF3 (MV) Overvoltage Protector Series Ion-Implanted Breakdown Region Precise and Stable Voltage Low Voltage Overshoot under Surge VDRM V(BO) DEVICE V V `3125F3 100 125 `3150F3 120 150 `3180F3 145 180 D Package (Top View) T 1 8 G NC 2 7 G NC 3 6 G R 4 5 G NC - No internal connection Planar Passivated Junctions Low Off-State Current <10 A P Package (Top View) Rated for International Surge Wave Shapes Waveshape Standard 2/10 s 8/20 s 10/160 s GR-1089-CORE IEC 61000-4-5 FCC Part 68 ITU-T K.20/21 FCC Part 68 FCC Part 68 GR-1089-CORE 10/700 s 10/560 s 10/1000 s ITSP T 1 8 T A 175 120 60 G 2 7 G G 3 6 G R 4 5 R 50 Specified T terminal ratings require connection of pins 1 and 8. Specified R terminal ratings require connection of pins 4 and 5. 45 35 SL Package (Top View) .............................................. UL Recognized Component Description These medium-voltage dual bidirectional thyristor protectors are designed to protect ground backed ringing central office, access and customer premise equipment against overvoltages caused by lightning and a.c. power disturbances. Offered in three voltage variants to meet battery and protection requirements, they are guaranteed to suppress and withstand the listed international lightning surges in both polarities. Overvoltages are initially clipped by breakdown clamping until the voltage rises to the breakover level, which causes the device to switch. The high crowbar holding current prevents d.c. latchup as the current subsides. T 1 G 2 R 3 MD1XAB Device Symbol T R These monolithic protection devices are fabricated in ion-implanted planar structures to ensure precise and matched breakover control and are virtually transparent to the system in normal operation. SD3XAA How To Order Device TISP31xxF3 Package Carrier Order As D, Small-outline Tape And Reeled TISP31xxF3DR P, Plastic Dip Tube TISP31xxF3P SL, Single-in-line Tube TISP31xxF3SL G Terminals T, R and G correspond to the alternative line designators of A, B and C Insert 1xx value corresponding to protection voltages of 125, 150 and 180 54 MARCH 1994 - REVISED OCTOBER 2000 Specifications are subject to change without notice. TISP31xxF3 (MV) Overvoltage Protector Series Absolute Maximum Ratings, TA = 25 C (Unless Otherwise Noted) Rating Symbol Value Unit VDRM 100 120 145 V `3125F3 `3150F3 `3180F3 Repetitive peak off-state voltage, 0 C < TA < 70 C Non-repetitive peak on-state pulse current (see Notes 1 and 2) 1/2 (Gas tube differential transient, 1/2 voltage wave shape) 350 2/10 (Telcordia GR-1089-CORE, 2/10 voltage wave shape) 175 1/20 (ITU-T K.22, 1.2/50 voltage wave shape, 25 resistor) 90 8/20 (IEC 61000-4-5, combination wave generator, 1.2/50 voltage wave shape) 120 10/160 (FCC Part 68, 10/160 voltage wave shape) 60 IPPSM 4/250 (ITU-T K.20/21, 10/700 voltage wave shape, simultaneous) 0.2/310 (CNET I 31-24, 0.5/700 voltage wave shape) 38 5/310 (ITU-T K.20/21, 10/700 voltage wave shape, single) 50 5/320 (FCC Part 68, 9/720 voltage wave shape, single) 50 10/560 (FCC Part 68, 10/560 voltage wave shape) 45 10/1000 (Telcordia GR-1089-CORE, 10/1000 voltage wave shape) 35 Non-repetitive peak on-state current, 0 C < TA < 70 C (see Notes 1 and 3) 50 Hz, 1 s D Package P Package SL Package Initial rate of rise of on-state current, Linear current ramp, Maximum ramp value < 38 A Junction temperature Storage temperature range A 55 4.3 5.7 7.1 A diT/dt 250 A/s TJ -65 to +150 C Tstg -65 to +150 C ITSM NOTES: 1. Further details on surge wave shapes are contained in the Applications Information section. 2. Initially, the TISP(R) must be in thermal equilibrium with 0 C < TJ <70 C. The surge may be repeated after the TISP(R) returns to its initial conditions. 3. Above 70 C, derate linearly to zero at 150 C lead temperature. Electrical Characteristics for R and T Terminal Pair, TA = 25 C (Unless Otherwise Noted) IDRM ID Coff Parameter Repetitive peak offstate current Off-state current Off-state capacitance Test Conditions Min Typ VD = 2VDRM, 0 C < TA < 70 C VD = 50 V f = 100 kHz, Vd = 100 mV , VD = 0, Third terminal voltage = -50 V to +50 V (see Notes 4 and 5) D Package P Package SL Package 0.05 0.065 0.03 Max Unit 10 A 10 0.15 0.2 0.1 A pF NOTES: 4. These capacitance measurements employ a three terminal capacitance bridge incorporating a guard circuit. The third terminal is connected to the guard terminal of the bridge. 5. Further details on capacitance are given in the Applications Information section. MARCH 1994 - REVISED OCTOBER 2000 Specifications are subject to change without notice. 55 TISP31xxF3 (MV) Overvoltage Protector Series Electrical Characteristics for T and G or R and G Terminals, TA = 25 C (Unless Otherwise Noted) IDRM Parameter Repetitive peak offstate current VD = VDRM, 0 C < TA < 70 C V(BO) Breakover voltage dv/dt = 250 V/ms, RSOURCE = 300 V(BO) Impulse breakover voltage I(BO) VT IH dv/dt ID Coff Breakover current On-state voltage Holding current Critical rate of rise of off-state voltage Off-state current Off-state capacitance Test Conditions dv/dt 1000 V/s, Linear voltage ramp, Maximum ramp value = 500 V RSOURCE = 50 dv/dt = 250 V/ms, RSOURCE = 300 IT = 5 A, tW = 100 s IT = 5 A, di/dt = -/+30 mA/ms Min `3125F3 `3150F3 `3180F3 `3125F3 `3150F3 `3180F3 Typ Unit 10 A 125 150 180 V 139 164 194 0.1 Linear voltage ramp, Maximum ramp value < 0.85VDRM Max V 0.6 3 0.15 A V A 5 kV/s VD = 50 V f = 1 MHz, Vd = 0.1 V r.m.s., VD = 0 f = 1 MHz, Vd = 0.1 V r.m.s., VD = -5 V f = 1 MHz, Vd = 0.1 V r.m.s., VD = -50 V (see Notes 5 and 6) 55 31 15 10 95 50 25 A pF NOTES: 6. These capacitance measurements employ a three terminal capacitance bridge incorporating a guard circuit. The third terminal is connected to the guard terminal of the bridge. 7. Further details on capacitance are given in the Applications Information section. Thermal Characteristics Parameter RJA 56 Junction to free air thermal resistance Min Test Conditions Ptot = 0.8 W, TA = 25 C 5 cm2, FR4 PCB D Package P Package SL Package Typ Max Unit 160 100 135 C/W MARCH 1994 - REVISED OCTOBER 2000 Specifications are subject to change without notice. TISP31xxF3 (MV) Overvoltage Protector Series Parameter Measurement Information +i Quadrant I ITSP Switching Characteristic ITSM IT V(BO) VT I(BO) IH V(BR)M VDRM -v I(BR) V(BR) I(BR) IDRM ID VD ID VD IDRM +v VDRM V(BR)M V(BR) IH I(BO) VT V(BO) IT ITSM Quadrant III ITSP Switching Characteristic -i PMXXAA Figure 1. Voltage-Current Characteristics for any Terminal Pair MARCH 1994 - REVISED OCTOBER 2000 Specifications are subject to change without notice. 57 TISP31xxF3 (MV) Overvoltage Protector Series Typical Characteristics - R and G or T and G Terminals OFF-STATE CURRENT vs JUNCTION TEMPERATURE 100 NORMALIZED BREAKDOWN VOLTAGES vs JUNCTION TEMPERATURE TC3MAI TC3MAF Normalized to V(BR) I(BR) = 100 A and 25 C Normalized Breakdown Voltages 1.2 ID - Off-State Current - A 10 1 VD = 50 V 0*1 VD = -50 V 0*01 Positive Polarity 1.1 V(BO) 1.0 V(BR) V(BR)M 0.9 0*001 -25 0 25 50 75 100 125 -25 150 0 25 50 75 100 125 150 TJ - Junction Temperature - C TJ - Junction Temperature - C Figure 2. Figure 3. NORMALIZED BREAKDOWN VOLTAGES vs JUNCTION TEMPERATURE TC3MAJ ON-STATE CURRENT vs ON-STATE VOLTAGE TC3MAL 100 Normalized to V(BR) I(BR) = 100 A and 25 C Negative Polarity 1.1 IT - On-State Current - A Normalized Breakdown Voltages 1.2 V(BO) V(BR)M 1.0 10 25 C V(BR) 150 C 1 0.9 -25 0 25 50 75 100 TJ - Junction Temperature - C Figure 4. 58 -40 C 125 150 1 2 3 4 5 6 7 8 9 10 VT - On-State Voltage - V Figure 5. MARCH 1994 - REVISED OCTOBER 2000 Specifications are subject to change without notice. TISP31xxF3 (MV) Overvoltage Protector Series 1.0 0.9 0.8 0.7 HOLDING CURRENT & BREAKOVER CURRENT vs JUNCTION TEMPERATURE TC3MAH NORMALIZED BREAKOVER VOLTAGE vs RATE OF RISE OF PRINCIPLE CURRENT 1.3 0.6 0.5 Normalized Breakover Voltage IH, I(BO) - Holding Current, Breakover Current - A Typical Characteristics - R and G or T and G Terminals I(BO) 0.4 0.3 IH 0.2 TC3MAB 1.2 Negative 1.1 Positive 0.1 0 25 50 75 100 125 150 1.0 0*001 0*01 0*1 1 10 100 TJ - Junction Temperature - C di/dt - Rate of Rise of Principle Current - A/s Figure 6. Figure 7. OFF-STATE CAPACITANCE vs TERMINAL VOLTAGE 100 OFF-STATE CAPACITANCE vs JUNCTION TEMPERATURE TC3MAE TC3MAD Off-State Capacitance - pF 500 Off-State Capacitance - pF -25 Positive Bias Negative Bias 100 Terminal Bias = 0 Terminal Bias = 50 V Terminal Bias = -50 V 10 0*1 10 1 10 Terminal Voltage - V Figure 8. MARCH 1994 - REVISED OCTOBER 2000 Specifications are subject to change without notice. 50 -25 0 25 50 75 100 125 150 TJ - Junction Temperature - C Figure 9. 59 TISP31xxF3 (MV) Overvoltage Protector Series Typical Characteristics - R and G or T and G Terminals SURGE CURRENT vs DECAY TIME Maximum Surge Current - A 1000 TC3MAA 100 10 2 10 100 1000 Decay Time - s Figure 10. 60 MARCH 1994 - REVISED OCTOBER 2000 Specifications are subject to change without notice. TISP31xxF3 (LV) Overvoltage Protector Series Typical Characteristics - R and T Terminals OFF-STATE CURRENT vs JUNCTION TEMPERATURE 100 NORMALIZED BREAKDOWN VOLTAGES vs JUNCTION TEMPERATURE TC3MAK TC3MAG VD = 50 V Normalized to V(BR) Normalized Breakdown Voltages 1.2 ID - Off-State Current - A 10 1 0*1 0*01 0*001 Both Polarities V(BR)M 1.0 V(BR) 0 25 50 75 100 125 150 -25 TJ - Junction Temperature - C 0 25 50 75 100 125 150 TJ - Junction Temperature - C Figure 11. Figure 12. NORMALIZED BREAKOVER VOLTAGE vs RATE OF RISE OF PRINCIPLE CURRENT TC3MAC 100 90 80 70 OFF-STATE CAPACITANCE vs TERMINAL VOLTAGE 1.2 1.1 TC3XAA P Package 60 Off-State Capacitance -pF Normalized Breakover Voltage V(BO) 1.1 0.9 -25 1.3 I(BR) = 100 A and 25 C D Package 50 40 SL Package 30 20 Both Voltage Polarities 1.0 0*001 0*01 0*1 1 10 di/dt - Rate of Rise of Principle Current - A/s Figure 13. MARCH 1994 - REVISED OCTOBER 2000 Specifications are subject to change without notice. 100 10 0*1 1 10 50 Terminal Voltage - V Figure 14. 61 TISP31xxF3 (LV) Overvoltage Protector Series Thermal Information VGEN = 250 Vrms RGEN = 10 to 150 SL Package 10 P Package D Package 1 0*1 1 10 100 t - Current Duration - s Figure 15. 62 THERMAL RESPONSE ZJA - Transient Thermal Impedance - C/W ITRMS - Maximum Non-Recurrent 50 Hz Current - A MAXIMUM NON-RECURRING 50 Hz CURRENT vs CURRENT DURATION TI3MAB 1000 TI3MAA 100 D Package P Package SL Package 10 1 0*0001 0*001 0*01 0*1 1 10 100 1000 t - Power Pulse Duration - s Figure 16. MARCH 1994 - REVISED OCTOBER 2000 Specifications are subject to change without notice. TISP31xxF3 (MV) Overvoltage Protector Series APPLICATIONS INFORMATION Electrical Characteristics The electrical characteristics of a TISP(R) device are strongly dependent on junction temperature, TJ. Hence, a characteristic value will depend on the junction temperature at the instant of measurement. The values given in this data sheet were measured on commercial testers, which generally minimize the temperature rise caused by testing. Application values may be calculated from the parameters' temperature coefficient, the power dissipated and the thermal response curve, Z (see M. J. Maytum, "Transient Suppressor Dynamic Parameters." TI Technical Journal, vol. 6, No. 4, pp.63-70, July-August 1989). Lightning Surge Wave Shape Notation Most lightning tests, used for equipment verification, specify a unidirectional sawtooth waveform which has an exponential rise and an exponential decay. Wave shapes are classified in terms of peak amplitude (voltage or current), rise time and a decay time to 50% of the maximum amplitude. The notation used for the wave shape is amplitude, rise time/decay time. A 50 A, 5/310 s wave shape would have a peak current value of 50 A, a rise time of 5 s and a decay time of 310 s. The TISP(R) surge current graph comprehends the wave shapes of commonly used surges. Generators There are three categories of surge generator type, single wave shape, combination wave shape and circuit defined. Single wave shape generators have essentially the same wave shape for the open circuit voltage and short circuit current (e.g. 10/1000 s open circuit voltage and short circuit current). Combination generators have two wave shapes, one for the open circuit voltage and the other for the short circuit current (e.g. 1.2/50 s open circuit voltage and 8/20 s short circuit current). Circuit specified generators usually equate to a combination generator, although typically only the open circuit voltage waveshape is referenced (e.g. a 10/700 s open circuit voltage generator typically produces a 5/310 s short circuit current). If the combination or circuit defined generators operate into a finite resistance, the wave shape produced is intermediate between the open circuit and short circuit values. Current Rating When the TISP(R) device switches into the on-state it has a very low impedance. As a result, although the surge wave shape may be defined in terms of open circuit voltage, it is the current wave shape that must be used to assess the required TISP(R) surge capability. As an example, the ITU-T K.21 1.5 kV, 10/700 s open circuit voltage surge is changed to a 38 A, 5/310 s current waveshape when driving into a short circuit. Thus, the TISP(R) surge current capability, when directly connected to the generator, will be found for the ITU-T K.21 waveform at 310 s on the surge graph and not 700 s. Some common short circuit equivalents are tabulated below: Standard Open Circuit Voltage Short Circuit Current ITU-T K.21 1.5 kV, 10/700 s 37.5 A, 5/310 s ITU-T K.20 1 kV, 10/700 s 25 A, 5/310 s IEC 61000-4-5, combination wave generator 1.0 kV, 1.2/50 s 500 A, 8/20 s Telcordia GR-1089-CORE 1.0 kV, 10/1000 s 100 A, 10/1000 s Telcordia GR-1089-CORE 2.5 kV, 2/10 s 500 A, 2/10 s FCC Part 68, Type A 1.5 kV, <10/>160 s 200 A,<10/>160 s FCC Part 68, Type A 800 V, <10/>560 s 100 A,<10/>160 s FCC Part 68, Type B 1.5 kV, 9/720 s 37.5 A, 5/320 s Any series resistance in the protected equipment will reduce the peak circuit current to less than the generators' short circuit value. A 1 kV open circuit voltage, 100 A short circuit current generator has an effective output impedance of 10 (1000/100). If the equipment has a series resistance of 25 , then the surge current requirement of the TISP(R) device becomes 29 A (1000/35) and not 100 A. MARCH 1994 - REVISED OCTOBER 2000 Specifications are subject to change without notice. 63 TISP31xxF3 (MV) Overvoltage Protector Series APPLICATIONS INFORMATION Protection Voltage The protection voltage, (V(BO) ), increases under lightning surge conditions due to thyristor regeneration. This increase is dependent on the rate of current rise, di/dt, when the TISP(R) device is clamping the voltage in its breakdown region. The V(BO) value under surge conditions can be estimated by multiplying the 50 Hz rate V(BO) (250 V/ms) value by the normalized increase at the surge's di/dt (Figure 7 ). An estimate of the di/dt can be made from the surge generator voltage rate of rise, dv/dt, and the circuit resistance. As an example, the ITU-T K.21 1.5 kV, 10/700 s surge has an average dv/dt of 150 V/s, but, as the rise is exponential, the initial dv/dt is higher, being in the region of 450 V/s. The instantaneous generator output resistance is 25 . If the equipment has an additional series resistance of 20 , the total series resistance becomes 45 . The maximum di/dt then can be estimated as 450/45 = 10 A/s. In practice, the measured di/dt and protection voltage increase will be lower due to inductive effects and the finite slope resistance of the TISP(R) breakdown region. Capacitance Off-state Capacitance The off-state capacitance of a TISP(R) device is sensitive to junction temperature, TJ, and the bias voltage, comprising of the d.c. voltage, VD, and the a.c. voltage, Vd. All the capacitance values in this data sheet are measured with an a.c. voltage of 100 mV. The typical 25 C variation of capacitance value with a.c. bias is shown in Figure 17. When VD >> Vd, the capacitance value is independent on the value of Vd. The capacitance is essentially constant over the range of normal telecommunication frequencies. NORMALIZED CAPACITANCE vs RMS AC TEST VOLTAGE 1.05 AIXXAA Normalized Capacitance 1.00 0.95 0.90 0.85 0.80 Normalized to Vd = 100 mV 0.75 DC Bias, VD = 0 0.70 1 10 100 1000 Vd - RMS AC Test Voltage - mV Figure 17. 64 MARCH 1994 - REVISED OCTOBER 2000 Specifications are subject to change without notice. TISP31xxF3 (MV) Overvoltage Protector Series APPLICATIONS INFORMATION Longitudinal Balance Figure 18 shows a three terminal TISP(R) device with its equivalent "delta" capacitance. Each capacitance, CTG, CRG and CTR, is the true terminal pair capacitance measured with a three terminal or guarded capacitance bridge. If wire R is biased at a larger potential than wire T, then CTG>CRG. Capacitance CTG is equivalent to a capacitance of CRG in parallel with the capacitive difference of (CTG -CRG). The line capacitive unbalance is due to (CTG -CRG ) and the capacitance shunting the line is CTR +CRG/2. All capacitance measurements in this data sheet are three terminal guarded to allow the designer to accurately assess capacitive unbalance effects. Simple two terminal capacitance meters (unguarded third terminal) give false readings as the shunt capacitance via the third terminal is included. T T (CTG-CRG) CTG CRG Equipment G Equipment G CTR CTR CRG CRG R AIXXAB R CTG > CRG Equivalent Unbalance Figure 18. MARCH 1994 - REVISED OCTOBER 2000 Specifications are subject to change without notice. 65 TISP31xxF3 (MV) Overvoltage Protector Series MECHANICAL DATA D008 Plastic Small-outline Package This small-outline package consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high humidity conditions. Leads require no additional cleaning or processing when used in soldered assembly. D008 8-pin Small Outline Microelectronic Standard Package MS-012, JEDEC Publication 95 4.80 - 5.00 (0.189 - 0.197) 5.80 - 6.20 (0.228 - 0.244) 8 7 6 5 1 2 3 4 INDEX 3.81 - 4.00 (0.150 - 0.157) 0.25 - 0.50 x 45 N0M (0.010 - 0.020) 7 NOM 3 Places 1.35 - 1.75 (0.053 - 0.069) 0.102 - 0.203 (0.004 - 0.008) 0.28 - 0.79 (0.011 - 0.031) DIMENSIONS ARE: NOTES: A. B. C. D. 66 44 7 NOM 4 Places 0.36 - 0.51 (0.014 - 0.020) 8 Places Pin Spacing 1.27 (0.050) (see Note A) 6 places 4.60 - 5.21 (0.181 - 0.205) 0.190 - 0.229 (0.0075 - 0.0090) 0.51 - 1.12 (0.020 - 0.044) METRIC (INCHES) Leads are within 0.25 (0.010) radius of true position at maximum material condition. Body dimensions do not include mold flash or protrusion. Mold flash or protrusion shall not exceed 0.15 (0.006). Lead tips to be planar within 0.051 (0.002). MDXXAAC MARCH 1994 - REVISED OCTOBER 2000 Specifications are subject to change without notice. TISP31xxF3 (MV) Overvoltage Protector Series MECHANICAL DATA D008 Tape DImensions D008 Package (8-pin Small Outline) Single-Sprocket Tape 3.90 - 4.10 (.154 - .161) 1.50 - 1.60 (.059 - .063) 1.95 - 2.05 (.077 - .081) 7.90 - 8.10 (.311 - .319) 0.40 (0.016) 0.8 MIN. (0.03) 5.40 - 5.60 (.213 - .220) 6.30 - 6.50 (.248 - .256) o Carrier Tape Embossment DIMENSIONS ARE: 1.50 MIN. (.059) 11.70 - 12.30 (.461 - .484) Cover 0 MIN. Tape Direction of Feed 2.0 - 2.2 (.079 - .087) METRIC (INCHES) NOTES: A. Taped devices are supplied on a reel of the following dimensions:Reel diameter: MDXXATB 330 +0.0/-4.0 (12.992 +0.0/-.157) Reel hub diameter: 100 2.0 (3.937 .079) Reel axial hole: 13.0 0.2 (.512 .008) B. 2500 devices are on a reel. MARCH 1994 - REVISED OCTOBER 2000 Specifications are subject to change without notice. 67 TISP31xxF3 (MV) Overvoltage Protector Series MECHANICAL DATA D008 Plastic Dual-in-Line Package This dual-in-line package consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high humidity conditions. The package is intended for insertion in mounting-hole rows on 7.62 (0.300) centers. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Leads require no additional cleaning or processing when used in soldered assembly. DIMENSIONS ARE: P008 METRIC (INCHES) 9.25 - 9.75 (0.364 - 0.384) 8 7 6 5 Index Notch 6.10 - 6.60 (0.240 - 0.260) 1 2 3 4 1.78 MAX. (0.070) 4 Places 7.62 - 8.23 (0.300 - 0.324) 5.08 MAX. (0.200) Seating Plane 0.51 MIN. (0.020) 0.38 - 0.53 (0.015 - 0.021) 8 Places 3.17 MIN. (0.125) 2.54 Typical (0.100) (see Note A) 6 Places 0.20 - 0.36 (0.008 - 0.014) 8.38 - 9.40 (0.330 - 0.370) MDXXCF NOTES: A. Each pin centerline is located within 0.25 (0.010) of its true longitudinal position. B. Dimensions fall within JEDEC MS001 - R-PDIP-T, 0.300" Dual-In-Line Plastic Family. 68 MARCH 1994 - REVISED OCTOBER 2000 Specifications are subject to change without notice. TISP31xxF3 (MV) Overvoltage Protector Series MECHANICAL DATA SL003 3-pin Plastic Single-In-Line Package This single-in-line package consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high humidity conditions. Leads require no additional cleaning or processing when used in soldered assembly. DIMENSIONS ARE: SL003 METRIC (INCHES) 3.20 - 3.40 (0.126 - 0.134) 9.25 - 9.75 (0.364 - 0.384) Index Notch 6.10 - 6.60 (0.240 - 0.260) 8.31 (0.327) MAX. 12.9 (0.492) MAX. 4.267 (0.168) MIN. 2 1 1.854 (0.073) MAX. 3 2.54 Typical (0.100) (See Note A) 2 Places 0.203 - 0.356 (0.008- 0.014) 0.559 - 0.711 (0.022 - 0.028) 3 Places MDXXCE NOTES: A. Each pin centerline is located within 0.25 (0.010) of its true longitudinal position. B. Body molding flash of up to 0.15 (0.006) may occur in the package lead plane. MARCH 1994 - REVISED OCTOBER 2000 Specifications are subject to change without notice. 69 Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: Bourns: TISP3180F3DR TISP3150F3P TISP3125F3P-S TISP3180F3D-S TISP3180F3P-S TISP3150F3DR TISP3180F3SL TISP3125F3DR TISP3125F3P TISP3150F3SL TISP3125F3SL TISP3180F3D TISP3180F3P TISP3125F3SL-S TISP3180F3SL-S TISP3150F3SL-S TISP3180F3DR-S TISP3125F3DR-S TISP3150F3DR-S TISP3150F3P-S