April 2003 1
© 20 01 Actel Corporation
v4.0
SX-A Family FPGAs
e
u
Leading-Edge Performance
250 MHz System Performance
350 MH z Internal Performanc e
3.8 ns Clock-to-Out (Pad-to-Pad)
Specifications
12,000 to 108,000 Available System Gates
Up to 360 User-Programmable I/O Pins
Up to 2,012 D edicated Flip-Flops
•0.22
µ/0.25µ CMOS Pr oce ss Te c hno l ogy
Features
Hot-S wap Compliant I/Os
Power-up/down Friendly (No Sequencing Required for
Supp ly Vo lta g e s)
66 MHz PCI Co mp li an t
S i ng le-Chip So lu tio n
Nonvolatile
Confi gu r a bl e I /O S up po r t f o r 3. 3 V / 5 V P C I , 5 V TT L ,
3.3V LVTTL, 2.5V LVCMOS2
2.5V, 3.3V, and 5V Mixed-Voltage Operation with 5V Input
Tolerance and 5V Drive Strength
Devices Support Multiple Temperature Grades
Confi gu rable We a k-Res is to r Pull- up or P u ll -d ow n f or
Outputs at Power-up
Individual Output Slew Rate Control
Up to 100% Resource Utilization and 100% Pin Locking
Deterministic, User-Controllable Timing
Unique I n- Sy stem Di ag n os t ic an d Ve r if ic a t io n Ca pa b ility
wi t h S i l i con E x p lor e r I I
Bound ar y Scan Testi ng in Compli anc e with IEEE
St andard 1149.1 (JTAG)
A ctel ’s S ecu re Pro gr ammi ng Tec hno log y w it h Fu se Lock
Prevents Reverse Engineer ing and Design Theft
SX-A Product Profile
Device A54SX08A A54SX16A A54SX32A A54SX72A
Capacity
Typical Gates
System Gates 8,000
12,000 16,000
24,000 32,000
48,000 72,000
108,000
Logic Mod ules
Combinatorial Cells 768
512 1,452
924 2,880
1,800 6,036
4,024
Register Cells
Dedicated Flip-Flops
Maximum Flip-Flops 256
512 528
990 1,080
1,980 2,012
4,024
Maximum User I/Os 130 180 249 360
Global Clocks 3333
Quadrant Clocks 0004
Boundary Scan Testing Yes Yes Yes Yes
3.3V/5V PCI Yes Yes Yes Yes
Clock-to-Out 4.2 ns 4.6 ns 4.7 ns 5.8 ns
Input Set-Up (External) 0 ns 0 ns 0 ns 0 ns
Speed Grades –F, Std, –1, –2, –3 –F, Std, –1, –2, –3 –F, Std, –1, –2, –3 –F, Std, –1, –2, –3
Temperature Grades C, I, A C, I, M, A C, I, M, A C, I, M, A
Package (by pin count)
PQFP
TQFP
PBGA
FBGA
CQFP*
208
100, 144
144
208
100, 144
144, 256
208
100, 144, 176
329
144, 256, 484
208, 256
208
256, 484
208, 256
Note: For more informat ion about the CQFP package optio ns, refer to the HiRel SX-A datasheet at: www.actel.com/documents/HRSXADS.pdf
SX-A Family FPGAs
2v4.0
Ordering Information
Plastic Device Resources
User I/Os (including clock buffers)
Device PQFP
208-Pin TQFP
100-Pin TQFP
144-Pin TQFP
176-Pin PBGA
329-Pin FBGA
144-Pin FBGA
256-Pin FBGA
484-Pin
A54SX08A 130 81 113 111 ——
A54SX16A 175 81 113 ——111 180
A54SX32A 174 81 113 147 249 111 203 249
A54SX72A 171 —————203 360
Contact your Actel sales representative for product availability.
Package De fin iti ons
PQFP = Plastic Quad Flat Pack, TQFP = Thin Quad Flat Pack, PBGA = 1.27mm Plastic Ball Grid Array, FBGA = 1.0mm Fine Pitch Ball
Grid Array
Applic ation (Tem pera ture Range)
Blank = Commercial (0 to +70°C)
I = Industrial (40 to +85°C)
M = Military (55 to +125°C)
A = Automotive (40 to +125°C)
Package Type
BG = 1.27mm Plastic Ball Grid Array
FG = 1.0mm Fine Pitch Ball Grid Array
PQ = Plastic Quad Flat Pack
TQ = Thin (1.4mm) Quad Flat Pack
CQ = Ceramic Quad Flat Pack*
Speed Grade
Blank = Standard Speed
1 = Approximately 15% Faster than Standard
2 = Approximately 25% Faster than Standard
3 = Approximately 35% Faster than Standard
F = Approximately 40% Slower than Standard
Part Number
A54SX08A = 12,000 System Gates
A54SX16A = 24,000 System Gates
A54SX32A = 48,000 System Gates
A54S X72A = 108,000 System Gates
Package Lead Count
A54SX16 PQ 2082
A = 0.22µ /0.25µ CMOS Technology
A
*For more information about the CQFP packa ge option s, refer to the HiRel SX-A datasheet at: www.actel.com/documents/HRSXADS.pdf
v4.0 3
SX-A Family FPGAs
Product Plan
Speed Grade** Application
FStd1–2–3 C I
MA
A54SX08A Device
100-Pin Thin Quad Flat Pack (TQFP) ✔✔✔✔ ✔✔✔✔
144-Pin Thin Quad Flat Pack (TQFP) ✔✔✔✔ ✔✔✔✔
208-Pin Plastic Quad Flat Pack (PQFP) ✔✔✔✔✔ ✔✔✔✔
144-Pin Fine Pitch Ball Grid Array (FBGA) ✔✔✔✔✔ ✔✔✔✔
A54SX16A Device
100-Pin Thin Quad Flat Pack (TQFP) ✔✔✔✔ ✔✔✔✔
144-Pin Thin Quad Flat Pack (TQFP) ✔✔✔✔ ✔✔✔✔
208-Pin Plastic Quad Flat Pack (PQFP) ✔✔✔✔✔ ✔✔✔✔
144-Pin Fine Pitch Ball Grid Array (FBGA) ✔✔✔✔✔ ✔✔✔✔
256-Pin Fine Pitch Ball Grid Array (FBGA) ✔✔✔✔✔ ✔✔✔✔
A54SX32A Device
100-Pin Thin Quad Flat Pack (TQFP) ✔✔✔✔ ✔✔✔✔
144-Pin Thin Quad Flat Pack (TQFP) ✔✔✔✔ ✔✔✔✔
176-Pin Thin Quad Flat Pack (TQFP) ✔✔✔✔ ✔✔✔
208-Pin Plastic Quad Flat Pack (PQFP) ✔✔✔✔✔ ✔✔✔✔
208-Pin Ceramic Quad Flat Pack (CQFP)* ✔✔✔✔✔ ✔✔
256-Pin Ceramic Quad Flat Pack (CQFP)* ✔✔✔✔✔ ✔✔
144-Pin Fine Pitch Ball Grid Array (FBGA) ✔✔✔✔✔ ✔✔✔✔
256-Pin Fine Pitch Ball Grid Array (FBGA) ✔✔✔✔✔ ✔✔✔✔
329-Pin P lastic Ball Grid Array (PBGA) ✔✔✔✔✔ ✔✔
484-Pin Fine Pitch Ball Grid Array (FBGA) ✔✔✔✔✔ ✔✔
A54SX72A Device
208-Pin Plastic Quad Flat Pack (PQFP) ✔✔✔✔✔ ✔✔✔✔
208-Pin Ceramic Quad Flat Pack (CQFP)* ✔✔✔✔✔ ✔✔
256-Pin Ceramic Quad Flat Pack (CQFP)* ✔✔✔✔✔ ✔✔
256-Pin Fine Pitch Ball Grid Array (FBGA) ✔✔✔✔✔ ✔✔✔✔
484-Pin Fine Pitch Ball Grid Array (FBGA) ✔✔✔✔✔ ✔✔✔✔
Contact your Actel sales representative for product availability.
*For more information about the CQFP package options, refer to the HiRel SX-A datasheet at: www.actel.com/documents/HRSXADS.pdf
Applications: C = Commercial Availability: = Available **Speed Grade: –1 = Approx. 15% faster than Standard
I = Industri al –2 = Approx. 25% faster than Standard
M = Military –3 = Approx. 35% faste r th an Standard
A = Automotive –F = Approx. 40% slower than Standard
Only Std, –1, –2 Speed Grade
Only Std, 1 Speed Grade
SX-A Family FPGAs
4v4.0
General Description
Actels SX-A family of FPGAs features a sea-of-modules
architecture that delivers high device performance. SX-A
devices simplify design time, enable dramatic reductions in
design costs and power consumption, and further decrease
time-to-market for performance-intensive applications.
Actels SX-A architecture features two types of logic
modules, the combinatorial cell (C-cell) and the register
cell (R-cell), each optimized for fast and efficient mapping
of synthesized logic functions. The routing and interconnect
resources are in the metal layers above the logic modules,
providing optimal use of silicon. This enables the entire
floor of the device to be spanned with an uninterrupted grid
of fine-grained, synthesis-friendly logic modules (or
sea-of-modules), which reduces the distance signals have
to travel between logic modules. To minimize signal
propagation delay, SX-A devices employ both local and
general routing resources. The high-speed local routing
resources (DirectConnect and FastConnect) enable very
fast local signal propagation that is optimal for fast
counters, state machines, and datapath logic. The general
system of segmented routing tracks allows any logic module
in the array to be connected to any other logic or I/O
module. Within this syst em, propagation delay is minimized
by limiting the number of antifuse interconnect elements to
five (90 percent of connections typically use only three or
fewer antifuses). The unique local and general routing
structure featured in SX-A devices gives fast and predictable
performance, allows 100% pin-locking with full logic
utilization, enables concurrent PCB development, reduces
design time, and allows designers to achieve performance
goals with minimum effort.
Further complementing SX-As flexible routing structure is a
hardwired, constantly loaded clock network that has been
tuned to provide fast clock propagation with minimal clock
skew. Additionally, the high performance of the internal
logic has eliminated the n eed to embed latches or flip-f lops
in the I/O cells to achieve fast clock-to-out or fast input
set-up times. SX-A devices have easy-to-use I/O cells t hat do
not require HDL instantiation, facilitating design re-use and
reducing design and verification time.
SX-A Family Architecture
The SX-A family architecture was designed to satisfy
performance and integration requirements for
production-volume designs in a broad range of applications.
Programmable Interconnect Element
The SX-A family pr ovides efficient use of silicon by locating
the routing interconnect resources between the top two
metal layers (Figure 1). This completely eliminates the
channels of routing and interconnect resources between
logic modules (as implemented on SRAM FPGAs and
previous generations of antifuse FPGAs), and enables the
entire floor of the device to be spanned with an
uninterrupted grid of logic modules.
Note: A54SX72A has four layers of metal with the antifuse between Metal 3 and Metal 4. A54SX08A, A54SX16A, and
A54SX32A have three layers of metal with antifuse between Metal 2 and Metal 3.
Figure 1 SX-A Family Interconnect Elements
Silicon Substrate
Metal 4
Metal 3
Metal 2
Metal 1
Amorphous Silicon/
Dielectric Antifuse
Tungsten Plug Via
Tungsten Plug Via
Tungsten Plug Contact
Routing Tracks
v4.0 5
SX-A Family FPGAs
Interconnection between these logic modules is achieved
using Actels patented metal-to-metal programmable
antifuse interconnect elements. The antifuses are normally
open circuit and, when programmed, form a permanent
low-impedance connection.
The extremely small size of these interconnect elements
gives the SX-A family abundant routing resources and
provides excellent protection against design pirating.
Reverse engineering is virtually impossible because it is
extremely diffi cul t to distinguish between programmed and
unprogrammed antifuses, and since SX-A is a nonvolatile,
single-chip solution, there is no configuration bitstream to
intercept.
Additionally, the interconnect (i.e., the antifuses and metal
tracks) have lower capacitance and lower resistance than
any other device of similar capacity, leading to the fastest
signal propagation in the industry.
Logic Module Design
The SX-A family architecture is described as a
sea-of-modules architecture because the entire floor of
the device is covered with a grid of logic modules with
virtually no chip area lost to interconnect elements or
routing. Actels SX-A family provides two types of logic
modules, the register cell (R-cell) and the combinatorial
cell (C-cell) .
The R-cell contains a flip-flop featuring asynchronous clear,
asynchronous preset, and clock enable (using the S0 and S1
lines) control signals (Figure 2). The R-cell registers
feature programmable clock polarity selectable on a
register-by-register basis. This provides additional flexibility
while allowing mapping of synthesized functions into the
SX-A FPGA. The clock source for the R-cell can be chosen
from either the hardwired clock, the routed clocks, or
internal logic.
The C-cell implements a range of combinatorial functions of
up to five inputs (Figure 3 on page 6). Inclusion of the DB
input and its associated inverter function increases the
number of combinatorial functions that can be implemented
in a single module from 800 options (as in previous
architectures) to more than 4,000 in the SX-A architecture.
An example of the improved flexibility enabled by the
inversion capability is the ability to integrate a 3-input
exclusive-OR function into a single C-cell. This facilitates
construction of 9-bit parity-tree functions with 1.9 ns
propagation delays. At the same time, the C-cell structure is
extremely synthesis friendly, simplifying the overall design
and reducing synthesis time.
Figure 2 R-Cell
DirectConnect
Input
CLKA,
CLKB,
Internal Logic
HCLK
CKS CKP
CLR
PRE
Y
Routed
Data Input
S0 S1
DQ
SX-A Family FPGAs
6v4.0
Chip Architecture
The SX-A familys chip architecture provides a unique
approach to module organization and chip routing that
delivers the best register/logic mix for a wide variety of new
and emerging applications.
Module Organization
Actel has arranged all C-cell and R-cell logic modules into
horizontal banks called Clusters. There are two types of
Clusters: Type 1 contains two C-cells and one R-cell, while
Type 2 contains one C-cell and two R-cells.
To increase design efficiency and device performance, Actel
has further organized these modules into SuperClusters
(Figure 4 on page7). SuperCluster 1 is a two-wide grouping
of Type 1 Clusters. SuperCluster 2 is a two-wide group
containing one Type 1 Cluster and one Type 2 Cluster. SX-A
devices feature more SuperCluster 1 modules than
SuperCluster 2 modules because designers typically require
significantly more combinatorial logic than flip-flops.
Routing Resources
Clusters and SuperClusters can be connected through the
use of two innovative local routing resources called
FastConnect and DirectConnect, which enable extremely
fast and predictable interconnection of modules within
Clusters and SuperClusters (Figure 5 and Figure 6 on
page8). This routing architecture also dramatically reduces
the number of antifuses required to complete a circuit,
ensuring the highest p ossible performance.
DirectConnect is a horizontal routing resource that provides
connections from a C-cell to its neighboring R-cell in a given
SuperCluster. DirectConnect uses a hardwired signal path
requiring no programmable interconnection to achieve its
fast signal propagation time of less than 0.1 ns.
FastConnect enables horizontal routing between any two
logic modules within a given SuperCluster and vertical
routing with the SuperCluster immediately below it. Only
one programmable connection is used in a FastConnect
path, delivering a maximum pin-to-pin propagation time of
0.3 ns.
In addition to DirectConnect and FastConnect, the
architecture makes use of two globally oriented routing
resources known as segmented routing and high-drive
routing. Actels segmented routing structure provides a
variety of track lengths for extremely fast routing between
SuperClusters. The exact combination of track lengths and
antifuses within each path is chosen b y the 100% automatic
place-and-route software to minimize signal propagation
delays.
Clock Resources
Actels high-drive routing structure provides three clock
netwo rks (Table 1). The first clock, called HCLK, is hardwired
from t he H CLK bu ffer to the clo ck sel ect M U X in ea ch R-ce ll.
HCLK cannot be connected to combinatorial logic. This
provides a fast propagation path for the clock signal, enabling
the 3.8 ns clo ck-to-out (pad- to -p ad) perfor mance of the SX-A
devices. The hardwired clock is tuned to provide clock skew
less than 0.3 ns worst case. If not used, this pin must be set as
LOW or HIGH on the board. It must not be left floating.
Figure 7 describes the cloc k circu it used fo r the constant load
HCLK. Upon power-up of the SX-A device, four clock pulses
must be detected on HCLK before the clock signal will be
propagated to registers in the design.
Two additional clocks (CLKA, CLKB) are global clocks that
can be sourced from external pins or from internal logic
signals within the SX-A device. CLKA and CLKB may be
connected to sequential cells or to combinational logic. If
Figure 3 C-Cell
D0
D1
D2
D3
DB
A0 B0 A1 B1
Sa Sb
Y
v4.0 7
SX-A Family FPGAs
Figure 4 Cluster Organization
Figure 5 DirectConnect and FastConnect for Type 1 SuperClusters
Type 1 SuperCluster Type 2 SuperCluster
Cluster 1 Cluster 1 Cluster 2 Cluster 1
R-Cell C-Cell
D0
D1
D2
D3
DB
A0 B0 A1 B1
Sa Sb
Y
DirectConnect
Input
CLKA,
CLKB,
Internal Logic
HCLK
CKS CKP
CLR
PRE
YDQ
Routed
Data Input
S0 S1
Type 1 SuperClusters
DirectConnect
No antifuses
0.1 ns maximum routing delay
FastConnect
One antifuse
0.3 ns maximum routing delay
Routing Segments
Typically 2 antifuses
Max. 5 antifuses
SX-A Family FPGAs
8v4.0
CLKA or CLKB pins are not used or sourced from signals, then
these pins must be set as LOW or HIGH on the board. They
mus t n ot be lef t fl oati ng (exc ept in t he A5 4S X72 A wher e thes e
clocks can be configured as regular I/Os and can float).
Figure 8 describes the CLKA and CLKB circuit used in SX-A
devices with the exception of A54SX72A.
In addition, the A54SX72A device provides four quadrant
clocks (QCLKA, QCLKB, QCLKC, QCLKD co rresponding to
bottom-left, bottom-right, top-left, and top-right locations on
the die, respectively), which can be sourced from external
pins or from inte rnal logic signals within the d evice. Each of
these c locks can individ ually drive up to a quarter of the chip,
or they can be grouped together to drive multiple quadrants.
If QCLKs are not used as quadr a nt clocks, they w ill beh ave as
regular I/Os. Bidirectional c loc k buffers are also available on
the A54SX72A. The CLKA, CLKB, and QCLK circuits for
A54SX72A are shown in Figure 9 on page 9. Note that
bidirectional clock buffers are only available in A54SX72A.
For more information, refer to the Pin Description section
on page 53.
For more information on how to use quadrant clocks in the
A54SX72A device, refer to the Global Clock Networks in
Actels Antifuse Devices and Using A54SX72A and
RT54SX72S Quadrant Clocks application notes.
Figure 6 DirectConnect and FastConnect for Type 2 SuperClusters
Type 2 SuperClusters
Routing Segments
Typically 2 antifuses
Max. 5 antifuses
FastConnect
One antifuse
0.3 ns maximum routing delay
DirectConnect
No antifuses
0.1 ns maximum routing delay
Table 1 SX-A Clock Resources
A54SX08A A54SX16A A54SX32A A54SX72A
Routed Clocks (CLKA, CLKB) 2222
Hardwired Clocks (HCLK) 1111
Quadrant Clocks (QCLKA, QCLKB, QCLKC, QCLKD) 0004
Figure 7 SX-A HCLK Clock Pad
Constant Load
Clock Network
HCLKBUF
Note: This does n ot include the clock pad for HiRel A54SX72A.
Figure 8 SX-A Routed Clock Structure
Clock Network
From Internal Logic
CLKBUF
CLKBUFI
CLKINT
CLKINTI
v4.0 9
SX-A Family FPGAs
Other Architectural Features
Technology
Actels SX-A family is implemented on a high-voltage,
twin-well CMOS process using 0.22µ/0.25µ desi gn rul es. T he
metal-to-metal antifuse is comprised of a combination of
amorphous silicon and dielectric material with barrier
metals and has a programmed (on state) resistance of
25 with capacitance of 1.0 fF for low signal impedance.
Performance
The combination of architectural features described above
enables SX-A devices to operate with internal clock
frequencie s of 350 MHz , enabling very f ast execut ion of even
complex logic functions. Thus, the SX-A family is an optimal
platform upon which to integrate the functionality
previously contained in multiple CPLDs. In addition,
designs that previously would have required a gate array to
meet performance goals can be integrated into an SX-A
device with dramatic improvements in cost and
time-to-market. Using timing-driven place-and-route tools,
designers can achieve highly deterministic device
performance.
User Security
The Actel FuseLock advantage ensures that unauthorized
users will not be able t o read back the contents of an Actel
antif use FPGA. In addition to the inherent strengths o f the
architecture, special security fuses that prevent internal
probing and overwriting are hidden throughout the fabric of
the device. They are located such that they cannot be
accessed or bypassed without destroying the rest of the
device, making both invasive and more-subtle noninvasive
attacks ineffective against Actel antifuse FPGAs.
Look for this symbol to ensure your valuable IP is secure.
For more information, refer to Actels Implementation of
Security in Actel Antifuse FPGAs applic ation note.
I/O Modules
Each user I/O on an SX-A device can be configured as an
input, an output, a tristate output, or a bidirectional pin.
Mixed I/O standards can be set for individual pins, though
this is only allowed with the same voltage as the input. These
I/Os, combined with array registers, can achieve
clock-to-output- pad timing as fast as 3.8 ns even without the
dedicated I/O registers. In most FPGAs, I/O cells that have
embed de d la tches an d f lip- flop s requi re in stant iat io n in HDL
code; this is a design complication not encountered in SX-A
FPGAs. Fast pin-to-pin timing ensures that the device is able
to interface with any other device in the system, which in
turn enables parallel design of system components and
re du c es ove r a ll de s i gn time. A ll unused I/Os ar e co nf ig ured a s
tristate outputs by Actels Designer software, for maximum
flexibility when designing new boards or migrating existing
designs.
SX-A inputs should be driven by high-speed push-pull devices
with a low-resistance pull-up device. If the input voltage is
greater than VCCI an d a fa s t pu s h-p u ll d ev i c e is N OT us e d, the
high-resistance pull-up of the driver and the internal circuitry
of the SX-A I/O may create a voltage divider. This voltage
divider could pull the input voltage below specification for
some devices con ne cted to the driver. A logic '1' may not be
correctly presented in this case. For example, if an open
Figure 9 A54SX72A Routed Clock and QClock Structure
Clock Network
From Internal Logic
From Internal Logic
OE
QCLKBUF
QCLKBUFI
QCLKINT
QCLKINTI
QCLKBIBUF
CLKBUF
CLKBUFI
CLKINT
CLKINTI
CLKBIBUF
e
u
SX-A Family FPGAs
10 v4.0
drain driver is used with a pull-up resistor to 5V to provide the
logic 1 input, an d VCCI is set to 3.3V o n the S X-A de vice, the
input signal may be pulled down by the SX-A input.
Each I/O module has an available power-up resistor of
approximately 50k that can configure the I/O in a known
state during power-up. Just slightly before VCCA reaches 2.5V,
the resistors are disabled, so the I/Os will be controlled by
user logic. See Table 2 and Table3 for more information
concerning available I/O features.
Hot Swapping
SX-A I/Os can be configured to be hot-swappable in
compliance with the Compact PCI (5.0V) Specification.
However, note that 3.3V PCI device is not hot swappable.
During power-up/down (or partial up/down), all I/Os are
tristated. VCCA and VCCI do not have to be stable during
power-up/down. After the SX-A device is plugged into an
electrically active system, the device will not degrade the
reliability of or cause damage to the host system. The
devices output pins are driven to a high impedance state
until normal chip operating conditions are reached. Table 4
summarizes the VCCA voltage at which the I/Os behave
according to the users design for an SX-A device at room
temperature for various ramp-up rates. The data reported
assumes a linear ramp-up profile to 2.5V. For more
information on power-up and hot-swapping, refer to the
application note, Actel SX-A and RT54SX-S Devices in
Hot-Swap and Cold-Sparing Applications.
Table 2 I/O Features
Function Description
Input Buffer Threshold Selections 5V PCI, TTL
3.3V PCI, LVTTL
2.5V LVCMOS2
Flexible Output Driver 5V: PCI, TTL
3.3V: PCI, LVTTL
2.5V: LVCMOS2
Output Buffer Hot-Swap Capability (3.3V PCI is not hot swappable)
I/O on an unpowered device does not sink current
Can be used for cold-sparing
Selectable on an individual I/O basis
Individually selectable slew rate, high slew or low slew (The default is high slew
rate). The slew is only affected on the falling edge of an output. Rising edges of
outputs a re not af fected.
Power-Up Individually selectable pull-ups and pull-downs during power-up (default is to
power-up i n tristate )
Enables deterministic power-up of device
VCCA and VCCI can be powered in any order
Table 3 I/O Characteristics for All I/O Configur ations
Hot Swappable Slew Rate Control Power-up Resistor
TTL, LVTTL, LVCMOS2 Yes Yes. Only affects falling edges of outputs pull-up or pull-down
3.3V PCI No No. High slew rate only pull-up or pull-down
5V PCI Yes No. High slew rate only pull-up or pull-down
Table 4 Power-up Time at which I/Os Become Active
Supply R amp Rate 0.25V/ µs 0.025V/µs 5V/ms 2.5V/ms 0.5V/ms 0.25V/ms 0.1V/ms 0.025V/ms
Units µsµsmsmsmsmsmsms
A54SX08A 10 96 0.34 0.65 2.7 5.4 12.9 50.8
A54SX16A 10 100 0.36 0.62 2.5 4.7 11.0 41.6
A54SX32A 10 100 0.46 0.74 2.8 5.2 12.1 47.2
A54SX72A 10 100 0.41 0.67 2.6 5.0 12.1 47.2
v4.0 11
SX-A Family FPGAs
Boundary-Scan Testing (BST)
All S X-A devices are IEEE 1149.1 c ompliant and offer sup erior
diagnostic and testing capabilities by providing Boundary
Scan Testing (BST) and probing capabilities. The BST
function is controlled through the special JTAG pins (TMS,
TDI, TCK, TDO, and TRST). The functionality of the JTAG
pins is defined by two available modes: Dedicated and
Flexible. TMS cannot be employed as user I/O in either mode.
Dedicated Mode
In Dedicated mode, all JTAG pins are reserved for BST;
designers cannot use them as regular I/Os. An internal
pull-up resistor is automatically enabled on both TMS and
TDI pins, and the TMS pin will function as defined in the
IEEE 1149.1 (JTAG) specification.
To select Dedicated mode, users need to reserve the JTAG
pins in Actels Designer software. To reserve the JTAG pins,
users can ch eck the "R eserve JTAG " box in "Devi ce Sele ct io n
Wizard" (Figure 10).
Flexible Mode
In Flexible mode, TDI, TCK, and TDO may be employed as
either use r I /Os or as JTA G i nput pi ns. The int ernal re sist ors
on the TMS and TDI pins are not present in flexible JTAG
mode.
To select the Flexible mode, users need to uncheck the
"Reserve JTAG" box in "Device Selection Wizard" in Actels
Desi gn er s oft wa re . I n Fl exi bl e m od e, TDI , TCK a nd TDO pi ns
may function as user I/Os or BST pins. The functionality is
controlled by the BST TAP controller. The TAP controller
receives two control inputs, TMS and TCK. Upon power-up,
the TAP controller enters the Test-Logic-Reset state. In this
state, TDI, TCK and TDO function as user I/ Os. The TDI, TCK,
and TDO are tran sforme d from user I/ Os into BST pins whe n
a rising edge on TCK is detect ed wh ile TMS is at logic low. To
return to Test-Logic Reset state, TMS must be high for at
least five TC K cycles. An extern al 10K pull-up resistor to VCCI
sho uld be placed on the TM S pin to pull it HIGH by de fault.
Table 5 describes the different co nfigur ation requirements of
BST pins and their functionality in different modes.
TRST Pin
The TRST pin functions as a dedicated Boundary-Scan Reset
pin when the "R eserve JT AG Test Reset" option is selected as
shown in Figure 10. An internal pull-up resistor is
permanently enabled on the TRST pin in this mode. Actel
recommends connecting this pin to ground in normal
operation to keep the JTAG state controller in the
Test-Logic-Reset state. When JTAG is being used, it can be
left floating or be driven high.
When the "Reserve JTAG Test Reset" option is not selected,
this pin will func tion as a regular I/O. If unused as an I/O i n
the desig n, it wil l be conf igur ed as a tristate d outp ut.
Probing Capabilities
SX-A devi ces also p rovid e a n inte rna l prob ing ca pa bility th at
is accessed with the JTAG pins. The Silicon Explorer II
Diagnostic Hardware is used to control the TDI, TCK, TMS
and TDO pins to select the desired nets for debugging. The
user assigns the selected internal nets in Actels Silicon
Explorer II software to the PRA/PRB output pins for
observation. Silicon Explorer II automatically places the
device into JTAG mode. However, probing functionality is
only activated when the TRST pin is driven high or left
floating, allowing the internal pull-up resistor to pull TRST
HIGH. If the TRST pin is held LOW, the TAP controller
remains in the Test-Logic-Reset state so no probing can be
performed. However, the user must drive the TRST pin HIGH
or allow t he internal pu ll- up r esi s to r to pul l TRS T H IG H.
When selecting the "Reserve Probe Pin" box as shown in
Figure10, direct the layout tool to reserve the PRA and PRB
pins as dedicated outputs for probing. This "reserve" option is
merely a guideline. If the designer assigns user I/Os to the
PRA and PRB pins and selects the "Reserve Probe Pin"
option, Designer Layout will override the "Reserve Probe Pin"
option and place the user I/Os on those pins.
To allow probing capabilities, the security fuse must not be
programmed. Programming the security fuse disables the
probe circuitry. Table6 summarizes the possible device
configurations for probing once the device leaves the
"Test-Logic-Reset" JTAG state.
Figure 10 Device Selection Wizar d
Table 5 Boundary-Scan Pin Configurations and Functions
Mode Designer "Reserve JTAG" Selection TAP Controller State
Dedicated (JTAG) Checked Any
Flexible (User I/O) Unchecked Test-Logic-Reset
Flexible (JTAG) Unchecked Any EXCEPT Test-Logic-Reset
SX-A Family FPGAs
12 v4.0
SX-A Probe Circuit Control Pins
SX-A d evices contai n interna l pro bing circu itry that provid es
built-in access to every node in a design, enabling 100%
real-t ime observ ation and anal ysis of a devi ces inte rn al lo gi c
nodes without design iteration. The probe circuitry is
accessed by Silicon Explorer II, an easy to use integrated
verification and logic analysis tool that can sample data at
100 MHz (asynchronous) or 66MHz (synchronous).
Silicon Explorer II attaches to a PCs standard COM port,
turning the PC into a fully functional 18 channel logic
analy zer. S il icon Exp lore r II al lo ws desi gn ers to c om pl ete t he
design verification process at their desks and reduces
verification time from several hours per cycle to a few
seconds.
The Silicon Explorer II tool uses the boundary-scan ports
(TDI, TCK, TMS, and TDO) to select the desired nets for
verification. The selected internal nets are assigned to the
PRA/PRB pins for observation. Figure 11 illustrates the
interconnection between Silicon Explorer II and the FPGA
to perform in-circuit verification.
Design Considerations
Avoid using the TDI, TCK , TDO, PRA , and PRB pins as i nput
or bidirectional ports. Since these pins are active during
probing, critical input signals through these pins are not
available. In addition, do not program the Security Fuse.
Programming the Security Fuse disables the Probe Circuit.
Actel recommends that you use a 70 series termination
resistor on every probe connector (TDI, TCK, TMS, TDO,
PRA, PRB). The 70 series termination is used to prevent
data transmission corruption during probing and reading
back the checksum.
Table 6 Device Configuration Options for Probe Capability ( TRST pin reserved)
JTAG Mode TRST1Security Fuse Programmed PRA, PRB2TDI, TCK, TDO2
Dedicated LOW No User I/O3Probing Unavailable
Flexible LOW No User I/O3User I/O3
Dedicated HIGH No Probe Circuit Outputs Probe Ci rcuit Inputs
Flexible HIGH No Probe Circuit Outputs Probe Circuit Inputs
–– Yes Probe Circuit Secured Probe Circuit Secured
Notes:
1. If the TRST pin is not reserved, the device behaves according to TRST=HIGH as described in the table.
2. Avoid using the TDI, TCK, TDO, PRA, and PRB pins as input or bidirectional ports. Since these pins are active during probing, input
signals will not pass through these pins and may cause contention.
3. I f no user sig nal is assign ed to these pins, they will beh ave as unused I/Os in this mode. Unused pins are automat ically trist ated b y the
Designer software.
Figur e 11 Probe Setup
Silicon Explorer IISer ial Conne ct ion
16
Additional
Channels
SX-A FPGA
70
70
70
70
70
70
TDI
TCK
TMS
TDO
PRA
PRB
v4.0 13
SX-A Family FPGAs
Development Tool Support
The SX-A family of FPGAs is fully supported by both the
Actel Libero Integrated Design Environment and the
Actel Designer FPGA Development Software. Actel's
Designer software provides a comprehensive suite of
back-end development tools for FPGA development. The
Designer software includes timing-driven place and rout e, a
world-class integrated static timing analyzer and
constraints editor, and a design netlist schematic viewer.
Libero IDE provides an integrated design manager that
seamlessly integrates design tools while guiding the user
through the design flow, managing all design and log files,
and passing necessary design data among tools. Libero IDE
includes Synplic ity ® Synplify for Actel, Mentor Graphics
ViewDraw for Actel, Actel's own Designer software, Model
Technology ModelSim HDL Simulator, and
SynaptiCAD WaveFor mer Lit e ( Figure 12).
Figur e 12 Design F low
Synthesis
Timing Simulation
Functional Simulation
Stimulus Generation
Simulator
Schematic Entry
Synthesis
Libraries
Fuse or Bitstream
Layout
Compile
Back-Annotate
NetlistViewer
SmartPower
ChipEdit and
ChipViewer
PinEdit
Timer
Static Timing Analyzer
and Constraints Editor
I/O Assignments
Design Synthesis and Optimization
Power Analysis
Schematic Viewer
Placement Editor
Silicon Sculptor
(Antifuse and Flash Families) Silicon Explorer II
(Antifuse and Flash Families)
FlashPro
(Flash Families)
FlashPro Lite
(ProASICPLUS Family)
BP Microsystems
Programmers
Cross-Probing
User
Testbench
Actel
Device
Design Implementation Design Implementation
ProgrammingProgramming System VerificationSystem Verification
Design Creation/VerificationDesign Creation/Verification
HDL Editor
ACTgen
Macro Builder
Optimization and DRC
Timing Driven Place-and-Route
Libero TM IDE Project Manager
SX-A Family FPGAs
14 v4.0
2.5V/3.3V/5V Operating Conditions
3.3V LVTTL and 5V TTL Electrical Specifications
Absolute Maximum Ratings1
Symbol Parameter Limits Units
VCCI DC Supply Vol tage 0.3 to +6.0 V
VCCA DC Supply Vol tage 0.3 to +3.0 V
VIInput Voltage 0.5 to +5.75 V
VOOutput Voltage 0.5 to +VCCI V
TSTG Storage Temperature 65 to +150 °C
Note:
1. Stresses beyond those listed under Absol ute Maxim um Ratings
may cause permanent damage to the device. Exposure to
absolute maximum rated conditions for extended periods may
affect device reliability. Devices should not be operated outside
the Recommended Operating Conditions.
Recommended Operating Conditions
Parameter Commercial Industrial Military Units
Temperature Range10 to +70 40 to +85 55 to +125 °C
2.5V Power Supply Range 2.25 to 2.75 2.25 to 2.75 2.25 to 2.75 V
3.3V Power Supply Range 3.0 to 3.6 3.0 to 3.6 3.0 to 3.6 V
5V Power Supply Range 4.75 to 5.25 4.75 to 5.25 4.75 to 5.25 V
Note:
1. Ambient temperature (TA) is used for commercial and industrial; case temperature (TC) is used
for military.
Symbol
Commercial Industrial
Parameter Min. Max. Min. Max. Units
VOH
VCCI = MIN
VI = VIH or VIL
(IOH = -1mA) 0.9 VCCI 0.9 VCCI V
VCCI = MIN, VCCI
VI = VIH or VIL
(IOH = -8mA) 2.4 2.4 V
VOL
VCCI = MIN, VCCI
VI = VIH or VIL
(IOL= 1mA) 0.4 0.4 V
VCCI = MIN, VCCI
VI = VIH or VIL
(IOL= 12mA) 0.4 0.4 V
VIL Input Low Voltage 0.8 0.8 V
VIH Input High Voltage 2.0 VCCI + 0.5 2.0 VCCI + 0.5 V
IIL/ IIH Input Leakage Current, VIN = VCCI or GND 10 10 10 10 µA
IOZ 3-State Output Leakage Current 10 10 10 10 µA
tR, tFInput Transition Time tR, tF10 10 ns
CIO I/O Capacitance 10 10 pF
ICC Standby Current 10 20 mA
IV Curve*Can be derived from the IBIS model on the web.
Note: *The IBIS model can be found at www.actel.com/support/support/support_ibis.html.
v4.0 15
SX-A Family FPGAs
PCI Compliance for the SX-A Family
The SX-A family supports 3.3V and 5V PCI and is compliant
with the PCI Local Bus S pecification Rev. 2.1.
2.5V LVCMOS2 Electrical Specifications
Symbol
Commercial Industrial
Parameter Min. Max. Min. Max. Units
VOH
VDD = MIN,
VI = VIH or VIL
(IOH = -100µA) 2.1 2.1 V
VDD = MIN,
VI = VIH or VIL
(IOH = -1 mA) 2 .0 2.0 V
VDD = MIN,
VI = VIH or VIL
(IOH = -2 mA) 1 .7 1.7 V
VOL
VDD = MIN,
VI = VIH or VIL
(IOL= 100µA) 0.2 0.2 V
VDD = MIN,
VI = VIH or VIL
(IOL= 1mA) 0.4 0.4 V
VDD = MIN,
VI = VIH or VIL
(IOL= 2 mA) 0.7 0.7 V
VIL Input Low Voltage, VOUT VVOL(max) -0.3 0.7 -0.3 0.7 V
VIH Input High Voltage, VOUT VVOH(min) 1.7 VDD + 0.3 1.7 VDD + 0.3 V
IOZ 3-State Output Leakage Current, VOUT = VCCI or GND 10 10 10 10 µA
tR, tFInput Transition Time tR, tF10 10 ns
CIO I/O Capacitance 10 10 pF
ICC Standby Current 10 20 mA
IV Curve1Can be derived from the IBIS model on the web.
Note:
1. The IBIS model can be found at www.actel.com/support/support/support_ibis.html.
SX-A Family FPGAs
16 v4.0
DC Specifications (5V PCI Operation)
Symbol Parameter Condition Min. Max. Units
VCCA Supply Voltage for Array 2.3 2.7 V
VCCI Supply Voltage for I/Os 4.75 5 .25 V
VIH Input High Voltage 2.0 VCCI + 0.5 V
VIL Input Low Voltage 0.5 0.8 V
IIH Input High Leakage Current1VIN = 2.7 70 µA
IIL Input Low Leakage Current1VIN = 0.5 70 µA
VOH Output High Voltage IOUT = 2 mA 2.4 V
VOL Output Low Voltage2IOUT = 3 mA, 6 mA 0.55 V
CIN Input Pin Capacitance310 pF
CCLK CLK Pin Cap acitance 5 12 pF
Notes:
1. Input leakage currents include hi-Z output leakage for all bidirectional buffers with tristate outputs.
2. Signals without pull-up resistors must have 3 mA low output current. Signals requiring pull-up must have 6 mA; the latter includes
FRA ME#, IRD Y#, TR DY #, DE VS EL#, STOP #, SERR #, PERR# , LOC K#, an d , when used AD[63: :3 2], C /BE[7::4 ]#, PA R64 , REQ6 4# , and ACK6 4#.
3. Absolute maximum pin capacitance for a PCI input is 10 pF (except for CLK).
v4.0 17
SX-A Family FPGAs
AC Specifications (5V PCI Operation)
Symbol Parameter Condition Min. Max. Units
IOH(AC)
Switching Current High
0 < VOUT 1.4 144 mA
1.4 VOUT < 2.4 1, 2 (44 + (VOUT 1.4)/0.024) mA
3.1 < VOUT < VCCI 1, 3 Equat ion A
on page 18
(Test Point) VOUT = 3.1 3142 mA
IOL(AC)
Switching Current Low VOUT 2.2 195 mA
2.2 > VOUT > 0.55 1(VOUT/0.023) mA
0.71 > VOUT > 0 1, 3 Equati on B
on page 18
(Test Point) VOUT = 0.71 3206 mA
ICL Low Clamp Current 5 < VIN 125 + (VIN + 1)/0.015 mA
slewROutput Rise Slew Rate 0.4V to 2.4V load 415V/ns
slewFOutput Fall Slew Rate 2.4V to 0.4V load 415V/ns
Notes:
1. Refer to the V/I curves in Figu re 13 on page 1 8. Swi tchin g cur rent c hara cte ristic s for REQ # and G NT# are p er mitted t o be one hal f of that
specified here; i.e., half size output drivers may be used on these signals. This specification does not apply to CLK and RST#, which are
system outputs. Switching Current High spe cific atio ns are not rel evan t to SERR #, INT A#, I NTB#, IN TC# , a nd INT D#, whi ch are op en dr ain
outputs.
2. Note that this s egm ent of the minimum curren t curve is drawn f rom t he A C dri ve poin t directl y to the DC d rive poin t ra ther th an toward the
voltage rail (as is done in the pull-down curve). Thi s difference is intended to allow for an optional N-channel pull-up.
3. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (A and B)
are provided with the respective diagrams in Figure13 on page18. The equation defined maxima should be met by design. In order to
facilitate component te sting, a maximum current test point is defined for each side of the output driver.
4. This parameter is to be interpret ed as the cumulativ e edge rate across the specified range, rather than the instantaneous rate at any point
within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter wit h a n
unloaded output per revision 2.0 of the PCI Local Bus Specification. However, adherence to both maximum and minimum parameters is
now required (the maximum is no longer simply a guideline). Since adherence to the maximum slew rate was not required prior to
revision 2.1 of the specification, there may be components in the market for some time that have faster edge rates; therefore, motherboard
designers must bear in mind that rise and fall times faster than this specification could occur and should ensure that signal integrity
modeling accounts for this. Rise slew rate does not apply to open drain ou tputs.
output
buffer
1/2 in. max.
50 pF
pin
SX-A Family FPGAs
18 v4.0
Figure 13 shows the 5V PCI V/I curve and t he minimum and maximum PCI drive characteristics of the SX-A family.
Equation A
IOH = 11.9 * (VOUT 5.25) * (VOUT + 2.45)
for VCCI > VOUT > 3.1V
Equation B IOL = 78.5 * VOUT * (4.4 VOUT)
for 0V < VOUT < 0.71V
DC Specifications (3.3V PCI Operation)
Figur e 13 5V PCI V/I Curve for SX-A Fami ly
–200.0
–150.0
–100.0
–50.0
0.0
50.0
100.0
150.0
200.0
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Voltage Out (V)
Current (mA)
IOH
IOL
IOH MIN Spec IOH MAX Spec
IOL MIN Spec
IOL MAX Spec
Symbol Parameter Condition Min. Max. Units
VCCA Supply Voltage for Array 2.3 2.7 V
VCCI Supply Voltage for I/Os 3.0 3.6 V
VIH Input High Voltage 0.5VCCI VCCI + 0.5 V
VIL Input Low Voltage 0.5 0.3VCCI V
IIPU Input Pull-up Voltage10.7VCCI V
IIL Input Leakage Current20 < VIN < VCCI 10 +10 µA
VOH Output High Voltage IOUT = 500 µA 0.9VCCI V
VOL Output Low Voltage IOUT = 1500 µA 0.1VCCI V
CIN Input Pin Capacitance310 pF
CCLK CLK Pin Cap acitance 5 12 pF
Notes:
1. This specification should be guaranteed by design. It is the minimum voltage to which pull-up resistors are calculated to pull a floated
network. Designers should ensure that the input buffer is conducting minimum current at thi s input voltage in applications sensitive to
static power utilization.
2. Input leakage currents include hi-Z output leakage for all bidirectional buffers with tristate outputs.
3. Absolute maximum pin capacitance for a PCI input is 10 pF (except for CLK).
v4.0 19
SX-A Family FPGAs
AC Specifications (3.3V PCI Operation)
Symbol Parameter Condition Min. Max. Units
IOH(AC)
Switching Current High
0 < VOUT 0.3V CCI 112VCCI mA
0.3VCCI VOUT < 0.9VCCI 1(17.1(VCCI VOUT)) mA
0.7VCCI < VOUT < VCCI 1, 2 Equation C
on page 20
(Test Point) VOUT = 0.7VCC 232VCCI mA
IOL(AC)
Switching Current Low
VCCI > VOUT 0.6VCCI 116VCCI mA
0.6VCCI > VOUT > 0.1VCCI 1(26.7VOUT)mA
0.18VCCI > VOUT > 0 1, 2 Equa tion D
on page 20
(Test Point) VOUT = 0.18VCC 2 38VCCI mA
ICL Low Clamp Current 3 < VIN 125 + (VIN + 1)/0.015 mA
ICH High Clamp Current VCCI + 4 > VIN VCCI + 1 25 + (VIN VCCI 1)/0.015 mA
slewROutput Rise Slew Rate 0.2VCCI - 0.6VCCI load 314V/ns
slewFOutput Fall Slew Rate 0.6VCCI - 0.2VCCI load 314V/ns
Notes:
1. Refer to the V/I curves in Figure14 on page20. Switching current characteristics for REQ# and GNT# are permitted to be one half of that
specified here; i.e., half size output drivers may be used on these signals. This specification does not apply to CLK and RST#, which are
system outputs. Switching Current High specifications are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD#, which are open drain
outputs.
2. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (C and D)
are provided with the respective diagrams in Figure14 on page20. The equati on de fine d ma ximum sho uld be m et by desi gn. I n o rder to
facilitate component te sting, a maximum current test point is defined for each side of the output driver.
3. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any point
within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter with an
unloaded output per the latest revision of the PCI Local Bus Specification. However, adherence to both maximum and minimum
parameters is required (the maximum is no longer simply a guideline). Rise slew rate does not apply to open drain outputs.
output
buffer
1/2 in. max.
10 pF
1k/25
pin
1k/25
pin
buffer
output
10 pF
SX-A Family FPGAs
20 v4.0
Figure 14 shows the 3.3V PCI V/I curve and the minimum and maximum PCI drive characteristics of the SX-A family.
Equation C
IOH = (98.0/VCCI) * (VOUT VCCI) * (VOUT + 0.4VCCI)
for 0.7 VCCI < VOUT < VCCI
Equation D
IOL = (256/VCCI) * VOUT * (VCCI VOUT)
for 0V < V OUT < 0.18 VCCI
Figur e 14 3.3V PCI V/I Curve for SX-A Family
150.0
100.0
50.0
0.0
50.0
100.0
150.0
0 0.5 1 1.5 2 2.5 3 3.5 4
Voltage Out (V)
Current (mA)
IOH
IOL
IOH MIN Spec
IOH MAX Spec
IOL MIN Spec
IOL MAX Spec
v4.0 21
SX-A Family FPGAs
Junction Temperature (TJ)
The temperature variable in the Designer Series software
refers to the junction temperature, not the ambient
temperature. This is an important distinction because the
heat generated from dynamic power consumpti on is usually
hotter than the ambient temperature. Equation 1, shown
below, can be used to calculate junction temperature.
Junction Temperature = T + Ta(1)
Where:
Ta = Ambient Temperature
T = Temper ature gradient between junc tion (silicon) and
ambient T = θja * P (2)
P = Power
θja = Junction to ambient of package. θja numbers are
located in the Package Thermal Characteristics table
below.
Package Thermal Characteristics
The device junction-to-case thermal characteristic is θjc,
and the junction-to-ambient air characteristic is θja. The
thermal characteristics for θja are shown wit h two different
air flow rates.
The maximum junction temperature is 150°C.
A sample calculation of the absolute maximum power
dissipation allowed for a TQFP 176-pin package at
commercial temperature and still air is as follows:
For Power Estimator information, please go to http://www.actel.com/products/tools/index.html.
Package Thermal Characteristics
Package Type Pin Count θjc
θja
Still Air θja
300 ft /min Units
Thin Quad Flat Pack (TQFP ) 100 12 37.5 30 °C/W
Thin Quad Flat Pack (TQFP ) 144 11 32 24 °C/W
Thin Quad Flat Pack (TQFP ) 176 11 28 21 °C/W
Plastic Quad Flat Pack (PQFP)1208 8 30 23 °C/W
Plastic Quad Flat Pack (PQFP) with Heat Spreader2208 3.8 20 17 °C/W
Plastic Bal l Grid Array (PBGA) 329 3 18 13.5 °C/W
Fine Pitch Ball Grid Array (FBGA) 144 3.8 38.8 26.7 °C/W
Fine Pitch Ball Grid Array (FBGA) 256 3.3 30 25 °C/W
Fine Pitch Ball Grid Array (FBGA) 484 3 20 15 °C/W
1. The A54SX08A PQ208 has no heat spreader.
2. The SX-A PQ208 package has a heat spreader for A54SX16A, A54SX32A, and A54SX72A.
Maximum Power Allowed Max. junction temp. (°C) Max. ambient temp. (°C)
θja(°C/W)
--------------------------------------------------------------------------------------------------------------------------------- 150°C70°C
28°C/W
-----------------------------------2.86W===
SX-A Family FPGAs
22 v4.0
SX-A Timing Model*
Sample Path Calculations
Hardwired Clock
External Setup = (tINYH + tIRD2 + tSUD) t HCKH
= 0.5 + 0.4+ 0.7 1.1 = 0.5 ns
Clock-to-Out (Pad-to-Pad)
=t
HCKH + tRCO + tRD1 + tDHL
= 1.1 + 0.6 + 0.3 + 2.0= 4.0 ns
Routed Clock
External Setup = (tINYH + tIRD2 + tSUD) tRCKH
= 0.5 + 0.4 + 0.7 1.2= 0.4 ns
Clock-to-Out (Pad-to-Pad)
=t
RCKH + tRCO + tRD1 + tDHL
= 1.2+ 0.6 + 0.3 + 2.0 = 4.1 ns
Note: *Values shown for A54SX08A, 3, wor s t-case commercial conditions at 3.3V PCI wi th standard pl ace-and-route.
Input Delays Internal Delays Predicted
Routing
Delays
Output Delays
I/O Module
tINYH= 0.5 ns tIRD2 = 0.4 ns
tIRD1 = 0.3 ns Combinatorial
Cell I/O Module
tDHL = 2.0 ns
tRD8= 1.2 ns
tRD4= 0.7 ns
tRD1= 0.3 ns
tPD = 0.8 ns
I/O Module
tDHL = 2.0 ns
tRD1= 0.3 ns
tRCO= 0.6 ns
I/O Module
tINYH= 1.0 ns
tENZL= 1.4 ns
tSUD= 0.7 ns
tHD = 0.0 ns
tSUD= 0.7 ns
tHD = 0.0 ns
tRCKH= 1.2 ns
(100% Load)
DQ
Register
Cell
Routed
Clock
tRD1= 0.3 ns
tRCO= 0.6 ns
tHCKH= 1.1 ns
DQ
Register
Cell
Hard-Wired
Clock
I/O Module
tDHL = 2.0 ns
tENZL= 1.4 ns
v4.0 23
SX-A Family FPGAs
Output Buffer Delays
AC Test Loads
Input Buffer Delays C-Cell Delays
To AC test loads (shown below)
PAD
D
E
TRIBUFF
In VCC GND
50%
Out
VOL
VOH
1.5V
tDLH
50%
1.5V
tDHL
En VCC GND
50%
Out VOL
1.5V
tENZL
50%
10%
tENLZ
En VCC GND
50%
Out
GND
VOH
1.5V
tENZH
50%
90%
tENHZ
VCC
Load 1
(Used to measure Load 2
(Used to measure enable delays)
35 pF
To the output VCC GND
35 pF
To the output R to VCC for tPZL
R to GND for tPZH
R = 1 k
propagation dela y)
under test
under test
Load 3
(Used to measure disable delays)
VCC GND
5 pF
To the output R to VCC for tPLZ
R to GND for tPHZ
R = 1 k
under test
PAD Y
INBUF
In 3V 0V
1.5V
Out
GND
VCC
50%
1.5V
50%
S
A
BY
S, A, o r B
Out
GND
VCC
50%
tPD
Out
GND
GND
VCC
50%
50% 50%
VCC
50% 50%
tPD
tPD
tPD
SX-A Family FPGAs
24 v4.0
Cell Timing Characteristics
Timing Characteristics
Timing characteristics for SX-A devices fall into three
categories: family-dependent, device-dependent, and
design-dependent. The input and output buffer characteristics
are common to all SX-A family members. Internal routing
delays are device- dependent. Design dependency means actual
delays are not determined until after placement and routing of
the users design are complete. Delay values may then be
determ ined by using the Timer utility or performing si mul ation
with post- layout delays .
Critical Nets and Typical Nets
Propagation delays are expressed only for typical nets,
which are used for initial design performance evaluation.
Critical net delays can then be applied to the most timing
critical paths. Critical nets are determined by net property
assignment prior to placement and routing. Up to 6 per cent
of the nets in a design may be designated as critical, while
90 percent of the nets in a design are typical.
Long Tracks
Some n ets in t he des ign us e long trac ks. Lo ng tra cks are speci al
routin g r esour ces that span mu ltipl e r ows, colu mns, or modu les.
Long tracks employ three to five antifuse connections. This
increases capacitance and resistance, resulting in longer net
delays for macros connected to long tracks. Typically, up to
6percent of nets in a fully utilized device require long tracks.
Long tracks contribute approximately 4 ns to 8.4 ns delay. This
additional delay is represented statistically in higher fanout
routing delays.
Timing Derating
SX-A devices are manufactured with a CMOS process.
Therefore, device performance varies according to
temperature, voltage, and process changes. Minimum timing
parameters reflect maximum operating voltage, minimum
operating temperature, and best-case processing. Maximum
timing parameters reflect minimum operating voltage,
maximum operating temperature, and worst-case processing.
Temperature and Voltage Derating Factors
(Normalized to Worst-Case Commercial, TJ = 70°C, VCCA = 2.3V)
(Positive edge triggered)
D
CLK CLR
Q
D
CLK
Q
CLR
tHPWH,
tWASYN
tHD
tSUD tHP
tHPWL,
tRCO
tCLR
tRPWL
tRPWH
PRESET
tPRESET
PRESET
Flip-Flops
VCCA
Junction Temperature (TJ)
55°C40°C0°C 25°C70°C 85°C 125°C
2.3V 0.75 0.79 0.88 0.89 1.00 1.04 1.16
2.5V 0.70 0.74 0.82 0.83 0.93 0.97 1.08
2.7V 0.66 0.69 0.79 0.79 0.88 0.92 1.02
v4.0 25
SX-A Family FPGAs
A54SX08A Timing Characteristics
(Worst-Case Commercial Conditions, VCCA = 2.3V, VCCI = 3.0V, TJ = 70°C)
‘–3 Speed ‘–2 Speed ‘–1 Speed Std
Speed ‘–F Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
C-Cell Propagation Delays1
tPD Internal Array Module 0.8 1.0 1.1 1.3 1.8 ns
Predicted Routing Delays2
tDC FO=1 Routing Delay, Direct Connect 0.1 0.1 0.1 0.1 0.1 ns
tFC FO=1 Routing Delay, Fast Connect 0.3 0.3 0.3 0.4 0.6 ns
tRD1 FO=1 Routing Delay 0.3 0.3 0.4 0.5 0.6 ns
tRD2 FO=2 Routing Delay 0.4 0.5 0.5 0.6 0.8 ns
tRD3 FO=3 Routing Delay 0.5 0.6 0.7 0.8 1.1 ns
tRD4 FO=4 Routing Delay 0.7 0.8 0.9 1.0 1.4 ns
tRD8 FO=8 Routing Delay 1.2 1.4 1.5 1.8 2.5 ns
tRD12 FO=12 Routing Delay 1.7 2 . 0 2.2 2.6 3 .6 ns
R-Cell Timing
tRCO Sequential Clock-to-Q 0.6 0.7 0.8 0.9 1.3 ns
tCLR Asynchronous Clear-to-Q 0.7 0.8 0.9 1.1 1.6 ns
tPRESET Asynchronous Preset-to-Q 0.7 0.8 0.9 1.1 1.6 ns
tSUD Flip-Flop Data Input Set-Up 0.7 0.8 0.9 1.1 1.6 ns
tHD Flip-Flop Data Input Hold 0.0 0.0 0.0 0.0 0.0 ns
tWASYN Asynchronous Pulse Width 1.3 1.5 1.7 2.0 2.8 ns
tRECASYN Asynchronous Recovery Time 0.3 0.4 0.4 0.5 0.7 ns
tHASYN Asynchronous Hold Time 0.3 0.3 0.3 0.4 0.6 ns
Input Module Propagation Delays
tINYH Input Data Pad-to-Y HIGH 0.5 0.6 0.7 0.8 1.1 ns
tINYL Input Data Pad-to-Y LOW 0.8 1.0 1.0 1.3 1.8 ns
Input Module Predicted Routing Delays2
tIRD1 FO=1 Routing Delay 0.3 0.3 0.3 0.4 0.6 ns
tIRD2 FO=2 Routing Delay 0.4 0.5 0.5 0.6 0.8 ns
tIRD3 FO=3 Routing Delay 0.5 0.6 0.7 0.8 1.1 ns
tIRD4 FO=4 Routing Delay 0.7 0.8 0.9 1.0 1.4 ns
tIRD8 FO=8 Routing Delay 1.2 1.4 1.5 1.8 2.5 ns
tIRD12 FO =12 Routing Delay 1.7 2.0 2.2 2.6 3.6 ns
Notes:
1. For d ual-modul e macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD , whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual performance.
SX-A Family FPGAs
26 v4.0
A54SX08A Timing Characteristics (Continued)
(Worst-Case Commercial Conditions VCCA = 2.3V, VCCI = 2.3V, TJ = 70°C)
‘–3 Speed ‘–2 Speed ‘–1 Speed Std
Speed ‘–F Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
Dedicated (Hardwired) Array Clock Networks
tHCKH Input LOW to HIGH
(Pad to R-Cell Input) 1.1 1.3 1.5 1.8 2.4 ns
tHCKL Input HIGH to LOW
(Pad to R-Cell Input) 1.1 1.2 1.4 1.6 2.2 ns
tHPWH Minimum Pulse Width HIGH 1.4 1.6 1.8 2.1 3.0 ns
tHPWL Minimum Pulse Width LOW 1.4 1.6 1.8 2.1 3.0 ns
tHCKSW Maximum Skew 0.2 0.2 0.2 0.3 0.4 ns
tHP Minimum Period 2.8 3.2 3.6 4.2 6.0 ns
fHMAX Maximum Frequency 350 310 277 238 166 MHz
Routed Array Clock Networks
tRCKH Input LOW to HIGH (Light Load)
(Pad to R-Cell Input) 1.1 1.2 1.3 1.6 2.2 ns
tRCKL Input HIGH to LOW (Light Load)
(Pad to R-Cell Input) 1.3 1.4 1.6 1.9 2.6 ns
tRCKH Input LOW to HIGH (50% Load)
(Pad to R-Cell Input) 1.2 1.4 1.6 1.9 2.6 ns
tRCKL Input HIGH to LOW (50% Load)
(Pad to R-Cell Input) 1.4 1.6 1.9 2.2 3.0 ns
tRCKH Input LOW to HIGH (100% Load)
(Pad to R-Cell Input) 1.3 1.5 1.7 2.0 2.8 ns
tRCKL Input HIGH to LOW (100% Load)
(Pad to R-Cell Input) 1.5 1.7 2.0 2.3 3.1 ns
tRPWH Min. Pulse Width HIGH 1.4 1.6 1.8 2.1 3.0 ns
tRPWL Min. Pulse Width LOW 1.4 1.6 1.8 2.1 3.0 ns
tRCKSW Maximum Skew (Light Load) 0.3 0.3 0.3 0.3 0.4 ns
tRCKSW Maximum Skew (50% Load) 0.3 0.3 0.4 0.4 0.7 ns
tRCKSW Maximum Skew (100% Load) 0.3 0.3 0.4 0.4 0.7 ns
v4.0 27
SX-A Family FPGAs
A54SX08A Timing Characteristics (Continued)
(Worst-Case Commercial Conditions VCCA = 2.3V, VCCI = 3.0V, TJ = 70°C)
‘–3 Speed ‘–2 Speed ‘–1 Speed Std
Speed ‘–F Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
Dedicated (Hardwired) Array Clock Networks
tHCKH Input LOW to HIGH
(Pad to R-Cell Input) 1.1 1.2 1.4 1.6 2.4 ns
tHCKL Input HIGH to LOW
(Pad to R-Cell Input) 1.0 1.2 1.3 1.5 2.3 ns
tHPWH Minimum Pulse Width HIGH 1.4 1.6 1.8 2.1 3.0 ns
tHPWL Minimum Pulse Width LOW 1.4 1.6 1.8 2.1 3.0 ns
tHCKSW Maximum Skew 0.2 0.2 0.2 0.3 0.4 ns
tHP Minimum Period 2.8 3.2 3.6 4.2 6.0 ns
fHMAX Maximum Frequency 350 310 277 238 166 MHz
Routed Array Clock Networks
tRCKH Input LOW to HIGH (Light Load)
(Pad to R-Cell Input) 1.0 1.2 1.3 1.6 2.2 ns
tRCKL Input HIGH to LOW (Light Load)
(Pad to R-Cell Input) 1.3 1.4 1.7 2.0 2.8 ns
tRCKH Input LOW to HIGH (50% Load)
(Pad to R-Cell Input) 1.1 1.3 1.5 1.8 2.5 ns
tRCKL Input HIGH to LOW (50% Load)
(Pad to R-Cell Input) 1.4 1.5 1.9 2.2 3.1 ns
tRCKH Input LOW to HIGH (100% Load)
(Pad to R-Cell Input) 1.2 1.4 1.6 1.9 2.6 ns
tRCKL Input HIGH to LOW (100% Load)
(Pad to R-Cell Input) 1.5 1.6 2.0 2.3 3.4 ns
tRPWH Min. Pulse Width HIGH 1.4 1.6 1.8 2.1 3.0 ns
tRPWL Min. Pulse Width LOW 1.4 1.6 1.8 2.1 3.0 ns
tRCKSW Maximum Skew (Light Load) 0.2 0.3 0.3 0.4 0.4 ns
tRCKSW Maximum Skew (50% Load) 0.3 0.3 0.4 0.4 0.7 ns
tRCKSW Maximum Skew (100% Load) 0.3 0.3 0.4 0.4 0.7 ns
SX-A Family FPGAs
28 v4.0
A54SX08A Timing Characteristics (Continued)
(Worst-Case Commercial Conditions VCCA = 2.3V, VCCI = 4.75V, TJ = 70°C)
‘–3 Speed ‘–2 Speed ‘–1 Speed Std
Speed ‘–F Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
Dedicated (Hardwired) Array Clock Networks
tHCKH Input LOW to HIGH
(Pad to R-Cell Input) 1.0 1.2 1.4 1.5 2.3 ns
tHCKL Input HIGH to LOW
(Pad to R-Cell Input) 1.0 1.1 1.3 1.5 2.2 ns
tHPWH Minimum Pulse Width HIGH 1.4 1.6 1.8 2.1 3.0 ns
tHPWL Minimum Pulse Width LOW 1.4 1.6 1.8 2.1 3.0 ns
tHCKSW Maximum Skew 0.2 0.2 0.2 0.3 0.4 ns
tHP Minimum Period 2.8 3.2 3.6 4.2 6.0 ns
fHMAX Maximum Frequency 350 310 277 238 166 MHz
Routed Array Clock Networks
tRCKH Input LOW to HIGH (Light Load)
(Pad to R-Cell Input) 1.0 1.1 1.2 1.5 2.0 ns
tRCKL Input HIGH to LOW (Light Load)
(Pad to R-Cell Input) 1.2 1.4 1.6 1.8 2.6 ns
tRCKH Input LOW to HIGH (50% Load)
(Pad to R-Cell Input) 1.1 1.3 1.5 1.8 2.5 ns
tRCKL Input HIGH to LOW (50% Load)
(Pad to R-Cell Input) 1.3 1.6 1.9 2.1 3.1 ns
tRCKH Input LOW to HIGH (100% Load)
(Pad to R-Cell Input) 1.2 1.4 1.6 1.9 2.6 ns
tRCKL Input HIGH to LOW (100% Load)
(Pad to R-Cell Input) 1.4 1.7 2.0 2.2 3.2 ns
tRPWH Min. Pulse Width HIGH 1.4 1.6 1.8 2.1 3.0 ns
tRPWL Min. Pulse Width LOW 1.4 1.6 1.8 2.1 3.0 ns
tRCKSW Maximum Skew (Light Load) 0.2 0.3 0.3 0.4 0.4 ns
tRCKSW Maximum Skew (50% Load) 0.3 0.3 0.4 0.4 0.7 ns
tRCKSW Maximum Skew (100% Load) 0.3 0.3 0.4 0.4 0.7 ns
v4.0 29
SX-A Family FPGAs
A54SX08A Timing Characteristics (Continued)
(Worst-Case Commercial Conditions VCCA = 2.3V, VCCI = 2.3V, TJ = 70°C)
‘–3 Speed ‘–2 Speed ‘–1 Speed Std Spe ed ‘–F Speed
Parameter
Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
2.5V LVTTL Output Module Timing1
tDLH Data-to-Pad LOW to HIGH 3.2 3.8 4.3 5.0 7.0 ns
tDHL Data-to-Pad HIGH to LOW 2.6 3.0 3.4 4.0 5.5 ns
tDHLS Data-to-Pad HIGH to LOWlow slew 11.3 13.0 14.8 17.4 24.4 ns
tENZL Enable-to-Pad, Z to L 2.4 2.8 3.2 3.7 5.2 ns
tENZLS Data-to-Pad, Z to Llow slew 11.8 13.7 15.5 18.2 25.5 n s
tENZH Enable-to-Pad, Z to H 3.4 4.0 4.5 5.3 7.5 ns
tENLZ Enable-to-Pad, L to Z 2.1 2. 5 2.8 3.3 4.7 ns
tENHZ Enable-to-Pad, H to Z 3.4 4.0 4.5 5.3 7.5 ns
dTLH Delta LOW to HIGH 0.031 0.037 0.043 0.051 0.071 ns/pF
dTHL Delta HIGH to LOW 0.017 0.017 0.023 0.023 0.037 ns/pF
dTHLS Delta HIGH to LOWlow slew 0.057 0.060 0.071 0.086 0.117 ns/pF
Note:
1. Dela ys ba se d on 35 pF lo ad ing .
SX-A Family FPGAs
30 v4.0
A54SX08A Timing Characteristics (Continued)
(Worst-Case Commercial Conditions VCCA = 2.3V, VCCI = 3.0V, TJ = 70°C)
‘–3 Speed ‘–2 Speed ‘–1 Speed Std Speed ‘–F Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
3.3V PCI Output Module Timing1
tDLH Data-to-Pad LOW to HIGH 2.0 2.3 2.6 3.0 4.3 ns
tDHL Data-to-Pad HIGH to LOW 2.0 2.3 2.6 3.0 4.3 ns
tENZL Enable-to-Pad, Z to L 1.4 1.7 1.9 2.2 3.1 ns
tENZH Enable-to-Pad, Z to H 1.4 1.7 1.9 2.2 3.1 ns
tENLZ Enable-to-Pad, L to Z 2.5 2.8 3.2 3.8 5.3 ns
tENHZ Enable-to-Pad, H to Z 2.5 2.8 3.2 3.8 5.3 ns
dTLH Delta LOW to HIGH 0.025 0.03 0.03 0.04 0.045 ns/pF
dTHL Delta HIGH to LOW 0.015 0.015 0.015 0.015 0.025 ns/pF
3.3V LVTTL Output Module Timing2
tDLH Data-to-Pad LOW to HIGH 2.7 3.2 3.6 4.2 5.9 ns
tDHL Data-to-Pad HIGH to LOW 2.5 2.8 3.2 3.8 5.3 ns
tDHLS Da ta-to-Pa d HIGH to LOWlo w slew 9.0 10.4 11.8 13.8 19.4 ns
tENZL Enable-to-Pad, Z to L 2.2 2.6 2.9 3.4 4.8 ns
tENZLS Enable-to-Pad, Z to Llow slew 15.8 18.9 21.3 25.4 34.9 ns
tENZH Enable-to-Pad, Z to H 2.9 3.3 3.7 4.4 6.2 ns
tENLZ Enable-to-Pad, L to Z 2.9 3.3 3.7 4.4 6.2 ns
tENHZ Enable-to-Pad, H to Z 2.5 2.8 3.2 3.8 5.3 ns
dTLH Delta LOW to HIGH 0.025 0.03 0.03 0.04 0.045 ns/pF
dTHL Delta HIGH to LOW 0.015 0.015 0.015 0.015 0.025 ns/pF
dTHLS Delta HIGH to LOWlow slew 0.053 0.053 0.067 0.073 0.107 ns/pF
Notes:
1. Delays based on 10 pF loading and 25 resistance.
2. Dela ys ba se d on 35 pF lo adi ng.
v4.0 31
SX-A Family FPGAs
A54SX08A Timing Characteristics (Continued)
(Worst-Case Commercial Conditions VCCA = 2.3V, VCCI = 4.75V, TJ = 70°C)
‘–3 Speed ‘–2 Spe ed ‘–1 Speed Std
Speed ‘–F Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
5.0V PCI Output Module Timing1
tDLH Data-to-Pad LOW to HIGH 2.1 2.5 2.8 3.3 4.6 ns
tDHL Data-to-Pad HIGH to LOW 2.7 3.1 3.5 4.2 5.8 ns
tDHLS Data-to-Pad HI GH to LOWlow slew 7.4 8.5 9.6 11.3 1 5.9 ns
tENZL Enable-to-Pad, Z to L 1.3 1.5 1.7 2.0 2.8 ns
tENZLS Enable-to-Pad, Z to Llow slew 3.5 5. 1 5.9 6.9 9.7 ns
tENZH Enable-to-Pad, Z to H 1.3 1.5 1.7 2.0 2.8 ns
tENLZ Enable-to-Pad, L to Z 3.0 3.5 3.9 4.6 6.4 ns
tENHZ Enable-to-Pad, H to Z 3.0 3.5 3.9 4.6 6.4 ns
dTLH Delta LOW to HIGH 0.016 0.016 0.02 0.022 0.032 ns/pF
dTHL Delta HIGH to LOW 0.026 0.03 0.032 0.04 0.052 ns/pF
dTHLS Delta HIGH to LOWlow slew 0.04 0.052 0.06 0.07 0.096 ns/pF
5. 0V TTL Output Module Timing2
tDLH Data-to-Pad LOW to HIGH 1.9 2.2 2.5 3.0 4.2 ns
tDHL Data-to-Pad HIGH to LOW 2.5 2.9 3.3 3.9 5.4 ns
tDHLS Data-to-Pad HI GH to LOWlow slew 6.6 7.6 8.6 10.2 14.2 ns
tENZL Enable-to-Pad, Z to L 2.1 2.4 2.7 3.2 4.5 ns
tENZLS Enable-to-Pad, Z to Llow slew 7.4 8.4 9.5 11.0 15.4 ns
tENZH Enable-to-Pad, Z to H 2.3 2.7 3.1 3.6 5.0 ns
tENLZ Enable-to-Pad, L to Z 3.6 4.2 4.7 5.6 7.8 ns
tENHZ Enable-to-Pad, H to Z 3.0 3.5 3.9 4.6 6.4 ns
dTLH Delta LOW to HIGH 0.014 0.017 0.017 0.023 0.031 ns/pF
dTHL Delta HIGH to LOW 0.023 0.029 0.031 0.037 0.051 ns/pF
dTHLS Delta HIGH to LOWlow slew 0.043 0.046 0.057 0.066 0.089 ns/pF
Notes:
1. Dela ys ba se d on 50 pF lo ad ing .
2. Dela ys ba se d on 35 pF lo ad in g
SX-A Family FPGAs
32 v4.0
A54SX16A Timing Characteristics
(Worst-Case Commercial Conditions, VCCA = 2.3V, VCCI = 3.0V, TJ = 70°C)
‘–3 Speed ‘–2 Speed ‘–1 Speed Std
Speed ‘–F Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
C-Cell Propagation Delays1
tPD Internal Array Module 0.8 1.0 1.1 1.3 1.8 ns
Predicted Routing Delays2
tDC FO=1 Routing Delay, Direct Connect 0.1 0.1 0.1 0.1 0.1 ns
tFC FO=1 Routing Delay, Fast Connect 0.3 0.3 0.3 0.4 0.6 ns
tRD1 FO=1 Routing Delay 0.3 0.3 0.4 0.5 0.6 ns
tRD2 FO=2 Routing Delay 0.4 0.5 0.5 0.6 0.8 ns
tRD3 FO=3 Routing Delay 0.5 0.6 0.7 0.8 1.1 ns
tRD4 FO=4 Routing Delay 0.7 0.8 0.9 1.0 1.4 ns
tRD8 FO=8 Routing Delay 1.2 1.4 1.5 1.8 2.5 ns
tRD12 FO=12 Routing Delay 1.7 2.0 2.2 2.6 3.6 ns
R-Cell Timing
tRCO Sequential Clock-to-Q 0.6 0.7 0.8 0.9 1.3 ns
tCLR Asynchronous Clear-to-Q 0.7 0.8 0.9 1.1 1.6 ns
tPRESET Asynchronous Preset-to-Q 0.7 0.8 0.9 1.1 1.6 ns
tSUD Flip-Flop Data Input Set-Up 0.7 0.8 0.9 1.1 1.6 ns
tHD Flip-Flop Data Input Hold 0.0 0.0 0.0 0.0 0.0 ns
tWASYN Asynchronous Pulse Width 1.3 1.5 1.7 2.0 2.8 ns
tRECASYN Asynchronous Recovery Time 0.3 0.4 0.4 0.5 0.7 ns
tHASYN Asynchronous Removal Time 0.3 0.3 0.3 0.4 0.6 ns
Input Module Propagation Delays
tINYH Input Data Pad-to-Y HIGH 0.5 0.6 0.7 0.8 1.1 ns
tINYL Input Data Pad-to-Y LOW 0.8 1.0 1.0 1.3 1.8 ns
Input Module Predicted Routing Delays2
tIRD1 FO=1 Routing Delay 0.3 0.3 0.3 0.4 0.6 ns
tIRD2 FO=2 Routing Delay 0.4 0.5 0.5 0.6 0.8 ns
tIRD3 FO=3 Routing Delay 0.5 0.6 0.7 0.8 1.1 ns
tIRD4 FO=4 Routing Delay 0.7 0.8 0.9 1.0 1.4 ns
tIRD8 FO=8 Routing Delay 1.2 1.4 1.5 0.8 2.5 ns
tIRD12 FO=12 Routing Delay 1.7 2.0 2.2 2.6 3.6 ns
Notes:
1. For d ual-modul e macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD , whichever is approp ri ate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual performance.
v4.0 33
SX-A Family FPGAs
A54SX16A Timing Characteristics (Continued)
(Worst-Case Commercial Conditions VCCA = 2.3V, VCCI = 2.3V, TJ = 70°C)
‘–3 Speed ‘–2 Speed ‘–1 Speed Std
Speed ‘–F Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
Dedicated (Hardwired) Array Clock Networks
tHCKH Input LOW to HIGH
(Pad to R-Cell Input) 1.2 1.5 1.6 1.9 2.9 ns
tHCKL Input HIGH to LOW
(Pad to R-Cell Input) 1.1 1.4 1.5 1.8 2.8 ns
tHPWH Minimum Pulse Width HIGH 1.4 1.6 1.8 2.1 3.0 ns
tHPWL Minimum Pulse Width LOW 1.4 1.6 1.8 2.1 3.0 ns
tHCKSW Maximum Skew 0.1 0.1 0.1 0.1 0.2 ns
tHP Minimum Period 2.7 3.2 3.6 4.2 6.0 ns
fHMAX Maximum Frequency 350 310 277 238 166 MHz
Routed Array Clock Networks
tRCKH Input LOW to HIGH (Light Load)
(Pad to R-Cell Input) 1.2 1.3 1.5 1.8 2.5 ns
tRCKL Input HIGH to LOW (Light Load)
(Pad to R-Cell Input) 1.3 1.4 1.6 1.9 2.7 ns
tRCKH Input LOW to HIGH (50% Load)
(Pad to R-Cell Input) 1.5 1.7 2.0 2.3 3.3 ns
tRCKL Input HIGH to LOW (50% Load)
(Pad to R-Cell Input) 1.6 1.8 2.1 2.4 3.4 ns
tRCKH Input LOW to HIGH (100% Load)
(Pad to R-Cell Input) 1.7 1.9 2.2 2.6 3.6 ns
tRCKL Input HIGH to LOW (100% Load)
(Pad to R-Cell Input) 1.8 2.0 2.3 2.7 3.8 ns
tRPWH Min. Pulse Width HIGH 1.4 1.6 1.8 2.1 3.0 ns
tRPWL Min. Pulse Width LOW 1.4 1.6 1.8 2.1 3.0 ns
tRCKSW Maximum Skew (Light Load) 0.3 0.4 0.4 0.4 0.6 ns
tRCKSW Maximum Skew (50% Load) 0.5 0.6 0.7 0.8 1.3 ns
tRCKSW Maximum Skew (100% Load) 0.5 0.6 0.7 0.8 1.3 ns
SX-A Family FPGAs
34 v4.0
A54SX16A Timing Characteristics (Continued)
(Worst-Case Commercial Conditions VCCA = 2.3V, VCCI = 3.0V, TJ = 70°C)
‘–3 Speed ‘–2 Speed ‘–1 Speed Std
Speed ‘–F Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
Dedicated (Hardwired) Array Clock Networks
tHCKH Input LOW to HIGH
(Pad to R-Cell Input) 1.2 1.5 1.6 1.9 2.9 ns
tHCKL Input HIGH to LOW
(Pad to R-Cell Input) 1.1 1.4 1.5 1.8 2.8 ns
tHPWH Minimum Pulse Width HIGH 1.4 1.6 1.8 2.1 3.0 ns
tHPWL Minimum Pulse Width LOW 1.4 1.6 1.8 2.1 3.0 ns
tHCKSW Maximum Skew 0.1 0.1 0.1 0.1 0.2 ns
tHP Minimum Period 2.7 3.2 3.6 4.2 6.0 ns
fHMAX Maximum Frequency 350 310 277 238 166 MHz
Routed Array Clock Networks
tRCKH Input LOW to HIGH (Light Load)
(Pad to R-Cell Input) 1.2 1.3 1.5 1.8 2.4 ns
tRCKL Input HIGH to LOW (Light Load)
(Pad to R-Cell Input) 1.3 1.4 1.7 2.0 2.8 ns
tRCKH Input LOW to HIGH (50% Load)
(Pad to R-Cell Input) 1.5 1.7 2.0 2.3 3.3 ns
tRCKL Input HIGH to LOW (50% Load)
(Pad to R-Cell Input) 1.6 1.8 2.1 2.4 3.4 ns
tRCKH Input LOW to HIGH (100% Load)
(Pad to R-Cell Input) 1.7 1.9 2.2 2.6 3.6 ns
tRCKL Input HIGH to LOW (100% Load)
(Pad to R-Cell Input) 1.8 2.0 2.3 2.7 3.8 ns
tRPWH Min. Pulse Width HIGH 1.4 1.6 1.8 2.1 3.0 ns
tRPWL Min. Pulse Width LOW 1.4 1.6 1.8 2.1 3.0 ns
tRCKSW Maximum Skew (Light Load) 0.3 0.4 0.4 0.4 0.6 ns
tRCKSW Maximum Skew (50% Load) 0.5 0.6 0.7 0.8 1.3 ns
tRCKSW Maximum Skew (100% Load) 0.5 0.6 0.7 0.8 1.3 ns
v4.0 35
SX-A Family FPGAs
A54SX16A Timing Characteristics (Continued)
(Worst-Case Commercial Conditions VCCA = 2.3V, VCCI = 4.75V, TJ = 70°C)
‘–3 Speed ‘–2 Speed ‘–1 Speed Std
Speed ‘–F Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
Dedicated (Hardwired) Array Clock Networks
tHCKH Input LOW to HIGH
(Pad to R-Cell Input) 1.2 1.4 1.6 1.8 2.8 ns
tHCKL Input HIGH to LOW
(Pad to R-Cell Input) 1.1 1.3 1.5 1.7 2.7 ns
tHPWH Minimum Pulse Width HIGH 1.4 1.6 1.8 2.1 3.0 ns
tHPWL Minimum Pulse Width LOW 1.4 1.6 1.8 2.1 3.0 ns
tHCKSW Maximum Skew 0.1 0.1 0.1 0.1 0.2 ns
tHP Minimum Period 2.7 3.2 3.6 4.2 6.0 ns
fHMAX Maximum Frequency 350 310 277 238 166 MHz
Routed Array Clock Networks
tRCKH Input LOW to HIGH (Light Load)
(Pad to R-Cell Input) 1.1 1.2 1.4 1.7 2.3 ns
tRCKL Input HIGH to LOW (Light Load)
(Pad to R-Cell Input) 1.2 1.4 1.6 1.8 2.6 ns
tRCKH Input LOW to HIGH (50% Load)
(Pad to R-Cell Input) 1.4 1.6 1.8 2.2 3.1 ns
tRCKL Input HIGH to LOW (50% Load)
(Pad to R-Cell Input) 1.5 1.7 1.9 2.3 3.4 ns
tRCKH Input LOW to HIGH (100% Load)
(Pad to R-Cell Input) 1.6 1.9 2.1 2.5 3.5 ns
tRCKL Input HIGH to LOW (100% Load)
(Pad to R-Cell Input) 1.7 2.0 2.2 2.6 4.0 ns
tRPWH Min. Pulse Width HIGH 1.4 1.6 1.8 2.1 3.0 ns
tRPWL Min. Pulse Width LOW 1.4 1.6 1.8 2.1 3.0 ns
tRCKSW Maximum Skew (Light Load) 0.3 0.4 0.4 0.4 0.6 ns
tRCKSW Maximum Skew (50% Load) 0.5 0.6 0.7 0.8 1.3 ns
tRCKSW Maximum Skew (100% Load) 0.5 0.6 0.7 0.8 1.3 ns
SX-A Family FPGAs
36 v4.0
A54SX16A Timing Characteristics (Continued)
(Worst-Case Commercial Conditions VCCA = 2.3V, VCCI = 2.3V, TJ = 70°C)
‘–3 Speed ‘–2 Speed ‘–1 Speed Std
Speed ‘–F Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
2.5V LVTTL Output Module Timing1
tDLH Data-to-Pad LOW to HIGH 3.2 3.8 4.3 5.0 7.0 ns
tDHL Data-to-Pad HIGH to LOW 2.6 3.0 3.4 4.0 5.5 ns
tDHLS Data-to-Pad HIGH to LOWlow slew 11.3 13.0 14. 8 17.4 24.4 ns
tENZL Enable-to-Pad, Z to L 2.4 2.8 3.2 3.7 5.2 ns
tENZLS Data-to-Pad, Z to Llow slew 11.8 13.7 15.5 18.2 25.5 ns
tENZH Enable-to-Pad, Z to H 3.4 4.0 4.5 5.3 7.5 ns
tENLZ Enable-to-Pad, L to Z 2.1 2.5 2.8 3.3 4.7 ns
tENHZ Enable-to-Pad, H to Z 3.4 4.0 4.5 5.3 7.5 ns
dTLH Delta LOW to HIGH 0.031 0.037 0.043 0.051 0.071 ns/pF
dTHL Delta HIGH to LOW 0.017 0.017 0.023 0.023 0.037 ns/pF
dTHLS Delta HIGH to LOWlow slew 0.057 0.060 0.071 0.086 0.117 ns/pF
Note:
1. Dela ys ba se d on 35 pF lo ad ing .
v4.0 37
SX-A Family FPGAs
A54SX16A Timing Characteristics (Continued)
(Worst-Case Commercial Conditions VCCA = 2.3V, VCCI = 3.0V, TJ = 70°C)
‘–3 Speed ‘–2 Speed ‘–1 Sp eed Std
Speed ‘–F Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
3.3V PCI Output Module Timing1
tDLH Data-to-Pad LOW to HIGH 2.0 2.3 2.6 3.0 4.3 ns
tDHL Data-to-Pad HIGH to LOW 2.0 2.3 2.6 3.0 4.3 ns
tENZL Enable-to-Pad, Z to L 1.4 1.7 1.9 2.2 3.1 ns
tENZH Enable-to-Pad, Z to H 1.4 1.7 1.9 2.2 3.1 ns
tENLZ Enable-to-Pad, L to Z 2.5 2.8 3.2 3.8 5 .3 ns
tENHZ Enable-to-Pad, H to Z 2.5 2.8 3.2 3.8 5.3 ns
dTLH Delta LOW to HIGH 0.025 0.03 0.03 0.04 0.045 ns/pF
dTHL Delta HIGH to LOW 0.015 0.015 0.015 0.015 0.025 ns/pF
3.3V LVTTL Output Module Timing2
tDLH Data-to-Pad LOW to HIGH 2.7 3.2 3.6 4.2 5.9 ns
tDHL Data-to-Pad HIGH to LOW 2.5 2.8 3.2 3.8 5.3 ns
tDHLS Data-to-Pad HIGH to LOWlow slew 9.0 10.4 11.8 13.8 19.4 ns
tENZL Enable-to-Pad, Z to L 2.2 2.6 2.9 3.4 4.8 ns
tENZLS Enable-to-Pad, Z to Llow slew 15.8 18.9 21.3 25.4 34.9 ns
tENZH Enable-to-Pad, Z to H 2.9 3.3 3.7 4.4 6.2 ns
tENLZ Enable-to-Pad, L to Z 2.9 3.3 3.7 4.4 6 .2 ns
tENHZ Enable-to-Pad, H to Z 2.5 2.8 3.2 3.8 5.3 ns
dTLH Delta LOW to HIGH 0.025 0.03 0.03 0.04 0.045 ns/pF
dTHL Delta HIGH to LOW 0.015 0.015 0.015 0.015 0.025 ns/pF
dTHLS Delta HIGH to LOWlow slew 0.053 0.053 0.067 0.073 0.107 ns/pF
Notes:
1. Delays based on 10 p F load ing and 25 resistance.
2. Dela ys ba se d on 35 pF lo ad ing .
SX-A Family FPGAs
38 v4.0
A54SX16A Timing Characteristics (Continued)
(Worst-Case Commercial Conditions VCCA = 2.3V, VCCI = 4.75V, TJ = 70°C)
‘–3 Speed ‘–2 Speed ‘–1 Speed Std
Speed ‘–F Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
5.0V PCI Output Module Timing1
tDLH Data-to-Pad LOW to HIGH 2.1 2.5 2.8 3.3 4.6 ns
tDHL Data-to-Pad HIGH to LOW 2.73 3.1 3.5 4.2 5.8 ns
tDHLS Data-to-Pad HIGH to LOWlow slew 7.4 8.5 9.6 11.3 15.9 ns
tENZL Enable-to-Pad, Z to L 1.3 1.5 1.7 2.0 2.8 ns
tENZLS Enable-to-Pad, Z to Llow slew 3.5 5.1 5.9 6.9 9.7 ns
tENZH Enable-to-Pad, Z to H 1.3 1.5 1.7 2.0 2.8 ns
tENLZ Enable-to-Pad, L to Z 3.0 3.5 3.9 4.6 6.4 ns
tENHZ Enable-to-Pad, H to Z 3.0 3.5 3.9 4.6 6.4 ns
dTLH Delta LOW to HIGH 0.016 0.016 0.02 0.022 0.032 ns/pF
dTHL Delta HIGH to LOW 0.026 0.03 0.032 0.04 0.052 ns/pF
dTHLS Delta HIGH to LOWlow slew 0.04 0.052 0.06 0.07 0.096 ns/pF
5.0V TTL Output Module Timing2
tDLH Data-to-Pad LOW to HIGH 1.9 2.2 2.5 3.0 4.2 ns
tDHL Data-to-Pad HIGH to LOW 2.5 2.9 3.3 3.9 5.4 ns
tDHLS Data-to-Pad HIGH to LOWlow slew 6.6 7.6 8.6 1 0.2 14.2 ns
tENZL Enable-to-Pad, Z to L 2.1 2.4 2.7 3.2 4.5 ns
tENZLS Enable-to-Pad, Z to Llow slew 7.4 8.4 9.5 11.0 15.4 ns
tENZH Enable-to-Pad, Z to H 2.3 2.7 3.1 3.6 5.0 ns
tENLZ Enable-to-Pad, L to Z 3.6 4.2 4.7 5.6 7.8 ns
tENHZ Enable-to-Pad, H to Z 3.0 3.5 3.9 4.6 6.4 ns
dTLH Delta LOW to HIGH 0.014 0.017 0.017 0.023 0.031 ns/pF
dTHL Delta HIGH to LOW 0.023 0.029 0.031 0.037 0.051 ns/pF
dTHLS Delta HIGH to LOWlow slew 0.043 0.046 0.057 0.066 0.089 ns/pF
Notes:
1. Dela ys ba se d on 50 pF lo ad ing .
2. Dela ys ba se d on 35 pF lo ad ing .
v4.0 39
SX-A Family FPGAs
A54SX32A Timing Characteristics
(Worst-Case Commercial Conditions, VCCA = 2.3V, VCCI = 3.0V, TJ = 70°C)
‘–3 Speed ‘–2 Speed ‘–1 Speed Std
Speed ‘–F Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
C-Cell Propagation Delays1
tPD Internal Array Module 0.8 1.0 1.1 1.3 1.8 ns
Predicted Routing Delays2
tDC FO=1 Routing Delay, Direct Connect 0.1 0.1 0.1 0.1 0.1 ns
tFC FO=1 Routing Delay, Fast Connect 0.3 0.3 0.3 0.4 0.6 ns
tRD1 FO=1 Routing Delay 0.3 0.3 0.4 0.5 0.6 ns
tRD2 FO=2 Routing Delay 0.4 0.5 0.5 0.6 0.8 ns
tRD3 FO=3 Routing Delay 0.5 0.6 0.7 0.8 1.1 ns
tRD4 FO=4 Routing Delay 0.7 0.8 0.9 1.0 1.4 ns
tRD8 FO=8 Routing Delay 1.2 1.4 1.5 1.8 2.5 ns
tRD12 FO=12 Routing Delay 1.7 2.0 2.2 2.6 3.6 ns
R-Cell Timing
tRCO Sequential Clock-to-Q 0.6 0.7 0.8 0.9 1.3 ns
tCLR Asynchronous Clear-to-Q 0.7 0.8 0.9 1.1 1.6 ns
tPRESET Asynchronous Preset-to-Q 0.7 0.8 0.9 1.1 1.6 ns
tSUD Flip-Flop Data Input Set-Up 0.7 0.8 0.9 1.1 1.6 ns
tHD Flip-Flop Data Input Hold 0.0 0.0 0.0 0.0 0.0 ns
tWASYN Asynchronous Pulse Width 1.3 1.5 1.7 2.0 2.8 ns
tRECASYN Asynchronous Recovery Time 0.3 0.4 0.4 0.5 0.7 ns
tHASYN Asynchronous Removal Time 0.3 0.3 0.3 0.4 0.6 ns
Input Module Propagation Delays
tINYH Input Data Pad-to-Y HIGH 0.5 0.6 0.7 0.8 1.1 ns
tINYL Input Data Pad-to-Y LOW 0.8 1.0 1.0 1.3 1.8 ns
Input Module Predicted Routing Delays2
tIRD1 FO=1 Routing Delay 0.3 0.3 0.3 0.4 0.6 ns
tIRD2 FO=2 Routing Delay 0.4 0.5 0.5 0.6 0.8 ns
tIRD3 FO=3 Routing Delay 0.5 0.6 0.7 0.8 1.1 ns
tIRD4 FO=4 Routing Delay 0.7 0.8 0.9 1.0 1.4 ns
tIRD8 FO=8 Routing Delay 1.2 1.4 1.5 1.8 2.5 ns
tIRD12 FO=12 Routing Delay 1.7 2.0 2.2 2.6 3.6 ns
Notes:
1. For d ual-modul e macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD , whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual performance.
SX-A Family FPGAs
40 v4.0
A54SX32A Timing Characteristics (Continued)
(Worst-Case Commercial Conditions VCCA = 2.3V, VCCI = 2.3V, TJ = 70°C)
‘–3 Speed ‘–2 Speed ‘–1 Speed Std
Speed ‘–F Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
Dedicated (Hardwired) Array Clock Networks
tHCKH Input LOW to HIGH
(Pad to R-Cell Input) 1.7 2.0 2.3 2.7 4.1 ns
tHCKL Input HIGH to LOW
(Pad to R-Cell Input) 1.5 1.7 1.9 2.3 3.5 ns
tHPWH Minimum Pulse Width HIGH 1.4 1.6 1.8 2.2 3.0 ns
tHPWL Minimum Pulse Width LOW 1.4 1.6 1.8 2.2 3.0 ns
tHCKSW Maximum Skew 0.3 0.4 0.4 0.5 0.8 ns
tHP Minimum Period 2.7 3.2 3.6 4.4 6.0 ns
fHMAX Maximum Frequency 350 310 277 227 166 MHz
Routed Array Clock Networks
tRCKH Input LOW to HIGH (Light Load)
(Pad to R-Cell Input) 1.7 2.0 2.2 2.6 3.7 ns
tRCKL Input HIGH to LOW (Light Load)
(Pad to R-Cell Input) 2.1 2.4 2.7 3.2 4.5 ns
tRCKH Input LOW to HIGH (50% Load)
(Pad to R-Cell Input) 2.1 2.4 2.8 3.2 4.5 ns
tRCKL Input HIGH to LOW (50% Load)
(Pad to R-Cell Input) 2.3 2.5 2.9 3.4 5.0 ns
tRCKH Input LOW to HIGH (100% Load)
(Pad to R-Cell Input) 2.5 2.9 3.2 3.8 6.4 ns
tRCKL Input HIGH to LOW (100% Load)
(Pad to R-Cell Input) 2.5 2.9 3.2 3.8 6.4 ns
tRPWH Min. Pulse Width HIGH 1.4 1.6 1.8 2.2 3.0 ns
tRPWL Min. Pulse Width LOW 1.4 1.6 1.8 2.2 3.0 ns
tRCKSW Maximum Skew (Light Load) 0.9 1.0 1.1 1.3 2.2 ns
tRCKSW Maximum Skew (50% Load) 1.2 1.4 1.6 1.9 3.2 ns
tRCKSW Maximum Skew (100% Load) 1.3 1.5 1.7 2.0 3.4 ns
v4.0 41
SX-A Family FPGAs
A54SX32A Timing Characteristics (Continued)
(Worst-Case Commercial Conditions VCCA = 2.3V, VCCI = 3.0V, TJ = 70°C)
‘–3 Speed ‘–2 Speed ‘–1 Speed Std
Speed ‘–F Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
Dedicated (Hardwired) Array Clock Networks
tHCKH Input LOW to HIGH
(Pad to R-Cell Input) 1.7 2.0 2.3 2.7 4.1 ns
tHCKL Input HIGH to LOW
(Pad to R-Cell Input) 1.5 1.7 1.9 2.3 3.5 ns
tHPWH Minimum Pulse Width HIGH 1.4 1.6 1.8 2.2 3.0 ns
tHPWL Minimum Pulse Width LOW 1.4 1.6 1.8 2.2 3.0 ns
tHCKSW Maximum Skew 0.3 0.4 0.4 0.5 0.8 ns
tHP Minimum Period 2.7 3.2 3.6 4.4 6.0 ns
fHMAX Maximum Frequency 350 310 277 227 166 MHz
Routed Array Clock Networks
tRCKH Input LOW to HIGH (Light Load)
(Pad to R-Cell Input) 1.7 2.0 2.2 2.6 3.7 ns
tRCKL Input HIGH to LOW (Light Load)
(Pad to R-Cell Input) 2.1 2.4 2.8 3.3 4.6 ns
tRCKH Input LOW to HIGH (50% Load)
(Pad to R-Cell Input) 2.1 2.4 2.8 3.2 4.5 ns
tRCKL Input HIGH to LOW (50% Load)
(Pad to R-Cell Input) 2.3 2.5 2.9 3.4 5.0 ns
tRCKH Input LOW to HIGH (100% Load)
(Pad to R-Cell Input) 2.5 2.9 3.2 3.8 6.4 ns
tRCKL Input HIGH to LOW (100% Load)
(Pad to R-Cell Input) 2.5 2.9 3.2 3.8 6.4 ns
tRPWH Min. Pulse Width HIGH 1.4 1.6 1.8 2.2 3.0 ns
tRPWL Min. Pulse Width LOW 1.4 1.6 1.8 2.2 3.0 ns
tRCKSW Maximum Skew (Light Load) 0.9 1.0 1.1 1.3 2.2 ns
tRCKSW Maximum Skew (50% Load) 1.2 1.4 1.6 1.9 3.2 ns
tRCKSW Maximum Skew (100% Load) 1.3 1.5 1.7 2.0 3.4 ns
SX-A Family FPGAs
42 v4.0
A54SX32A Timing Characteristics (Continued)
(Worst-Case Commercial Conditions VCCA = 2.3V, VCCI = 4.75V, TJ = 70°C)
‘–3 Speed ‘–2 Speed ‘–1 Speed Std
Speed ‘–F Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
Dedicated (Hardwired) Array Clock Networks
tHCKH Input LOW to HIGH
(Pad to R-Cell Input) 1.7 1.9 2.3 2.6 4.0 ns
tHCKL Input HIGH to LOW
(Pad to R-Cell Input) 1.5 1.7 1.9 2.2 3.5 ns
tHPWH Minimum Pulse Width HIGH 1.4 1.6 1.8 2.2 3.0 ns
tHPWL Minimum Pulse Width LOW 1.4 1.6 1.8 2.2 3.0 ns
tHCKSW Maximum Skew 0.3 0.4 0.4 0.5 0.8 ns
tHP Minimum Period 2.7 3.2 3.6 4.4 6.0 ns
fHMAX Maximum Frequency 350 310 277 227 166 MHz
Routed Array Clock Networks
tRCKH Input LOW to HIGH (Light Load)
(Pad to R-Cell Input) 1.6 1.9 2.1 2.5 3.5 ns
tRCKL Input HIGH to LOW (Light Load)
(Pad to R-Cell Input) 2.0 2.4 2.7 3.1 4.4 ns
tRCKH Input LOW to HIGH (50% Load)
(Pad to R-Cell Input) 2.0 2.4 2.7 3.1 2.5 ns
tRCKL Input HIGH to LOW (50% Load)
(Pad to R-Cell Input) 2.2 2.5 2.8 3.3 5.5 ns
tRCKH Input LOW to HIGH (100% Load)
(Pad to R-Cell Input) 2.5 2.9 3.2 3.8 6.4 ns
tRCKL Input HIGH to LOW (100% Load)
(Pad to R-Cell Input) 2.5 2.9 3.2 3.8 6.4 ns
tRPWH Min. Pulse Width HIGH 1.4 1.6 1.8 2.2 3.0 ns
tRPWL Min. Pulse Width LOW 1.4 1.6 1.8 2.2 3.0 ns
tRCKSW Maximum Skew (Light Load) 0.9 1.0 1.1 1.3 2.0 ns
tRCKSW Maximum Skew (50% Load) 1.2 1.4 1.6 1.9 3.2 ns
tRCKSW Maximum Skew (100% Load) 1.3 1.5 1.7 2.0 3.4 ns
v4.0 43
SX-A Family FPGAs
A54SX32A Timing Characteristics (Continued)
(Worst-Case Commercial Conditions VCCA = 2.3V, VCCI = 2.3V, TJ = 70°C)
‘–3 Speed ‘–2 Speed ‘–1 Speed Std
Speed ‘–F Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
2.5V LVTTL Output Module Timing1
tDLH Data-to-Pad LOW to HIGH 3.2 3.8 4.3 5.0 7.0 ns
tDHL Data-to-Pad HIGH to LOW 2.6 3.0 3.4 4.0 5.5 ns
tDHLS Data-to-Pad HIGH to LOWlow slew 11.3 13.0 14.8 17.4 24.4 ns
tENZL Enable-to-Pad, Z to L 2.4 2.8 3.2 3.7 5.2 ns
tENZLS Data-to-Pad, Z to Llow slew 11.8 13.7 15.5 18.2 25.5 ns
tENZH Enable-to-Pad, Z to H 3.4 4.0 4.5 5.3 7 .5 ns
tENLZ Enable-to-Pad, L to Z 2.1 2.5 2.8 3.3 4.7 ns
tENHZ Enable-to-Pad, H to Z 3 .4 4.0 4.5 5.3 7 .5 ns
dTLH Delta LOW to HIGH 0.031 0.037 0.043 0.051 0.071 ns/pF
dTHL Delta HIGH to LOW 0.017 0.017 0.023 0.023 0.037 ns/pF
dTHLS Delta HIGH to LOWlow slew 0.057 0.060 0.071 0.086 0.117 ns/pF
Note:
1. Dela ys ba se d on 35 pF lo ad ing .
SX-A Family FPGAs
44 v4.0
A54SX32A Timing Characteristics (Continued)
(Worst-Case Commercial Conditions VCCA = 2.3V, VCCI = 3.0V, TJ = 70°C)
‘–3 Speed ‘–2 Speed ‘–1 Speed Std Speed ‘–F Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
3.3V PCI Output Module Timing1
tDLH Data-to-Pad LOW to HIGH 2.0 2.3 2.6 3.0 4.3 ns
tDHL Data-to-Pad HIGH to LOW 2.0 2.3 2.6 3.0 4.3 ns
tENZL Enable-to-Pad, Z to L 1.4 1.7 1.9 2.2 3.1 ns
tENZH Enable-to-Pad, Z to H 1.4 1.7 1.9 2.2 3.1 ns
tENLZ Enable-to-Pad, L to Z 2.5 2.8 3.2 3.8 5.3 ns
tENHZ Enable-to-Pad, H to Z 2.5 2.8 3.2 3.8 5.3 ns
dTLH Delta LOW to HIGH 0.025 0.03 0.03 0.04 0.045 ns/pF
dTHL Delta HIGH to LOW 0.015 0.015 0.015 0.015 0.025 ns/pF
3.3V LVTTL Output Module Timing2
tDLH Data-to-Pad LOW to HIGH 2.7 3.2 3.6 4.2 5.9 ns
tDHL Data-to-Pad HIGH to LOW 2.5 2.8 3.2 3.8 5.3 ns
tDHLS Da ta-to-Pa d HIGH to LOWlo w slew 9.0 10.4 11.8 13.8 19.4 ns
tENZL Enable-to-Pad, Z to L 2.2 2.6 2.9 3.4 4.8 ns
tENZLS Enable-to-Pad, Z to Llow slew 15.8 18.9 21.3 25.4 34.9 ns
tENZH Enable-to-Pad, Z to H 2.9 3.3 3.7 4.4 6.2 ns
tENLZ Enable-to-Pad, L to Z 2.9 3.3 3.7 4.4 6.2 ns
tENHZ Enable-to-Pad, H to Z 2.5 2.8 3.2 3.8 5.3 ns
dTLH Delta LOW to HIGH 0.025 0.03 0.03 0.04 0.045 ns/pF
dTHL Delta HIGH to LOW 0.015 0.015 0.015 0.015 0.025 ns/pF
dTHLS Delta HIGH to LOWlow slew 0.053 0.053 0.067 0.073 0.107 ns/pF
Notes:
1. Delays based on 10 pF loading and 25 resistance.
2. Dela ys ba se d on 35 pF lo adi ng.
v4.0 45
SX-A Family FPGAs
A54SX32A Timing Characteristics (Continued)
(Worst-Case Commercial Conditions VCCA = 2.3V, VCCI = 4.75V, TJ = 70°C)
‘–3 Speed ‘–2 Spe ed ‘–1 Speed Std
Speed ‘–F Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
5.0V PCI Output Module Timing1
tDLH Data-to-Pad LOW to HIGH 2.1 2.5 2.8 3.3 4.6 ns
tDHL Data-to-Pad HIGH to LOW 2.7 3.1 3.5 4.2 5.8 ns
tDHLS Data-to-Pad HI GH to LOWlow slew 7.4 8.5 9.6 11.3 1 5.9 ns
tENZL Enable-to-Pad, Z to L 1.3 1.5 1.7 2.0 2.8 ns
tENZLS Enable-to-Pad, Z to Llow slew 3.5 5.1 5.9 6.9 9.7 ns
tENZH Enable-to-Pad, Z to H 1.3 1.5 1.7 2.0 2.8 ns
tENLZ Enable-to-Pad, L to Z 3.0 3.5 3.9 4.6 6.4 ns
tENHZ Enable-to-Pad, H to Z 3.0 3.5 3.9 4.6 6.4 ns
dTLH Delta LOW to HIGH 0.016 0.016 0.02 0.022 0.032 ns/pF
dTHL Delta HIGH to LOW 0.026 0.03 0.032 0.04 0.052 ns/pF
dTHLS Delta HIGH to LOWlow slew 0.04 0.052 0.06 0.07 0.096 ns/pF
5. 0V TTL Output Module Timing2
tDLH Data-to-Pad LOW to HIGH 1.9 2.2 2.5 3.0 4.2 ns
tDHL Data-to-Pad HIGH to LOW 2.5 2.9 3.3 3.9 5.4 ns
tDHLS Data-to-Pad HI GH to LOWlow slew 6.6 7.6 8.6 10.2 14.2 ns
tENZL Enable-to-Pad, Z to L 2.1 2.4 2.7 3.2 4.5 ns
tENZLS Enable-to-Pad, Z to Llow slew 7.4 8.4 9.5 11.0 15.4 ns
tENZH Enable-to-Pad, Z to H 2.3 2.7 3.1 3.6 5.0 ns
tENLZ Enable-to-Pad, L to Z 3.6 4.2 4.7 5.6 7.8 ns
tENHZ Enable-to-Pad, H to Z 3.0 3.5 3.9 4.6 6.4 ns
dTLH Delta LOW to HIGH 0.014 0.017 0.017 0.023 0.031 ns/pF
dTHL Delta HIGH to LOW 0.023 0.029 0.031 0.037 0.051 ns/pF
dTHLS Delta HIGH to LOWlow slew 0.043 0.046 0.057 0.066 0.089 ns/pF
Notes:
1. Dela ys ba se d on 50 pF lo ad ing .
2. Dela ys ba se d on 35 pF lo ad ing .
SX-A Family FPGAs
46 v4.0
A54SX72A Timing Characteristics
(Worst-Case Commercial Conditions, VCCA = 2.3V, VCCI = 3.0V, TJ = 70°C)
‘–3 Speed ‘–2 Speed ‘–1 Speed Std
Speed ‘–F Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
C-Cell Propagation Delays1
tPD Internal Array Module 0.8 1.0 1.1 1.3 1.8 ns
Predicted Routing Delays2
tDC FO=1 Routing Delay, Direct Connect 0.1 0.1 0.1 0.1 0.1 ns
tFC FO=1 Routing Delay, Fast Connect 0.3 0.3 0.3 0.4 0.6 ns
tRD1 FO=1 Routing Delay 0.3 0.3 0.4 0.5 0.7 ns
tRD2 FO=2 Routing Delay 0.4 0.5 0.6 0.7 1.0 ns
tRD3 FO=3 Routing Delay 0.5 0.7 0.8 0.9 1.3 ns
tRD4 FO=4 Routing Delay 0.7 0.9 1.0 1.1 1.5 ns
tRD8 FO=8 Routing Delay 1.2 1.5 1.7 2.1 2.9 ns
tRD12 FO=12 Routing Delay 1.7 2.2 2.5 3.0 4.2 ns
R-Cell Timing
tRCO Sequential Clock-to-Q 0.6 0.7 0.8 0.9 1.3 ns
tCLR As ynchro nous Cle ar- to-Q 0.7 0.8 0.9 1.1 1.6 ns
tPRESET Asynchronous Pr eset- to-Q 0.7 0.8 0.9 1.1 1.6 ns
tSUD Flip-Flop Data Input Set-Up 0.7 0.8 0.9 1.1 1.6 ns
tHD Flip-Flop Data Input Hold 0.0 0.0 0.0 0.0 0.0 ns
tWASYN Asynchro nous Pulse Widt h 1.3 1.5 1.7 2.0 2.8 ns
tRECASYN Asynchro nous Recover y Ti me 0.3 0.4 0.4 0.5 0.7 ns
tHASYN Asynchronous Hol d Ti me 0.3 0.3 0.3 0.4 0 .6 ns
Input Module Propagation Delays
tINYH Input Data Pad-to-Y HIGH 0.5 0.6 0.7 0.8 1.1 ns
tINYL Input Data Pad-to-Y LOW 0.8 1.0 1.0 1.3 1.8 ns
Input Module Predicted Routing Delays2
tIRD1 FO=1 Routing Delay 0.3 0.3 0.4 0.5 0.7 ns
tIRD2 FO=2 Routing Delay 0.4 0.5 0.6 0.7 1.0 ns
tIRD3 FO=3 Routing Delay 0.5 0.7 0.8 0.9 1.3 ns
tIRD4 FO=4 Routing Delay 0.7 0.9 1.0 1.1 1.5 ns
tIRD8 FO=8 Routing Delay 1.2 1.5 1.7 2.1 2.9 ns
tIRD12 FO=12 Routing Delay 1.7 2.2 2.5 3.0 4.2 ns
Notes:
1. For d ual-modul e macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD , whichever is approp ri ate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual performance.
v4.0 47
SX-A Family FPGAs
A54SX72A Timing Characteristics (Continued)
(Worst-Case Commercial Conditions VCCA = 2.3V, VCCI = 2.3V, TJ = 70°C)
‘–3 Speed ‘–2 Speed ‘–1 Speed Std Speed ‘–F Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
Dedicated (Hardwired) Array Clock Networks
tHCKH Input LOW to HIGH
(Pad to R-Cell Input) 1.3 1.5 1.7 2.1 3.1 ns
tHCKL Input HIGH to LOW
(Pad to R-Cell Input) 1.1 1.3 1.5 1.9 2.9 ns
tHPWH Minimum Pulse Width HIGH 1.4 1.6 1.8 2.2 3.0 ns
tHPWL Minimum Pulse Width LOW 1.4 1.6 1.8 2.2 3.0 ns
tHCKSW Maximum Ske w 0.7 0.8 0.9 1.0 1.6 ns
tHP Minimum Period 2.8 3.2 3.6 4.4 6.0 ns
fHMAX Maximum Frequency 350 310 277 227 166 MHz
Routed Array Clock Networks
tRCKH Input LOW to HIGH (Light Load)
(Pad to R-Cell Input) 2.3 2.6 2.9 3.5 4.8 ns
tRCKL Input HIGH to LOW (Light Load)
(Pad to R-Cell Input) 2.6 3.1 3.4 4.0 5.6 ns
tRCKH Input LOW to HIGH (50% Load)
(Pad to R-Cell Input) 3.0 3.5 3.9 4.6 6.5 ns
tRCKL Input HIGH to LOW (50% Load)
(Pad to R-Cell Input) 3.3 3.8 4.2 4.9 7.1 ns
tRCKH Input LOW to HIGH (100% Load)
(Pad to R-Cell Input) 3.7 4.3 4.8 5.7 8.0 ns
tRCKL Input HIGH to LOW (100% Load)
(Pad to R-Cell Input) 4.0 4.6 5.1 6.0 8.6 ns
tRPWH Min. Pulse Width HIGH 1.4 1.6 1.8 2.2 3.0 ns
tRPWL Min. Pulse Width LOW 1.4 1.6 1.8 2.2 3.0 ns
tRCKSW Maximum Skew (Ligh t Load) 1.8 2 .1 2.4 2 .7 3.8 ns
tRCKSW Maximum Skew (50% Load) 1.2 1.4 1.6 1.9 3.2 ns
tRCKSW Maximum Skew (100 % Load) 1 .4 1.5 1.7 2.0 3.4 ns
SX-A Family FPGAs
48 v4.0
A54SX72A Timing Characteristics (Continued)
(Worst-Case Commercial Conditions VCCA = 2.3V, VCCI = 3.0V, TJ = 70°C)
‘–3 Speed ‘–2 Speed ‘–1 Speed Std Speed ‘–F Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
Dedicated (Hardwired) Array Clock Networks
tHCKH Input LOW to HIGH
(Pad to R-Cell Input) 1.3 1.5 1.7 2.1 3.1 ns
tHCKL Input HIGH to LOW
(Pad to R-Cell Input) 1.1 1.3 1.5 1.9 2.9 ns
tHPWH Minimum Pulse Width HIGH 1.4 1.6 1.8 2.2 3.0 ns
tHPWL Minimum Pulse Width LOW 1.4 1.6 1.8 2.2 3.0 ns
tHCKSW Maximum Ske w 0.7 0.8 0.9 1.0 1.6 ns
tHP Minimum Period 2.8 3.2 3.6 4.4 6.0 ns
fHMAX Maximum Frequency 350 310 277 227 166 MHz
Routed Array Clock Networks
tRCKH Input LOW to HIGH (Light Load)
(Pad to R-Cell Input) 2.2 2.6 2.9 3.5 4.8 ns
tRCKL Input HIGH to LOW (Light Load)
(Pad to R-Cell Input) 2.7 3.1 3.5 4.1 5.7 ns
tRCKH Input LOW to HIGH (50% Load)
(Pad to R-Cell Input) 3.0 3.5 3.9 4.6 6.5 ns
tRCKL Input HIGH to LOW (50% Load)
(Pad to R-Cell Input) 3.3 3.8 4.2 4.9 7.1 ns
tRCKH Input LOW to HIGH (100% Load)
(Pad to R-Cell Input) 3.7 4.3 4.8 5.7 8.0 ns
tRCKL Input HIGH to LOW (100% Load)
(Pad to R-Cell Input) 4.0 4.6 5.1 6.0 8.6 ns
tRPWH Min. Pulse Width HIGH 1.4 1.6 1.8 2.2 3.0 ns
tRPWL Min. Pulse Width LOW 1.4 1.6 1.8 2.2 3.0 ns
tRCKSW Maximum Skew (Ligh t Load) 1.8 2 .1 2.4 2 .7 3.8 ns
tRCKSW Maximum Skew (50% Load) 1.2 1.4 1.6 1.9 3.2 ns
tRCKSW Maximum Skew (100 % Load) 1 .4 1.5 1.7 2.0 3.4 ns
v4.0 49
SX-A Family FPGAs
A54SX72A Timing Characteristics (Continued)
(Worst-Case Commercial Conditions VCCA = 2.3V, VCCI = 4.75V, TJ = 70°C)
‘–3 Speed ‘–2 Speed ‘–1 Speed Std Speed ‘–F Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
Dedicated (Hardwired) Array Clock Networks
tHCKH Input LOW to HIGH
(Pad to R-Cell Input) 1.3 1.4 1.7 2.0 3.0 ns
tHCKL Input HIGH to LOW
(Pad to R-Cell Input) 1.1 1.2 1.5 1.8 2.8 ns
tHPWH Minimum Pulse Width HIGH 1.4 1.6 1.8 2.2 3.0 ns
tHPWL Minimum Pulse Width LOW 1.4 1.6 1.8 2.2 3.0 ns
tHCKSW Maximum Ske w 0.7 0.8 0.9 1.0 1.6 ns
tHP Minimum Period 2.8 3.2 3.6 4.4 6.0 ns
fHMAX Maximum Frequency 350 310 277 227 166 MHz
Routed Array Clock Networks
tRCKH Input LOW to HIGH (Light Load)
(Pad to R-Cell Input) 2.2 2.5 2.8 3.4 4.6 ns
tRCKL Input HIGH to LOW (Light Load)
(Pad to R-Cell Input) 2.6 3.0 3.4 3.9 5.5 ns
tRCKH Input LOW to HIGH (50% Load)
(Pad to R-Cell Input) 3.0 3.5 3.9 4.6 6.5 ns
tRCKL Input HIGH to LOW (50% Load)
(Pad to R-Cell Input) 3.3 3.8 4.2 4.9 7.1 ns
tRCKH Input LOW to HIGH (100% Load)
(Pad to R-Cell Input) 3.7 4.3 4.8 5.7 8.0 ns
tRCKL Input HIGH to LOW (100% Load)
(Pad to R-Cell Input) 4.0 4.6 5.1 6.0 8.6 ns
tRPWH Min. Pulse Width HIGH 1.4 1.6 1.8 2.2 3.0 ns
tRPWL Min. Pulse Width LOW 1.4 1.6 1.8 2.2 3.0 ns
tRCKSW Maximum Skew (Ligh t Load) 1.8 2 .1 2.4 2 .7 3.8 ns
tRCKSW Maximum Skew (50% Load) 1.4 1.6 1 .9 3.2 ns
tRCKSW Maximum Skew (100 % Load) 1.5 1.7 2 .0 3.4 ns
SX-A Family FPGAs
50 v4.0
A54SX72A Timing Characteristics (Continued)
(Worst-Case Commercial Conditions VCCA = 2.3V, VCCI = 2.3V, TJ = 70°C)
‘–3 Speed ‘–2 Speed ‘–1 Speed Std
Speed ‘–F Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
2.5V LVTTL Output Module Timing1
tDLH Data-to-Pad LOW to HIGH 3.3 3.9 4.4 5.2 7.2 ns
tDHL Data-to-Pad HIGH to LOW 2.6 3.0 3.4 4.0 5.5 ns
tDHLS Data-to-Pad HIGH to LOWlow slew 11.7 13.5 15.3 18.0 25.9 ns
tENZL Enable-to-Pad, Z to L 2.4 2.8 3.2 3.7 5.2 ns
tENZLS Data-to-P ad, Z to Llow slew 11.8 13.7 15.5 18.2 25.5 ns
tENZH Enable-to-Pad, Z to H 3.4 4.0 4.5 5.3 7.5 ns
tENLZ Enable-to-Pad, L to Z 2.1 2.5 2.8 3.3 4.7 ns
tENHZ Enable-to-Pad, H to Z 3.4 4.0 4.5 5.3 7.5 ns
dTLH Delta LOW to HIGH 0.031 0.037 0.043 0.051 0.071 ns/pF
dTHL Delta HIGH to LOW 0.017 0.017 0.023 0.023 0.037 ns/pF
dTHLS Delta HIGH to LOWlow slew 0.057 0.060 0.071 0.086 0.117 ns/pF
Note:
1. Dela ys ba se d on 35 pF lo adi ng.
v4.0 51
SX-A Family FPGAs
A54SX72A Timing Characteristics (Continued)
(Worst-Case Commercial Conditions VC CA = 2.3V, VCCI = 3.0V, TJ = 70°C)
‘–3 Speed ‘–2 Speed ‘–1 Speed Std Speed ‘–F Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
3.3V PCI Output Module Timing1
tDLH Data-to-Pad LOW to HIGH 2.0 2.3 2.6 3.0 4.3 ns
tDHL Data-to-Pad HIGH to LOW 2.0 2.3 2.6 3.0 4.3 ns
tENZL Enable-to-Pad, Z to L 1.4 1.7 1.9 2.2 3.1 ns
tENZH Enable-to-Pad, Z to H 1.4 1.7 1.9 2.2 3.1 ns
tENLZ Enable-to-Pad, L to Z 2.5 2.8 3.2 3.8 5.3 ns
tENHZ Enable-to-Pad, H to Z 2.5 2.8 3.2 3.8 5.3 ns
dTLH Delta LOW to HIGH 0.025 0.03 0.03 0.04 0.045 ns/pF
dTHL Delta HIGH to LOW 0.015 0.015 0.015 0.015 0.025 ns/pF
3.3V LVTTL Output Module Timing2
tDLH Data-to-Pad LOW to HIGH 2.7 3.2 3.6 4.2 5.9 ns
tDHL Data-to-Pad HIGH to LOW 2.5 2.8 3.2 3.8 5.3 ns
tDHLS Data-to-Pad HIGH to LOWlow slew 9.0 10.4 11.8 13.8 19.4 n s
tENZL Enable-to-Pad, Z to L 2.2 2.6 2.9 3.4 4.8 ns
tENZLS Enable-to-Pad, Z to Llow slew 15.8 18.9 21.3 25.4 34.9 ns
tENZH Enable-to-Pad, Z to H 2.9 3.3 3.7 4.4 6.2 ns
tENLZ Enable-to-Pad, L to Z 2.9 3.3 3.7 4.4 6.2 ns
tENHZ Enable-to-Pad, H to Z 2.5 2.8 3.2 3.8 5.3 ns
dTLH Delta LOW to HIGH 0.025 0.03 0.03 0.04 0.045 ns/pF
dTHL Delta HIGH to LOW 0.015 0.015 0.015 0.015 0.025 ns/pF
dTHLS Delta HIGH to LOWl o w slew 0.053 0.053 0.067 0.0 73 0.107 ns/pF
Notes:
1. Delays based on 10 pF loading and 25 resistance.
2. Dela ys ba se d on 35 pF lo ad ing .
SX-A Family FPGAs
52 v4.0
A54SX72A Timing Characteristics (Continued)
(Worst-Case Commercial Conditions VCCA = 2.3V, VCCI = 4.75V, TJ = 70°C)
‘–3 Speed ‘–2 Spe ed ‘–1 Speed Std
Speed ‘–F Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
5.0V PCI Output Module Timing1
tDLH Data-to-Pad LOW to HIGH 2.1 2.5 2.8 3.3 4.6 ns
tDHL Data-to-Pad HIGH to LOW 2.7 3.1 3.5 4.2 5.8 ns
tDHLS Da ta-to-Pa d HIGH to LOWlo w slew 7. 4 8.5 9.6 11.3 15.9 ns
tENZL Enable-to-Pad, Z to L 1.3 1.5 1.7 2.0 2.8 ns
tENZLS Enable-to-Pad, Z to Llow slew 3.5 5.1 5.9 6.9 9.7 ns
tENZH Enable-to-Pad, Z to H 1.3 1.5 1.7 2.0 2.8 ns
tENLZ Enable-to-Pad, L to Z 3.0 3.5 3.9 4.6 6.4 ns
tENHZ Enable-to-Pad, H to Z 3 .0 3.5 3.9 4.6 6.4 ns
dTLH Delta LOW to HIGH 0.016 0.016 0.02 0.022 0.032 ns/pF
dTHL Delta HIGH to LOW 0.026 0.03 0.032 0.04 0.052 ns/pF
dTHLS Delta HIGH to LOWlow slew 0.04 0.052 0.06 0.07 0.096 ns/pF
5. 0V TTL Output Module Timing2
tDLH Data-to-Pad LOW to HIGH 1.9 2.2 2.5 3.0 4.2 ns
tDHL Data-to-Pad HIGH to LOW 2.5 2.9 3.3 3.9 5.4 ns
tDHLS Da ta-to-Pa d HIGH to LOWlo w slew 6.6 7.6 8.6 10.2 14.2 ns
tENZL Enable-to-Pad, Z to L 2.1 2.4 2.7 3.2 4.5 ns
tENZLS Enable-to-Pad, Z to Llow slew 7.4 8.4 9.5 11.0 15.4 ns
tENZH Enable-to-Pad, Z to H 2.3 2.7 3.1 3.6 5.0 ns
tENLZ Enable-to-Pad, L to Z 3.6 4.2 4.7 5.6 7.8 ns
tENHZ Enable-to-Pad, H to Z 3 .0 3.5 3.9 4.6 6.4 ns
dTLH Delta LOW to HIGH 0.014 0.017 0.017 0.023 0.031 ns/pF
dTHL Delta HIGH to LOW 0.023 0.029 0.031 0.037 0.051 ns/pF
dTHLS Delta HIGH to LOWlow slew 0.043 0.046 0.057 0.066 0.089 ns/pF
Notes:
1. Dela ys ba se d on 50 pF lo ad ing .
2. Dela ys ba se d on 35 pF lo adi ng.
v4.0 53
SX-A Family FPGAs
Pin Description
CLKA/B Clock A and B
These pins are clock inputs for clock distribution networks.
Input levels are compatible with standard TTL, LVTTL , 3.3V
PCI or 5V PCI specifications. The clock input is buffered
prior to clocking the R-cells. If not used, this pin must be set
LOW or HIGH on the board except A54SX72A. In A54SX72A
these cl ocks can be configured as user I/O.
QCLKA/B/C/D, Quadrant Clock A, B, C, and D
I/O
These four pins are the quadrant clock inputs and are only
for A54SX72A with A, B, C, and D corresponding to
bottom-left, bottom-right, top-left, and top-right quadrants,
respectively. They are clock inputs for clock distribution
networks. Input levels are compatible with standard TTL,
LVTTL, 3.3V PCI or 5V PCI specifications. Each of these
clock inputs can drive up to a quarter of the chip, or they
can be grouped together to drive multiple quadrants. The
clock input is buffered prior to clocking the R-cells. If not
used as a clock it will behave as a regular I/O.
GND Ground
LOW supply voltage.
HCLK Dedicated (Hardwired)
Array Clock
This pin is the clock input for sequential modules. Input
levels are compatible with standard TTL, LVTTL, 3.3V PCI
or 5V PCI specific ations. This input is directly wired to each
R-cell and offers clock speeds independent of the number of
R-cells being driven. If not used, this pin must be set LOW
or HIGH on the board. It must not be left floating.
I/O Input/Output
The I/O pin functions as an input, output, tristate, or
bidirectional buffer. Based on certain con figurations, input
and output levels are compatible with standard TTL, LVTTL,
3.3V PCI or 5V PCI specifications. Unused I/O pins are
automatically tristated by the Desig n er Series software .
NC No Connection
This pin is not connected to circuitry within the device.
These pins can be driven to any voltage or can be left
floating with no effect on the operation of the device. The
only exception is for the A54SX32A FG-484, where the NC
pins must be left floating.
PRA, I/O Probe A/B
PRB, I/O
The Probe pin is used to output data from any user-defined
design node within the d evice. This independent diagnos tic
pin can be used in conjunction with the other probe pin to
allow real-time diagnostic output of any signal path within
the device. The Probe pin can be used as a user-defined I/O
when verification has been completed. The pins probe
capabilities can be permanently disabled to protect
programmed design confidentiality.
TCK, I/O Test Clock
Test clock input for diagnostic probe and device
programming. In flexible mode, TCK becomes active when
the TMS pin is set LOW (refer to Table 5 on page 11). Th is
pin functions as an I/O when the boundary scan state
machine reaches the logic reset state.
TDI, I/O Test Data Input
Serial input for boundary scan testing and diagnostic probe.
In flexible mode, TDI is active when the TMS pin is set LOW
(refer to Table 5 on page 11). This pin functions as an I/O
when the boundary scan state machine reaches the logic
reset state.
TDO, I/O Test Data Output
Serial output for boundary scan testing. In flexible mode,
TDO is active when the TMS pin is set LOW (refer t o Table 5
on page 11). This pin functions as an I/O when the boundary
scan state machine reaches the "logic reset" state. When
Silicon Explorer II is being used, TDO will act as an output
when the "checksum" command is run. It will r e turn to user
IO when "checksum" is complete.
TMS Test Mode Select
The TMS pin controls the use of the IEEE 1149.1 Boundary
Scan pins (TCK, TDI, TDO, TRST). In flexible mode when
the TMS pin is set LOW, the TCK, TDI, and TDO pins are
boundary scan pins (refer to Table 5 on page 11). Once the
boundary scan pins are in test mode, they will remain in
that mode until the internal boundary scan state machine
reaches the logic reset state. At this point, the boundary
scan pins will be released and will function as regular I/O
pins. The logic reset state is reached 5 TCK cycles after
the TMS pin is set HIGH. In dedicated test mode, TMS
functions as specified in the IEEE 1149.1 specifications.
TRST, I/O Boundary Scan Reset Pin
Once it is configured as the JTAG Reset pin, the TRST pin
function s as an act ive-low input to asynchr onously initi alize
or reset the boundary scan circuit. The TRST pin is
equipped with an internal pull-up resistor. This pin
functions as an I/O when the Reserve JTAG Reset Pin is
not selected in Designer.
VCCI Supply Voltage
Supply voltage for I/Os. See Recommended Operating
Conditions table on page 14. All VCCI power pins in the
device should be connected.
VCCA Supply Voltage
Supply voltage for Array. See Recommended Operating
Conditions table on page 14. All VCCA power pins in the
device should be connected.
54 v4.0
Package Pin Assignments
208-Pin PQFP (Top View)
208-Pin PQFP
1208
v4.0 55
208-Pin PQFP
Pin Number A54SX08A
Function A54SX16A
Function A54SX32A
Function A54SX72A
Function
1GNDGNDGNDGND
2 TDI, I/O TDI, I/O TDI, I/O TDI, I/O
3 I/O I/O I/O I/O
4 NC I/O I/O I/O
5 I/O I/O I/O I/O
6 NC I/O I/O I/O
7 I/O I/O I/O I/O
8 I/O I/O I/O I/O
9 I/O I/O I/O I/O
10 I/O I/O I/O I/O
11 TMS TMS TMS TMS
12 VCCI VCCI VCCI VCCI
13 I/O I/O I/O I/O
14 NC I/O I/O I/O
15 I/O I/O I/O I/O
16 I/O I/O I/O I/O
17 NC I/O I/O I/O
18 I/O I/O I/O GND
19 I/O I/O I/O VCCA
20 NC I/O I/O I/O
21 I/O I/O I/O I/O
22 I/O I/O I/O I/O
23 NC I/O I/O I/O
24 I/O I/O I/O I/O
25 NC NC NC I/O
26 GNDGNDGNDGND
27 VCCA VCCA VCCA VCCA
28 GNDGNDGNDGND
29 I/O I/O I/O I/O
30 TRST, I/O TRST, I/O TRST, I/O TRST, I/O
31 NC I/O I/O I/O
32 I/O I/O I/O I/O
33 I/O I/O I/O I/O
34 I/O I/O I/O I/O
35 NC I/O I/O I/O
36 I/O I/O I/O I/O
37 I/O I/O I/O I/O
38 I/O I/O I/O I/O
39 NC I/O I/O I/O
40 VCCI VCCI VCCI VCCI
41 VCCA VCCA VCCA VCCA
42 I/O I/O I/O I/O
43 I/O I/O I/O I/O
44 I/O I/O I/O I/O
45 I/O I/O I/O I/O
46 I/O I/O I/O I/O
56 v4.0
47 I/O I/O I/O I/O
48 NC I/O I/O I/O
49 I/O I/O I/O I/O
50 NC I/O I/O I/O
51 I/O I/O I/O I/O
52 GNDGNDGNDGND
53 I/O I/O I/O I/O
54 I/O I/O I/O I/O
55 I/O I/O I/O I/O
56 I/O I/O I/O I/O
57 I/O I/O I/O I/O
58 I/O I/O I/O I/O
59 I/O I/O I/O I/O
60 VCCI VCCI VCCI VCCI
61 NC I/O I/O I/O
62 I/O I/O I/O I/O
63 I/O I/O I/O I/O
64 NC I/O I/O I/O
65 I/O I/O NC I/O
66 I/O I/O I/O I/O
67 NC I/O I/O I/O
68 I/O I/O I/O I/O
69 I/O I/O I/O I/O
70 NC I/O I/O I/O
71 I/O I/O I/O I/O
72 I/O I/O I/O I/O
73 NC I/O I/O I/O
74 I/O I/O I/O QCLKA
75 NC I/O I/O I/O
76 PRB, I/O PRB, I/O PRB, I/O PRB,I/O
77 GNDGNDGNDGND
78 VCCA VCCA VCCA VCCA
79 GNDGNDGNDGND
80 NC NC NC NC
81 I/O I/O I/O I/O
82 HCLK HCLK HCLK HCLK
83 I/O I/O I/O VCCI
84 I/O I/O I/O QCLKB
85 NC I/O I/O I/O
86 I/O I/O I/O I/O
87 I/O I/O I/O I/O
88 NC I/O I/O I/O
89 I/O I/O I/O I/O
90 I/O I/O I/O I/O
91 NC I/O I/O I/O
92 I/O I/O I/O I/O
208-Pin PQFP (Continued)
Pin Number A54SX08A
Function A54SX16A
Function A54SX32A
Function A54SX72A
Function
v4.0 57
93 I/O I/O I/O I/O
94 NC I/O I/O I/O
95 I/O I/O I/O I/O
96 I/O I/O I/O I/O
97 NC I/O I/O I/O
98 VCCI VCCI VCCI VCCI
99 I/O I/O I/O I/O
100 I/O I/O I/O I/O
101 I/O I/O I/O I/O
102 I/O I/O I/O I/O
103 TDO, I/O TDO, I/O TDO, I/O TDO, I/O
104 I/O I/O I/O I/O
105 GND GND GND GND
106 NC I/O I/O I/O
107 I/O I/O I/O I/O
108 NC I/O I/O I/O
109 I/O I/O I/O I/O
110 I/O I/O I/O I/O
111 I/O I/O I/O I/O
112 I/O I/O I/O I/O
113 I/O I/O I/O I/O
114 VCCA VCCA VCCA VCCA
115 VCCI VCCI VCCI VCCI
116 NC I/O I/O GND
117 I/O I/O I/O VCCA
118 I/O I/O I/O I/O
119 NC I/O I/O I/O
120 I/O I/O I/O I/O
121 I/O I/O I/O I/O
122 NC I/O I/O I/O
123 I/O I/O I/O I/O
124 I/O I/O I/O I/O
125 NC I/O I/O I/O
126 I/O I/O I/O I/O
127 I/O I/O I/O I/O
128 I/O I/O I/O I/O
129 GND GND GND GND
130 VCCA VCCA VCCA VCCA
131 GND GND GND GND
132NCNCNCI/O
133 I/O I/O I/O I/O
134 I/O I/O I/O I/O
135 NC I/O I/O I/O
136 I/O I/O I/O I/O
137 I/O I/O I/O I/O
138 NC I/O I/O I/O
208-Pin PQFP (Continued)
Pin Number A54SX08A
Function A54SX16A
Function A54SX32A
Function A54SX72A
Function
58 v4.0
139 I/O I/O I/O I/O
140 I/O I/O I/O I/O
141 NC I/O I/O I/O
142 I/O I/O I/O I/O
143 NC I/O I/O I/O
144 I/O I/O I/O I/O
145 VCCA VCCA VCCA VCCA
146 GND GND GND GND
147 I/O I/O I/O I/O
148 VCCI VCCI VCCI VCCI
149 I/O I/O I/O I/O
150 I/O I/O I/O I/O
151 I/O I/O I/O I/O
152 I/O I/O I/O I/O
153 I/O I/O I/O I/O
154 I/O I/O I/O I/O
155 NC I/O I/O I/O
156 NC I/O I/O I/O
157 GND GND GND GND
158 I/O I/O I/O I/O
159 I/O I/O I/O I/O
160 I/O I/O I/O I/O
161 I/O I/O I/O I/O
162 I/O I/O I/O I/O
163 I/O I/O I/O I/O
164 VCCI VCCI VCCI VCCI
165 I/O I/O I/O I/O
166 I/O I/O I/O I/O
167 NC I/O I/O I/O
168 I/O I/O I/O I/O
169 I/O I/O I/O I/O
170 NC I/O I/O I/O
171 I/O I/O I/O I/O
172 I/O I/O I/O I/O
173 NC I/O I/O I/O
174 I/O I/O I/O I/O
175 I/O I/O I/O I/O
176 NC I/O I/O I/O
177 I/O I/O I/O I/O
178 I/O I/O I/O QCLKD
179 I/O I/O I/O I/O
180 CLKA CLKA CLKA CLKA
181 CLKB CLKB CLKB CLKB
182NCNCNCNC
183 GND GND GND GND
184 VCCA VCCA VCCA VCCA
208-Pin PQFP (Continued)
Pin Number A54SX08A
Function A54SX16A
Function A54SX32A
Function A54SX72A
Function
v4.0 59
185 GND GND GND GND
186 PRA, I/O PRA, I/O PRA, I/O PRA, I/O
187 I/O I/O I/O VCCI
188 I/O I/O I/O I/O
189 NC I/O I/O I/O
190 I/O I/O I/O QCLKC
191 I/O I/O I/O I/O
192 NC I/O I/O I/O
193 I/O I/O I/O I/O
194 I/O I/O I/O I/O
195 NC I/O I/O I/O
196 I/O I/O I/O I/O
197 I/O I/O I/O I/O
198 NC I/O I/O I/O
199 I/O I/O I/O I/O
200 I/O I/O I/O I/O
201 VCCI VCCI VCCI VCCI
202 NC I/O I/O I/O
203 NC I/O I/O I/O
204 I/O I/O I/O I/O
205 NC I/O I/O I/O
206 I/O I/O I/O I/O
207 I/O I/O I/O I/O
208 TCK, I/O TCK, I/O TCK, I/O TCK, I/O
208-Pin PQFP (Continued)
Pin Number A54SX08A
Function A54SX16A
Function A54SX32A
Function A54SX72A
Function
60 v4.0
Package Pin Assignments (Continued)
100-Pin TQFP (Top View)
1
100-Pin
TQFP
100
v4.0 61
100-TQFP
Pin Number A54SX08A
Function A54SX16A
Function A54SX32A
Function Pin Number A54SX08A
Function A54SX16A
Function A54SX32A
Function
1 GND GND GND 51 GND GND GND
2 TD I, I/O TDI, I/O T DI, I/O 52 I/O I/O I/O
3 I/O I/O I/O 53 I/O I/O I/O
4 I/O I/O I/O 54 I/O I/O I/O
5 I/O I/O I/O 55 I/O I/O I/O
6 I/O I/O I/O 56 I/O I/O I/O
7 TMS TMS TMS 57 VCCA VCCA VCCA
8V
CCI VCCI VCCI 58 VCCI VCCI VCCI
9 GND GND GND 59 I/O I/O I/O
10 I/O I/O I/O 60 I/O I/O I/O
11 I/O I/O I/O 61 I/O I/O I/O
12 I/O I/O I/O 62 I/O I/O I/O
13 I/O I/O I/O 63 I/O I/O I/O
14 I/O I/O I/O 64 I/O I/O I/O
15 I/O I/O I/O 65 I/O I/O I/O
16 TRST, I/O TRST, I/O TR S T, I/O 66 I/O I/O I/O
17 I/O I/O I/O 67 VCCA VCCA VCCA
18 I/O I/O I/O 68 GND GND GND
19 I/O I/O I/O 69 GND GND GND
20 VCCI VCCI VCCI 70 I/O I/O I/O
21 I/O I/O I/O 71 I/O I/O I/O
22 I/O I/O I/O 72 I/O I/O I/O
23 I/O I/O I/O 73 I/O I/O I/O
24 I/O I/O I/O 74 I/O I/O I/O
25 I/O I/O I/O 75 I/O I/O I/O
26 I/O I/O I/O 76 I/O I/O I/O
27 I/O I/O I/O 77 I/O I/O I/O
28 I/O I/O I/O 78 I/O I/O I/O
29 I/O I/O I/O 79 I/O I/O I/O
30 I/O I/O I/O 80 I/O I/O I/O
31 I/O I/O I/O 81 I/O I/O I/O
32 I/O I/O I/O 82 VCCI VCCI VCCI
33 I/O I/O I/O 83 I/O I/O I/O
34 PRB , I/O PRB, I/O PRB, I/ O 84 I/O I/ O I/O
35 VCCA VCCA VCCA 85 I/O I/O I/O
36 GND GND GND 86 I/O I/O I/O
37 NC NC NC 87 CLKA CLKA CLKA
38 I/O I/O I/O 88 CLKB CLKB CLKB
39 HCLK HCLK HCLK 89 NC NC NC
40 I/O I/O I/O 90 VCCA VCCA VCCA
41 I/O I/O I/O 91 GND GND GND
42 I/O I/O I/O 92 PRA, I/O PRA, I/O PRA, I/O
43 I/O I/O I/O 93 I/O I/O I/O
44 VCCI VCCI VCCI 94 I/O I/O I/O
45 I/O I/O I/O 95 I/O I/O I/O
46 I/O I/O I/O 96 I/O I/O I/O
47 I/O I/O I/O 97 I/O I/O I/O
48 I/O I/O I/O 98 I/O I/O I/O
49 TDO, I/O TDO, I/O TDO, I/O 99 I/O I/O I/O
50 I /O I/O I/ O 100 TCK , I/O TC K , I/O TCK, I/O
62 v4.0
Package Pin Assignments (continued)
144-Pin TQFP (Top View)
1
144
144-Pin
TQFP
v4.0 63
144-Pin TQFP
Pin Number A54SX08A
Function A54SX16A
Function A54SX32A
Function Pin Number A54SX08A
Function A54SX16A
Function A54SX32A
Function
1 GND GND GND 39 I/O I/O I/O
2 TDI, I/O TDI, I/O TDI, I/O 40 I/O I/O I/O
3 I/O I/O I/O 41 I/O I/O I/O
4 I/O I/O I/O 42 I/O I/O I/O
5 I/O I/O I/O 43 I/O I/O I/O
6 I/O I/O I/O 44 VCCI VCCI VCCI
7 I/O I/O I/O 45 I/O I/O I/O
8 I/O I/O I/O 46 I/O I/O I/O
9 TMS TMS TMS 47 I/O I/O I/O
10 VCCI VCCI VCCI 48 I/O I/O I/O
11 GND GND GND 49 I/O I/O I/O
12 I/O I/O I/O 50 I/O I/O I/O
13 I/O I/O I/O 51 I/O I/O I/O
14 I/O I/O I/O 52 I/O I/O I/O
15 I/O I/O I/O 53 I/O I/O I/O
16 I/O I/O I/O 54 PRB, I/O PRB, I/O PRB, I/O
17 I/O I/O I/O 55 I/O I/O I/O
18 I/O I/O I/O 56 VCCA VCCA VCCA
19 NC NC NC 57 GND GND GND
20 VCCA VCCA VCCA 58 NC NC NC
21 I/O I/O I/O 59 I/O I/O I/O
22 TRST, I/O TRST, I/O TRST, I/O 60 HCLK HCLK HCLK
23 I/O I/O I/O 61 I/O I/O I/O
24 I/O I/O I/O 62 I/O I/O I/O
25 I/O I/O I/O 63 I/O I/O I/O
26 I/O I/O I/O 64 I/O I/O I/O
27 I/O I/O I/O 65 I/O I/O I/O
28 GND GND GND 66 I/O I/O I/O
29 VCCI VCCI VCCI 67 I/O I/O I/O
30 VCCA VCCA VCCA 68 VCCI VCCI VCCI
31 I/O I/O I/O 69 I/O I/O I/O
32 I/O I/O I/O 70 I/O I/O I/O
33 I/O I/O I/O 71 TDO, I/O TDO, I/O TDO, I/O
34 I/O I/O I/O 72 I/O I/O I/O
35 I/O I/O I/O 73 GND GND GND
36 GND GND GND 74 I/O I/O I/O
37 I/O I/O I/O 75 I/O I/O I/O
38 I/O I/O I/O 76 I/O I/O I/O
64 v4.0
77 I/O I/O I/O 111 I/O I/O I/O
78 I/O I/O I/O 112 I/O I/O I/O
79 VCCA VCCA VCCA 113 I/O I/O I/O
80 VCCI VCCI VCCI 114 I/O I/O I/O
81 GND GND GND 115 VCCI VCCI VCCI
82 I/O I/O I/O 116 I/O I/O I/O
83 I/O I/O I/O 117 I/O I/O I/O
84 I/O I/O I/O 118 I/O I/O I/O
85 I/O I/O I/O 119 I/O I/O I/O
86 I/O I/O I/O 120 I/O I/O I/O
87 I/O I/O I/O 121 I/O I/O I/O
88 I/O I/O I/O 122 I/O I/O I/O
89 VCCA VCCA VCCA 123 I/O I/O I/O
90 NC NC NC 124 I/O I/O I/O
91 I/O I/O I/O 125 CLKA CLKA CLKA
92 I/O I/O I/O 126 CLKB CLKB CLKB
93 I/O I/O I/O 127 NC NC NC
94 I/O I/O I/O 128 GND GND GND
95 I/O I/O I/O 129 VCCA VCCA VCCA
96 I/O I/O I/O 130 I/O I/O I/O
97 I/O I/O I/O 131 PRA, I/O PRA, I/O PRA, I/O
98 VCCA VCCA VCCA 132 I/O I/O I/O
99 GND GND GND 133 I/O I/O I/O
100 I/O I/O I/O 134 I/O I/O I/O
101 GND GND GND 135 I/O I/O I/O
102 VCCI VCCI VCCI 136 I/O I/O I/O
103 I/O I/O I/O 137 I/O I/O I/O
104 I/O I/O I/O 138 I/O I/O I/O
105 I/O I/O I/O 139 I/O I/O I/O
106 I/O I/O I/O 140 VCCI VCCI VCCI
107 I/O I/O I/O 141 I/O I/O I/O
108 I/O I/O I/O 142 I/O I/O I/O
109 GND GND GND 143 I/O I/O I/O
110 I/O I/O I/O 144 TCK, I/O TCK, I/O TCK, I/O
144-Pin TQFP (Continued)
Pin Number A54SX08A
Function A54SX16A
Function A54SX32A
Function Pin Number A54SX08A
Function A54SX16A
Function A54SX32A
Function
v4.0 65
Package Pin Assignments (Continued)
176-Pin TQFP (Top View)
176-Pin
TQFP
176
1
66 v4.0
176-Pin TQFP
Pin
Number A54SX32A
Function Pin
Number A54SX32A
Function Pin
Number A54SX32A
Function Pin
Number A54SX32A
Function
1 GND 46 I/O 91 I/O 136 I/O
2 TDI, I/O 47 I/O 92 I/O 137 I/O
3 I/O 48 I/O 93 I/O 138 I/O
4 I/O 49 I/O 94 I/O 139 I/O
5 I/O 50 I/O 95 I/O 140 VCCI
6 I/O 51 I/O 96 I/O 141 I/O
7I/O 52V
CCI 97 I/O 142 I/O
8 I/O 53 I/O 98 VCCA 143 I/O
9 I/O 54 I/O 99 VCCI 144 I/O
10 TMS 55 I/O 100 I/O 145 I/O
11 VCCI 56 I/O 101 I/O 146 I/O
12 I/O 57 I/O 102 I/O 147 I/O
13 I/O 58 I/O 103 I/O 148 I/O
14 I/O 59 I/O 104 I/O 149 I/O
15 I/O 60 I/O 105 I/O 150 I/O
16 I/O 61 I/O 106 I/O 151 I/O
17 I/O 62 I/O 107 I/O 152 CLKA
18 I/O 63 I/O 108 GND 153 CLKB
19 I/O 64 PRB, I/O 109 VCCA 154 NC
20 I/O 65 GND 110 GND 155 GND
21 GND 66 VCCA 111 I/O 156 VCCA
22 VCCA 67 NC 112 I/O 157 PRA, I/O
23 GND 68 I/O 113 I/O 158 I/O
24 I/O 69 HCLK 114 I/O 159 I/O
25 T RST, I/O 70 I/O 115 I/O 160 I/O
26 I/O 71 I/O 116 I/O 161 I/O
27 I/O 72 I/O 117 I/O 162 I/O
28 I/O 73 I/O 118 I/O 163 I/O
29 I/O 74 I/O 119 I/O 164 I/O
30 I/O 75 I/O 120 I/O 165 I/O
31 I/O 76 I/O 121 I/O 166 I/O
32 VCCI 77 I/O 122 VCCA 167 I/O
33 VCCA 78 I/O 123 GND 168 I/O
34 I/O 79 I/O 124 VCCI 169 VCCI
35 I/O 80 I/O 125 I/O 170 I/O
36 I/O 81 I/O 126 I/O 171 I/O
37 I/O 82 VCCI 127 I/O 172 I/O
38 I/O 83 I/O 128 I/O 173 I/O
39 I/O 84 I/O 129 I/O 174 I/O
40 I/O 85 I/O 130 I/O 175 I/O
41 I/O 86 I/O 131 I/O 176 TCK, I/O
42 I/O 87 TDO, I/O 132 I/O
43 I/O 88 I/O 133 GND
44 GND 89 GND 134 I/O
45 I/O 90 I/O 135 I/O
v4.0 67
Package Pin Assignments (Continued)
329-Pin PBGA (Top View)
2322212019181716151410 11 12 13987654321
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
68 v4.0
329-Pin PBGA
Pin Number A54SX32A
Function Pin Number A54SX32A
Function Pin Number A54SX32A
Function Pin Number A54SX32A
Function
A1 GND AA23 VCCI AC22 VCCI C21 VCCI
A2 GND AB1 I/O AC23 GND C22 GND
A3 VCCI AB2 GND B1 VCCI C23 NC
A4 NC AB3 I/O B2 GND D1 I/O
A5 I/O AB4 I/O B3 I/O D2 I/O
A6 I/O AB5 I/O B4 I/O D3 I/O
A7 VCCI AB6 I/O B5 I/O D4 TCK, I/O
A8 NC AB7 I/O B6 I/O D5 I/O
A9 I/O AB8 I/O B7 I/O D6 I/O
A10 I/O AB9 I/O B8 I/O D7 I/O
A11 I/O AB10 I/O B9 I/O D8 I/O
A12 I/O AB11 PRB, I/O B10 I/O D9 I/O
A13 CLKB AB12 I/O B11 I/O D10 I/O
A14 I/O AB13 HCLK B12 PRA, I/O D11 VCCA
A15 I/O AB14 I/O B13 CLKA D12 NC
A16 I/O AB15 I/O B14 I/O D13 I/O
A17 I/O AB16 I/O B15 I/O D14 I/O
A18 I/O AB17 I/O B16 I/O D15 I/O
A19 I/O AB18 I/O B17 I/O D16 I/O
A20 I/O AB19 I/O B18 I/O D17 I/O
A21 NC AB20 I/O B19 I/O D18 I/O
A22 VCCI AB21 I/O B20 I/O D19 I/O
A23 GND AB22 GND B21 I/O D20 I/O
AA1 VCCI AB23 I/O B22 GND D21 I/O
AA2 I/O AC1 GND B23 VCCI D22 I/O
AA3 GND AC2 VCCI C1 NC D23 I/O
AA4 I/O AC3 NC C2 TDI, I/O E1 VCCI
AA5 I/O AC4 I/O C3 GND E2 I/O
AA6 I/O AC5 I/O C4 I/O E3 I/O
AA7 I/O AC6 I/O C5 I/O E4 I/O
AA8 I/O AC7 I/O C6 I/O E20 I/O
AA9 I/O AC8 I/O C7 I/O E21 I/O
AA10 I/O AC9 VCCI C8 I/O E22 I/O
AA11 I/O AC10 I/O C9 I/O E23 I/O
AA12 I/O AC11 I/O C10 I/O F1 I/O
AA13 I/O AC12 I/O C11 I/O F2 TMS
AA14 I/O AC13 I/O C12 I/O F3 I/O
AA15 I/O AC14 I/O C13 I/O F4 I/O
AA16 I/O AC15 NC C14 I/O F20 I/O
AA17 I/O AC16 I/O C15 I/O F21 I/O
AA18 I/O AC17 I/O C16 I/O F22 I/O
AA19 I/O AC18 I/O C17 I/O F23 I/O
AA20 TDO, I/O AC19 I/O C18 I/O G1 I/O
AA21 VCCI AC20 I/O C19 I/O G2 I/O
AA22 I/O AC21 NC C20 I/O G3 I/O
v4.0 69
G4 I/O L20 NC R1 I/O Y4 GND
G20 I/O L21 I/O R2 I/O Y5 I/O
G21 I/O L22 I/O R3 I/O Y6 I/O
G22 I/O L23 NC R4 I/O Y7 I/O
G23 GND M1 I/O R20 I/O Y8 I/O
H1 I/O M2 I/O R21 I/O Y9 I/O
H2 I/O M3 I/O R22 I/O Y10 I/O
H3 I/O M4 VCCA R23 I/O Y11 I/O
H4 I/O M10 GND T1 I/O Y12 VCCA
H20 VCCA M11 GND T2 I/O Y13 NC
H21 I/O M12 GND T3 I/O Y14 I/O
H22 I/O M13 GND T4 I/O Y15 I/O
H23 I/O M14 GND T20 I/O Y16 I/O
J1 NC M20 VCCA T21 I/O Y17 I/O
J2 I/O M21 I/O T22 I/O Y18 I/O
J3 I/O M22 I/O T23 I/O Y19 I/O
J4 I/O M23 VCCI U1 I/O Y20 GND
J20 I/O N1 I/O U2 I/O Y21 I/O
J21 I/O N2 T RST, I/O U3 VCCA Y22 I/O
J22 I/O N3 I/O U4 I/O Y23 I/O
J23 I/O N4 I/O U20 I/O
K1 I/O N10 GND U21 VCCA
K2 I/O N11 GND U22 I/O
K3 I/O N12 GND U23 I/O
K4 I/O N13 GND V1 VCCI
K10 GND N14 GND V2 I/O
K11 GND N20 NC V3 I/O
K12 GND N21 I/O V4 I/O
K13 GND N22 I/O V20 I/O
K14 GND N23 I/O V21 I/O
K20 I/O P1 I/O V22 I/O
K21 I/O P2 I/O V23 I/O
K22 I/O P3 I/O W1 I/O
K23 I/O P4 I/O W2 I/O
L1 I/O P10 GND W3 I/O
L2 I/O P11 GND W4 I/O
L3 I/O P12 GND W20 I/O
L4 NC P13 GND W21 I/O
L10 GND P14 GND W22 I/O
L11 GND P20 I/O W23 NC
L12 GND P21 I/O Y1 NC
L13 GND P22 I/O Y2 I/O
L14 GND P23 I/O Y3 I/O
329-Pin PBGA (Continued)
Pin Number A54SX32A
Function Pin Number A54SX32A
Function Pin Number A54SX32A
Function Pin Number A54SX32A
Function
70 v4.0
Package Pin Assignments (Continued)
144-Pin FBGA (Top View)
12345678910 11 12
A
B
C
D
E
F
G
H
J
K
L
M
v4.0 71
144-Pin FBGA
Pin Number A54SX08A
Function A54SX16A
Function A54SX32A
Function Pin Number A54SX08A
Function A54SX16A
Function A54SX32A
Function
A1 I/O I/O I/O D3 TDI, I/O TDI, I/O TDI, I/O
A2 I/O I/O I/O D4 I/O I/O I/O
A3 I/O I/O I/O D5 I/O I/O I/O
A4 I/O I/O I/O D6 I/O I/O I/O
A5 VCCA VCCA VCCA D7 I/O I/O I/O
A6 GND GND GND D8 I/O I/O I/O
A7 CLKA CLKA CLKA D9 I/O I/O I/O
A8 I/O I/O I/O D10 I/O I/O I/O
A9 I/O I/O I/O D11 I/O I/O I/O
A10 I/O I/O I/O D12 I/O I/O I/O
A11 I/O I/O I/O E1 I/O I/O I/O
A12 I/O I/O I/O E2 I/O I/O I/O
B1 I/O I/O I/O E3 I/O I/O I/O
B2 GND GND GND E4 I/O I/O I/O
B3 I/O I/O I/O E5 TMS TMS TMS
B4 I/O I/O I/O E6 VCCI VCCI VCCI
B5 I/O I/O I/O E7 VCCI VCCI VCCI
B6 I/O I/O I/O E8 VCCI VCCI VCCI
B7 CLKB CLKB CLKB E9 VCCA VCCA VCCA
B8 I/O I/O I/O E10 I/O I/O I/O
B9 I/O I/O I/O E11 GND GND GND
B10 I/O I/O I/O E12 I/O I/O I/O
B11 GND GND GND F1 I/O I/O I/O
B12 I/O I/O I/O F2 I/O I/O I/O
C1 I/O I/O I/O F3 NC NC NC
C2 I/O I/O I/O F4 I/O I/O I/O
C3 TCK, I/O TCK, I/O TCK, I/O F5 GND GND GND
C4 I/O I/O I/O F6 GND GND GND
C5 I/O I/O I/O F7 GND GND GND
C6 PRA, I/O PRA, I/O PRA, I/O F8 VCCI VCCI VCCI
C7 I/O I/O I/O F9 I/O I/O I/O
C8 I/O I/O I/O F10 GND GND GND
C9 I/O I/O I/O F11 I/O I/O I/O
C10 I/O I/O I/O F12 I/O I/O I/O
C11 I/O I/O I/O G1 I/O I/O I/O
C12 I/O I/O I/O G2 GND GND GND
D1 I/O I/O I/O G3 I/O I/O I/O
D2 VCCI VCCI VCCI G4 I/O I/O I/O
72 v4.0
G5 GND GND GND K3 I/O I/O I/O
G6 GND GND GND K4 I/O I/O I/O
G7 GND GND GND K5 I/O I/O I/O
G8 VCCI VCCI VCCI K6 I/O I/O I/O
G9 I/O I/O I/O K7 GND GND GND
G10 I/O I/O I/O K8 I/O I/O I/O
G11 I/O I/O I/O K9 I/O I/O I/O
G12 I/O I/O I/O K10 GND GND GND
H1 TRST, I/O TRST, I/O TRST, I/O K11 I/O I/O I/O
H2 I/O I/O I/O K12 I/O I/O I/O
H3 I/O I/O I/O L1 GND GND GND
H4 I/O I/O I/O L2 I/O I/O I/O
H5 VCCA VCCA VCCA L3 I/O I/O I/O
H6 VCCA VCCA VCCA L4 I/O I/O I/O
H7 VCCI VCCI VCCI L5 I/O I/O I/O
H8 VCCI VCCI VCCI L6 I/O I/O I/O
H9 VCCA VCCA VCCA L7 HCLK HCLK HCLK
H10 I/O I/O I/O L8 I/O I/O I/O
H11 I/O I/O I/O L9 I/O I/O I/O
H12 NC NC NC L10 I/O I/O I/O
J1 I/O I/O I/O L11 I/O I/O I/O
J2 I/O I/O I/O L12 I/O I/O I/O
J3 I/O I/O I/O M1 I/O I/O I/O
J4 I/O I/O I/O M2 I/O I/O I/O
J5 I/O I/O I/O M3 I/O I/O I/O
J6 PRB, I/O PRB, I/O PRB, I/O M4 I/O I/O I/O
J7 I/O I/O I/O M5 I/O I/O I/O
J8 I/O I/O I/O M6 I/O I/O I/O
J9 I/O I/O I/O M7 VCCA VCCA VCCA
J10 I/O I/O I/O M8 I/O I/O I/O
J11 I/O I/O I/O M9 I/O I/O I/O
J12 VCCA VCCA VCCA M10 I/O I/O I/O
K1 I/O I/O I/O M11 TDO, I/O TDO, I/O TDO, I/O
K2 I/O I/O I/O M12 I/O I/O I/O
144-Pin FBGA (Continued)
Pin Number A54SX08A
Function A54SX16A
Function A54SX32A
Function Pin Number A54SX08A
Function A54SX16A
Function A54SX32A
Function
v4.0 73
Package Pin Assignments (Continued)
256-Pin FBGA (Top View)
1357911
13 15
246810 12 14 16
C
E
G
J
L
N
R
D
F
H
K
M
P
T
B
A
74 v4.0
256-Pin FBGA
Pin Number A54SX16A
Function A54SX32A
Function A54SX72A
Function Pin Number A54SX16A
Function A54SX32A
Function A54SX72A
Function
A1 GND GND GND C14 I/O I/O I/O
A2 TCK, I/O TCK, I/O TCK, I/O C15 I/O I/O I/O
A3 I/O I/O I/O C16 I/O I/O I/O
A4 I/O I/O I/O D1 I/O I/O I/O
A5 I/O I/O I/O D2 I/O I/O I/O
A6 I/O I/O I/O D3 I/O I/O I/O
A7 I/O I/O I/O D4 I/O I/O I/O
A8 I/O I/O I/O D5 I/O I/O I/O
A9 CLKB CLKB CLKB D6 I/O I/O I/O
A10 I/O I/O I/O D7 I/O I/O I/O
A11 I/O I/O I/O D8 PRA, I/O PRA, I/O PRA, I/O
A12 NC I/O I/O D9 I/O I/O QCLKD
A13 I/O I/O I/O D10 I/O I/O I/O
A14 I/O I/O I/O D11 NC I/O I/O
A15 GND GND GND D12 I/O I/O I/O
A16 GND GND GND D13 I/O I/O I/O
B1 I/O I/O I/O D14 I/O I/O I/O
B2 GND GND GND D15 I/O I/O I/O
B3 I/O I/O I/O D16 I/O I/O I/O
B4 I/O I/O I/O E1 I/O I/O I/O
B5 I/O I/O I/O E2 I/O I/O I/O
B6 NC I/O I/O E3 I/O I/O I/O
B7 I/O I/O I/O E4 I/O I/O I/O
B8 VCCA VCCA VCCA E5 I/O I/O I/O
B9 I/O I/O I/O E6 I/O I/O I/O
B10 I/O I/O I/O E7 I/O I/O QCLKC
B11 NC I/O I/O E8 I/O I/O I/O
B12 I/O I/O I/O E9 I/O I/O I/O
B13 I/O I/O I/O E10 I/O I/O I/O
B14 I/O I/O I/O E11 I/O I/O I/O
B15 GND GND GND E12 I/O I/O I/O
B16 I/O I/O I/O E13 NC I/O I/O
C1 I/O I/O I/O E14 I/O I/O I/O
C2 TDI, I/O TDI, I/O TDI, I/O E15 I/O I/O I/O
C3 GND GND GND E16 I/O I/O I/O
C4 I/O I/O I/O F1 I/O I/O I/O
C5 NC I/O I/O F2 I/O I/O I/O
C6 I/O I/O I/O F3 I/O I/O I/O
C7 I/O I/O I/O F4 TMS TMS TMS
C8 I/O I/O I/O F5 I/O I/O I/O
C9 CLKA CLKA CLKA F6 I/O I/O I/O
C10 I/O I/O I/O F7 VCCI VCCI VCCI
C11 I/O I/O I/O F8 VCCI VCCI VCCI
C12 I/O I/O I/O F9 VCCI VCCI VCCI
C13 I/O I/O I/O F10 VCCI VCCI VCCI
v4.0 75
F11 I/O I/O I/O J8 GND GND GND
F12 VCCA VCCA VCCA J9 GND GND GND
F13 I/O I/O I/O J10 GND GND GND
F14 I/O I/O I/O J11 VCCI VCCI VCCI
F15 I/O I/O I/O J12 I/O I/O I/O
F16 I/O I/O I/O J13 I/O I/O I/O
G1 NC I/O I/O J14 I/O I/O I/O
G2 I/O I/O I/O J15 I/O I/O I/O
G3 NC I/O I/O J16 I/O I/O I/O
G4 I/O I/O I/O K1 I/O I/O I/O
G5 I/O I/O I/O K2 I/O I/O I/O
G6 VCCI VCCI VCCI K3 NC I/O I/O
G7 GND GND GND K4 VCCA VCCA VCCA
G8 GND GND GND K5 I/O I/O I/O
G9 GND GND GND K6 VCCI VCCI VCCI
G10 GND GND GND K7 GND GND GND
G11 VCCI VCCI VCCI K8 GND GND GND
G12 I/O I/O I/O K9 GND GND GND
G13 GND GND GND K10 GND GND GND
G14 NC I/O I/O K11 VCCI VCCI VCCI
G15 VCCA VCCA VCCA K12 I/O I/O I/O
G16 I/O I/O I/O K13 I/O I/O I/O
H1 I/O I/O I/O K14 I/O I/O I/O
H2 I/O I/O I/O K15 NC I/O I/O
H3 VCCA VCCA VCCA K16 I/O I/O I/O
H4 TRST, I/O TRST, I/O TRST, I/O L1 I/O I/O I/O
H5 I/O I/O I/O L2 I/O I/O I/O
H6 VCCI VCCI VCCI L3 I/O I/O I/O
H7 GND GND GND L4 I/O I/O I/O
H8 GND GND GND L5 I/O I/O I/O
H9 GND GND GND L6 I/O I/O I/O
H10 GND GND GND L7 VCCI VCCI VCCI
H11 VCCI VCCI VCCI L8 VCCI VCCI VCCI
H12 I/O I/O I/O L9 VCCI VCCI VCCI
H13 I/O I/O I/O L10 VCCI VCCI VCCI
H14 I/O I/O I/O L11 I/O I/O I/O
H15 I/O I/O I/O L12 I/O I/O I/O
H16 NC I/O I/O L13 I/O I/O I/O
J1 NC I/O I/O L14 I/O I/O I/O
J2 NC I/O I/O L15 I/O I/O I/O
J3 NC I/O I/O L16 NC I/O I/O
J4 I/O I/O I/O M1 I/O I/O I/O
J5 I/O I/O I/O M2 I/O I/O I/O
J6 VCCI VCCI VCCI M3 I/O I/O I/O
J7 GND GND GND M4 I/O I/O I/O
256-Pin FBGA (Continued)
Pin Number A54SX16A
Function A54SX32A
Function A54SX72A
Function Pin Number A54SX16A
Function A54SX32A
Function A54SX72A
Function
76 v4.0
M5 I/O I/O I/O P11 I/O I/O I/O
M6 I/O I/O I/O P12 I/O I/O I/O
M7 I/O I/O QCLKA P13 VCCA VCCA VCCA
M8 PRB, I/O PRB, I/O PRB, I/O P14 I/O I/O I/O
M9 I/O I/O I/O P15 I/O I/O I/O
M10 I/O I/O I/O P16 I/O I/O I/O
M11 I/O I/O I/O R1 I/O I/O I/O
M12 NC I/O I/O R2 GND GND GND
M13 I/O I/O I/O R3 I/O I/O I/O
M14 NC I/O I/O R4 NC I/O I/O
M15 I/O I/O I/O R5 I/O I/O I/O
M16 I/O I/O I/O R6 I/O I/O I/O
N1 I/O I/O I/O R7 I/O I/O I/O
N2 I/O I/O I/O R8 I/O I/O I/O
N3 I/O I/O I/O R9 HCLK HCLK HCLK
N4 I/O I/O I/O R10 I/O I/O QCLKB
N5 I/O I/O I/O R11 I/O I/O I/O
N6 I/O I/O I/O R12 I/O I/O I/O
N7 I/O I/O I/O R13 I/O I/O I/O
N8 I/O I/O I/O R14 I/O I/O I/O
N9 I/O I/O I/O R15 GND GND GND
N10 I/O I/O I/O R16 GND GND GND
N11 I/O I/O I/O T1 GND GND GND
N12 I/O I/O I/O T2 I/O I/O I/O
N13 I/O I/O I/O T3 I/O I/O I/O
N14 I/O I/O I/O T4 NC I/O I/O
N15 I/O I/O I/O T5 I/O I/O I/O
N16 I/O I/O I/O T6 I/O I/O I/O
P1 I/O I/O I/O T7 I/O I/O I/O
P2 GND GND GND T8 I/O I/O I/O
P3 I/O I/O I/O T9 VCCA VCCA VCCA
P4 I/O I/O I/O T10 I/O I/O I/O
P5 NC I/O I/O T11 I/O I/O I/O
P6 I/O I/O I/O T12 NC I/O I/O
P7 I/O I/O I/O T13 I/O I/O I/O
P8 I/O I/O I/O T14 I/O I/O I/O
P9 I/O I/O I/O T15 TDO, I/O TDO, I/O TDO, I/O
P10 NC I/O I/O T16 GND GND GND
256-Pin FBGA (Continued)
Pin Number A54SX16A
Function A54SX32A
Function A54SX72A
Function Pin Number A54SX16A
Function A54SX32A
Function A54SX72A
Function
v4.0 77
Package Pin Assignments (Continued)
484-Pin FBGA (Top View)
123 4 5 6 7 8 9 1011121314151617181920212223242526
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
78 v4.0
484-Pin FBGA
Pin
Number A54SX32A
Function A54SX72A
Function Pin
Number A54SX32A
Function A54SX72A
Function Pin
Number A54SX32A
Function A54SX72A
Function
A1 NC* NC AB11 I/O I/O AD5 I/O I/O
A2 NC* NC AB12 P RB, I/O PR B, I/O AD6 I/O I/O
A3 NC* I/O AB13 VCCA VCCA AD7 I/O I/O
A4 NC* I/O AB14 I/O I/O AD8 I/O I/O
A5 NC* I/O AB15 I/O I/O AD9 VCCI VCCI
A6 I/O I/O AB16 I/O I/O AD10 I/O I/O
A7 I/O I/O AB17 I/O I/O AD11 I/O I/O
A8 I/O I/O AB18 I/O I/O AD12 I/O I/O
A9 I/O I/O AB19 I/O I/O AD13 VCCI VCCI
A10 I/O I/O AB20 TDO, I/O TDO, I/O AD14 I/O I/O
A11 NC* I/O AB21 GND GND AD15 I/O I/O
A12 NC* I/O AB22 NC* I/O AD16 I/O I/O
A13 I/O I/O AB23 I/O I/O AD17 VCCI VCCI
A14 NC* NC AB24 I/O I/O AD18 I/O I/O
A15 NC* I/O AB25 NC* I/O AD19 I/O I/O
A16 NC* I/O AB26 NC* I/O AD20 I/O I/O
A17 I/O I/O AC1 I/O I/O AD21 I/O I/O
A18 I/O I/O AC2 I/O I/O AD22 I/O I/O
A19 I/O I/O AC3 I/O I/O AD23 VCCI VCCI
A20 I/O I/O AC4 NC* I/O AD24 NC* I/O
A21 NC* I/O AC5 VCCI VCCI AD25 NC* I/O
A22 NC* I/O AC6 I/O I/O AD26 NC* I/O
A23 NC* I/O AC7 VCCI VCCI AE1 NC* NC
A24 NC* I/O AC8 I/O I/O AE2 I/O I/O
A25 NC* NC AC9 I/O I/O AE3 NC* I/O
A26 NC* NC AC10 I/O I/O AE4 NC* I/O
AA1 NC* I/O AC11 I/O I/O AE5 NC* I/O
AA2 NC* I/O AC12 I/O QCLKA AE6 NC* I/O
AA3 VCCA VCCA AC13 I/O I/O AE7 I/O I/O
AA4 I/O I/O AC14 I/O I/O AE8 I/O I/O
AA5 I/O I/O AC15 I/O I/O AE9 I/O I/O
AA22 I/O I/O AC16 I/O I/O AE10 I/O I/O
AA23 I/O I/O AC17 I/O I/O AE11 NC* I/O
AA24 I/O I/O AC18 I/O I/O AE12 I/O I/O
AA25 NC* I/O AC19 I/O I/O AE13 I/O I/O
AA26 NC* I/O AC20 VCCI VCCI AE14 I/O I/O
AB1 NC* NC AC21 I/O I/O AE15 NC* I/O
AB2 VCCI VCCI AC22 I/O I/O AE16 NC* I/O
AB3 I/O I/O AC23 NC* I/O AE17 I/O I/O
AB4 I/O I/O AC24 I/O I/O AE18 I/O I/O
AB5 NC* I/O AC25 NC* I/O AE19 I/O I/O
AB6 I/O I/O AC26 NC* I/O AE20 I/O I/O
AB7 I/O I/O AD1 I/O I/O AE21 NC* I/O
AB8 I/O I/O AD2 I/O I/O AE22 NC* I/O
AB9 I/O I/O AD3 GND GND AE23 NC* I/O
AB10 I/O I/O AD4 I/O I/O AE24 NC* I/O
Note: *These pins must be left floating on the A54SX32A device.
v4.0 79
AE25 NC* NC B19 I/O I/O D13 I/O I/O
AE26 NC* NC B20 I/O I/O D14 I/O I/O
AF1 NC* NC B21 NC* I/O D15 I/O I/O
AF2 NC* NC B22 NC* I/O D16 I/O I/O
AF3 NC I/O B23 NC* I/O D17 I/O I/O
AF4 NC* I/O B24 NC* I/O D18 I/O I/O
AF5 NC* I/O B25 I/O I/O D19 I/O I/O
AF6 NC* I/O B26 NC* NC D20 I/O I/O
AF7 I/O I/O C1 NC* I/O D21 VCCI VCCI
AF8 I/O I/O C2 NC* I/O D22 GND GND
AF9 I/O I/O C3 NC* I/O D23 I/O I/O
AF10 I/O I/O C4 NC* I/O D24 I/O I/O
AF11 NC* I/O C5 I/O I/O D25 NC* I/O
AF12 NC* NC C6 VCCI VCCI D26 NC* I/O
AF13 HCLK HCLK C7 I/O I/O E1 NC* I/O
AF14 I/O QCLKB C8 I/O I/O E2 NC* I/O
AF15 NC* I/O C9 VCCI VCCI E3 I/O I/O
AF16 NC* I/O C10 I/O I/O E4 I/O I/O
AF17 I/O I/O C11 I/O I/O E5 GND GND
AF18 I/O I/O C12 I/O I/O E6 TDI, IO TDI, IO
AF19 I/O I/O C13 P RA, I/O PRA, I/O E7 I/O I/O
AF20 NC* I/O C14 I/O I/O E8 I/O I/O
AF21 NC* I/O C15 I/O QCLKD E9 I/O I/O
AF22 NC* I/O C16 I/O I/O E10 I/O I/O
AF23 NC* I/O C17 I/O I/O E11 I/O I/O
AF24 NC* I/O C18 I/O I/O E12 I/O I/O
AF25 NC* NC C19 I/O I/O E13 VCCA VCCA
AF26 NC* NC C20 VCCI VCCI E14 CLKB CLKB
B1 NC* NC C21 I/O I/O E15 I/O I/O
B2 NC* NC C22 I/O I/O E16 I/O I/O
B3 NC* I/O C23 I/O I/O E17 I/O I/O
B4 NC* I/O C24 I/O I/O E18 I/O I/O
B5 NC* I/O C25 NC* I/O E19 I/O I/O
B6 I/O I/O C26 NC* I/O E20 I/O I/O
B7 I/O I/O D1 NC* I/O E21 I/O I/O
B8 I/O I/O D2 TMS TMS E22 I/O I/O
B9 I/O I/O D3 I/O I/O E23 I/O I/O
B10 I/O I/O D4 VCCI VCCI E24 I/O I/O
B11 NC* I/O D5 NC* I/O E25 VCCI VCCI
B12 NC* I/O D6 TCK, I/O TCK, I/O E26 GND GND
B13 VCCI VCCI D7 I/O I/O F1 VCCI VCCI
B14 CLKA CLKA D8 I/O I/O F2 NC* I/O
B15 NC* I/O D9 I/O I/O F3 NC* I/O
B16 NC* I/O D10 I/O I/O F4 I/O I/O
B17 I/O I/O D11 I/O I/O F5 I/O I/O
B18 VCCI VCCI D12 I/O QCLKC F22 I/O I/O
484-Pin FBGA (Continued)
Pin
Number A54SX32A
Function A54SX72A
Function Pin
Number A54SX32A
Function A54SX72A
Function Pin
Number A54SX32A
Function A54SX72A
Function
Note: *These pins must be left floating on the A54SX32A device.
80 v4.0
F23 I/O I/O K17 GND GND N5 I/O I/O
F24 I/O I/O K22 I/O I/O N10 GND GND
F25 I/O I/O K23 I/O I/O N11 GND GND
F26 NC* I/O K24 NC* NC N12 GND GND
G1 NC* I/O K25 NC* I/O N13 GND GND
G2 NC* I/O K26 NC* I/O N14 GND GND
G3 NC* I/O L1 NC* I/O N15 GND GND
G4 I/O I/O L2 NC* I/O N16 GND GND
G5 I/O I/O L3 I/O I/O N17 GND GND
G22 I/O I/O L4 I/O I/O N22 VCCA VCCA
G23 VCCA VCCA L5 I/O I/O N23 I/O I/O
G24 I/O I/O L10 GND GND N24 I/O I/O
G25 NC* I/O L11 GND GND N25 I/O I/O
G26 NC* I/O L12 GND GND N26 NC* NC
H1 NC* I/O L13 GND GND P1 NC* I/O
H2 NC* I/O L14 GND GND P2 NC* I/O
H3 I/O I/O L15 GND GND P3 I/O I/O
H4 I/O I/O L16 GND GND P4 I/O I/O
H5 I/O I/O L17 GND GND P5 VCCA VCCA
H22 I/O I/O L22 I/O I/O P10 GND GND
H23 I/O I/O L23 I/O I/O P11 GND GND
H24 I/O I/O L24 I/O I/O P12 GND GND
H25 NC* I/O L25 I/O I/O P13 GND GND
H26 NC* I/O L26 I/O I/O P14 GND GND
J1 NC* I/O M1 NC* NC P15 GND GND
J2 NC* I/O M2 I/O I/O P16 GND GND
J3 I/O I/O M3 I/O I/O P17 GND GND
J4 I/O I/O M4 I/O I/O P22 I/O I/O
J5 I/O I/O M5 I/O I/O P23 I/O I/O
J22 I/O I/O M10 GND GND P24 VCCI VCCI
J23 I/O I/O M11 GND GND P25 I/O I/O
J24 I/O I/O M12 GND GND P26 I/O I/O
J25 VCCI VCCI M13 GND GND R1 NC* I/O
J26 NC* I/O M14 GND GND R2 NC* I/O
K1 I/O I/O M15 GND GND R3 I/O I/O
K2 VCCI VCCI M16 GND GND R4 I/O I/O
K3 I/O I/O M17 GND GND R5 TRST, I/O TRST, I/O
K4 I/O I/O M22 I/O I/O R10 GND GND
K5 VCCA VCCA M23 I/O I/O R11 GND GND
K10 GND GND M24 I/O I/O R12 GND GND
K11 GND GND M25 NC* I/O R13 GND GND
K12 GND GND M26 NC* I/O R14 GND GND
K13 GND GND N1 I/O I/O R15 GND GND
K14 GND GND N2 VCCI VCCI R16 GND GND
K15 GND GND N3 I/O I/O R17 GND GND
K16 GND GND N4 I/O I/O R22 I/O I/O
484-Pin FBGA (Continued)
Pin
Number A54SX32A
Function A54SX72A
Function Pin
Number A54SX32A
Function A54SX72A
Function Pin
Number A54SX32A
Function A54SX72A
Function
Note: *These pins must be left floating on the A54SX32A device.
v4.0 81
R23 I/O I/O U3 I/O I/O V25 NC* I/O
R24 I/O I/O U4 I/O I/O V26 NC* I/O
R25 NC* I/O U5 I/O I/O W1 I/O I/O
R26 NC* I/O U10 GND GND W2 I/O I/O
T1 NC* I/O U11 GND GND W3 I/O I/O
T2 NC* I/O U12 GND GND W4 I/O I/O
T3 I/O I/O U13 GND GND W5 I/O I/O
T4 I/O I/O U14 GND GND W22 I/O I/O
T5 I/O I/O U15 GND GND W23 VCCA VCCA
T10 GND GND U16 GND GND W24 I/O I/O
T11 GND GND U17 GND GND W25 NC* I/O
T12 GND GND U22 I/O I/O W26 NC* I/O
T13 GND GND U23 I/O I/O Y1 NC* I/O
T14 GND GND U24 I/O I/O Y2 NC* I/O
T15 GND GND U25 VCCI VCCI Y3 I/O I/O
T16 GND GND U26 I/O I/O Y4 I/O I/O
T17 GND GND V1 NC* I/O Y5 NC* I/O
T22 I/O I/O V2 NC* I/O Y22 I/O I/O
T23 I/O I/O V3 I/O I/O Y23 I/O I/O
T24 I/O I/O V4 I/O I/O Y24 VCCI VCCI
T25 NC* I/O V5 I/O I/O Y25 I/O I/O
T26 NC* I/O V22 VCCA VCCA Y26 I/O I/O
U1 I/O I/O V23 I/O I/O
U2 VCCI VCCI V24 I/O I/O
484-Pin FBGA (Continued)
Pin
Number A54SX32A
Function A54SX72A
Function Pin
Number A54SX32A
Function A54SX72A
Function Pin
Number A54SX32A
Function A54SX72A
Function
Note: *These pins must be left floating on the A54SX32A device.
82 v4.0
List of Changes
The following table lists critical changes that were made in the current version of the document.
Data Sheet Categories
In order to provide the latest information to designers, some data sheets are published before data has been fully
characterized. These data sheets are marked as Advanced or Preliminary data sheets. The definition of these categories
are as follows:
Advanced
The data sheet contains initial estimated information based on simulation, other products, devices, or speed grades. This
information can be used as estimates, but not for production.
Previous version Changes in current version (v3.0) Page
v4.0
The SX-A Product Profile table on page 1 was updated. page 1
The Ordering Informati o n section on page 2 was updated. page 2
The Product Plan section on page 3 was updated. page 3
Figure 1 on page 4 was updated. page 4
The Clock Resources section on page 6 was updated page 6
The SX-A Clock Resources table on page 8 is new. page 8
The User Security section on page 9 is new. page 9
The I/O Modules section on page 9 was updated. page 9
The I/O Features table on page 10 was updated. page 10
The I/O Characteristics for All I/O Configurations table on page 10 is new. page 10
The Power-up Time at which I/Os Become Active tabl e on page 10 is new page 10
Figure 10 on page 11 is new. page 11
The Boundary-Scan Pin Configurations and Functions table on page 11 is new. page 11
The Device Configuration Options for Probe Capability (TRST pin reserved) table
on page 12 is new. page 12
The SX-A Probe Circuit Control Pins section on page 12 was updated. page 12
The Design Considerations secti on on page 12 was updated. page 12
Figure 11 on page 12 was updated. page 12
The Development Tool Support section on page 13 was updated. page 13
Figure 12 on page 13 is new. page 13
The Ab solute Maximum Ratings1 table on page 14 was updated. page 14
The Recommended Operating Conditions table on page 14 was updated. page 14
The 3.3V LVTTL and 5V TTL Electrical Specifications table on page 14 was
updated. page 14
The 2.5V LVCMOS2 Electrical Specifications table on page 15 was updated. page 15
The SX-A Timing Model* and Sample Path Calculations equations were updated. page 22
The Pin Description section on page 53 was updated. page 53
v2.0.1
The section, Development Tool Support section on page 13 has been updated. page 10
The section , I/O Modules section on p age 9, and the ta ble, I/O Featur es, Table 2 on
page 10 have been updat ed. page 9
The SX-A Timing Model* section on page 22 and several timing tables on pages
22-49 have new timing numbers. pages 19,
22-49
Actel and the Actel logo ar e regi stered trademarks of Actel Corporation.
All other trademarks are the property of their owners.
http://www.actel.com
Actel Corporation
955 East Arques Avenue
Sunnyvale, California 94086
USA
Tel: (408) 739-1010
Fax: (408) 739-1540
Actel Europe Ltd.
Dunlop House, Riverside Way
Camberley, Surrey GU15 3YL
United Kingdom
Tel:
+44 (0)1276 401450
Fax:
+44 (0)1276 401490
Actel Japan
EXOS Ebisu Bldg . 4F
1-24-14 Ebisu Shibuya-ku
To kyo 150 Japan
Tel: +81 03-3 445- 7671
Fax: +81 03-3445-7668
Actel Hong Kong
39th Floor
One Pacific Place
88 Queensway
Admiralty, Hong Kong
Tel: 852-22735712
5172147-6/4.03
Preliminary
The data sheet contains information based on simulation and/or initial characterization. The information is believed to be
correct, but changes are possible.
Unmarked (production)
The data sheet contains information t hat is considered to be final.