Data Sheet
February 2004
Ambassador® T8110 PCI-Base d H.100/H.110 Switch
1 Introduction
The T81 10 is the newest addition to the Ambassador
series of TDM switching and backplane interconnect
standard products. The T8110 can switch 4096
simultaneous time slots with 32 bidirectional local
streams and 32 bidirectional H.100/H.110 streams.
The T8110 has all the features of the T810X devices.
Additionally, the T8110 has PCI and minibridge inter-
face s, more robust clocki ng, and fa llbac k cap abi lit ies.
1.1 Features
!4,096-connection unified switch
!Full H.100/H.110 support (32 data lines, all clock
modes)
!32 local I/O lines (2, 4, 8, or 16 Mbits/s)
!PCI interface
!Microprocessor interface: Motorola ®/Intel ® modes
!Minibridge with programmable chip selects
!Interrupt controller with external inputs
!Eight independent general-purpose I/O lines
!Eight independently programmed framing signals
!Four local clocks
!T1/E1 rate adaptation
!Two clock-fallback modes
!Stra tum 4/4E and AT&T ® 62411 MTIE compliant
!Incorporates 38 H.100 and 34 H.110 termination
resistors
!Subrate switching of 4 bits, 2 bits, or 1 bit
!Backward compatible to all T810x devices
!JTAG/boundary-scan testing support
!BSDL files availab le
!Assists H.110 hot swap
!Single 3.3 V supply with 5 V tolerant inputs and
TTL compatible outputs
!272 PBGA package
!Evaluat ion boar ds av aila b le, PCI and
CompactPCI ® Hot Swap
Table of Contents
Contents Page
2Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
1 Introduction .........................................................................................................................................................1
1.1 Features...................................................................................................................................................1
2 Pin Description..................................................................................................................................................11
2.1 Interface Signals ....................................................................................................................................11
2.2 T8110 Pinout Information.......................................................................................................................14
2.3 Special Buffer Requirements .................................................................................................................22
2.3.1 H1x0 Bus Signal Internal Pull-Up/Pull-Down ..............................................................................22
2.3.2 Local Bus Signal Internal Pull-Up ...............................................................................................22
3 Main Architectural Features..............................................................................................................................23
3.1 T8110 Architecture.................................................................................................................................23
4 PCI Interface.....................................................................................................................................................26
4.1 Target.....................................................................................................................................................26
4.1.1 PCI Interface Registers...............................................................................................................27
4.1.2 Register Space Target Access ...................................................................................................34
4.1.3 Connection Memory Space Target Access.................................................................................34
4.1.4 Data Memory Space Target Access...........................................................................................34
4.1.4.1 Posted Write Transaction .............................................................................................34
4.1.4.2 Delayed Read Transaction...........................................................................................35
4.1.5 Minibridge Space Target Access ................................................................................................35
4.1.5.1 Posted Write Transaction .............................................................................................35
4.1.5.2 Delayed Read Transaction...........................................................................................35
4.2 Configuration Space/EEPROM Interface...............................................................................................36
4.2.1 Loadable PCI Configuration Space Via EEPROM......................................................................38
5 Microprocessor Interface ..................................................................................................................................40
5.1 Intel/Motorola Protocol Selector.............................................................................................................40
5.2 Word/Byte Addressing Selector .............................................................................................................40
5.3 Access Via the Microprocessor Bus.......................................................................................................41
5.3.1 Microprocessor Interface Register Map......................................................................................42
5.3.2 Register Space Access...............................................................................................................46
5.3.3 Connection Memory Space Access............................................................................................46
5.3.4 Data Memory Space Access.......................................................................................................47
6 Operating Control and Status ...........................................................................................................................48
6.1 Control Registers ...................................................................................................................................48
6.1.1 Reset Registers ..........................................................................................................................48
6.1.2 Master Output Enable Register...................................................................................................49
6.1.3 Connection Control—Data Memory Selector Register ...............................................................50
6.1.4 General Clock Control (Phase Alignment, Fallback, Watchdogs) Register ................................51
6.1.5 Phase Alignment Select Register ...............................................................................................51
6.1.6 Fallback Control Register............................................................................................................51
6.1.7 Fallback Type Select Register ....................................................................................................52
6.1.8 Fallback Trigger Registers..........................................................................................................53
6.1.9 Watchdog Select, C8, and NETREF Registers...........................................................................54
6.1.10 Watchdog EN Register ...............................................................................................................55
6.1.11 Failsafe Contro l Regis te rs............. ...... ....... ...... ....... ...... ...... .................... ...... ....... ...... ..... ............56
6.2 Error and Status Registers.....................................................................................................................57
6.2.1 Clock Errors................................................................................................................................58
6.2.1.1 Transient Clock Errors Registers..................................................................................58
6.2.1.2 Latched Clock Error Register........................................................................................59
6.2.2 System Status..... ................... ....... ...... ....... ...... ....... ...... ...... .................... ...... ....... ...... .................60
6.2.2.1 Clock Fallback Status Register.....................................................................................60
6.2.2.2 System Error s Register... ...... ....... ...... ................... ....... ...... ....... ...... ....... ...... ....... ..........61
Table of Contents (continued)
Contents Page
Agere Systems Inc. 3
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
Dat a Sheet
6.2.2.3 Device Iden tific atio n Regi sters .... ...... ...... .................... ...... ....... ...... ....... ...... ....... ..........61
6.2.2.4 Miscellaneo us Sta tus...... ...... ....... ...... ...... .................... ...... ....... ...... ....... ...... ....... ...... ....61
7 Clock Architecture.............................................................................................................................................62
7.1 Clock Input Control Registers ................................................................................................................63
7.1.1 Main Input Selector Register.......................................................................................................63
7.1.2 Main Divider Register..................................................................................................................64
7.1.3 Analog PLL1 (APLL1) Input Selector Register............................................................................64
7.1.4 APLL1 Rate Register ..................................................................................................................65
7.1.5 Main Inversion Select Register ...................................................................................................65
7.1.6 Resource Divider Register..........................................................................................................66
7.1.7 Analog PLL2 (APLL2) Rate Register ..........................................................................................66
7.1.8 LREF Input Select Registers.......................................................................................................67
7.1.9 DPLL1 Input Sele cto r.................... ...... ................... ....... ...... ....... ...... ....... ...... ..............................68
7.1.9.1 DPLL1 Rate Register................... ...... ...... ....... ...... ....... ...... ....... ................... ....... ...... ....68
7.1.10 DPLL2 Input Sele cto r.................... ...... ....... ................... ...... ....... ...... ....... ...... ....... .......................68
7.1.10.1 DPLL2 Rate Register................... ...... ...... ....... ...... ....... ...... ....... ................... ....... ...... ....69
7.1.11 NETREF1 Registers....................................................................................................................69
7.1.12 NETREF2 Registers....................................................................................................................70
7.2 Clock Output Control Registers..............................................................................................................71
7.2.1 Master Output Enables Register.................................................................................................71
7.2.2 Clock Output Format Registers...................................................................................................72
7.2.3 TCLK and L_SCx Select Registers.............................................................................................73
7.3 Clock Register Access...........................................................................................................................75
7.4 Clock Circuit Operation—APLL1............................................................................................................75
7.4.1 Main Clock Selection, Bit Clock, and Frame...............................................................................75
7.4.1.1 Watchdog Timers..........................................................................................................76
7.4.1.2 Frame Center Samplin g.. ...... ....... ...... ................... ....... ...... ....... ...... ....... ...... ....... ..........77
7.4.1.3 LREF Pair Polarity Configuration..................................................................................78
7.4.2 Main and Resource Dividers.......................................................................................................79
7.4.3 DPLL1.........................................................................................................................................79
7.4.4 Reference Selector .....................................................................................................................79
7.4.5 Internal Clock Generation ...........................................................................................................79
7.4.5.1 Phase Alignment...........................................................................................................80
7.5 Clock Circuit Operation, APLL2 .............................................................................................................81
7.5.1 DPLL2.........................................................................................................................................81
7.6 Clock Circuit Operation, CT_NETREF Generation ................................................................................81
7.6.1 NETREF Source Select ..............................................................................................................81
7.6.2 NETREF Divider..........................................................................................................................81
7.7 Clock Circuit Operation—Fallback and Failsafe.....................................................................................82
7.7.1 Clock Fallback.............................................................................................................................82
7.7.1.1 Fallback Events ............................................................................................................82
7.7.1.2 Fallback Scenarios—Fixed vs. Rotating Secondary.....................................................83
7.7.1.3 H-Bus Clock Enable/Disable on Fallback .....................................................................86
7.7.2 Clock Failsafe .............................................................................................................................88
7.7.2.1 Failsafe Ev ent s .. ...... ....... ...... ....... ................... ...... ....... ...... ....... ...... ....... ................... ....88
8 Frame Group and FG I/O..................................................................................................................................90
8.1 Frame Group Control Registers.............................................................................................................90
8.1.1 FGx Lower and Upper Start Registers........................................................................................90
8.1.2 FGx Width Registers...................................................................................................................91
8.1.3 FGx Rate Registers ....................................................................................................................91
8.2 FG7 Timer Option ..................................................................................................................................92
Table of Contents (continued)
Contents Page
4Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
8.2.1 FG7 Counter (Low and High Byte) Registers .............................................................................92
8.3 FGIO Control Regis te rs........ ....... ...... ....... ................... ....... ...... ...... ....... ...... ....... ...... ..............................93
8.3.1 FGIO Data Register ......... ...... ....... ...... ....... ...... ....... ...... ...... .................... ...... ....... ...... .................93
8.3.2 FGIO Read Mask Register..........................................................................................................93
8.3.3 FGIO R/W Register... ....... ...... ....... ...... ....... ...... ....... ...... ...... ....... ................... ....... ...... .................94
8.4 FG Circuit Operati on ................... ...... ....... ...... ....... ...... ....... ...... ................... ....... ...... ....... .......................95
8.4.1 Frame Group 8 kHz Reference Generation................................................................................96
8.4.2 FGIO General- Purp ose Bits... ....... ................... ....... ...... ...... ....... ...... ....... ...... ....... .......................97
8.4.3 Programmable Timer (FG7 Only) ...............................................................................................97
8.4.4 FG External Interr upts............ .................... ...... ....... ...... ...... ....... ...... ....... ................... .................97
8.4.5 FG Diagnostic Test Point Obser vation....... ...... ................... ....... ...... ....... ...... ....... ...... ....... ..........97
9 General-Purpose I/O.........................................................................................................................................98
9.1 GPIO Control Registers .........................................................................................................................98
9.1.1 GPIO Data Register....................................................................................................................98
9.1.2 GPIO Read Mask Register .........................................................................................................99
9.1.3 GPIO R/W Register.....................................................................................................................99
9.1.4 GPIO Override Register............................................................................................................100
9.2 GP Circuit Operation............................................................................................................................100
9.2.1 GPIO General-Purpose Bits......................................................................................................101
9.2.2 GP Dual-Purpo se Bits GPIO (Overri de)........................ ...... ....... ...... ....... ...... ....... ................... ..10 1
9.2.2.1 GP H.110 Clock Master Indicators (GP0, GP1 Only) .................................................101
9.2.2.2 PCI_RST# Indicator (GP2 Only).................................................................................101
9.2.3 GP External Interrupts ..............................................................................................................101
9.2.4 GP Diagnostic Test Point Observation .....................................................................................101
10 Stream Rate Control .......................................................................................................................................102
10.1 H-Bus Stream Rate Control Registers.................................................................................................103
10.1.1 H-Bus Rate Registers ...............................................................................................................103
10.2 L-Bus Stream Rate Control Registers..................................................................................................103
10.2.1 L-Bus Rate Registers................................................................................................................103
10.2.2 L-Bus 16.384 Mbits/s Operation ...............................................................................................104
10.2.3 16.384 Mbits /s Loc al I/O Superrate .............................. ...... ....... ...... ....... ...... ....... .................. ...106
10.2.4 16.384 Mbits /s Loc al I/O Superrate .............................. ...... ....... ...... ....... ...... ....... .................. ...107
11 Minibridge .......................................................................................................................................................108
11.1 Wait-State Control Registers................................................................................................................108
11.1.1 Minibridge Wait-State Control Registers...................................................................................108
11.2 Strobe Control Registers......................................................................................................................111
11.3 Minibridge Circuit Operation.................................................................................................................111
11.4 Minibridge Operational Addressing......................................................................................................113
12 Error Reporting and Interrupt Control .............................................................................................................114
12.1 Interrupt Control Registers...................................................................................................................114
12.1.1 Interrupts Via External FG[7:0] Registers .................................................................................114
12.1.1.1 FGIO Interrupt Pending Register................................................................................114
12.1.2 Interrupts Via External GP[7:0] .................................................................................................116
12.1.2.1 GPIO Interrupt Pending Register................................................................................116
12.1.2.2 GPIO Edge/Level and GPIO Polarity Registers..........................................................117
12.1.3 Interrupts Via Internal System Errors........................................................................................117
12.1.4 System Interrupt Pending High/Low Registers .........................................................................118
12.1.5 System Interrupt Enable High/Low Registers ...........................................................................119
12.1.6 Interrupts Via Internal Clock Errors...........................................................................................120
12.1.7 Clock Interrupt Pending High/Low Registers............................................................................121
12.1.8 Clock Interrupt Enable High/Low Registers ..............................................................................122
Table of Contents (continued)
Contents Page
Agere Systems Inc. 5
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
Dat a Sheet
12.1.9 Interrupt Servicing Registers.....................................................................................................123
12.1.9.1 Arbitration Contr ol Regis ter .. ................... ....... ...... ....... ...... ....... ...... ....... ................... ..123
12.1.10PCI_INTA Output Select Register.............................................................................................123
12.1.10.1 SYSERR and CLKERR Output Select Register.........................................................123
12.1.10.2 Interrupt In-Service Registers.....................................................................................125
12.2 Error Reporting and Interrupt Controller Circuit Operation...................................................................127
12.2.1 Externally Sourced Interrupts Via FG[7:0], GP[7:0] ..................................................................128
12.2.2 Internally Sourced System Error Interrupts...............................................................................128
12.2.3 Internally Sourced Clock Error Interrupts..................................................................................128
12.2.4 Arbitration of Pending Interrupts ...............................................................................................128
12.2.4.1 Arbitration Off........... ....... ...... ....... ...... ...... ....... ................... ....... ...... ....... ...... ....... .. ......128
12.2.4.2 Flat Arbitration ............................................................................................................128
12.2.4.3 Tier Arbitration ............................................................................................................128
12.2.5 CLKERR Output........................................................................................................................129
12.2.6 SYSERR Output .......................................................................................................................129
12.2.7 PCI_INTA# Output....................................................................................................................129
12.2.8 System Handling of Interrupts...................................................................................................129
13 Test and Diagnostics.......................................................................................................................................130
13.1 Diagnostics Control Registers..............................................................................................................130
13.1.1 FG Testpoint Enable Register...................................................................................................130
13.1.2 GP Testpoint Enable Register ..................................................................................................132
13.1.3 State Counter Modes Registers................................................................................................134
13.1.4 Miscellaneous Diagnostics Low Register..................................................................................134
13.1.5 Miscella neou s Dia gnosti c Regi st ers ...................... ....... ...... .................... ...... ....... ...... ....... ........135
13.2 Diagnostic Circuit Operation ................................................................................................................136
14 Connection Control .........................................................................................................................................137
14.1 Programming Interface.........................................................................................................................137
14.1.1 PCI Connection Memory Programming ....................................................................................137
14.1.1.1 Micropro cessor Conne ction Mem or y Program mi ng ................. ...... ....... ...... ....... ........138
14.2 Switching Operation.............................................................................................................................141
14.2.1 Memory Architecture and Configuration....................................................................................141
14.2.1.1 Connection Memory....................................................................................................141
14.2.1.2 Data Memory..............................................................................................................142
14.2.2 Standard Switching...................................................................................................................143
14.2.2.1 Constant Delay and Minimum Delay Connections .....................................................143
14.2.2.2 Pattern Mode..............................................................................................................143
14.2.2.3 Subrate .......................................................................................................................143
15 Electrical Characteristics.................................................................................................................................150
15.1 Absolute Maximum Ratings .................................................................................................................150
15.1.1 Handling Pr ecaut ion s............. ....... ...... ....... ................... ...... ....... ...... ....... ...... ....... .....................150
15.2 Crystal Specifications...........................................................................................................................150
15.2.1 XTAL1 Crystal.................. ...... ....... ...... ................... ....... ...... ....... ...... ....... ...... ....... ...... ...............150
15.2.2 XTAL2 Crystal.................. ...... ....... ...... ................... ....... ...... ....... ...... ....... ...... ....... ...... ...............151
15.2.3 Reset Pulse...................... ...... ....... ...... ....... ...... ...... ....... ................... ....... ...... ....... .....................152
15.3 Thermal Parameters (Definitions and Values) .....................................................................................152
15.4 Reliability..............................................................................................................................................153
15.5 dc Electrical Characteristics.................................................................................................................154
15.5.1 PCI Signals ...............................................................................................................................154
15.5.2 Electrical Drive Specifications, CT_C8 and /CT_FRAME.........................................................154
15.5.3 All Other Pins............................................................................................................................155
15.6 H-Bus Timing .......................................................................................................................................155
Table of Contents (continued)
Contents Page
6Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
15.6.1 Timing Diagrams.......................................................................................................................155
15.7 ac Electrical Characteristics.................................................................................................................156
15.7.1 Skew Timing, H-Bu s . .................... ...... ....... ...... ....... ...... ...... ....... ................... ....... ...... ...............156
15.8 Hot Swap........... ...... ....... ...... ....... ...... ....... ...... ....... ................... ...... ....... ...... ....... ...... ............................157
15.8.1 LPUE (Local Pull-Up Enable)....................................................................................................157
15.9 Decoupling...........................................................................................................................................157
15.10 APLL VDD Filter....... ....... ...... ....... ...... ....... ...... ....... ...... ....... ................... ...... ....... ...... ....... ...... ... ............158
15.11 PC Board PBGA Consi derati ons....... ....... ...... ....... ...... ....... ...... ...... ....... ................... ....... ...... ...............158
15.12 Unused Pins.........................................................................................................................................159
15.13 T8110 Development Kits......................................................................................................................159
15.14 T8110 Ordering Information.................................................................................................................159
16 Package Outline..............................................................................................................................................160
16.1 Pin and Pad Assignments....................................................................................................................160
17 JTAG/Boundary Scan .....................................................................................................................................164
17.1 The Principle of Boundary-Scan Architecture ......................................................................................164
17.1.1 Instruction Register...................................................................................................................165
17.2 Boundary-Scan Register......................................................................................................................165
A Constant and Minimum Delay Connections....................................................................................................177
A.1 Connection Definitions .........................................................................................................................177
A.2 Delay Type Definitions .........................................................................................................................177
B Register Bit Field Mnemonic Summary...........................................................................................................180
Significant Changes Between the August 2002 and June 2003 Release .............................................................205
Significant Changes Between the June 2003 and November 2003 Release........................................................205
List of Figures
Figure Page
Ager e Systems Inc. 7
February 2004 Ambassador T8 110 PCI-Base d H.10 0/ H.110 Switch
Data Sheet
Figure 1. T8110 Pull-Up/Pull-Down Arrangement for H1x0 Pins..........................................................................22
Figure 2. T8110 Architecture 1—PCI Bus Interface .............................................................................................24
Figure 3. T8110 Architecture 2—Microprocessor Bus Interface...........................................................................25
Figure 4. T8110 PCI Interface—Single Write Cycle .............................................................................................29
Figure 5. T8110 PCI Interface—Burst Write Cycle...............................................................................................30
Figure 6. T8110 PCI Interface—Single Read Cycle.............................................................................................31
Figure 7. T8110 PCI Interface—Burst Read Cycle...............................................................................................32
Figure 8. T8110 PCI Interface—Delayed Read Cycle (Retry)..............................................................................33
Figure 9. T8110 PCI Interface—Target Abort (Address Parity Error)...................................................................33
Figure 10. T8110 PCI Interface—Configuration WRITE Cycle...............................................................................37
Figure 11. T8110 PCI Interface—Configuration READ Cycle ................................................................................38
Figure 12. EE PROM Inter fa ce Prot ocol....... ...... ....... ................... ...... ....... ...... ....... ...... ....... .............. ......................39
Figure 13. Microprocessor Access Timing, Intel Protocol.......................................................................................44
Figure 14. Microprocessor Access Timing, Motorola Protocol ...............................................................................45
Figure 15. T8110 Main Clocking Paths...................................................................................................................62
Figure 16. T8110 NETREF Paths...........................................................................................................................62
Figure 17. T8110 Required Frame Pulse and Bit Clock with Polarities..................................................................78
Figure 18. T8 110 Phase Alignm ent, SNA P and SLI DE.. ....... ...... ................... ....... ...... ....... ...... ....... ...... ....... ..........80
Figure 19. Fa llbac k— Fixed vs. Rotati ng Sec on dary . ...... ....... ...... ...... ....... ...... ....... ...... .................... ...... .................83
Figure 20. T8110 Clock Fallback States.................................................................................................................84
Figure 21. T8110 H-Bus Clock Enable States........................................................................................................86
Figure 22. T8110 Clock Failsafe States..................................................................................................................88
Figure 23. FG[7:0] Functional Paths.......................................................................................................................95
Figure 24. Frame Group 8 kHz Reference Timing..................................................................................................96
Figure 25. GP[7:0] Functional Paths.....................................................................................................................100
Figure 26. Local Stream 16.384 Mbits/s Timing...................................................................................................104
Figure 27. Local Stream 16.384 Mbits/s Circuit....................................................................................................105
Figure 28. Sup er rate I/O Configu ra tio n. ....... ...... ....... ...... ....... ...... ...... ....... ...... .................... ...... ............................106
Figure 29. Relationship Between 8.192 Mbits/s and 16.384 Mbits/s Time Slots..................................................107
Figure 30. Minibridge Read/Write Access Cycles.................................................................................................112
Figure 31. I nterrupt Controller......... ...... .................... ...... ....... ...... ...... ....... ...... .................... .... ..............................127
Figure 32. PCI Programming—Reset Page Command........................................................................................137
Figure 33. PCI Programming—Make/Break/Query Telephony Connection .........................................................138
Figure 34. M icropr oces s or Prog rammi ng —Reset Pag e Comma nd ...................... ...... .................... ...... ....... ...... ..139
Figure 35. Microprocessor Programming—Make/Break/Query Telephony Connections.....................................140
Figure 36. T8110 Data Memory Map and Configurations.....................................................................................142
Figure 37. TDM Data Stream Bit Rates................................................................................................................144
Figure 38. Subrate Switching Example, Byte Packing..........................................................................................147
Figure 39. Subrate Switching Example, Byte Unpacking .....................................................................................149
Figure 40. C lock Alignme nt...... ....... ................... ....... ...... ....... ...... ...... ....... ...... .................... ..... .............................153
Figure 41. Frame Timing Diagram........................................................................................................................154
Figure 42. Detailed Clock Skew Timing Diagram.................................................................................................154
Figure 43. A P LL VDD Filtering ..............................................................................................................................156
Figure 44. T8110 Pins by Functional Group, PCI I/F Enabled, Microprocessor I/F Disabled...............................158
Figure 45. T8110 Pins by Functional Group, Microprocessor I/F Enabled, PCI I/F Disabled...............................159
Figure 46. IEEE® 1149.1 Boundary-Sc an Arc hite ctur e ............... ...... ....... ...... ....... ...... .................... ...... ....... ...... ..162
Figure 47. Constant Delay Connection Latency...................................................................................................176
Figure 48. Minimum Delay Connection Latency...................................................................................................177
List of Tables
Table Page
8Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
Table 1. Interface Signals ..................................................................................................................................11
Table 2. Minibridge Interface Signals.................................................................................................................11
Table 3. H-Bus (H.100/H.110 Interface) Signals................................................................................................12
Table 4. L-Bus (Local) Interface Signals............................................................................................................12
Table 5. Clock Circuit Interface Signals.............................................................................................................13
Table 6. GPIO Interface Signals ........................................................................................................................13
Table 7. Miscellaneous Interface Signals...........................................................................................................13
Table 8. JTAG Signals.......................................................................................................................................14
Table 9. T8110 Pinouts......................................................................................................................................15
Table 10. T8110 Memory Mapping to PCI Space................................................................................................26
Table 11. PCI Interface Registers Map................................................................................................................27
Table 12. T8110 PCI Configuration Registers .....................................................................................................36
Table 13. PCI Configuration Space, EEPROM Map............................................................................................39
Table 14. Intel/Motorola Protocol Selector............. ...... ....... ...... ....... ...... ...... ....... ...... ....... ...... .................... ...... ....40
Table 15. T8110 Memory Mapping to Microprocessor Space .............................................................................41
Table 16. Microprocessor Interface Register Map...............................................................................................42
Table 17. Register Space Access Timing............................................................................................................46
Table 18. Connection Memory Space Access Timing .........................................................................................46
Table 19. Data Memory Space Access Timing....................................................................................................47
Table 20. Control Register Map...........................................................................................................................48
Table 21. Reset Registers....................................................................................................................................49
Table 22. Master Output Enable Register............................................................................................................50
Table 23. Data Memory Mode Select Register....................................................................................................50
Table 24. Clock Register Access Select Register................................................................................................51
Table 25. Phase Alignment Select Register.........................................................................................................51
Table 26. Fallback Control Register.....................................................................................................................52
Table 27. Fallback Type Select Register .............................................................................................................53
Table 28. Fallback Trigger Registers...................................................................................................................53
Table 29. Watchdog Select, C8, NETREF Registers...........................................................................................54
Table 30. Watchdog EN Registers.......................................................................................................................55
Table 31. Failsafe Control Register......................................................................................................................56
Table 32. Error and Status Register Map.............................................................................................................57
Table 33. Clock Error Registers...........................................................................................................................58
Table 34. Latched Clock Error Registers.............................................................................................................59
Table 35. Fallback and Failsafe Status Register..................................................................................................60
Table 36. System Errors Regist er s.... ....... ...... ....... ...... ....... ................... ...... ....... ...... ....... ...... ..............................61
Table 37. Device Identification Registers.............................................................................................................61
Table 38. Miscellaneous Status Registers...........................................................................................................61
Table 39. Clock Input Control Register Map........................................................................................................63
Table 40. Main Input Selector Register................................................................................................................63
Table 41. Main Divider Register...........................................................................................................................64
Table 42. APLL1 Input Selector Register.............................................................................................................64
Table 43. APLL1 Rate Register ...........................................................................................................................65
Table 44. Main Inversion Select Register ............................................................................................................65
Table 45. Resource Divider Register...................................................................................................................66
Table 46. APLL2 Rate Register ...........................................................................................................................66
Table 47. LREF Input/Inversion Select Registers................................................................................................67
Table 48. DPLL1 Input Selector Registers...........................................................................................................68
Table 49. DPLL2 Register....................................................................................................................................69
Table 50. NETREF1 Registers.............................................................................................................................69
Table 51. NETREF2 Registers.............................................................................................................................70
List of Tables (continued)
Table Page
Agere Systems Inc. 9
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
Dat a Sheet
Table 52. Clock Output Control Register Map .....................................................................................................71
Table 53. Master Output Enables Registers........................................................................................................72
Table 54. Clock Output Format Registers............................................................................................................73
Table 55. TCLK Select and L_SCx Select Registers...........................................................................................74
Table 56. Bit Clock and Frame.............................................................................................................................75
Table 57. Watchdog Timer Description................................................................................................................76
Table 58. Frame Center Sampling.......................................................................................................................77
Table 59. Legacy Mode Fallback Event Triggers.................................................................................................83
Table 60. Clock Fallback State Description .........................................................................................................85
Table 61. H-Bus Clock Enable State Description.................................................................................................87
Table 62. Clock Failsafe State Descriptions ........................................................................................................89
Table 63. Frame Group and FG I/O Register Map...............................................................................................90
Table 64. FGx Lower and Upper Start Registers.................................................................................................90
Table 65. FGx Width Registers............................................................................................................................91
Table 66. FGx Rate Registers..............................................................................................................................91
Table 67. FG7 Counter (Low and High Byte) Registers.......................................................................................92
Table 68. FGIO Data Register .............................................................................................................................93
Table 69. FGIO Read Mask Register...................................................................................................................93
Table 70. FGIO R/W Register..............................................................................................................................94
Table 71. GPIO Register......................................................................................................................................98
Table 72. GPIO Data Register.............................................................................................................................98
Table 73. GPIO Read Mask Register...................................................................................................................99
Table 74. GPIO R/W Register..............................................................................................................................99
Table 75. GPIO Override Register.....................................................................................................................100
Table 76. T8110 Serial Stream Groupings.........................................................................................................102
Table 77. H-Bus Rate Registers ........................................................................................................................103
Table 78. L-Bus Rate Registers... ...... ....... ...... ....... ...... ....... ...... ................... ....... ...... ....... ...... ............................103
Table 79. Minibridge Wait-State Control Register Map......................................................................................108
Table 80. Strobe Control Registers....................................................................................................................111
Table 81. Minibridge Operating Space (PCI).....................................................................................................113
Table 82. Interrupt Control Register Map...........................................................................................................114
Table 83. FGIO Interrupt Pending Registers......................................................................................................114
Table 84. FGIO Edge/Level and Polarity Registers ...........................................................................................115
Table 85. GPIO Interrupt Pending Register.......................................................................................................116
Table 86. GPIO Edge/Level and GPIO Polarity Registers.................................................................................117
Table 87. System Error Interrupt Assignments..................................................................................................117
Table 88. System Interrupt Pending High/Low Registers ..................................................................................118
Table 89. System Interrupt Enable High/Low Registers ....................................................................................119
Table 90. Clock Error Interrupt Assignments.....................................................................................................120
Table 91. Clock Interrupt Pending High/Low Registers .....................................................................................121
Table 92. Clock Interrupt Enable High/Low Registers .......................................................................................122
Table 93. Arbitration Control Register................................................................................................................123
Table 94. PCI_INTA Output Select Register......................................................................................................123
Table 95. SYSERR Output Select Registers .....................................................................................................124
Table 96. Interrupt In-Service Register..............................................................................................................125
Table 97. Diagnostics Control Register Map......................................................................................................130
Table 98. FG Testpoint Enable Registers..........................................................................................................130
Table 99. FG[7:0] Internal Testpoint Assignments.............................................................................................131
Table 100. Testpoint Enable Registers................................................................................................................132
Table 101. GP[7:0] Internal Testpoint Assignments.............................................................................................133
Table 102. State Counter Modes Registers.........................................................................................................134
List of Tables (continued)
Table Page
10 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
Table 103. Miscellaneous Diagnostics Low Register...........................................................................................134
Table 104. Miscella neou s Dia gnos ti c Registers ...... ................... ....... ...... ...... ....... ................... ....... .....................135
Table 105. Microprocessor Programming, Connection Memory Access.............................................................139
Table 106. TDM Data Stream..............................................................................................................................144
Table 107. Subrate Switching, Data Propagation Rate vs. Channel Capacity.....................................................145
Table 108. Subrate Switching, Connection Memory Programming Setup...........................................................146
Table 109. Absolute Maximum Ratings ...............................................................................................................150
Table 110. XTAL1 Specifications.........................................................................................................................150
Table 111. 16.384 MHz Oscillator Requirements ................................................................................................151
Table 112. XTAL2 Specifications.........................................................................................................................151
Table 113. 6.176 MHz/12.352 MHz Oscillator Requirements.............................................................................151
Table 114. Reset Pulse........................................................................................................................................152
Table 115. Thermal Considerations.....................................................................................................................152
Table 116. Electrical Drive Specifications, CT_C8 and /CT_FRAME..................................................................152
Table 117. dc Electrical Characteristics, All Other Pins.......................................................................................153
Table 118. Skew Timing, H-Bus...........................................................................................................................154
Table 119. L_SC[3:0] and Frame Group Rise and Fall Time...............................................................................155
Table 120. T8110 Ordering Information...............................................................................................................157
Table 121. Instruction Register............................................................................................................................163
Table 122. Boundary-Scan Register Description.................................................................................................163
Table 123. Special Cases (Exceptions)...............................................................................................................177
Table 124. Mnemonic Summary, Sorted by Name..............................................................................................179
Table 125. Mnemonic Summary, Sorted by Register ..........................................................................................191
Table 126. Affected Registers..............................................................................................................................203
Agere Systems Inc. 11
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
2 Pin Description
2.1 Interface Signals
Table 1. Interface Signals
Signal I/O Width Function
PCI_AD I/O 32 PCI bus address/data.
PCI_CBE# I/O 4 PCI bus command/byte enable.
PCI_CLK In 1 PCI bus clock (33 MHz).
PCI_DEVSEL# O 1 PCI bus device select.
PCI_FRAME# I 1 PCI bus cycl e frame.
PCI_GNT# In 1 PCI bus grant. This pin is unused and should be tied to VDD.
PCI _IDSEL In 1 PCI bus init ialization device select.
PCI_INTA# Out 1 PCI bus interrupt.
PCI_IRDY# I 1 PCI bus initiator ready.
PCI_LOCK# In 1 PCI bus lock.
PCI_PAR I/O 1 PCI bus parity.
PCI_PERR# I/O 1 PCI bus parity error.
PCI_REQ# Out 1 PCI bus request. This pin is unused and can be left as a no connect.
PCI_RST# In 1 PCI bus reset.
PCI_SERR# Out 1 PCI bus system error.
PCI_STOP# O 1 PCI bu s stop.
PCI_TRDY# O 1 PCI bus target ready.
Table 2. Minibridge Interface Signals
Signal I/O Width Minibridge Function Microprocessor Interface Function
MB_A I/O 16 Address[15:0] out.
Note: Special power-on function
for PCI core EEPROM.
MB_A[3] = EE_SK_OUT
MB_A[2] = EE_DI_OUT
MB_A[1] = EE_DO_IN
Address[15:0] in.
MB_D I/O 16 Data bus I/O. Data bus in/out.
MB_RD I/O 1 Read strobe output. RDn(DSn) in.
MB_WR I/O 1 Write strobe output. WRn(R/Wn) in.
MB_CS0 I/O 1 Chip select 0 output. Address[16] in.
MB_CS1 I/O 1 Chip select 1 output. Address[17] in.
MB_CS2 I/O 1 Chip se lect 2 output. Address [18] in.
MB_CS3 I/O 1 Chip select 3 output. Address[19] in.
MB_CS4 I/O 1 Chip select 4 output. CSn in.
MB_CS5 I/O 1 Chip select 5 output. Word/byte select in.
MB_CS6 Out 1 Chip select 6 output. RDY(DTACKn) out.
MB_CS7 I/O 1 Chip select 7 output. Intel/Motorola select in.
12 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
2 Pin Description (continued)
2.1 Interface Signals (continued)
Table 3. H-Bus (H.100/H.110 Interface) Signals
Signal I/O Width Function
VPRECHARGE In 1 Precharge voltage for pull-downs, H.110 bus signals:
CT_D, CT_NETREF1, CT_NETREF2.
H110_ENABLE In 1 Pull-down enable for H.110 bus signals: CT_D, CT_NETREF1,
CT_NETREF2.
H100_ENABLE In 1 Pull-up enable for H.100 bus signals: CT_D, CT_NETREF1,
CT_NETREF2, CT_C8_A, CT_C8_B, /CT_FRAME_A, /CT_FRAME_B.
CT_D I/O 32 H.100/H.110 bus data.
CT_C8_A I/O 1 H.100/H.110 bit clock A.
/CT_FRAME_A I/O 1 H.100/H.110 frame reference A.
CT_C8_B I/O 1 H.100/H.110 bit clock B.
/CT_FRAME_B I/O 1 H.100/H.110 frame reference B.
CT_NETREF1 I/O 1 H.100/H.110 network reference 1.
CT_NETREF2 I/O 1 H.100/H.110 network reference 2.
/C16+ I/O 1 H-MVIP™ compatibility clock (16.384 MHz, differential).
/C16– I/O 1 H-MVIP compatibility clock (16.384 MHz, differential).
/C4 I/O 1 MVIP compatibility clock (4.096 MHz).
C2 I/O 1 MVIP compatibility clock (2.048 MHz).
SCLK I/O 1 SC-bus compatibility clock.
/SCLKx2 I/O 1 SC-bus compatibility clock.
/FR_COMP I/O 1 Compatibility frame reference.
Table 4. L-Bus (Local) Interface Signals
Signal I/O Width Function
L_D I/O 32 Local bus data.
L_SC Out 4 Local bus clock outputs.
FG I/O 8 Local frame groups.
Agere Systems Inc. 13
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
2 Pin Description (continued)
2.1 Interface Signals (continued)
Table 5. Clock Circuit Interface Signals
Signal I/O Width Function
XTAL1_IN In 1 Crystal oscillator #1 input (16.384 MHz).
XTAL1_OUT Out 1 Crystal oscillator #1 feedback.
XTAL2_IN In 1 Crystal oscillator #2 input (6.176 MHz or 12.352 MHz).
XTAL2_OUT Out 1 Crystal oscillator #2 feedback.
LREF In 8 Local clock reference inputs.
TCLK_O UT Out 1 Internal ch ip cl oc k outp ut.
PRI_REF_OUT Out 1 Main divider reference out for CLAD/DJAT.
PRI_REF_IN In 1 CLAD/DJAT reference in for APLL1.
NR1_SEL_OUT Out 1 CT_NETREF1 selection out for CLAD/DJAT.
NR1_DIV_IN In 1 CLAD/DJAT reference in for CT_NETREF1 divider.
NR2_SEL_OUT Out 1 CT_NETREF2 selection out for CLAD/DJAT.
NR2_DIV_IN In 1 CLAD/DJAT reference in for CT_NETREF2 divider.
Table 6. GPIO Interface Signals
Signal I/O Width GPIO Function Alternate Function
GP0 I/O 1 GPIO bit 0 I/O A-master indicator out.
GP1 I/O 1 GPIO bit 1 I/O B-master indicator out.
GP2 I/O 1 GPIO bit 2 I/O Forwarded PCI_RST# out.
GP3 I/O 1 GPIO bit 3 I/O
GP4 I/O 1 GPIO bit 4 I/O
GP5 I/O 1 GPIO bit 5 I/O
GP6 I/O 1 GPIO bit 6 I/O
GP7 I/O 1 GPIO bit 7 I/O
Table 7. Miscellaneous Interface Signals
Signal I/O Width Function
RESET# In 1 Chip reset.
SYSE RR Out 1 System erro r ind icato r.
CLKERR Out 1 Clocking error indicator.
LPUE In 1 Pull-up enable for signals: FG, GP, L_D, LREF, MB_D, NR1_DIV_IN,
NR2_DIV_IN, PRI_REF_IN.
EE_CS Out 1 EEPROM chip select.
VIO/µP_SELECT In 1 PCI bus environment, apply GND for microprocessor interface, apply 3.3 V or
5 V for PCI interface.
PEN In 1 Reserved. Must be left unconnected.
TESTMODE In 1 Reserved. Must be left unconnected.
14 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
2 Pin Description (continued)
2.1 Interface Signals (continued)
2.2 T8110 Pinout Information
The T81 10 package is a 272-pin PBGA ball grid array. Refer to the table below for ball assignment, buffer type, and
pull-up/pull-down information.
Note: The pull-up/down column in the following table is defined as follows:
!20 k down—20 k pull-down resistor is always in-circuit.
!50 k up—50 k pull-up resistor is always in-circuit.
!LPUE: 50 k up—when LPUE = 1, a 50 k pull-up resistor is in-circuit.
!Enabled: 50 k up/ 20 k Vpre—when H100_ENABLE = 1, a 50 k pull-up resistor is in-circuit (see Figure 1 on
page 22). When H110_ENABLE = 1, a 20 k pull-down resistor from the VPRECHARGE input to this signal is in-
circuit.
Table 8. JTAG Signals
Signal I/O Width Function
TRST# In 1 JTAG reset.
TCK In 1 JTAG clock.
TMS In 1 JTAG mode select.
TDI In 1 JTAG data in.
TDO Out 1 JTAG data out.
Agere Systems Inc. 15
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
2 Pin Description (continued)
2.2 T8110 Pinout Information (contin ued)
Table 9. T8110 Pinouts
PCI Interface
Ball Pin Name Buffer Type Pull-Up/Down
Y18 PCI_AD0 PCI I/O
W17 PCI_AD1 PCI I/O
V16 PCI_AD2 PCI I/O
U16 PCI_AD3 PCI I/O
Y17 PCI_AD4 PCI I/O
Y16 PCI_AD5 PCI I/O
W16 PCI_AD6 PCI I/O
V15 PCI_AD7 PCI I/O
Y15 PCI_AD8 PCI I/O
W15 PCI_AD9 PCI I/O
W14 PCI_AD10 PCI I/O
V14 PCI_AD11 PCI I/O
Y14 PCI_AD12 PCI I/O
Y13 PCI_AD13 PCI I/O
W13 PCI_AD14 PCI I/O
V13 PCI_AD15 PCI I/O
Y9 PCI_AD16 PCI I/O
W9 PCI_AD17 PCI I/O
V9 PCI_AD18 PCI I/O
V8 PCI_AD19 PCI I/O
Y8 PCI_AD20 PCI I/O
W8 PCI_AD21 PCI I/O
W7 PCI_AD22 PCI I/O
V7 PCI_AD23 PCI I/O
Y7 PCI_AD24 PCI I/O
Y6 PCI_AD25 PCI I/O
W6 PCI_AD26 PCI I/O
V6 PCI_AD27 PCI I/O
Y5 PCI_AD28 PCI I/O
W5 PCI_AD29 PCI I/O
V5 PCI_AD30 PCI I/O
V4 PCI_AD31 PCI I/O
U14 PCI_CBE0# PCI I/O
U12 PCI_CBE1# PCI I/O
U9 PCI_CBE2# PCI I/O
U7 PCI_CBE3# PCI I/O
Y3 PCI_CLK PCI input
W11 PCI_DEVS EL# PCI output
Y10 PCI_FRAME# PCI input
W4 PCI_GNT# PCI input This pin is unused and should be tied to
VDD.
16 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
2 Pin Description (continued)
2.2 T8110 Pinout Information (continued)
Table 9. T8110 Pinouts (continued)
PCI Interface (continued)
Ball Pin Name Buffer Type Pull-Up/Down (see note on page 15)
W10 PCI_IDSEL PCI input
Y4 PCI_INTA# PCI output/open drain
Y11 PCI_IRDY# PCI input
V10 PCI_LOCK# PCI input
U11 PCI_PAR PCI I/O
W12 PCI_PERR# PCI I/O
W3 PCI_REQ# PCI output This pin is unused and should be left as a no connect.
Y2 PCI_RST# PCI input
V12 PCI_SERR# PCI output/open drain
V11 PCI_STOP# PCI output
Y12 PCI_TRDY# PCI output
Minibridge Interface
F1 MB_A0/U P_AO 8 mA I/O-Schmitt 20 k down
G1 MB_A1/UP_A1/EE_DO 8 mA I/O-Schmitt 20 k down
K3 MB_A10/UP_A10 8 mA I/O-Schmitt 20 k down
J3 MB_A11/UP_A11 8 mA I/O-Schmitt 20 k down
K1 MB_A12/UP_A12 8 mA I/O-Schmitt 20 k down
K2 MB_A13/UP_A13 8 mA I/O-Schmitt 20 k down
L3 MB_A14/UP_A14 8 mA I/O-Schmitt 20 k down
L4 MB_A15/UP_A15 8 mA I/O-Schmitt 20 k down
G2 MB_A2/UP_A2/EE_DI 8 mA I/O-Schmitt 20 k down
G3 MB_A3/UP_A3/EE_SK 8 mA I/O-Schmitt 20 k down
H1 MB_A4/UP_A4 8 mA I/O-Schmitt 20 k down
H2 MB_A5/UP_A5 8 mA I/O-Schmitt 20 k down
H3 MB_A6/UP_A6 8 mA I/O-Schmitt 20 k down
J4 MB_A7/UP_A7 8 mA I/O-Schmitt 20 k down
J1 MB_A8/UP_A8 8 mA I/O-Schmitt 20 k down
J2 MB_A9/UP_A9 8 mA I/O-Schmitt 20 k down
W1 MB _D0 8 mA I/O-Schmitt LPUE: 50 k up
V1 MB_D1 8 mA I/O-Schmitt LPUE: 50 k up
V2 MB_D2 8 mA I/O-Schmitt LPUE: 50 k up
U3 MB_D3 8 mA I/O-Sc hmitt LPUE: 50 k up
U1 MB_D4 8 mA I/O-Sc hmitt LPUE: 50 k up
U2 MB_D5 8 mA I/O-Sc hmitt LPUE: 50 k up
T3 MB_D6 8 mA I/O-Schmitt LPUE: 50 k up
T4 MB_D7 8 mA I/O-Schmitt LPUE: 50 k up
T1 MB_D8 8 mA I/O-Schmitt LPUE: 50 k up
T2 MB_D9 8 mA I/O-Schmitt LPUE: 50 k up
R3 MB_D10 8 mA I/O-Schmitt LPUE: 50 k up
P4 MB_D11 8 mA I/O-Schmitt LPUE: 50 k up
Agere Systems Inc. 17
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
2 Pin Description (continued)
2.2 T8110 Pinout Information (contin ued)
Table 9. T8110 Pinouts (continued)
Minibridge Interface (continued)
Ball Pin Name Buffer Type Pull-Up/Down (see note on page 15)
R1 MB_D12 8 mA I/O-Schmitt LPUE: 50 k up
R2 MB_D13 8 mA I/O-Schmitt LPUE: 50 k up
P2 MB_D14 8 mA I/O-Schmitt LPUE: 50 k up
P3 MB_D15 8 mA I/O-Schmitt LPUE: 50 k up
N1 MB_RD/UP_RD#(DS#) 8 mA I/O-Schmitt LPUE: 50 k up
P1 MB_WR/UP_WR#(R/W#) 8 mA I/O-Schmitt LPUE: 50 k up
L1 MB_CS0/UP_A16 8 mA I/O-Schmitt 20 k down
L2 MB_CS1/UP_A17 8 mA I/O-Schmitt 20 k down
M1 MB_CS2/UP_A18 8 mA I/O-Schmitt 20 k down
M2 MB_CS3/UP_A19 8 mA I/O-Schmitt 20 k down
M3 MB_CS4/UP_CSN 8 mA I/O-Schmitt LPUE: 50 k up
M4 MB_CS5/UP_WB_SEL 8 mA I/O-Schmitt LPUE: 50 k up
N2 MB_CS6/UP_RDY(DTACK#) 8 mA 3-state External pull-up required
N3 MB_CS7/IM_SEL 8 mA I/O-Schmitt LPUE: 50 k up
H-Bus Interface
C1 VPRECHARGE O p amp noninvert
D5 H11 0_ENAB LE Input 20 k down
D7 H100_ENA BLE Input 20 k down
A11 CT_D0 PCI I/O Enabled: 50 k up/20 k Vpre
B11 CT_D1 PCI I/O Enabled: 50 k up/20 k Vpre
C10 CT_D2 PCI I/O Enabled: 50 k up/20 k Vpre
C11 CT_D3 PCI I/O Enabled: 50 k up/20 k Vpre
A10 CT_D4 PCI I/O Enabled: 50 k up/20 k Vpre
B10 CT_D5 PCI I/O Enabled: 50 k up/20 k Vpre
B9 CT_D6 PCI I/O Enabled: 50 k up/20 k Vpre
C9 CT_D7 PCI I/O Enabled: 50 k up/20 k Vpre
A9 CT_D8 PCI I/O Enabled: 50 k up/20 k Vpre
B8 CT_D9 PCI I/O Enabled: 50 k up/20 k Vpre
C8 CT_D10 PCI I/O Enabled: 50 k up/20 k Vpre
A8 CT_D11 PCI I/O Enabled: 50 k up/20 k Vpre
C7 CT_D12 PCI I/O Enabled: 50 k up/20 k Vpre
A7 CT_D13 PCI I/O Enabled: 50 k up/20 k Vpre
B7 CT_D14 PCI I/O Enabled: 50 k up/20 k Vpre
C6 CT_D15 PCI I/O Enabled: 50 k up/20 k Vpre
A6 CT_D16 PCI I/O Enabled: 50 k up/20 k Vpre
18 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
2 Pin Description (continued)
2.2 T8110 Pinout Information (continued)
Table 9. T8110 Pinouts (continued)
H-Bus Interface (continued)
Ball Pin Name Buffer Type Pull-Up/Down (see note on page 15)
B6 CT_D17 PCI I/O Enabled: 50 k up/20 k Vpre
C5 CT_D18 PCI I/O Enabled: 50 k up/20 k Vpre
A5 CT_D19 PCI I/O Enabled: 50 k up/20 k Vpre
B5 CT_D20 PCI I/O Enabled: 50 k up/20 k Vpre
A4 CT_D21 PCI I/O Enabled: 50 k up/20 k Vpre
B4 CT_D22 PCI I/O Enabled: 50 k up/20 k Vpre
C4 CT_D23 PCI I/O Enabled: 50 k up/20 k Vpre
A3 CT_D24 PCI I/O Enabled: 50 k up/20 k Vpre
B3 CT_D25 PCI I/O Enabled: 50 k up/20 k Vpre
C3 CT_D26 PCI I/O Enabled: 50 k up/20 k Vpre
A2 CT_D27 PCI I/O Enabled: 50 k up/20 k Vpre
B2 CT_D28 PCI I/O Enabled: 50 k up/20 k Vpre
B1 CT_D29 PCI I/O Enabled: 50 k up/20 k Vpre
C2 CT_D30 PCI I/O Enabled: 50 k up/20 k Vpre
D2 CT_D31 PCI I/O Enabled: 50 k up/20 k Vpre
A13 CT_C8_A 24 mA I/O-Schmi tt Enabled: 50 k up
A12 /CT_FRA ME _A 24 mA I/O-Schmi tt Enabl ed: 50 k up
B13 CT_C8_B 24 mA I/O-Schmi tt Enabled: 50 k up
B12 /CT_FRA ME _B 24 mA I/O-Schmi tt Enabl ed: 50 k up
A14 CT_NETREF1 PCI I/O Enabled: 50 k up/20 k Vpre
B14 CT_NETREF2 PCI I/O Enabled: 50 k up/20 k Vpre
D9 /C16+ 24 mA I/O-Schmitt 50 k up
D10 /C16– 24 mA I/O-Schmitt 50 k up
D12 /C4 8 mA I/O-Schmitt 50 k up
D14 C2 8 mA I/O-Schmitt 50 k up
C14 SCLK 24 mA I/O-Schmi tt 50 k up
C13 /SCLKX 2 24 mA I/O-Schmi tt 50 k up
C12 /FR_CO MP 24 mA I/O-Schmitt 50 k up
J20 LD0 8 mA I/O-Schmitt LPUE: 50 k up
J19 LD1 8 mA I/O-Schmitt LPUE: 50 k up
J18 LD2 8 mA I/O-Schmitt LPUE: 50 k up
K17 LD3 8 mA I/O-Schmitt LPUE: 50 k up
K20 LD4 8 mA I/O-Schmitt LPUE: 50 k up
K19 LD5 8 mA I/O-Schmitt LPUE: 50 k up
K18 LD6 8 mA I/O-Schmitt LPUE: 50 k up
L18 LD7 8 mA I / O-Sch m itt LPUE: 50 k up
L20 LD8 8 mA I / O-Sch m itt LPUE: 50 k up
L19 LD9 8 mA I / O-Sch m itt LPUE: 50 k up
M18 LD10 8 mA I/O-Schmitt LPUE: 50 k up
M17 LD11 8 mA I/O-Schmitt LPUE: 50 k up
Agere Systems Inc. 19
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
2 Pin Description (continued)
2.2 T8110 Pinout Information (contin ued)
Table 9. T8110 Pinouts (continued)
L-Bus I nt er face
Ball Pin Name Buffer Type Pull Up/Down (see note on page 15)
M20 LD 12 8 mA I/O-Sc hmitt LPUE: 50 k up
M19 LD 13 8 mA I/O-Sc hmitt LPUE: 50 k up
N19 LD14 8 mA I/O-Sc hmitt L PU E: 50 k up
N18 LD15 8 mA I/O-Sc hmitt L PU E: 50 k up
N20 LD16 8 mA I/O-Sc hmitt L PU E: 50 k up
P20 LD17 8 mA I/O-Sc hmitt L PU E: 50 k up
P19 LD18 8 mA I/O-Sc hmitt L PU E: 50 k up
P18 LD19 8 mA I/O-Sc hmitt L PU E: 50 k up
R20 LD20 8 mA I/O-Sc hmitt L PU E: 50 k up
R19 LD21 8 mA I/O-Sc hmitt L PU E: 50 k up
R18 LD22 8 mA I/O-Sc hmitt L PU E: 50 k up
P17 LD23 8 mA I/O-Sc hmitt L PU E: 50 k up
T20 L D 24 8 mA I/O -Sc hmitt L PUE: 50 k up
T19 L D 25 8 mA I/O -Sc hmitt L PUE: 50 k up
T18 L D 26 8 mA I/O -Sc hmitt L PUE: 50 k up
U20 LD27 8 mA I/O-Sc hmitt L PU E: 50 k up
V20 LD28 8 mA I/O-Sc hmitt L PU E: 50 k up
U19 LD29 8 mA I/O-Sc hmitt L PU E: 50 k up
U18 LD30 8 mA I/O-Sc hmitt L PU E: 50 k up
T17 L D 31 8 mA I/O -Sc hmitt L PUE: 50 k up
H20 L_SC0 8 mA 3-state
H19 L_SC1 8 mA 3-state
H18 L_SC2 8 mA 3-state
G19 L_SC3 8 mA 3-state
Y20 FG0 8 mA I/O-Sc hmitt L PUE: 50 k up
Y19 FG1 8 mA I/O-Sc hmitt L PUE: 50 k up
W20 FG2 8 mA I/O-Sc hmitt LPUE: 50 k up
W19 FG3 8 mA I/O-Sc hmitt LPUE: 50 k up
W18 FG4 8 mA I/O-Sc hmitt LPUE: 50 k up
V19 FG5 8 mA I/O-Sc hmitt L PUE: 50 k up
V18 FG6 8 mA I/O-Sc hmitt L PUE: 50 k up
V17 FG7 8 mA I/O-Sc hmitt L PUE: 50 k up
B20 XTAL1_IN Input
C19 XTAL1_OUT Crystal feedback
E20 XTAL2_IN Input
F19 XTAL2_OUT Crystal feedback
A15 LREF0 Input-Schmitt LPUE: 50 k up
B15 LREF1 Input-Schmitt LPUE: 50 k up
C15 LREF2 Input-Schmitt LPUE: 50 k up
C16 LREF3 Input-Schmitt LPUE: 50 k up
A16 LREF4 Input-Schmitt LPUE: 50 k up
B16 LREF5 Input-Schmitt LPUE: 50 k up
20 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
2 Pin Description (continued)
2.2 T8110 Pinout Information (continued)
Table 9. T8110 Pinouts (continued)
Clock Circuit Inte rface
Ball Pin Name Buffer Type Pull Up/Down (see note on page 15)
B17 LREF6 Input-Schmitt LPUE: 50 k up
C17 LREF7 Input-Schmitt LPUE: 50 k up
G20 TCLK_OUT 8 mA 3-state
A17 PRI_REF_OUT 8 mA 3-state
A18 PRI_REF_IN Input-Schmitt LPUE: 50 k up
B18 NR1_SEL_OUT 8 mA 3-state
A19 NR1_DIV_IN Input-Schmitt LPUE: 50 k up
D19 NR2_SEL_OUT 8 mA 3-state
C20 NR2_DIV_IN Input-Schmitt LPUE: 50 k up
GPIO Interface
D1 GP0/AMASTER 8 mA I/O-Schmitt LPUE: 50 k up
E1 GP1/BMASTER 8 mA I/O-Schmitt LPUE: 50 k up
E2 GP2/FWD_PCIRST# 8 mA I/O-Schmitt LPUE: 50 k up
F2 GP3 8 mA I/O-Schmitt LPUE: 50 k up
D3 GP4 8 mA I/O-Schmitt LPUE: 50 k up
F3 GP5 8 mA I/O-Schmitt LPUE: 50 k up
E3 GP6 8 mA I/O-Schmitt LPUE: 50 k up
E4 GP7 8 mA I/O-Schmitt LPUE: 50 k up
Miscellaneous Interfaces
Y1 RESET# Input-Sc hmi tt 50 k up
V3 SYSERR 8 mA 3-state
W2 CLKERR 8 mA 3-state
J17 LPUE Input 50 k up
G4 EE_CS 8 mA 3-state
U5 VIO/µP_SELECT 20 k down
A20 PEN Input 50 kup. This pin is unused and must be
left unconnected.
F20 TESTMODE Input 20 kdown. This pin is unused and must
be left unconnected.
JTAG Interface
C18 TRST# Inpu t-Sc hmi tt 50 k up
E18 TCK Input-Sc hmitt 50 k up
D18 T MS Input-Sc hmit t 50 k up
F18 TDI Input-Sc hmi tt 50 k up
G18 TDO 4 mA 3-state
B19 APLL1VDD Analog VDD
E19 APLL2VDD Analog VDD
D6 VDD ——
D11 VDD ——
D15 VDD ——
F4 VDD ——
F17 VDD ——
Agere Systems Inc. 21
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
2 Pin Description (continued)
2.2 T8110 Pinout Information (contin ued)
Table 9. T8110 Pinouts (continued)
JTAG Interface
K4 VDD ——
L17 VDD ——
R4 VDD ——
Power
Ball Pin Name Buffer Type Pull Up/Down
R17 VDD ——
U6 VDD ——
U10 VDD ——
U15 VDD ——
Ground
A1 VSS ——
D4 VSS ——
D8 VSS ——
D13 VSS ——
D17 VSS ——
H4 VSS ——
H17 VSS ——
N4 VSS ——
N17 VSS ——
U4 VSS ——
U8 VSS ——
U13 VSS ——
U17 VSS ——
Thermal Ground
J9—12
K9—12
L9—12
M9—12
No Connects
D16 No connects must be left unconnected.
D20
E17
G17
22 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
2 Pin Description (continued)
2.3 Special Buffer Requirements
2.3.1 H1x0 Bus Signal Internal Pull-Up/Pull-Down
The H1x0 bus pins require special consideration for H.100 and H.110 usage. There are two control pins to select
between various internal bus pull-ups/pull-downs, as shown below:
!H100_ENABLE. Enables internal 50 k pull-ups on CT_Dn, CT_NETREF1, CT_NETREF2, CT_C8_A,
CT_C8_B, /CT_FRAME_A, and /CT_FRAME_B signals.
!H110_ENABLE. Enables internal 20 kpull-downs on all 32 CT_Dn signals, CT_NETREF1, and CT_NETREF2
to the VPRECHARGE signal.
Note: The two H1x0 enables are active-high. Only one or the other should ever be asserted.
Warning: Do not assert both a t the same time.
Please refer to Figure 1 for more detail.
5-9611 (F)
Figure 1. T8110 Pull-Up/Pull-Down Arrangement for H1x0 Pins
2.3.2 Local Bus Signal Internal Pull-Up
The LPUE input is active-high; and is used to activate pull-ups on the following local signals: GP[7:0], FG[7:0],
MB_D[15:0], LD[31:0], LREF[7:0], PRI_REF_IN, NR1_DIV_IN, and NR2_DIV_IN.
PAD
PAD
PAD
PAD
50 k
, MIN
PAD
20 k
, MIN
V
DD
V
DD
50 k
, MIN
CT_C8_A, CT_C8_B,
/CT_FRAME_A, /CT_FRAME_B
TO OTHER
CT_Dn VPRECHARGE
H100_ENABLE
H110_ENABLE
CT_Dn, CT_NETREF1, CT_NETREF2
APPLY 0.7 V, NOMINAL
Agere Systems Inc. 23
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
3 Main Architectural Features
3.1 T8110 Archite cture
The T8110 includes all of the clocking and standard switching functions found on previous Ambassador devices,
plus additional functionalities that are described in the following sections. There are two architectures: PCI (see
Section 4 on page 26) and microprocessor (see Section 5 on page 40).
When the PCI architecture is selected, the T8110 acts as a PCI target. All registers and memories are accessed
via the PCI bus. Selecting the PCI architecture allows the microprocessor bus port to be used as a minibridge port.
The minibridge port converts PCI target accesses into a simple handshake and passes these accesses to external
devices connected to this port; see Section 11 on page 108.
When the microprocessor architecture is selected, the minibridge port is used as the microprocessor bus port, and
the PCI interface is ignored.
24 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
3 Main Architectural Features (continued)
3.1 T8110 Architecture (continued)
5-9423a (F)
Figure 2. T8110 Architecture 1—PCI Bus In terface
INTERRUPT
CONTROLLER
GENERAL-PURPOSE
REGISTER
LOCAL BUS
BRIDGE
CONTROLLER
FRAME GRP
TIMING
DERIVATION
APLL1
APLL2
DATA
PAGE 1 LO
VALID FLAG
STORE
H.100 EVEN
CONNECTION
MEMORY
VALID FLAG
STORE
H.100 ODD
CONNECTION
MEMORY
VALID FLAG
STORE
LOCAL HI
CONNECTION
MEMORY
VALID FLAG
STORE
LOCAL LOW
CONNECTION
MEMORY DATA
PAGE 1 HI
DATA
PAGE 2
MEMORY BIST
CONTROLLER
SCAN
INTERFACE
DATA MEMORY
ACCESS SCHEDULER
SETUP/CONTROL
REGISTERS
REGISTER
ACCESS
CONTROLLER
CONNECTION
MEMORY
ACCESS
CONTROLLER
DATA
MEMORY
ACCESS
CONTROLLER
(DIAGNOSTICS)
PCI CORE
PARALLEL-TO-SERIAL (OUTPUT)
SERIAL-TO-PARALLEL (INPUT)
CONVERSION
RESETN
65.536 MHz
32.768 MHz
16.384 MHz
FRAME SYNC
EEPROM I/F PCI BUS
LOCAL STREAMS
(BIDIRECTIONAL) H.100 STREAMS
(BIDIRECTIONAL)
JTAG/SCAN
PORT
16.384
MHz
6.176 MHz
OR
12.352 MHz
H.100 CLOCKS,
LOCAL
CLOCKS
MINIBRIDGE PORT GENERAL-PURPOSE I/O LOCAL INTERRUPTS, ERROR FLAGS FRAME GROUPS
Agere Systems Inc. 25
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
3 Main Architectural Features (continued)
3.1 T8110 Architecture (continued)
5-9424 (F)
Figure 3. T8110 Architecture 2—Microprocessor Bus Interface
INTERRUPT
CONTROLLER
GENERAL-PURPOSE
REGISTER FRAME GRP
TIMING
DERIVATION
APLL1
APLL2
DATA
PAGE 1 LO
VALID FLAG
STORE
H.100 EVEN
CONNECTION
MEMORY
VALID FLAG
STORE
H.100 ODD
CONNECTION
MEMORY
VALID FLAG
STORE
LOCAL HI
CONNECTION
MEMORY
VALID FLAG
STORE
LOCAL LOW
CONNECTION
MEMORY DATA
PAGE 1 HI
DATA
PAGE 2
MEMORY BIST
CONTROLLER
SCAN
INTERFACE
DATA MEMOR Y
ACCESS SCHEDUL ER
SETUP/CONTROL
REGISTERS
REGISTER
ACCESS
CONTROLLER
CONNECTION
MEMORY
ACCESS
CONTROLLER
DATA
MEMORY
ACCESS
CONTROLLER
(DIAGNOSTICS)
PARALLEL-TO-SERIAL (OUTPUT)
SERIAL-TO-PARALLEL (INPUT)
CONVERSION
RESETN
65.536 MHz
32.768 MHz
16.384 MHz
FRAME SYNC
LOCAL STREAMS
(BIDIRECTIONAL) H.100 STREA MS
(BIDIRECTIONAL)
JTAG/SCAN
PORT
6.176 MHz
OR
12.352 MHz
H.100 CLOCKS,
LOCAL
CLOCKS
MINIBRIDGE PORT GE NERAL-PURPOSE I/O LOCAL INTERRUPTS, ERROR FLAGS FRAME GROUPS
NO CONNECTION
PCI BUSEEPROM I/F
PCI CORE
16.348 MHz
MICROPROCESSOR
INTERFACE
26 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
4 PCI Interface
The T8110 provides a selection of two interface mechanisms via the VIO/µP_SELECT input. This must be a static
signal (either pulled high or pulled low).
!VIO/µP_SELECT tied to GND = T8110 interface to a microprocessor bus, connected via the minibridge port.
!VIO/µP_SELECT tied to 3.3 V = T8110 interface to a local PCI bus, 3.3 V signaling.
!VIO/µP_SELECT tied to 5 V = T8110 interface to a local PCI bus, 5 V signaling.
The T8110 is a PCI target; it operates as a slave for all PCI transactions. All addressing is DWORD aligned for
32-bit data transfers. Refer to Section 2.1 on page 11 for pin descriptions. When the PCI interface is selected, the
minibridge port functions as a bridge to convert the PCI access protocol into a simple handshake protocol for exter-
nal, non-PCI devices connected to this port. For more details, see Section 11, starting on page 108.
4.1 Target
The T8110 PCI bus interface allows target access to four internal regions: registers, connection memory, data
memory, and the minibridge. Target burst transactions are only allowed to the register and connection memory
space. No target bursts are allowed to/from the data memory or the minibridge space. All target accesses get syn-
chronized between the PCI’s 33 MHz clock domain and the T8110's internal 65.536 MHz clock domain. Of the
32 bits of address provided, the upper 12 decode the base address, while the lower 20 provide addressing for the
internal regions of the T8110, as shown in Table 10.
Table 10. T8110 Memory Mapping to PCI Sp ace
Region Subregion Range (hex)
Registers Reserved 0x00000—0x000FF
Operating control and status 0x00100—0x001FF
Clocks 0x00200—0x002FF
Rate control 0x00300—0x003FF
Frame group 0x00400—0x004FF
General-purpose I/O 0x00500—0x005FF
Interrupt control 0x00600—0x006FF
Minibridge control 0x00700—0x007FF
Reserved 0x00800—0x0FFFF
Reserved 0x10000—0x1FFFF
Data memory 0x20000—0x2FFFF
Reserved 0x30000—0x3FFFF
Connection mem ory 0x40000 —0x4FFFF
Reserved 0x50000—0x6FFFF
Minibridge 0x70000—0x7FFFF
Reserved 0x80000—0xFFFFF
Agere Systems Inc. 27
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
4 PCI Interface (continued)
4.1 Target (continued)
4.1.1 PCI Interf ace Registe rs
Table 11. PCI Interface Registers Map
DWORD
Address
(20 bits)
Section
Cross
Reference
Registers
Byte 3 Byte 2 Byte 1 Byte 0
0x00100 6.1.1, 6.1.2 Master enable Reserved Reset select Soft reset
0x00104 6.1.3, 6.1.4 Phase alignment select Clock register
access select Data memory mode
select Reserved
0x00108 6.1.4 Fallback trigger, upper Fallback trigger,
lower Fallback type select Fallback control
0x0010C 6.1.4 Watchdog EN, upper Watchdog EN,
lower Watchdog select,
NETREF Watchdog select, C8
0x00110 14.2.3.4.2 Reserved
0x00114 4.1.5 Reserved Failsafe threshold
low Failsafe enable and
status Failsafe control
0x00120 6.2.1 Status 3, latched clock
errors, upper Status 2, latched
clock errors, lower Status 1, transient
clock errors, upper Status 0, transient
clock errors, lower
0x00124 6.2.2,
6.2.2.2 Status 7, system errors Reserved Reserved Status 4
0x00128 6.2.2.2 Device ID, upper Device ID, lower Reserved Version ID
0x0012C 6.2.2.2 Reserved Reserved Reserved Status 8
0x00140 13.1 Diag3 Diag2 Diag1 Diag0
0x00144 13.1 Diag7 Diag6 Diag5 Diag4
0x00148 13.1 Reserved Reserved Reserved Diag8
0x00200 7.1 APLL1 rate APLL 1 input
selector Main divider Main input selector
0x00204 7.1 APLL2 rate Reserved Resource divider Main inversion select
0x00208 7.1 DPLL1 rate DPLL1 input
selector Reserved LREF input select
0x0020C 7.1 DPLL2 rate DPLL2 input
selector Reserved LREF inversion
select
0x00210 7.1 Reserved NETREF1 LREF
select NETREF 1 div ider NETRE F1 input
selector
0x00214 7.1 Reserved NETREF2 LREF
select NETREF 2 div ider NETRE F2 input
selector
0x00220 7.2 C8 output rate /FR_COMP width NETREF output
enables Master output
enables
0x00224 7.2 SCLK output rate TCLK select Reserved CCLK output enables
0x00228 7.2 L_SC3 select L_SC2 select L_SC1 select L_SC0 select
0x00300 10.1 H-bus rate H/G H-bus rate F/E H-bus rate D/C H-bus rate B/A
0x00320 10.2 L-bus rate H/G L-bus rate F/E L-bus rate D/C L-bus rate B/A
28 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
4 PCI Interface (continued)
4.1 Target (continued)
4.1.1 PCI Interface Registers (continued)
Table 11. PCI Interface Registers Map (continued)
DWORD
Address
(20 bits)
Section
Cross
Reference
Registers
Byte 3 Byte 2 Byte 1 Byte 0
0x00400 8.1 FG0 rate FG0 width FG0 upper start FG0 lower start
0x00410 8.1 FG1 rate FG1 width FG1 upper start FG1 lower start
0x00420 8.1 FG2 rate FG2 width FG2 upper start FG2 lower start
0x00430 8.1 FG3 rate FG3 width FG3 upper start FG3 lower start
0x00440 8.1 FG4 rate FG4 width FG4 upper start FG4 lower start
0x00450 8.1 FG5 rate FG5 width FG5 upper start FG5 lower start
0x00460 8.1 FG6 rate FG6 width FG6 upper start FG6 lower start
0x00470 8.1 FG7 rate FG7 width FG7 upper start FG7 lower start
0x00474 8.2 FG7 mode upper FG7 mode lower FG7 counter high
byte FG7 counter low byte
0x00480 8.3 Reserved FGIO R/W FGIO read mask FGIO data register
0x00500 9.1 GPIO override GPIO R/W GPIO read mask GPIO data register
0x00600 12.1 FGIO interrupt polarity Reserved FGIO interrupt
enable FGIO interrupt
pending
0x00604 12.1 GPIO interrupt polarity Reserved GPIO interrupt
enable GPIO interrupt
pending
0x00608 12.1 System interrupt enable,
upper System interrupt
enable, lower System interrupt
pending, upper System interrupt
pending, lower
0x0060C 12.1 Clock interrupt enable,
upper Clock interrupt
enable, lower Clock interrupt
pending, upper Clock interrupt
pending, lower
0x00610 12.1 CLKERR output selec t SYSERR outp ut
select PCI_INTA output
select Arbitration control
0x00614 12.1 CLKERR pulse width SYSERR pulse
width Reserved Reserved
0x00 6FC 12.1 Reserved Reserved In-service , high In-service, low
0x00700 11.1 CS0 address setup wait CS0 read hold wait CS0 read width wait CS0 read setup wait
0x00704 11.1 CS0 address hold wait CS0 write hold wait CS0 write width wait CS0 write setup wait
0x00710 11.1 CS1 address setup wait CS1 read hold wait CS1 read width wait CS1 read setup wait
0x00714 11.1 CS1 address hold wait CS1 write hold wait CS1 write width wait CS1 write setup wait
0x00720 11.1 CS2 address setup wait CS2 read hold wait CS2 read width wait CS2 read setup wait
0x00724 11.1 CS2 address hold wait CS2 write hold wait CS2 write width wait CS2 write setup wait
0x00730 11.1 CS3 address setup wait CS3 read hold wait CS3 read width wait CS3 read setup wait
0x00734 11.1 CS3 address hold wait CS3 write hold wait CS3 write width wait CS3 write setup wait
0x00740 11.1 CS4 address setup wait CS4 read hold wait CS4 read width wait CS4 read setup wait
0x00744 11.1 CS4 address hold wait CS4 write hold wait CS4 write width wait CS4 write setup wait
Agere Systems Inc. 29
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
4 PCI Interface (continued)
4.1 Target (continued)
4.1.1 PCI Interf ace Registe rs (con tinu ed)
5-9612 (F)
Notes:
T8110 PCI I/F has medium decode speed. There is always a two-cycle turnaround between assertion of PCI_ FRAME# and assertion of
PCI_DEVSEL#.
All memory writes get posted to the T8110. Turnaround time for a single cycle write is three PCI clocks.
Figure 4. T8110 PCI Interface—Single Write Cycle
Table 11. PCI Interface Registers Map (continued)
DWORD
Address
(20 bits)
Section
Cross
Reference
Registers
Byte 3 Byte 2 Byte 1 Byte 0
0x00750 11.1 CS5 address setup wait CS5 read hold wait CS5 read width wait CS5 read setup wait
0x00754 11.1 CS5 address hold wait CS5 write hold wait CS5 write width wait CS5 write setup wait
0x00760 11.1 CS6 address setup wait CS6 read hold wait CS6 read width wait CS6 read setup wait
0x00764 11.1 CS6 address hold wait CS6 write hold wait CS6 write width wait CS6 write setup wait
0x00770 11.1 CS7 address setup wait CS7 read hold wait CS7 read width wait CS7 read setup wait
0x00774 11.1 CS7 address hold wait CS7 write hold wait CS7 write width wait CS7 write setup wait
0x00780 11.1 Reserved Reserved RD-WR strobe
inversion CS strobe inversion
PCI_CLK
PCI_AD[31:0]
PCI_CBE#[3:0]
PCI_PAR
PCI_FRAME#
PCI_IRDY#
PCI_IDSEL/SCAN_EN#
PCI_DEVSEL#
PCI_TRDY#
PCI_STOP#
ADDR DATA
MEM_WR (0x7) BYTE ENABLES
ADDR PARITY DATA PARITY
30 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
4 PCI Interface (continued)
4.1 Target (continued)
4.1.1 PCI Interface Registers (continued)
Notes:
T8110 PCI I/F has medium decode speed. There is always a two-cycle turnaround between assertion of PCI_FRAME# and assertion of
PCI_DEVSEL#.
All memory writes get posted to the T8110. Turnaround time for the first data phase write is three PCI clocks.
PCI core write FIFO depth = 8, so up to 8 data words can immediately get posted.
For register region access, the application side operates at a faster rate than the PCI side, so the write FIFO will never become full, and
PCI_TRDY# will remain active.
For connection memory access, the application side operates slightly slower than the PCI side, so it is possible to fill the write FIFO . In th i s
case, the PCI_TRDY# signal is deasserted while the application side catches up.
Figure 5. T8110 PCI Interface—Burst Write Cycle
PCI_FRAME#
PCI_IRDY#
PCI_TRDY#
PCI_IDSEL
PCI_DEVSEL#
PCI_CLK
PCI_AD[31:0]
PCI_CBE#[3:0]
PCI_STOP#
PCI_PAR
ADDR DATA 1
MEM_WR BYTE ENABLE 1
Addr
Parity
XXXXX DATA PARITY 1 Data
Parity 2
DATA 2 DATA 3 DATA n-2 DATA n-1 DATA n
Data
Parity n- 3 Data
Parity n- 2 Data
Parity n- 1 Data
Parity n
BEn 2 BEn 3 BEn n-2 BEn n-1 BEn n
Agere Systems Inc. 31
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
4 PCI Interface (continued)
4.1 Target (continued)
4.1.1 PCI Interf ace Registe rs (con tinu ed)
Notes:
T8110 PCI I/F has medium decode speed. There is always a two-cycle turnaround between asse rtion of PCI_FRAM E# and assertion of
PCI_DEVSEL#.
Turnaround time for memory reads from the T8110 is variable, depending on the region being accessed, and the synchronization time across
the PCI clock and application clock domains. Initial target latency is typically between 10—12 PCI clock cycles.
Figure 6. T8110 PCI Interface—Single Read Cycle
PCI_FRAME#
PCI_IRDY#
PCI_TRDY#
PCI_IDSEL
PCI_DEVSEL#
PCI_CLK
PCI_AD[31:0]
PCI_CBE#[3:0]
PCI_STOP#
PCI_PAR
ADDR
MEM_RD
(0x6) BYTE ENABLE
Addr
Parity
XXXXX XXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXX DATA
Data
Parity
XXXXXXXXXXXX
BYTE ENABLE
XXXXXXXXXXXXXXXXXXX
INITIAL TARGET LATENCY = 10 to 12 clocks (typical)
32 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
4 PCI Interface (continued)
4.1 Target (continued)
4.1.1 PCI Interface Registers (continued)
Notes:
T8110 PCI I/F has medium decode speed. There is always a two-cycle turnaround between assertion of PCI_FRAME# and assertion of
PCI_DEVSEL#.
Turnaround time for memory reads from the T8110 is variable, depending on the region being accessed, and the synchronization time across
the PCI clock and application clock domains. Initial target latency is typically between 10—12 PCI clock cycles.
PCI core read FIFO depth = 8.
For register region access, the application side operates at a f aster rate than the PCI side, so t he read FIFO will never become empty, and burst
read data is returned as quickly as the PCI bus can accept it.
For connection memory access, the application side operates slightly slower than the PCI side, so it is possible to empty the read FIFO. In this
case, the PCI_TRDY# signal is deasserted while the application side catches up.
Figure 7. T8110 PCI Interface—Burst Read Cycle
PCI_FRAME#
PCI_IRDY#
PCI_TRDY#
PCI_IDSEL
PCI_DEVSEL#
PCI_CLK
PCI_AD[31:0]
PCI_CBE#[3:0]
PCI_STOP#
PCI_PAR
ADDR
MEM_RD
(0x6) Byte Enable 1
Addr
Parity
XXXXX XXXXX
XXXXX DATA 1
Data
Parity 1
BEn 1
INITIAL TARGET LATENCY =
10 TO 12 CLOCKS (TYPICAL)
DATA 2
BEn 2
XXXXX
DATA n-1 DATA n
BEn n-1 BEn n
Data
Parity n- 2 Data
Parity n- 1 Data
Parity n
Agere Systems Inc. 33
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
4 PCI Interface (continued)
4.1 Target (continued)
4.1.1 PCI Interf ace Registe rs (con tinu ed)
Notes:
T8110 PCI I/F has medium decode speed. There is always a two-cycle turnaround between assertion of PCI_FRAM E# and assert ion of
PCI_DEVSEL#.
Turnaround time for memory read RETRY is variable, depending on the region being accessed, and the synchronization time across the PCI
clock and application clock domains. Initial target latency for a RETRY is typically between 8—10 PCI clock cycles.
Figure 8. T8110 PCI Interface—Delayed Read Cycle (Retry)
Notes:
T8110 PCI I/F has medium decode speed. There is always a two-cycle turnaround between assertion of PCI_FRAME# and assertion of
PCI_DEVSEL#.
Turnaround time for memory read target ABORT is 4 PCI clocks.
Figure 9. T8110 PCI Interface—Target Abort (Address Parity Error)
PCI_FRAME#
PCI_IRDY#
PCI_TRDY#
PCI_IDSEL
PCI_DEVSEL#
PCI_CLK
PCI_AD[31:0]
PCI_CBE#[3:0]
PCI_STOP#
PCI_PAR
ADDR
MEM_RD
(0x6) BYTE ENABLE
Addr
Parity
XXXXX XXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXX XXXXXXXXXXXX
BYTE ENABLE
XXXXXXXXXXXXXXXXXXXXXXX
INITIAL TARGET LAT ENCY = 8 TO 10 CLOCKS (TYPICAL)
PCI_FRAME#
PCI_IRDY#
PCI_TRDY#
PCI_IDSEL
PCI_DEVSEL#
PCI_CLK
PCI_AD[31:0]
PCI_CBE#[3:0]
PCI_STOP#
PCI_PAR
ADDR
MEM_RD (0x6) BYTE ENABLE
Addr Parity
XXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
34 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
4 PCI Interface (continued)
4.1 Target (continued)
4.1.2 Register Space Target Access
The T8110 registers are always immediately available for access. Read and write bursting is allowed to this region.
Read access to reserved addresses returns 0x00. For more details on register programming; refer to Section 6,
starting on page 46, through Section 13, and to Figure 4 on page 25, through Figure 7. A detected address parity
error on any read transaction results in a target abort; refer to Figure 9 on page 33. Address parity errors on write
transactions are still posted to the PCI core interface, but are discarded.
For burst transactions to the register space, the application side of the PCI core interface operates faster than the
PCI bus, so the PCI core interface FIFOs will never get full. PCI_TRDY# remains asserted for all valid data phases
applied.
4.1.3 Connection Memory Space Target Access
The T8110 connection memory is always immediately available for access (via dedicated access times assigned
for PCI bus target transactions). Read and write bursting is allowed to this region. For more details on connection
memory programming, see Section 14.1 on page 137, and Figure 4 through Figure 7. A detected address parity
error on any read transaction results in a target abort; refer to Figure 9. Address parity errors on write transactions
are still posted to the PCI core interface, but are discarded.
For burst transactions to the connection memory space, the application side of the PCI core interface operates
slightly slower than the PCI bus, so the PCI core interface FIFOs may get full. In this case, PCI_TRDY# gets deas-
serted until the application side catches up.
4.1.4 Data Memory Space Target Access
The T8110 data memory is not guaranteed to be immediately available for access. Access to data memory is prior-
itized for H-bus/L-bus switching, with PCI target access allowed at a lower priority. Because there is an indetermi-
nate amount of latency, target burst transfers are not allowed to the data memory. Upon reception of a PCI read or
write request, if the data memory is immediately available, the transaction is completed as normal single-cycle
access; refer to Figure 4 and Figure 5. If the data memory is not available at the time of the request, any write cycle
is posted and any read cycle becomes a delayed read. A detected address parity error on any read transaction
results in a target abort (refer to Figure 9 on page 33). Address parity errors on write transactions are still posted to
the PCI core interface, but are discarded.
4.1.4.1 Posted Write Transaction
Only one posted write to the data memory may be queued at a time; refer to Figure 4 for more details. The user
must monitor a status bit (register status 8, bit 0, DMSOB; refer to Section 6.2.2.4) to determine whether a posted
write is already queued before attempting more writes. Subsequent posted write attempts to the data memory
while a queued posted write has not completed result in an error condition, and both writes (the queued one and
the subsequent one) are ignored. Error is reported at register status 7, bit 0, DMPOB (refer to Section 6.2.2.2 on
page 61). Subsequent read attempts from the data memory while a posted write is queued result in a target
RETRY; please refer to Figure 8.
Agere Systems Inc. 35
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
4 PCI Interface (continued)
4.1 Target (continued)
4.1.4 Data Memory Space Target Access (continued)
4.1.4.2 Delayed Read Transaction
Only one delayed read from the data memory may be queued at a time. A delayed read transaction latches the
address and command information, and issues a retry back to the initiator (refer to Figure 8). If the initiator retries
the same transaction or attempts a different read transaction from data memory prior to the queued delayed read
completion, a retry is issued. The delayed read transaction is completed when the initiator retries the same trans-
action after the queued delayed read has finished (i.e., a normal completion of a single-cycle read; please refer to
Figure 6). Any subsequent posted write attempts to the data memory while a delayed read is in progress result in
an error condition, and the delayed read and the posted write attempts are ignored. Error is reported at register
status 7, bit 0, DMPOB (refer to Section 6.2.2.2 on page 61).
4.1.5 Minibri dge Space Targ et Access
The T8110 minibridge port is not guaranteed to be immediately available for access. Access time to this space is
dependent on wait-state control register setups. Because there is a potential variable amount of latency, target
burst transfers are not allowed to the minibridge port. All write cycles are posted writes. All read cycles are delayed
reads. Refer to the Minibridge section, starting on page 107, for more details on minibridge control and operation.
A detected address parity error on any read transaction results in a target abort (refer to Figure 9). Address parity
errors on write transactions are still posted to the PCI core interface, but are discarded.
4.1.5.1 Posted Write Transaction
Only one posted write to the minibridge port may be queued at a time; please refer to Figure 4. The user must
monitor a status bit (register status 8, bit 2) to determine whether a posted write is already queued before attempt-
ing more writes. Subsequent posted write attempts to the minibridge port while a queued posted write has not
completed result in an error condition. The queued write is allowed to complete, but the subsequent write is
ignored. Error is reported at register status 7, bit 2, MBPOB (refer to Section 6.2.2.2 on page 61). Subsequent read
attempts from the minibridge port, while a posted write is queued, result in a target retry (refer to Figure 8).
4.1.5.2 Delayed Read Transaction
Only one delayed read from the minibridge port may be queued at a time. A delayed read transaction latches the
address and command information, and issues a retry back to the initiator (refer to Figure 8). If the initiator retries
the same transaction or attempts a different read transaction from the minibridge port prior to the queued delayed
read completion, a retry is issued. The delayed read transaction is completed when the initiator retries the same
transaction after the queued delayed read has finished (i.e., a normal completion of a single-cycle read; refer to
Figure 6). Any subsequent posted write attempts to the minibridge port while a delayed read is in progress result in
an error condition. The delayed read is allowed to complete, but the write request is ignored. Error is reported at
register status 7, bit 2, MBPOB (refer to Section 6.2.2.2 on page 61).
36 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
4 PCI Interface (continued)
4.2 Configuration Space/EEPROM Interface
The T8110 PCI interface operates at 33 MHz and is a single-function device. As a target, T8110 is a memory-
mapped device, and responds to memory write and memory read commands. Dual-address cycles are not sup-
ported (32-bit addressing only).
Access to the configuration registers is shown in Figure 10 and in Figure 11. The configuration register contents
include the following:
Device ID = 0x8110, T8110
Vendor ID = 0x11C1, Agere
Status register:
[15]: Detected parity error
[14]: Signaled system error
[13]: Received master abort
[12]: Received target abort
[11]: Signaled target abort
[10:9] = 01, T8110 DEVSEL# timing is medium
[8]: Data parity reported
[7] = 1, T8110 is fast back-to-back capable
[6] = 0, T8110 does not support user-definable features
[5] = 0, T8110 is not 66 MHz capable
[4:0] = 00000, reserved
Table 12. T8110 PCI Configuration Registers
Byte
Address Description
0x00 Device ID Vendor ID
0x04 Status register Command register
0x08 Class code Revision ID
0x0C BIST Header type Latency timer Cacheline size
0x10 Memory base addr ess
0x14 Reserved
0x18 Reserved
0x1C Reserved
0x20 Reserved
0x24 Reserved
0x28 Reserved
0x2C Subsystem ID Subsystem vendor ID
0x30 Reserved
0x34 Reserved
0x38 Reserved
0x3C MAX_LAT MIN_GNT Interrupt pin Interrupt line
0x40 Reserved Retry timeout PCI_TRDY# timeout
0x44—0xFF Reserved
Agere Systems Inc. 37
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
4 PCI Interface (continued)
4.2 Configuration Space/EEPROM Interface (continued)
Command register:
[15:10] = 000000, reserved
[9]: Fast back-to-back master enable
[8]: System error enable
[7] = 0, T8110 does not use stepping
[6]: Parity error enable
[5] = 0, T8110 disables palette snoop
[4]: Memory write and invalidate enable
[3] = 0, T8110 ignores special cycles
[2]: Bus master enable
[1]: Memory access enable
[0]: I/O access enable
Class code = 0x02800, network controller—other
Revision ID = revision of the device
BIST = 0x00 (no BIST)
Header type = 0x00
Latency timer = value—T8110 as a master, number of cycles of retained bus ownership
Memory base address = 0xXXX00000, bits 31:20 are R/W as the static base address, which defines a 1 Mbyte
region of addressable space.
Subsystem ID, subsystem vendor ID: user-definable, loaded from the EEPROM I/F at reset (refer to Section 4.2.1
on page 38).
MAX_LAT = 0x00
MIN_GNT = 0x00
Interrupt pin = 0x01—T8110 uses INTA#
Interrupt line = value, user-defined
Retry timeout = value [default = 0x80]—T8110 as a master, the number of retries performed
PCI_TRDY# timeout = value [default = 0x80]—T8110 as a master, how long it will wait for PCI_TRDY#.
Notes:
T8110 PCI I/F has medium decode speed. There is always a two-cycle turnaround between assertion of PCI_FRAME# and assertion of
PCI_DEVSEL#.
A configuration write access cycle takes five PCI clocks.
Figure 10. T8110 PCI InterfaceCo nf ig u r a t i o n WRITE Cycle
PCI_FRAME#
PCI_IRDY#
PCI_TRDY#
PCI_IDSEL
PCI_DEVSEL#
PCI_CLK
PCI_AD[31:0]
PCI_CBE#[3:0]
PCI_STOP#
PCI_PAR
ADDR DATA
CFG_WR
(0xB) Byte Enable
Addr
Parity
XXXXX Data Parity
38 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
4 PCI Interface (continued)
4.2 Configuration Space/EEPROM Interface (contin ued )
Notes:
T8110 PCI I/F has medium decode speed. There is always a two-cycle turnaround between assertion of PCI_FRAME# and assertion of
PCI_DEVSEL#.
A configuration read acces s cycle takes si x PCI cloc ks.
Figure 11. T8110 PCI InterfaceConfiguration READ Cycle
4.2.1 Loadable PCI Configuration Space Via EEPROM
The T8110 allows a user-definable subsystem ID and subsystem vendor ID field (configuration space address
0x2C). Immediately after power-on reset or PCIRST#, the T8110's PCI core loads the read-only configuration reg-
isters sequentially from the first 64 bytes in the EEPROM. All values are ignored, except for the subsystem ID, sub-
system vendor ID, MAX_LAT, MIN_GNT, and INTERRUPT_PIN (bytes 44—63). Ignored values (bytes 0—43) are
don't care and exist simply as placeholders. During the EEPROM operation, all PCI target accesses to the T8110
resu lt in a target retr y.
Note: If no EEPROM is present, internal pull-down resistors will set the values for subsystem ID, subsystem ven-
dor ID, MAX_LAT, MIN_GNT, and INTERRUPT_PIN to zero. After the PCI core loads the values into config-
uration registers, this space is read-only. The only way to change the values from 0 is from an external
EEPROM.
Four pins are required for the EEPROM interface. The following pins are used for EEPROM just at power-on:
MB_A[1] = EE_DO_IN (input, data output from EEPROM)
MB_A[2] = EE_DI_OUT (output, data input to EEPROM)
MB_A[3] = EE_SK_OUT (output, clock input to EEPROM)
EE_CS_OUT = EE_CS_OUT (output, chip select input to EEPROM)
The interface protocol follows the standard 93C46 EEPROM (refer to Figure 12). A state machine within the
T8110's PCI core produces nine read cycles, one for each of the read-only configuration register fields. Only the
subsystem ID, subsystem vendor ID, MAX_LAT, MIN_GNT, and interrupt pin fields are configurable. All other fields
returned by the EEPROM are ignored, but must be present as placeholders.
PCI_FRAME#
PCI_IRDY#
PCI_TRDY#
PCI_IDSEL
PCI_DEVSEL#
PCI_CLK
PCI_AD[31:0]
PCI_CBE#[3:0]
PCI_STOP#
PCI_PAR
ADDR DATA
CFG RD
(0xA) Byte Enable
Addr
Parity
XXXXX Data
Parity
XXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXX
Agere Systems Inc. 39
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
4 PCI Interface (continued)
4.2 Configuration Space/EEPROM Interface (continued)
4.2.1 Loadable PCI Configuration Space Via EEPROM (continued)
Note: The EEPROM is not write-accessible via the T8110. The T8110's PCI core only generates control signals to
read the EEPROM.
Notes:
Signals output from T8110 are driven relative to the falling edge of EE_SK and are sampled by the EEPROM on the rising edge.
Signals output from the EEPROM are driven relative to the rising edge of EE_SK and are sampled by the T8110 on the falling edge.
Each read cycle takes 26 EE_SK clocks.
There are nine read cycles in all generated by the T8110's PCI core.
The following T8110 pinout is used for the EEPROM interface signals:
SIGNAL NAMEEEPROM FUNCTIONBALL ASS IGNMENT
EE_CS_OUTEE_CSchip selec t G4
MB_A3EE_SKclock G3
MB_A2EE_DIdata in G2
MB_A1EE_DOdata out G1
Figure 12. EEPROM Interface Protocol
Table 13. PCI Configuration Space, EEPROM Map
EEPROM Address[5:0] EEPROM Data[15:0]
000000 Device ID field
000010 Vendo r ID field
001000 Class code field (upper 2 bytes)
001010 Class code field (lower byte) and revision ID field
001100 BIST and header fields
1011 00 Subsy s tem ID field
101110 Subsystem vendor ID field
111100 MAX_LAT and MIN_GNT fields
111110 Interrupt pin field
EE_CS
EE_SK
EE_DI
EE_DO
A5 A4 A3 A2 A1 A0
d15 d14 d13 d12 d11 d10 d9 d8 d7 d6 d5 d4 d3 d2 d1 d0
OP
CODE ADDRESS
START
BIT
DATA
leading 0
40 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
5 Microprocessor Interface
The T8110 provides a selection of two interface mechanisms via the VIO/µP_SELECT input. This must be a static
signal (either pulled high or pulled low).
!VIO/µP_SELECT tied to GND = T8110 interface to a microprocessor bus, connected via the minibridge port.
!VIO/µP_SELECT tied to 3.3 V = T8110 interface to a local PCI bus, 3.3 V signaling.
!VIO/µP_SELECT tied to 5 V = T8110 interface to a local PCI bus, 5 V signaling.
The T8110 microprocessor bus interface allows access to the T8110 internal regions via the minibridge port; see
Table 9 on page 15 for pin descriptions. There are two user-selectable input signals that set up the microprocessor
interface, MB_CS7 (Intel/Motorola protocol select) and MB_CS5 (word/byte address select).
5.1 Intel/Motorola Protocol Selector
MB_CS7 = 1 is the default, if left unconnected, and selects an Intel handshake protocol.
MB_CS7 = 0 selects a Motorola handshake protocol.
Note: The MB_CS7 signal must be static (either pulled high or pulled low).
5.2 Word/Byte Addressing Selector
MB_CS5 = 1 is the default, if left unconnected, and selects 16-bit word aligned addressing.
MB_CS5 = 0 selects 8-bit byte aligned addressing.
Note: The MB_CS5 signal may be static or dynamic in nature. If dynamic, MB_CS5 must follow the same timing
requirements as the address bus.
Word-aligned addressing produces 16-bit data transfers via MB_D[15:0]. Byte-aligned addressing produces 8-bit
data transfers via MB_D[7:0] (MB_D[15:8] is unused). The T8110 internal data bus is 32 bits, so MB_A[1:0]
address bits are decoded along with MB_CS5 to control a dword-to-word or dword-to-byte swap function back to
the MB_D bus.
Table 14. Intel/Motorola Protocol Selector
Intel/Motorola Protocol Selector
Signal Intel Mnemonic Motorola Mnemonic
MB_D[15:0] D[15:0] D[15:0]
MB_A[15:0] A[15:0] A[15:0]
MB_CS0 A[16] A[16]
MB_CS1 A[17] A[17]
MB_CS2 A[18] A[18]
MB_CS3 A[19] A[19]
MB_CS4 CSn CSn
MB_CS6 RDY DTACKn
MB_RD RDn (read strobe) DSn (data strobe)
MB_WR WRn (write strobe) R/Wn (read/write selector)
MB_CS5 Default Default
MB_CS7 Default Default
Agere Systems Inc. 41
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
5 Microprocessor Interface (continued)
5.3 Access Via the Microproc esso r Bus
The T8110 microprocessor bus interface allows access to three internal regions: registers, connection memory,
and data memory. All microprocessor bus asynchronous strobes are synchronized to the T8110's internal
65.536 MHz clock domain. There are 20 address bits provided to address the internal regions and these are
defined in Table 15.
Table 15. T8110 Memory Mapping to Microprocessor Space
Region Subregion Range (hex)
Registers Reserved 0x00000—0x000FF
Operating control and status 0x00100—0x001FF
Clocks 0x00200—0x002FF
Rate control 0x00300—0x003FF
Frame group 0x00400—0x004FF
General-purpose I/O 0x00500—0x005FF
Interrupt control 0x00600—0x006FF
Reserved 0x00700—0x007FF
Reserved 0x00800—0x0FFFF
Reserved 0x10000—0x1FFFF
Data memory 0x20000—0x2FFFF
Reserved 0x30000—0x3FFFF
Connection memory 0x40000—0x4FFFF
Reserved 0x50000—0xFFFFF
42 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
5 Microprocessor Interface (continued)
5.3 Access Via the Microprocessor Bus (continued)
5.3.1 Microprocessor Interface Register Map
The T8110 registers map into the microprocessor bus space as follows.
Table 16. Microprocessor Interface Register Map
DWORD
Address
(20 bits)
Cross
Reference
Register
Byte 3 Byte 2 Byte 1 Byte 0
0x00100 6.1.1, 6.1.2 Master enable Reserved Reset select Soft reset
0x00104 6.1.3, 6.1.4 Phase alignment
select Cl ock r egister acces s
select Data memory mode
select Reserved
0x00108 6.1.4 Fallback trigger,
upper Fallback trigger, lower Fallback type select Fallback control
0x0010C 6.1.4 Watchdog EN, upper Watchdog EN, lower Watchdog select,
NETREF Wat ch dog se lec t, C8
0x00114 4.1.5 Reserved Failsafe sensitivity Failsafe enable Failsafe control
0x00118 6.1.11 Reserved OOL monitor OOL threshold high OOL threshold low
0x00120 6.2.1 Status 3, latched
clock errors, upper Status 2, latched
clock errors, lower Status 1, transient
clock errors, upper Status 0, transient
clock errors, lower
0x00124 6.2.2,
6.2.2.2 Status 7, system
errors Reserved Reserved Status 4
0x00128 6.2.2.2 Device ID, upper Device ID, lower Reserved Version ID
0x00140 13.1 Diag3 Diag2 Diag1 Diag0
0x00144 13.1 Diag7 Diag6 Diag5 Diag4
0x00148 13.1 Diag11 Diag10 Diag9 Diag8
0x00200 7.1 APLL1 rate APLL1 input selector Main divider Main input selector
0x00204 7.1 APLL2 rate Reserved Resource divider Main inversion select
0x00208 7.1 DPLL1 rate DPLL1 input selector Reserved LREF input select
0x0020C 7.1 DPLL2 rate DPLL2 input selector Reserved LREF inversion
select
0x00210 7.1 Reserved NETREF1 LREF
select NETREF1 divider NETREF1 input
selector
0x00214 7.1 Reserved NETREF2 LREF
select NETREF2 divider NETREF2 input
selector
0x00220 7.2 C8 output rate /FR_COMP width NETREF output
enables Master output
enables
0x00224 7.2 SCLK output rate TCLK select Reserved CCLK output
enables
0x00228 7.2 L_SC3 select L_SC2 select L_SC1 select L_SC0 select
0x00300 10.1 H-bus rate H/G H-bus rate F/E H-bus rate D/C H-bus rate B/A
0x00320 10.2 L-bus rate H/G L-bus rate F/E L-bus rate D/C L-bus rate B/A
0x00400 8.1 FG0 rate FG0 width FG0 upper start FG0 lower start
Agere Systems Inc. 43
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
5 Microprocessor Interface (continued)
5.3 Access Via the Microprocessor Bus (continued)
5.3.1 Micro pro ces sor In terf ace Registe r Map (continued)
Table 16. Microprocessor Interface Register Map (continued)
DWORD
Address
(20 bits)
Cross
Reference
Register
Byte 3 Byte 2 Byte 1 Byte 0
0x00410 8.1 FG1 rate FG1 width FG1 upper start FG1 lower start
0x00420 8.1 FG2 rate FG2 width FG2 upper start FG2 lower start
0x00430 8.1 FG3 rate FG3 width FG3 upper start FG3 lower start
0x00440 8.1 FG4 rate FG4 width FG4 upper start FG4 lower start
0x00450 8.1 FG5 rate FG5 width FG5 upper start FG5 lower start
0x00460 8.1 FG6 rate FG6 width FG6 upper start FG6 lower start
0x00470 8.1 FG7 rate FG7 width FG7 upper start FG7 lower start
0x00474 8.2 FG7 mode upper FG7 mode lower FG7 counter high
byte FG7 counter low
byte
0x00480 8.3 Reserved FGIO R/W FGIO read mask FGIO data register
0x00500 9.1 GPIO override GPIO R/W GPIO read mask GPIO data register
0x00600 14.1 FGIO interrupt
polarity Reserved FGIO interrupt
enable FGIO interrupt pend-
ing
0x00604 12.1 GPIO interrupt
polarity Reserved GPIO interrupt
enable GPIO interru pt pend-
ing
0x00608 12.1 System interrupt
enable, upper System interrupt
enable, lower System interrupt
pending, upper System interrupt
pending, lower
0x0060C 12.1 Clock interrupt
enable, upper Clock interrupt
enable, lower Clock interrupt
pending, upper Clock interrupt pend-
ing, lower
0x00610 12.1 CLKERR output
select SYSERR output
select PCI_INTA output
select Arbitration control
0x00614 12.1 CLKERR pulse width SYSERR pulse width Reserved Reserved
0x006FC 12.1 Reserved Reserved In-service, high In-service, low
44 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
5 Microprocessor Interface (continued)
5.3 Access Via the Microprocessor Bus (continued)
5.3.1 Microprocessor Interface Register Map (con tin ued)
5-9419 (F)
Figure 13. Microprocessor Access Timing, Intel Protocol
ADDRESS VALID
tah
tRDYhi
tas
taccess
WORD/BYTE SELECT,
A[19:0]
CSn
WRn
D[15:0], WRITE CYCLE WR DATA
VALID
tds tdh
RDY
tRDYlo
Microprocessor Access Write Cycle, Intel Protocol
ADDRESS VA LID
tah
tRDYhi
tas
taccess
WORD/B YTE SELECT,
A[19:0]
CSn
RDn
RDY
tRDYlo
tdz
READ DATA VALID
D[15:0],
tde tdv
READ CYCLE
Microprocessor Access Read Cycle, Intel Protocol
5-9418 (F)
Agere Systems Inc. 45
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
5 Microprocessor Interface (continued)
5.3 Access Via the Microprocessor Bus (continued)
5.3.1 Micro pro ces sor In terf ace Registe r Map (continued)
5-9417 (F)
Figure 14. Microprocessor Access Timing, Motorola Protocol
ADDRESS VALID
tah
tDTACKhi
tDTACKlo
tde tdv tdz
tas
READ DATA VALID
taccess
WORD/BYTE SELECT,
A[19:0]
R/Wn
CSn
DSn
DTACKn
D[15:0], READ CYCLE
5-9416 (F)
Microprocessor Access Read Cycle, Motorola Protocol
ADDRESS VALID
tah
tDTACKhi
tDTACKlo
tas
taccess
WORD/BY TE SELECT,
A[19:0]
R/Wn
CSn
DSn
DTACKn
D[15:0], WRITE CYCLE WR DATA
VALID
tds tdh
Microprocessor Access Write Cycle, Motorola Protocol
46 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
5 Microprocessor Interface (continued)
5.3 Access Via the Microprocessor Bus (continued)
5.3.2 Register Space Access
The T8110 registers are always immediately available for access, providing low latency time to acknowledge the
transaction. Read access to [reserved] addresses returns 0x00. Register access timing for Figure 13 and Figure 14
is shown below.
5.3.3 Connection Memory Space Access
The T8110 connection memory is always immediately available for access (via dedicated access times assigned
for microprocessor transactions) providing low latency time to acknowledge the transaction. Connection memory
access timing for Figure 13 and Figure 14 is shown below.
Table 17. Register Space Access Timing
Name Paramet er Min (ns) Max (ns)
taccess Overall Access Tim e 41
tas Address Setup Time 5
tah Address Hold Time 0
tRDYlo Intel Cycle, Time to RDY Deasserted 6 12
tRDYhi Intel Cycle, Time to RDY Reasserted 36 72
tDTACKlo Motorola Cycle, Time to DTACKn Asserted 36 70
tDTACKhi Motorola Cycle, Ti me to DTACKn Deasserted 10 15
tde Read Cycle, Time to Data Enabled 7 14
tdv Read Cycle, T ime to Data Valid 5 9
tdz Read Cycle, Time to Data Invalid 10 16
tds Write Cycle, Data Setup Time 25
tdh Write Cycle, Data Hold Time 0
Table 18. Connection Memory Space Access Timing
Name Paramet er Min (ns) Max (ns)
taccess Overall Access Tim e 41
tas Address Setup Time 5
tah Address Hold Time 0
tRDYlo Intel Cycle, Time to RDY Deasserted 6 12
tRDYhi Intel Cycle, Time to RDY Reasserted 36 72
tDTACKlo Motorola Cycle, T ime to DTACKn Asserted 36 70
tDTACKhi Motorola Cycle, Time to DTACKn Deasserted 10 15
tde Read Cycle, Time to Data Enabled 7 14
tdv Read Cycle, T ime to Data Valid 5 9
tdz Read Cycle, Time to Data Invalid 10 16
tds Write Cycle, Data Setup Time 25
tdh Write Cycle, Data Hold Time 0
Agere Systems Inc. 47
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
5 Microprocessor Interface (continued)
5.3 Access Via the Microprocessor Bus (continued)
5.3.4 Data Memory Space Access
The T8110 data memory is not guaranteed to be immediately available for access. Access to data memory is prior-
itized for standard H-bus/L-bus switching, with microprocessor bus transaction access allowed as the lowest prior-
ity. The latency time to acknowledge these transactions is indeterminate and depends on the H-bus/L-bus
switching configuration. Data memory access timing for Figure 13 and Figure 14 is shown below.
* Max data memory space access time is indeterminat e, and depends on how much of the data memory access bandwidth is being taken by
TDM switch connections.
Table 19. Data Memory Space Access Timing
Name Parameter Min (ns) Max (ns)
taccess Overall Access Time 41 —*
tas Address Setup Time 5
tah Address Hold Time 0
tRDYlo Intel Cycle, Time to RDY Deasserted 6 12
tRDYhi Intel Cycle, Time to RDY Reasserted 36 —*
tDTACKlo Motorola Cycle, Time to DTACKn Asserted 36 —*
tDTACKhi Motorola Cycle, Time to DTACKn Deasserted 10 15
tde Read Cycle, Time to Data Enabled 7 14
tdv Read Cycle, Time to Data Valid 5 9
tdz Read Cycle, Time to Data Invalid 10 16
tds Write Cycle, Data Setup Ti me 25
tdh Write Cycle, Data Hold Time 0
48 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
6 Operating Control and Status
Overall T8110 operational control and status is configured via registers occupying 0x00100—0x001FC in the
address space.
6.1 Control Registers
General control functions are soft reset, reset configuration, overall master output enables, and data memory con-
figuration. Clocking-specific general control functions are clock register access configuration, phase alignment,
clock fallback, and clock watchdog configuration.
6.1.1 Reset Registers
The soft reset and reset select registers control soft reset functions and reset signal masking. Writes to the soft
reset register trigger the corresponding action, and the set bit(s) are automatically cleared.
!Power-on reset: nonmask able:
— At power-on, initialize all T8110 registers (including reset select register) and connection valid flags, and ini-
tialize the T8110 PCI interface. The power-on reset cell test input is controlled via diagnostic register; see Sec-
tion 13.
!Hard reset: maskable via reset select register, HRBEB:
— On assertion of RESET#, initialize all T8110 registers (excluding reset select register) and connection valid
flags.
!PCI reset: nonmaskable to PCI interface:
— Maskable to T8110 back-end via reset select register, PRBEB.
On assertion of PCI_RST#, initialize the T8110 PCI interface. If unmasked (PRBEB = 1), also initialize all
T8110 registers (excluding reset select register) and connection valid flags.
— Maskable to minibridge port via reset select register, PMBEB.
The PCI_RST# input to the T8110 can be forwarded to the minibridge port, using the GP(2) output (via regis-
ter 0x00503; see Section 9.1 on page 98). Polarity of the forwarded reset is selectable (via register 0x00781;
see Section 11.2 on page 111).
Soft resets are maskable via reset select register, SRBEB, and selectable via soft reset register, SRESR.
!Soft reset 1: Initialize all T8110 registers (excluding reset select register) and connection valid flags.
!Soft reset 2: Initialize all T8110 registers (excluding reset select register).
!Soft reset 3: Reset all interrupt pending registers and the interrupt in-service register.
!Soft reset 4: Reset the interrupt in-service register only.
Table 20. Control Register Map
DWORD
Address
(20 bits)
Register
Byte 3 Byte 2 Byte 1 Byte 0
0x00100 Master enable Reserved Reset select Soft reset
0x00104 Phase alignment select Clock register access
select Data memory mode select
0x00108 Fallback trigger, upper Fallback trigger, lower Fallback type select Fallback control
0x0010C Watchdog EN, upper Watchdog EN, lower Watchdog select,
NETREF W atchdog select, C8
0x00114 Reserved Failsafe threshold low Failsafe enable and status Failsafe control
Agere Systems Inc. 49
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
6 Operating Control and Status (continued)
6.1 Control Registers (continued)
6.1.2 Master Output Enable Register
The master output enable register is used to control master output enables to various groups of T8110 signals,
including the fo llowing:
L-bus data streams (L_D[31:0])
L-bus clocks (L_SC[3:0], FG[7:0] when used as frame group outputs)
H-bus data streams (CT_D[31:0])
H-bus clocks (CT_C8_A, /CT_FRAME_A, CT_C8_B, /CT_FRAME_B, CT_NETREF1,CT_NETREF2, /C16+,
/C16–, /C4, C2, SCLK, /SCLKx2, /FR_COMP)
GPIO (GP[7:0])
FGIO (FG[7:0] when used as programmable register outputs)
Minibridge (MB_A[15:0], MB_CS[7:0], MB_RD, MB_WR, MB_D[15:0])
T8110 outputs that are not programmatically enabled (i.e., always driven except during reset) include the following:
CLKERR, SYSERR, PRI_REF_OUT, NR1_SEL_OUT, and NR2_SEL_OUT.
Table 21. Reset Regist er s
Byte
Address Name Bit(s) Mnemonic Value Function
0x00100 Soft Reset 7:0 SRESR 0000 0000
0000 0001
0000 0010
0001 0000
0010 0000
NOP (default value).
Reset all registers and connection valid flags.
Reset all registers.
Reset interrupt pending and in-service registers.
Reset interrupt in-service register only.
0x00101 Reset Select 7:4 Reserved 0000 NOP (default).
3PMBEB 0
1Disable PCI re se t to minib ridge (defa ult ).
Enable PCI reset to minibridge.
2PRBEB 0
1Disable PCI re se t to back end (defa ult) .
Enable PCI reset to back end.
1 HRBEB 0
1Disable hard reset to back end.
Enable hard reset to back end (default).
0SRBEB 0
1Disable soft rese ts to back end.
Enable soft resets to back end (default).
50 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
6 Operating Control and Status (continued)
6.1 Control Registers (con tin ued )
*MBREB is only relevant if the T8110 interfaces to the PCI bus. If the selected T8110 interface is to the microprocessor bus, this bit is reserved.
6.1.3 Connection Control—Data Memory Selector Register
The data memory mode select register MSbit controls subrate switching enable. The lower 7 bits control the T8110
data memory switching configuration. For more details, see Section 14.2.1.2 on page 142.
There are three data memory configurations as outlined below.
1. 4k single-buffered switch. S tandard H-bus/L-bus switching only , up to 4096 simplex connections, all connections
are minimum delay due to single-buffer configuration.
2. 2k double-buffered switch. Standard H-bus/L-bus switching only, up to 2048 simplex connections, all connec-
tions are programmable for minimum or constant delay via the double-buffer configuration.
3. 2k single-buffered switch + 1k double-buffered switch. Standard H-bus/L-bus switching only, up to 2048 simplex
minimum delay connections (single buffer) and up to 1024 simplex minimum or constant delay connections
(double buffer).
Table 22. Master Output Enable Register
Byte
Address Name Bit(s) Mnemonic Value Function
0x00103 Master Enable 7 AIOEB 0
1Individual enables via bits [6:0] (default).
Enable all (same as bits [6:0] = 1111111).
6 MBREB 0
1Disable minibridge* (default).
Enable mi nib ridge.
Note: If AIOEB is set to 1 to enable all then
MBREB must also be set to 1 to enable the
minibridge.
5FGREB 0
1Disable FGIO (default).
Enable F GIO.
4GPIEB 0
1Disable GPIO (default).
Enable GP IO.
3 HCKEB 0
1Disable H-bus clocks (default).
Enable H- bus clock s.
2 HDBEB 0
1Disable H-bus data streams (default).
Enable H-bus data streams.
1LCKEB 0
1Disable L-bus clocks, L_SC, FG (default).
Enable L- bus clo cks.
0LDBEB 0
1Disabl e L-bu s data strea ms (defa ul t).
Enable L-bus data streams.
Table 23. Data Memory Mode Select Register
Byte
Address Name Bit(s) Mnemonic Value Function
0x00105 Data Memory Mode
Select 7GSREB 0
1Disable subrate switching (default).
Enable subrate switc hin g.
6:0 DMMSP 100 0000
010 0000
011 0000
4k single-buffer switch (default).
2k do uble-buffer switch.
2k single-buffer, 1k double-buffer switch.
Agere Systems Inc. 51
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
6 Operating Control and Status (continued)
6.1 Control Registers (continued)
6.1.4 General Clock Control (Phase Alignment, Fallback, Watchdogs) Register
The cloc k regi ster ac cess sele ct register controls the selection between accessing the active vs. the inactive set of
T8110 clock registers. The T8110 contains two sets of clock registers, X and Y. The X and Y register sets are com-
prised of the registers listed in Table 39 on page 63, Clock Input Control Register Map, and Table 52 on page 71,
Clock Output Control Register Map. Only one set is used at a time. It is selected based on the clock fallback setup.
The clock register set that is currently in use is denoted as the active set; see Section 7.3 on page 75 for more
details.
6.1.5 Phase Alignment Select Register
The phase alignment select register selects the phase alignment configuration. For more details, see Section
7.4.5.1 on page 80. The T8110 internally generates an 8 kHz frame reference. Shown below are three configura-
tions to control phase alignment between this internally generated frame reference and a selected incoming frame
reference from the H-bus (/CT_FRAME_A, /CT_FRAME_B, or /FR_COMP) or local clock reference (LREF[4:7]).
!Disable alignment, no realignment of unaligned frames
!Snap alignment, immediate realignment of unaligned frames
!Slide alignment, gradual realignment of unaligned frames
6.1.6 Fallback Control Register
The fallback control register allows user control over the active and inactive clock register sets. For more details,
see Section 7.7.1 on page 82. Writes to the fallback control register trigger the corresponding action, and the set
bit(s) are automatically cleared. The four commands are shown below:
!GO_CLOCKS. At initialization, the clock register Y set is active, the X set is inactive, and access is enabled to
the X set. The GO_CLOCKS command transitions the Y set to inactive and the X set to active. This command
can either be performed immediately upon issue or can wait to be performed until the next 8 kHz frame refer-
ence (synchronized to frame).
!CLEAR_FALLBACK. Forces a state transition for active/inactive assignment of the clock register X and Y sets
after a fallback event has occurred. This command can either be performed immediately upon issue or can wait
to be performed until the next 8 kHz frame reference (synchronized to frame).
Table 24. Clock Register Access Select Register
Byte
Address Name Bit(s) Mnemonic Value Function
0x00106 Clock Register Access
Select 7:0 CSASR 0 000 000 0
0000 0001 Access inactive clock registers (default).
Access active clock registers.
Table 25. Phase Alignment Select Register
Byte
Address Name Bit(s) Mnemonic Value Function
0x00107 Phase Alignment Select 7:0 PAFSR 0000 0000
0000 0001
0000 0010
Phase alignment is disabled (default).
Enable snap alignment.
Enable slide alignment.
52 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
6 Operating Control and Status (continued)
6.1 Control Registers (con tin ued )
6.1.6 Fallback Control Register (continued)
!FORCE_FALLBACK. Forces a state transition for active/inactive assignment of the clock register X and Y sets
by creating a fallback event. This command can either be performed immediately upon issue or can wait to be
performed until the next 8 kHz frame reference (synchronized to frame).
!COPY ACTIVE TO INACTIVE SET. Copies all register values in the current active clock register set to the inac-
tive clock register set. This command is performed immediately upon issue.
* The synchronized to frame command also has a diagnostic element—instead of performing the command right at the frame boundary,
the user can elect to perform the command at a specified offset time from the frame boundary, by programming the Diag11 and Diag10
registers, 0x0014B—0x0014A.
6.1.7 Fallback Type Select Register
The upper nibble configures which H-bus clocks are selected to trigger a clock fallback event. Any of the legacy
modes have predetermined trigger enables and ignore the fallback trigger register settings. Nonlegacy modes
require the fallback trigger register settings. For more details, see Section 7.7.1 on page 82.
The lower nibble configures the state machine that controls clock register set active/inactive assignments. There
are three possible selections. For more details, see Section 7.7 on page 82.
!Disabled. No transitions of clock register X and Y sets to active/inactive.
!Fixed secondary. Swap the active/inactive sets on a fallback event; swap them back when fallback is cleared.
!Rotating secondary. Swap the active/inactive sets on a fallback event; maintain this state when fallback is
cleared.
Table 26. Fallback Control Register
Byte
Address Name Bit(s) Mnemonic Value Function
0x00108 Fallback Control 7:0 FBCSR 0000 0000
0000 0001
0000 0010
0000 0100
0001 0001
0001 0010
0001 0100
0010 0000
NOP (default).
GO_CLOCKS command.
CLEAR_FALLBACK command.
FORCE_FALLBACK command.
GO_CLOCKS synchronized to fr ame*.
CLEAR_FALLBACK synchronized to frame*.
FORCE_FALLBACK synchronized to frame*.
COPY ACTIVE TO INACTIVE SET com-
mand.
Agere Systems Inc. 53
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
6 Operating Control and Status (continued)
6.1 Control Registers (continued)
6.1.7 Fallback Type Select Register (continued)
6.1.8 Fallback Trigger Registers
The fallback trigger registers are used in conjunction with the fallback type select register and control which H-bus
clocks are enabled to trigger a clock fallback event in case of error. The sync reference inputs to DPLL1 and
DPLL2 can also trigger a clock fallback event upon detection of an error.
Table 27. Fallback Type Select Register
Byte
Address Name Bit(s) Mnemonic Value Function
0x00109 Fallback Ty pe
Select 7:4 FTRSN 0000
0001
0010
0100
1000
1001
NOP (default).
Legacy, fallback to OSC/4 on main select failure.
Legacy, fallback X/Y set on main select failure.
Legacy, fallback X/Y set on H-bus A/B failure.
Fallback trigger registers control fallback.
Fallback trigger registers control fallback and
H-Bus clock enable state machine is enabled.
3:0 FSMSN 0000
0001
0010
Fallback is disabled (default).
Enable fixed secondary fallback.
Enable rotating secondary fallback.
Table 28. Fallback Trigger Registers
Byte
Address Name Bit(s) Mnemonic Value Function
0x0010A Fallback Trigger, Lower 7 S2FEB 0
1Disable /SCLKx2 trigger (default).
Enable /SCLKx2 trigger.
6SCFEB0
1Disable SCLK trigger (default).
Enable SCLK trigger.
5C2FEB0
1Disable C2 trigger (default).
Enable C2 trigger.
4C4FEB0
1Disable /C4 trigger (default).
En able /C4 trigger.
3CMFEB0
1Disable /C16– trigger (default).
Enable /C16– trigger.
2CPFEB0
1Disable /C16+ trigger (default).
Enable /C16+ trigger.
1CBFEB0
1Disable CT_C8_B trigger (default).
Enable CT_C8_B trigger.
0CAFEB0
1Disable CT_C8_A trigger (default).
Enable CT_C8_A trigger.
54 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
6 Operating Control and Status (continued)
6.1 Control Registers (continued)
6.1.8 Fallback Trigger Registers (continued)
6.1.9 Watchdog Select, C8, and NETREF Registers
The watchdog select, C8 register controls the watchdog circuits to monitor the proper frequency for the CT_C8_A
and CT_C8_B signals. These signals can take on two values, including 8.192 MHz (ECTF mode) and 4.096 MHz
(MC1 mode).
The watchdog select, NETREF register controls the watchdog circuits to monitor the proper frequency for the
CT_NETREF1 and CT_NETREF2 signals. These signals can take on three values depending on system-level
clocking architecture, including 8 kHz (frame reference), 1.544 MHz (T1 bit clock), and 2.048 MHz (E1 bit clock).
Table 28. Fallback Trigger Registers (continued)
Byte
Address Name Bit(s) Mnemonic Value Function
0x0010B Fallback Trigger, Upper 7 Reserved 0 NOP (default).
6D2FEB0
1Disable DPLL2 sync trigger (default).
Enable DPLL2 sync trigger.
5D1FEB0
1Disable DPLL1 sync trigger (default).
Enable DPLL1 sync trigger.
4N2FEB0
1Disable CT_NETREF2 trigger (default).
Enable CT_NETREF2 trigger.
3N1FEB0
1Disable CT_NETREF1 trigger (default).
Enable CT_NETREF1 trigger.
2FCFEB0
1Disable /FR_COMP trigger (default).
Enable /FR_COMP trigger.
1 FBFEB 0
1Disable /CT_FRAME_B trigger (default).
Enable /CT_ FRAME_B trigger.
0FAFEB0
1Disable /CT_FRAME_A trigger (default).
Enable /CT_ FRAME_A trigger.
Table 29. Watchdog Select, C8, NETREF Registers
Byte
Address Name Bit(s) Mnemonic Value Function
0x0010C Watchd og S elect, C8 7:4 CBWSN 0000
0001 CT_C8_B watchdog at 8.192 MHz (default).
CT_C8_B watchdog at 4.096 MHz MC1mode.
3:0 CAWSN 0000
0001 CT_C8_A watchdog at 8.192 MHz (default).
CT_C8_A watchdog at 4.096 MHz MC1mode.
0x0010D Watchd og S elec t,
NETREF 7:4 N2WSN 0000
0001
0010
CT_NETREF2 watchdog at 8 kHz (default).
CT_NETREF2 watchdog at 1.544 MHz.
CT_NETREF2 watchdog at 2.048 MHz.
3:0 N1WSN 0000
0001
0010
CT_NETREF1 watchdog at 8 kHz (default).
CT_NETREF1 watchdog at 1.544 MHz.
CT_NETREF1 watchdog at 2.048 MHz.
Agere Systems Inc. 55
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
6 Operating Control and Status (continued)
6.1 Control Registers (continued)
6.1.10 Watchdog EN Register
The watchdog EN registers are used to enable/disable watchdogs on the individual H-bus clocks and the watch-
dogs on the sync inputs of DPLL1 and DPLL2.
Table 30. W atchdog EN Registers
Byte
Address Name Bit(s) Mnemonic Value Function
0x0010E Watchdog EN, Lower 7 S2WEB 0
1Disable /SCLKx2 watchdog (default).
Enable /SCLKx2 watchdog.
6SCWEB 0
1Disable SCLK watchdog (default).
Enable SCLK watchdog.
5C2WEB 0
1Disable C2 watchdog (default).
Enable C2 watchdog.
4C4WEB 0
1Disable/C4 watchdog (default).
Enable/C4 watc hdo g.
3CMWEB 0
1Disable/C 16– watc hdo g (defaul t).
Enable/C16– watchdog.
2CPWEB 0
1Disable/C16+ watchdog (default).
Enable/C16 + watc hdo g.
1CBWEB 0
1Disable CT_C8_B watchdog (default).
Enable CT_C8_B watchdog.
0CAWEB 0
1Disable CT_C8_A watchdog (default).
Enable CT_C8_A watchdog.
0x0010F Watchdog EN, Upper 7 FSWEB 0
1Disable FAILSAFE ref watchdog (default).
Enable FAILSAFE ref watchdog.
6D2WEB 0
1Disable DPLL2 sync watchdog (default).
Enable DPLL2 sync watchdog.
5D1WEB 0
1Disable DPLL1 sync watchdog (default).
Enable DPLL1 sync watchdog.
4N2WEB 0
1Disable CT_NETREF2 watchdog (default).
Enable CT_NETREF2 watchdog.
3N1WEB 0
1Disable CT_NETREF1 watchdog (default).
Enable CT_NETREF1 watchdog.
2FCWEB 0
1Disable /FR_COMP watchdog (default).
Enable /FR_COMP watchdog.
1 FBWEB 0
1Disable /CT_FRAME_B watchdog (default).
Enable /CT_FRAME_B watchdog.
0FAWEB 0
1Disable /CT_FRAME_A watchdog (default).
Enable /CT_FRAME_A watchdog.
56 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
6 Operating Control and Status (continued)
6.1 Control Registers (con tin ued )
6.1.11 Failsafe Control Registers
The failsafe control register controls a return from the failsafe state. Writes to the failsafe control register trigger the
corresponding action, and the set bit(s) are automatically cleared. From the failsafe state, the user can return to
either the primary or secondary clock register sets. For more on failsafe, please see Section 7.7.2 on page 88.
The failsafe enable register controls the enable/disable of failsafe operation. For more on failsafe operation, please
see Section 7.7.2 on page 88.
The failsafe sensitivity register allows the failsafe watchdog timer to be desensitized by either 1, 4, 8, or 16 watch-
dog sample clock periods.
The OOL threshold registers allow for programmable threshold times which indicate the APLL1 out-of-lock. Reso-
lution for the threshold value increments is one 32.768 MHz clock period (30.5 ns). The register contains
[count – 1], a value of 0x0000 yields a 30.5 ns threshold. A value of 0xFFFF yields a 1.99 ms threshold. For more
on OOL operation, please see Section 7.7.2 on page 88.
The OOL monitor register allows the user to monitor either the raw APLL1 out-of-lock status, OR the status flag
that indicates that the APLL1 has been out-of-lock for more than the threshold defined in the OOL threshold regis-
ters.
Table 31. Failsafe Control Register
Byte
Address Name Bit(s) Mnemonic Value Function
0x00114 Failsafe Control 7:0 F S CSR 0000 0000
0000 0001
0000 0010
NOP (default).
Return from failsafe to nonfallback condition.
Return from failsafe to fallback condition.
0x00115 Failsafe Ena bl e 7: 0 FSEE R 00 00 0000
0000 0001 Failsafe disabled.
Failsafe enabled.
0x00116 Fails afe Sen si tivi ty 7: 0 FSSS R 00 00 0000
0000 0001
0000 0010
0000 0100
0000 1000
Failsafe watchdog highest sensitivity.
Failsafe watchdog + 30.5 ns.
Failsafe watchdog + 121.0 ns.
Failsafe watchdog + 244.0 ns.
Failsafe watchdog + 488.0 ns.
0x00118 OOL Threshold Low 7:0 OLLLR LLLL LLLL Failsafe threshold value, low byte.
0x00119 OOL Threshold High 7:0 OLHLR LLLL LLLL Failsafe threshold value, high byte.
0x0011A OOL Monitor 7:0 OOLER 0000 0000
0000 0001 Monitor direct APLL1 lock detect at PLOCK.
Monitor user threshold lock detect at PLOCK.
Agere Systems Inc. 57
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
6 Operating Control and Status (continued)
6.2 Error and Status Registers
Status 7, 6, and 3—0 registers are writable by the user for clearing specific error bits. Writing a 1 to any of the bits
of these registers will clear the corresponding error bit. The remaining error and status registers are read-only.
Tab le 32. Error an d Status Regist er Map
DWORD
Address
(20 bits)
Register
Byte 3 Byte 2 Byte 1 Byte 0
0x00120 Status 3, latched clock
errors, upper Status 2, latched clock
errors, lower Status 1, transient clock
errors, upper Status 0, transient
clock errors, lower
0x00124 Status 7, system
errors Reserved Reserved Status 4 fallback and
failsafe status
0x00128 Device ID, upper Device ID, lower Reserved Version ID
0x0012C Reserved Reserved Reserved Status 8, PCI target
queue status
58 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
6 Operating Control and Status (continued)
6.2 Error and Status Reg isters (continued)
6.2.1 Clock Errors
6.2.1.1 Transient Clock Errors Registers
The transient clock error registers are used in conjunction with the watchdog EN registers and indicate error status
for H-bus clocks and DPLL1/DPLL2 sync inputs whose watchdogs are enabled. The transient indicators are
dynamic in nature; if a clock is in error only for a short time and then recovers, the error indication is deasserted
when the clock recovers. Additionally, an APLL1 out-of-lock indicator is provided, and used in conjunction with the
failsafe clocking mode. For more details, please see Section 7.7.1 on page 82 and Section 7.7.2 on page 88.
Table 33. Clock Error Registers
Byte Address Name Bit(s) Mnemonic Value Function
0x00120 Status 0, Transient
Clock Errors, Lower 7S2TOB 0
1/SCLKx2 no error (defau lt).
/SCLKx2 error.
6SCTOB 0
1SCLK no error (default).
SCLK erro r.
5C2TOB 0
1C2 no error (default).
C2 error.
4C4TOB 0
1/C4 no error (default).
/C4 error.
3CMTOB 0
1/C16– no error (default).
/C16– error.
2CPTOB 0
1/C16+ no error (default).
/C16+ erro r.
1CBTOB 0
1CT_C8_B no error (default).
CT_C8_B error.
0CATOB 0
1CT_C8_A no error (default).
CT_C8_A error.
0x00121 Status 1, Transient
Clock Errors, Upper 7FSTOB 0
1Failsafe indicator: APLL1 reference no error.
APLL1 reference error.
6D2TOB 0
1DPLL2 sync no error (default).
DPLL2 sync error.
5D1TOB 0
1DPLL1 sync no error (default).
DPLL1 sync error.
4N2TOB 0
1CT_NETREF2 no error (default).
CT_NETREF2 error.
3N1TOB 0
1CT_NETREF1 no error (default).
CT_NETREF1 error.
2FCTOB 0
1/FR_COMP no error (default).
/FR_COMP error.
1FBTOB 0
1/CT_FRAME_B no erro r (default).
/CT_FRAME_B error.
0FATOB 0
1/CT_FRAME_A no erro r (default).
/CT_FRAME_A error.
Agere Systems Inc. 59
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
6 Operating Control and Status (continued)
6.2 Error and Stat us Reg ist ers (continued)
6.2.1 Clock Erro rs (con tinued)
6.2.1.2 Latched Clock Error Register
The latched clock error registers capture transient clock errors. The latched indicators capture and hold any tran-
sient error status and are used by the clock fallback logic. For more details, see Section 7.7 on page 82, and Sec-
tion 12 on page 114 for more details.
Table 34. Latched Clock Error Registers
Byte
Address Name Bit(s) Mnemonic Value Function
0x00122 Status 2, Latched Clock
Errors, Lower 7S2LOB0
1/SCLKx2 no error (default).
/SCLKx2 error.
6SCLOB0
1SCLK no error (default).
SCLK error.
5C2LOB0
1C2 no error (default) .
C2 error.
4C4LOB0
1/C4 no error (default).
/C4 error.
3CMLOB0
1/C16– no error (default).
/C16– erro r.
2CPLOB0
1/C16+ no error (default).
/C16+ error.
1CBLOB0
1CT_C8_B no error (default).
CT_C8_B error.
0CALOB0
1CT_C8_A no error (default).
CT_C8_A error.
0x00123 Status 3, Latched Clock
Errors, Upper 7FSLOB0
1Failsafe indicator: APLL1 reference no error.
APLL1 reference error.
6D2LOB0
1DPLL2 sync no err or (default).
DPLL2 sync error.
5D1LOB0
1DPLL1 sync no err or (default).
DPLL1 sync error.
4N2LOB0
1CT_NETREF2 no erro r (default).
CT_NETREF2 error.
3N1LOB0
1CT_NETREF1 no erro r (default).
CT_NETREF1 error.
2FCLOB0
1/FR_COMP no error (defau lt).
/FR_COMP error.
1FBLOB0
1/CT_FRAME_B no error (default).
/CT_FRAME_B error.
0FALOB0
1/CT_FRAME_A no error (default).
/CT_FRAME_A error.
60 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
6 Operating Control and Status (continued)
6.2 Error and Status Reg isters (continued)
6.2.2 System Status
6.2.2.1 Clock Fallb ac k Status Register
The upper nibble provides status indicators for clock fallback. FBFOB indicates whether the circuit is in a clock fall-
back state. FBSOP indicates which of five possible states the circuit is in; see Section 7.7.1 on page 82 for more
details.
The lower nibble provides status indicators related to the X and Y clock register set active/inactive assignments.
XYSOB indicates which of the clock register sets is active. The remaining bits indicate a pending status for
GO_CLOCKS, CLEAR_FALLBACK, and FORCE_FALLBACK commands issued (via the fallback control register,
0x00108), which are waiting for a frame sync.
Table 35. Fallback and Failsafe Status Register
Byte
Address Register Name Bit(s) Mnemonic Value Function
0x00124 Status 4, Clock Fallback
Status 7FBFOB0
1Indicat es not in fallba ck /fa il saf e state (default) .
Indicates fallback/failsafe state.
6:4 FBSOP 111
000
001
010
011
100
101
Fallback state = INITIAL (default).
Fallback state = PRIMARY.
Fallback state = TO_PRIMARY.
Fallback state = SECONDARY.
Fallback state = TO_SECONDARY.
Failsafe state = FS_1.
Failsafe state = FS_2.
3XYSOB0
1Clock re gister Y set is active, X is inactive.
Clock re gister X set is active, Y is inactive.
2 GOPOB 0
1No GO_CLOCKS pending (default).
GO_CLOCKS pending, waiting for frame.
1CFPOB0
1No CLEAR_FALLBACK pending (default).
CLEAR_F ALLBACK pending, waiting for frame.
0 FFPOB 0
1No FORCE_FALLBACK pending (default).
FORCE_FALLBACK pending, waiting for
frame.
Agere Systems Inc. 61
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
6 Operating Control and Status (continued)
6.2 Error and Stat us Reg ist ers (continued)
6.2.2 Sys tem Status (continued)
6.2.2.2 System Errors Register
6.2.2.3 Device Identification Registers
These registers identify the device type and revision status, T8110 revision n.
6.2.2.4 Miscellaneous Status
The status 8 register provides the status flags which indicate that there is currently a posted write or a delayed
read enqueued, one flag for each access region minibridge and data memory. Please refer to Sections 4.1.4 and
4.1.4.1 for more details.
Table 36. System Errors Registers
Byte
Address Register Name Bit(s) Mnemonic Value Function
0x00127 Status 7, System
Errors 7CFSOB 0
1No error.
Clock failsafe indicator.
6CFBOB 0
1No error.
Clock fallback indicator.
5MBTOB 0
1No time-out.
PCI target, minibridge discard timer expired.
4 Reserved 0 NOP.
3DMTOB 0
1No time-out.
PCI target, data memory discard timer expired.
2MBPOB 0
1No error.
PCI target, minibridge protocol error.
1 Reserved 0 No error. NOP.
0DMPOB 0
1No error.
PCI target, data memory protocol error.
Table 37. Device Identification Registers
Byte
Address Name Bit(s) Mnemonic Value Function
0x00128 Version ID 7:0 VEROR 0000 0001 Revision status (value shown = REV1).
0x0012A Device ID, Lower 7:0 IDLOR 0001 0000 Device ID low status 0x10.
0x0012B Device ID, Upper 7:0 IDHOR 1000 0001 Device ID high status 0x81.
Table 38. Miscellaneous Status Registers
Byte
Address Name Bit(s) Mnemonic Value Function
0x0012C Status 8 7:3 Reserved 0000 0 NOP.
2MBSOB 0
1Minibridge PCI target queue is empty.
Minibridge PCI target queue is full.
1 Reserved 0 NOP.
0DMSOB 0
1Data memory PCI target queue is empty.
data memory PCI target queue is full.
62 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
7 Clock Architecture
5-9432 (F)
Figure 15. T8110 Main Clocking Paths
5-9433 (F)
Figure 16. T8110 NETREF Paths
2.048 MHz
4.096 MHz
8.192 MHz
16.364 MHz
FRAME
32.768 MHz
(INTERNAL)
INTERNAL
CLOCK
PHASE
ALIGNMENT
BIT SLIDER
CONTROLS
MEMORIES
APLL1
65.536 MHz APLL1
BYPASS
65.536 MHz
SAMPLED FR AME
DPLL1
CLOCK
SOURCE
SELECT
DPLL2 APLL2
49.408 MHz
TO
APLL2
BYPASS OSC2
XTAL2 OUT XTAL2 IN/
APLL2
RATE
SELECT
DPLL2
SOURCE
AND RATE
DIV
BY 4
PRI_REF_OUT PRI_REF_IN
MAIN
DIVIDE-BY-n
DIVIDE REGISTER
RESOURCE
DIVIDE-BY-n
DIVIDE REGISTER
CLK
SEL
FRAME
SEL DPLL1
SOURCE
AND RATE
OSC1
XTAL1 OUT XTAL1 IN/
CLOCK
SELECT
/CT_FRAME_A
/CT_FRAME_B
/FR_COMP
LREF[4:7]
LREF[0:7]
CT_NETREF1
CT_NETREF2
CT_C8_A
CT_C8_B
MVIP (2 CLOCKS)
H-MVIP (4 CLOCKS)
SC-BUS (2 CLOCKS)
SCSA (2 CLOCKS)
2 OR
4 MHz
4
8
1, 5, 3, 6,
or 12 MHz
X8
X4
OSC2 IN
WATCHDOGS
WATCHDOGS
PROGRAMMABLE
INVERSION
PROG.
INVERSION
MULT
BY 2
WATCHDOG
FAIL
SAFE
WATCHDOG
FRAME
TCLK_OUT
GENERATION
SYNC
MUX
FRAME
OSC1 IN
NETREF2
DIVIDE-BY-n
DIVIDE REGISTER
NET-
REF1
SEL
NET-
REF2
SEL
DIV
BY 8
(FROM XTAL1)
LREF[0:7]
CT_NETREF2
CT_NETREF1
NR2_SEL_OUT NR2_DIV_IN
NR2 SOURCE
SELECT
NR1 SOURCE
SELECT
NR2 DIV
SELECT
NR1 DIV
SELECT
NR1_SEL_OUT NR1_DIV_IN
CT_NETREF2
8
(FROM XTAL2)
PROGRAMMABLE
INVERSION
CT_NETREF1
PROGRAMMABLE
INVERSION
PROGRAMMABLE
INVERSION
PROGRAMMABLE
INVERSION NETREF1
DIVIDE-BY-n
DIVIDE REGISTER
Agere Systems Inc. 63
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
7 Clock Architecture (contin ued )
7.1 Clock Input Control Regis ters
The following registers control the T8110 main clocking paths and NETREF paths.
7.1.1 Main Input Selector Register
The main input selector register controls clock and frame input selection.
* C2 is allowed as the bit clock input.
Choices include the following:
Oscillator/crystal clock = XTAL1_IN (16.384 MHz), no frame
NETREF1 clock = CT_NETREF1 (8 kHz, 1.544 MHz, or 2.048 MHz), no frame
NETREF2 clock = CT_NETREF2 (8 kHz, 1.544 MHz, or 2.048 MHz), no frame
LREF individual clock = one of LREF[0:7]*, no frame
LREF paired clock = one of LREF[0:3] (2.048 MHz), frame = one of LREF[4:7]*
H-bus A-clocks clock = CT_C8_A (8.192 MHz), frame = /CT_FRAME_A (8 kHz)
* Selection of which LREF is controlled at register 0x00208. Selection of LREF polarity is controlled at register 0x0020C.
Table 39. Clock Input Control Reg ister Map
DWORD Address
(20 bits)
Register
Byte 3 Byte 2 Byte 1 Byte 0
0x00200 APLL1 rate APLL1 input selector Main divider Main input selector
0x00204 APLL2 rate Reserved Resource divider Main inversion select
0x00208 DPLL1 rate DPLL1 input selector Reserved LREF input select
0x0020C DPLL2 rate DPLL2 input selector Reserved LREF inversion select
0x00210 Reserved NETR EF1 LR EF s el ect NE T REF1 div i der NETREF1 i np ut select or
0x00214 Reserved NETREF2 LREF select NETREF2 divider NETREF2 input selector
Table 40. Main Input Selector Register
Byte Address N ame Bit(s) Mnemonic Value Function
0x00200 Main Input Selector 7:0 CKMSR 0000 0000
0001 0001
0001 0010
0010 0001
0010 0010
0100 0001
0100 0010
0100 0100
0100 1000
1000 0000
1000 0001
1000 0010
1000 0100
1000 1000
Sele ct osci ll ator /c rys tal (defa ult ).
Sele ct NET RE F 1.
Sele ct NET RE F 2.
Sele ct LRE F[ 0:7] ind iv id ually.
Sele ct LREF[ 0:3, 4:7] paired.
Select H-bus A-clocks.
Select H-bus B-clocks.
Select MC1 R-clocks.
Sele ct MC1 L-cl oc ks .
Select MVIP clocks (C2 bit clock)*.
Select MVIP clocks (/C4 bit clock).
Select H-MVIP clocks (/C16± bit clock).
Select SC-bus clocks 2 MHz.
Select SC-bus clocks 4/8 MHz.
64 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
7 Clock Architecture (continued)
7.1 Clock Input Control Registers (con tinued)
H-bus B-clocks clock = CT_C8_B (8.192 MHz), frame = /CT_FRAME_B (8 kHz)
MC1 R-clocks clock = inverted CT_C8_A (4.096 MHz), frame = /CT_FRAME_A (8 kHz)
MC1 L-clocks clock = inverted CT_C8_B (4.096 MHz), frame = /CT_FRAME_B (8 kHz)
MVIP cl oc ks clock = /C4 (4.096 MHz), frame = /FR_COMP (8 kHz)
MVIP cl oc ks * clock = C2 (2.048 MHz), frame = /FR_COMP (8 kHz)
H-MVIP clocks clock = /C16± (16.384 MHz), frame = /FR_COMP (8 kHz)
SC-BUS 2 MH z clock = /SCLKx2, frame = /FR_COMP (8 kHz)
SC-BUS 4/8 MHz clock = SCLK, frame = /FR_COMP (8 kHz)
* C2 is allowed as the bit clock input.
7.1.2 Main Divider Register
The main divider register contains [divider value – 1]. A value of 0x00 yields a divide-by-1 function.
A value of 0xFF yields a divide-by-256 function.
7.1.3 Analog PLL1 (APLL1) Input Selector Register
The APLL1 input selector register controls APLL1 reference input selection. The choices include the following:
!APLL1 reference clock = oscillator/4 (4.096 MHz)
!APLL1 reference clock = output of the main divider (4.096 MHz or 2.048 MHz)
!APLL1 reference clock = output of the resource divider (4.096 MHz or 2.048 MHz)
!APLL1 reference clock = output of DPLL1 (4.096 MHz or 2.048 MHz)
!APLL1 reference clock = input from signal PRI_REF_IN (4.096 MHz or 2.048 MHz)
Table 41. Main Divider Register
Byte
Address Name Bit(s) Mnemonic Value Function
0x00201 Main Divider 7:0 CKMDR LLLL LLLL Divider value, {0x00 to 0xFF} = {div1 to div256},
respectively.
Table 42. APLL1 Input Selector Register
Byte
Address Name Bit(s) Mnemonic Value Function
0x00202 APLL1 Input Selector 7:0 P1ISR 0000 0000
0000 0001
0000 0010
0000 0100
0000 1000
Select oscillator/4 (default).
Select main divider output.
Select resource divider output.
Select DPLL1 output.
Select external input PRI_REF_IN.
Agere Systems Inc. 65
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
7 Clock Architecture (contin ued )
7.1 Clock Input Control Registers (continued)
7.1.4 APLL1 Rate Register
The APLL1 rate register provides the rate multiplier value to APLL1. When APLL1 reference clock is at
4.096 MHz, the [x16 (multiplied by)] value must be selected. When APLL1 reference clock is at 2.048 MHz, the
[x32 (multiplied by)] value must be selected. A [x1 (multiplied by)] value is provided in order to bypass APLL1.
7.1.5 Main Inversion Select Register
The main inversion select register controls programmable inversions at various points within the T8110 main clock-
ing paths and NETREF paths. Internal points allowed for programmable inversion include the following:
!Main clock selection CLK SEL MUX output; see Figure 15 on page 62.
!NETREF2 divider output; see Figure 16 on page 62.
!NETREF 2 se lect ion MU X outp ut
!NETREF1 div i der output
!NETREF 1 se lect ion MU X outp ut
Table 43. APLL1 Rate Register
Byte
Address Name Bit(s) Mnemonic Value Function
0x00203 APLL1 Rate 7:0 P1RSR 0000 0000
0000 0001
0001 xx xx
Times 16 (default).
Times 32.
Times 1 BYPASS (lower nibble is don't care).
Table 44. Main Inversion Select Register
Byte
Address Name Bit(s) Mnemonic Value Function
0x00204 Ma in Inv ersi on Selec t 7:5 Reserved 000 NOP (default) .
4ICMSB 0
1Don't invert main clock selection (default).
Invert main cl ock sel ec t ion.
3N2DSB 0
1Don't invert NETREF2 divider output (default).
Invert NETREF2 divider output.
2 N2SSB 0
1Don't invert NETREF2 selection (default).
Invert NETREF2 selection.
1N1DSB 0
1Don't invert NETREF1 divider output (default).
Invert NETREF1 divider output.
0 N1SSB 0
1Don't invert NETREF1 selection (default).
Invert NETREF1 selection.
66 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
7 Clock Architecture (continued)
7.1 Clock Input Control Registers (con tinued)
7.1.6 Resource Divider Register
The resource divider register contains [divider value – 1]. A value of 0x00 yields a divide-by-1 function. A value of
0xFF yields a divide-by-256 function.
7.1.7 Analog PLL2 (APLL2) Ra te Register
The APLL2 rate register provides the rate multiplier value to APLL2. When the APLL2 reference clock is at
12.352 MHz, the (times 4) value must be selected. When the APLL2 reference clock is at 6.176 MHz, the
(times 8) value must be selected. A (times 1) value is provided in order to bypass APLL2.
Table 45. Resource Divider Register
Byte
Address Name Bit(s) Mnemonic Value Function
0x00205 Resource Divider 7:0 CKRDR LLLL LLLL Divider value, {0x00 to 0xFF} = {div1 to div256},
respectively.
Table 46. APLL2 Rate Register
Byte
Address Name Bit(s) Mnemonic Value Function
0x00207 APLL2 Rate 7:0 P2RSR 0000 0000
0000 0001
0001 xxx x
Times 4 (default).
Times 8.
Times 1 BYPASS (lower nibble is don't care).
Agere Systems Inc. 67
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
7 Clock Architecture (contin ued )
7.1 Clock Input Control Registers (continued)
7.1.8 LREF Input Select Registers
The LREF input select register is used in conjunction with the main input selector (0x00200) and provides the
selection control among the eight LREF inputs when the main selection is set for either individual or paired LREFs.
The LREF inversion select register allows programmable inversion for each LREF input. Please refer to
Section 7.4.1.3 on page 78 for further details.
Table 47. LREF Input/Inversion Select Registers
Byte
Address Name Bit(s) Mnemonic Value Function
0x00208 LREF Input
Select 7:0 LRISR 0000 0000
0000 0001
0000 0010
0000 0100
0000 1000
0001 0000
0010 0000
0100 0000
1000 0000
0001 0001
0010 0010
0100 0100
1000 1000
Select LREF0 (default).
Select LREF0.
Select LREF1.
Select LREF2.
Select LREF3.
Select LREF4.
Select LREF5.
Select LREF6.
Select LREF7.
Select paired, clock = LREF0, frame = LREF4.
Select paired, clock = LREF1, frame = LREF5.
Select paired, clock = LREF2, frame = LREF6.
Select paired, clock = LREF3, frame = LREF7.
0x0020C LREF Inver sion
Select 7IR7SB 0
1Don't invert LREF7 (default).
Invert LREF7.
6IR6SB 0
1Don't invert LREF6 (default).
Invert LREF6.
5IR5SB 0
1Don't invert LREF5 (default).
Invert LREF5.
4IR4SB 0
1Don't invert LREF4 (default).
Invert LREF4.
3IR3SB 0
1Don't invert LREF3 (default).
Invert LREF3.
2IR2SB 0
1Don't invert LREF2 (default).
Invert LREF2.
1IR1SB 0
1Don't invert LREF1 (default).
Invert LREF1.
0IR0SB 0
1Don't invert LREF0 (default).
Invert LREF0.
68 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
7 Clock Architecture (continued)
7.1 Clock Input Control Registers (con tinued)
7.1.9 DPLL1 Input Selector
The DPLL1 input selector selects one of three sources for DPLL1 synchronization input (see Section 7.4.2 on page
79), including the following:
!Main clock selecti on CLK SEL MUX output
!Main divider output
!Resource divider output
7.1.9.1 DPLL1 Rat e Register
The DPLL1 rate register controls the DPLL1 output frequency.
7.1.10 DPLL2 Input Selector
The DPLL2 input selector selects one of five sources for DPLL2 synchronization input (see Section 7.5.1 on page
81), including the following:
!Main clock selecti on CLK SEL MUX output
!Main divider output
!Resource divider output
!Internal frame
!External input via PRI_REF_IN signal
Table 48. DPLL1 Input Selector Registers
Byte
Address Name Bit(s) Mnemonic Value Function
0x0020A DPLL1 Input Selector 7:0 D1ISR 0000 0000
0000 0001
0000 0010
Main selector (default).
Main divider.
Resource divider.
0x0020B DPLL1 Rate 7:0 D1RSR 0000 0000
0000 0001 DPLL1 output at 4.096 MHz (default).
DPLL1 output at 2.048 MHz.
Agere Systems Inc. 69
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
7 Clock Architecture (contin ued )
7.1 Clock Input Control Registers (continued)
7.1.10 DPLL2 Input Selector (continued)
7.1.10.1 DPLL2 Rate Register
The DPLL2 rate register controls the DPLL2 output frequency.
7.1.11 NETREF1 R egisters
The NETREF1 input selector, NETREF1 divider, and NETREF1 LREF select registers control the signal paths
used to generate CT_NETREF1 (see Figure 16 on page 62).
* Selection of which LREF is controlled at register 0x00212.
Table 49. DPLL2 Register
Byte
Address Name Bit(s) Mnemonic Value Function
0x0020E DPLL2 Input Selec tor 7 : 0 D2ISR 0000 0000
0000 0001
0000 0010
0000 0100
0000 1000
Main selec tor (defaul t) .
Main divid er.
Resource divider.
T8110 internally generated frame.
Extern al inp ut PRI_R EF_IN .
0x0020F DPLL2 Rate 7:0 D2RSR 0000 0000
0000 0001
0000 0010
0000 0100
0000 1000
DPLL2 output off (default).
DPLL2 output at 1.544 MHz.
DPLL2 output at 3.088 MHz.
DPLL2 output at 6.176 MHz.
DPLL2 output at 12.352 MHz.
Table 50. NETREF1 Registers
Byte
Address Name Bit(s) Mnemonic Value Function
0x00210 NETREF1 Input
Selector 7:4 N1DSN 0000
0001 Divider input = selector output (default).
Divider input = external input NR1_DIV_IN.
3:0 N1ISN 0000
0001
0010
0100
1000
Oscillator/XTAL1-div-8, 2.048 MHz (default).
Oscillator/XTAL1, 16.384 MHz.
CT_NETREF2 input.
LREF input*.
Oscillator/XTAL2, 6.176 MHz, or 12.352 MHz.
0x00211 NETREF1 Divider 7:0 NR1DR LLLL LLLL Divider value, {0x00 to 0xFF} = {div1 to div256},
respectively.
0x00212 NETREF1 LREF
Select 7:0 N1LS R 00 00 0000
0000 0001
0000 0010
0000 0100
0000 1000
0001 0000
0010 0000
0100 0000
1000 0000
Select LREF0 (default).
Sel ect LREF0.
Sel ect LREF1.
Sel ect LREF2.
Sel ect LREF3.
Sel ect LREF4.
Sel ect LREF5.
Sel ect LREF6.
Sel ect LREF7.
70 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
7 Clock Architecture (continued)
7.1 Clock Input Control Registers (con tinued)
7.1.12 NETREF2 Registers
The NETREF2 input selector, NETREF2 divider, and NETREF2 LREF select registers control the signal paths
used to generate CT_NETREF2 (see Figure 16 on page 62).
* Selection of which LREF is controlled at register 0x00216.
Table 51. NETREF2 Registers
Byte
Address Name Bit(s) Mnemonic Value Function
0x00214 NETREF2 Input
Selector 7:4 N2DSN 0000
0001 Divider input = selector output (default).
Divider input = external input NR1_DIV_IN.
3:0 N2ISN 0000
0001
0010
0100
1000
Oscillator/XTAL1-div-8, 2.048 MHz (default).
Oscillator/XTAL1, 16.384 MHz.
CT_NETREF1 input.
LREF input*.
Oscillator/XTAL2, 6.176 MHz, or 12.352 MHz.
0x00215 NETREF2 Divider 7:0 NR2DR LLLL LLLL Divider value, {0x00 to 0xFF} = {div1 to div256},
respectively.
0x00216 NETREF2 LREF
Select 7:0 N2LSR 0000 0000
0000 0001
0000 0010
0000 0100
0000 1000
0001 0000
0010 0000
0100 0000
1000 0000
Select LREF0 (default).
Select LREF0.
Select LREF1.
Select LREF2.
Select LREF3.
Select LREF4.
Select LREF5.
Select LREF6.
Select LREF7.
Agere Systems Inc. 71
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
7 Clock Architecture (contin ued )
7.2 Clock Output Control Register s
The registers listed below control output enable and rate selection of the T8110 clock path outputs.
7.2.1 Master Output Enables Register
The master output enables register controls the output enables for H-bus and compatibility clocks (CCLK) for
T8110 clock mastering. A-clocks refers to the combination of CT_C8_A bit clock and /CT_FRAME_A frame refer-
ence.
B-clocks refers to the CT_C8_B bit clock and /CT_FRAME_B frame reference.
These programmable enables are used in conjunction with master enable register 0x00103, H-bus clock enables,
HCKEB.
The NETREF output enables register controls the output enables for CT_NETREF1 and CT_NETREF2. These
programmable enables are used in conjunction with master enable register 0x00103, H-bus clock enables,
HCKEB.
The CCLK output enables register is used in conjunction with register 0x00220 and controls the output enables for
various groupings of compatibility clocks, including the following:
!H-MVIP bit cloc k onl y( /C1 6±)
!MVIP clocks (/C4, C2)
!H-MVIP clocks (/C16±, /C4, C2)
!SC-bus clocks (SCLK, /SCLKx2)
!/FR_COMP compatibility frame reference
Table 52. Clock Output Control Register Map
DWORD
Address
(20 bits)
Register
Byte 3 Byte 2 Byte 1 Byte 0
0x00220 C8 output rate /FR_COMP width NETREF output enables Master output enables
0x00224 SCLK output rate TCLK select Reserved CCLK output enables
0x00228 L_SC3 select L_SC2 select L_SC1 select L_SC0 select
72 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
7 Clock Architecture (continued)
7.2 Clock Output Control Registers (continued)
7.2.1 Master Output Enables Register (continued)
* Overall selection includes all C clocks OFF, all C clocks ON, or select individual groups of C clocks to be enabled, in conjunction with register
0x00224.
7.2.2 Clock Output Format Registers
The clock output format registers select the pulse width of the /FR_COMP pulse width.
Note: When the T8110 is slaving to a compatibility bus, the /FR_COMP signal must be 122 ns. The T8110 cannot
phase align to a 244 ns /FR_COMP signal.
The C8 output rate register selects the CT_C8_A and CT_C8_B clock output frequency 8.192 MHz for ECTF
(H1x0) mode, or 4.096 MHz for MC1 mode.
The SCLK output rate register selects between three SC-Bus clock configurations, including the following:
!SCLK = 2.048 MHz, /SCLKx2 = 4.096 MHz
!SCLK = 4.096 MHz, /SCLKx2 = 8.192 MHz
!SCLK = 8.192 MHz, /SCLKx2 = 8.192 MHz (phase shifted from SCLK)
Table 53. Master Output Enables Registers
Byte Address Name Bit(s) Mnemonic Value Function
0x00220 Master
Output
Enables
7:4 ABOEN 0000
0001
0010
0011
Disable A and B clock outputs (default).
Enable A clock outputs only.
Enable B clock outputs only.
Enable both A and B clock outputs.
3:0 CCOEN 0000
0001
0010
Disable compatibility (C clock) outputs (default).
Enable C clocks individually*.
Enable all C clocks.
0x00221 NETREF
Output
Enables
7:4 N2OEN 0000
0001 CT_NETREF2 disabled (default).
CT_NETREF2 enabled.
3:0 N1OEN 0000
0001 CT_NETREF1 disabled (default).
CT_NETREF1 enabled.
0x00224 CCLK
Output
Enables
7:4 FRSEN 0000
0001 /FR_COMP disabled (default).
/FR_COMP enabled.
3:0 CCSEN 0000
0001
0010
0011
0100
C-cloc k bit cloc ks disabl ed (d efau lt) .
Enable H-MVIP bit clock.
Enable MVIP clocks.
Enable H-MVIP all clocks.
Enable SC-bus clocks.
Agere Systems Inc. 73
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
7 Clock Architecture (contin ued )
7.2 Clock Output Control Registers (continued)
7.2.2 Clock Outp ut Form at Regis ters (continued)
7.2.3 TCLK and L_SCx Select Registers
The TCLK select register controls the selection of various internally generated clocks for output to the TCLK_OUT
signal.
The L_SCx select registers control the selection of various internally generated clocks for output to the L_SC0,
L_SC1, L_SC2, and L_SC3 signals.
Table 54. Clock Outp ut Form at Regist ers
Byte
Address Name Bit(s) Mnemonic Value Function
0x00222 /FR_COMP
Width 7:0 FRWSR 0000 0000
0000 0001 /FR_COMP width is 122 ns (default).
/FR_COMP width is 244 ns.
0x00223 C8 Output Rate 7:4 BCRSN 0000
0001 CT_C8_B output at 8.192 MHz (default).
CT_C8_B output at 4.096 MHz, MC1 mode.
3:0 ACRSN 0000
0001 CT_C8_A output at 8.192 MHz (default).
CT_C8_A output at 4.096 MHz, MC1 mode.
0x00227 SCLK Output
Rate 7:0 SCRSR 0000 0000
0000 0001
0000 0010
SCLK = 2 MHz, /SCLKx2 = 4 MHz (default).
SCLK = 4 MHz, /SCLKx2 = 8 MHz.
SCLK = 8 MHz, /SCLKx2 = 8 MHz phase shifted.
74 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
7 Clock Architecture (continued)
7.2 Clock Output Control Registers (continued)
7.2.3 TCLK and L_SCx Select Registers (continued)
Table 55. TCLK Select and L_SCx Select Registers
Byte
Address Name Bit(s) Mnemonic Value Function
0x00226 TCLK Select 7:0 TCOSR 0000 0000
0000 0001
0000 0010
0001 0001
0001 0010
0010 0000
0010 0001
0010 0010
0011 0000
0011 0001
0011 0010
0100 0000
0100 0001
0100 0010
0100 0100
0100 1000
0101 0000
0101 0001
0101 0010
0101 0100
0101 1000
1000 0000
1000 0001
1000 0010
1001 0000
1001 0001
1001 0010
TCLK output disabled (default).
Select OSC1/XTAL1.
Select OSC2/XTAL2.
Select OSC1/XTAL1 inverted.
Select OSC2/XTAL2 inverted.
Select DPLL2 output.
Select APLL1 output, 65.536 MHz.
Select APLL2 output, 49.704 MHz.
Select DPLL2 output inverted.
Select APLL1 output inverted.
Select APLL2 output inverted.
Select generated 2.048 MHz.
Select generated 4.096 MHz.
Select generated 8.192 MHz.
Select generated 16.384 MHz.
Select generated 32.768 MHz.
Select generated 2.048 MHz inverted.
Select generated 4.096 MHz inverted.
Select generated 8.192 MHz inverted.
Select generated 16.384 MHz inverted.
select gen er ated 32.768 MHz inve rt ed.
Select generated frame.
Select generated CT_NETREF1.
Select generated CT_NETREF2.
Select generated frame inverted.
Select generated CT_NETREF1 inverted.
Select generated CT_NETREF2 inverted.
0x00228
(0x00229)
(0x0022A)
(0x0022B)
L_SC0 Selec t
L_SC1 Selec t
L_SC2 Selec t
L_SC3 Selec t
7:0 LC0SR
(LC1SR)
(LC2SR)
(LC3SR)
0000 0000
0000 0001
0001 0001
0100 0000
0100 0001
0100 0010
0100 0100
0100 1000
0101 0000
0101 0001
0101 0010
0101 0100
0101 1000
1000 0000
1000 0001
1000 0010
1001 0000
1001 0001
1001 0010
L_SCx output disabled (default).
Select OSC1/XTAL1.
Select OSC1/XTAL1 inverted.
Select generated 2.048 MHz.
Select generated 4.096 MHz.
Select generated 8.192 MHz.
Select generated 16.384 MHz.
Select generated 32.768 MHz.
Select generated 2.048 MHz inverted.
Select generated 4.096 MHz inverted.
Select generated 8.192 MHz inverted.
Select generated 16.384 MHz inverted.
Select generated 32.768 MHz inverted.
Select generated frame.
Select generated CT_NETREF1.
Select generated CT_NETREF2.
Select generated frame inverted.
Select generated CT_NETREF1 inverted.
Select generated CT_NETREF2 inverted.
Agere Systems Inc. 75
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
7 Clock Architecture (continued)
7.3 Clock Register Access
The T8110 clock control registers, 0x00200—0x002FF, consist of two identical sets of registers, X and Y. At any
given time, only one set is actually controlling the clocking (denoted as the active set), while the other is in a
standby state (inactive set). Either set, X or Y, may be the active set, as determined by a state machine that tracks
the clock fallback control and status and assigns either set to be active accordingly. For more details, see Section
7.7.1 on page 82. Users may only access one register set at a time. By default, access is allowed to the current
inactive set, but access to the active set is allowed via the clock register access select register, 0x00106; see Sec-
tion 6.1.4 on page 51.
7.4 Clock Circuit Operation— APLL 1
APLL1 can accept either a 4.096 MHz or 2.048 MHz reference clock, and perform a corresponding multiplication
function to supply a 65.536 MHz operating clock for the T8110. Additionally, APLL1 may be bypassed for circuit
diagnostic purposes. Please refer to Figure 15 on page 62.
7.4.1 Main Clock Selection, Bit Clock, and Frame
APLL1 clock references are selectable as stand-alone bit clocks, frames, or a pairing of bit clock and frame (see
main input selector register, 0x00200). The bit clock output of the main clock selection is available as input to the
main divider, resource divider, and DPLL1.
*MVIP, /C4 is typically the bit clock. C2 is selectable as the bit clock as well.
Used when LREF pairing is enabled. When using LREF pairing, the bit clock should be 2.048 MHz.
Table 56. Bit Clock and Frame
Bit Clock Corresponding 8 kHz Frame Value(s)
CT_NETREF1, CT_NETREF2 1.544 MHz (T1), 2.048 MHz (E1)
NA CT_NETREF1, CT_NETREF2 8 kHz
CT_C8_A /CT_FRAME_A 8.192 MHz (ECTF), 4.096 MHz (MC1)
CT_C8_B /CT_FRAME_B 8.192 MHz (ECTF), 4.096 MHz (MC1)
/C16± /FR_COMP 16. 384 MHz (H- MVIP)
/C4 /FR_COMP 4.096 MHz (MVIP)
C2 /FR_COMP 2.048 MHz (MVIP*)
SCLK /FR_COMP 2.048 MHz, 4.096 MHz, 8.192 MHz (SC-bus)
/SCLKx2 /FR_COMP 4.096 MHz, 8.192 MHz (SC-bus)
LREF[0] LREF[4]System-specific
LREF[1] LREF[5]System-specific
LREF[2] LREF[6]System-specific
LREF[3] LREF[7]System-specific
LREF[4] System-specific
LREF[5] System-specific
LREF[6] System-specific
LREF[7] System-specific
76 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
7 Clock Architecture (continued)
7.4 Clock Circuit Operation—APLL1 (continued)
7.4.1 Main Clock Selection, Bit Clock, and Frame (continued)
7.4.1.1 Watchdog Timers
A set of watchdog timers is available for all H1x0, H-MVIP, MVIP, and SC-bus clocks. No watchdogs are available
for LREF[7:0] directly; however, the LREF inputs may be monitored indirectly via watchdogs on the DPLL1 and
DPLL2 sync inputs, or via the failsafe mechanism; see Section 7.7.2 on page 88. The watchdogs sample the
incoming clocks at 32.768 MHz (derived from the XTAL1 crystal) and monitor for loss of signal, as shown below.
Table 57. Watchdog Timer Description
Watchdog Signal, Value Description
H1x0 clock monitors* CT_C8_A at 8.192 MHz
CT_C8_B at 8.192 MHz ECTF mode. Checks for CT_C8 rising edge within a
35 ns window of its expected arrival.
CT_C8_A at 4.096 MHz
CT_C8_B at 4.096 MHz MC1 mode. Monitors for loss of signal (falling edges).
FRAME monitors /CT_FRAME_A
/CT_FRAME_B
/FR_COMP
Monitors for 8 kHz frequency . Detects frame overflow
(i.e., next frame pulse too late) and frame underflow
(i.e., next frame pulse too early).
NETREF monitors* CT_NETREF1 at 1.544 MHz
CT_NETREF2 at 1.544 MHz NETREF is T1 bit clock. Monitors for loss of signal
(rising or falling edges).
CT_NETREF1 at 2.048 MHz
CT_NETREF2 at 2.048 MHz NETREF is E1 bit clock. Monitors for loss of signal
(rising or falling edges).
CT_NETREF1 at 8 kHz
CT_NETREF2 at 8 kHz NETREF is 8 kHz frame reference. Monitors for
8 kHz frequency. Detects frame overflow
(i.e., next frame pulse too late) and frame underflow
(i.e., next frame pulse too early).
Compatibility clock monitors /C16± at 16.384 MHz
/C4 at 4.096 MHz
C2 at 2.048 MHz
SCLK, /SCLKx2 at any of
their defined values.
Gross loss-of-signal detector—clocks are sampled
and normalized to 1.024 MHz. It can take up to
976 ns for these watchdog timers to detect loss of a
compatibility clock.
DPLL1, DPLL2 sync
monitors Output of MUX selector to the
SYNC input of each
DPLL (8 kHz)
Monitors for 8 kHz frequency . Detects frame overflow
(i.e., next frame pulse too late) and frame underflow
(i.e., next frame pulse too early).
* User selects frequency at which to monit or the CT_C8 cloc ks vi a register 0x0010C, watchdog select, C8.
DPLL sync reference is expected to be 8 kHz.
Agere Systems Inc. 77
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
7 Clock Architecture (contin ued )
7.4 Clock Circuit Operation— APLL 1 (continued)
7.4.1 Main Clock Selection, Bit Clock, and Frame (continued)
7.4.1.2 Frame Center Sampling
Frame center samples are used in order to phase-align the incoming frame reference to the internally generated
frame reference; see Section 7.4.5.1 on page 80. The incoming frame reference signal is sampled with a recov-
ered clock (output of the APLL1 feedback divider) to determine the frame center. Frame center sampling is only
relevant when the main clock selection is based on a paired bit clock/frame reference, as follows.
Table 58. Frame Center Sampling
Frame Signal Corresponding Bit Clock Sample Clock
/CT_FRAME_A CT_C8_A Recovered 8.192 MHz, rising edge.
/CT_FRAME_B CT_C8_B Recovered 8.192 MHz, rising edge.
/FR_COMP /C16± (H-MVIP)
or /C4 (MVIP)
or C2 (MVIP)
Recovered 4.096 MHz, falling edge.
/FR_COMP SCLK or /SCLKx2 (SC-bus) Recovered 2.048 MHz, rising edge.
LREF[4] LREF[0] Recovered 2.048 MHz, rising edge.
LREF[5] LREF[1] Recovered 2.048 MHz, rising edge.
LREF[6] LREF[2] Recovered 2.048 MHz, rising edge.
LREF[7] LREF[3] Recovered 2.048 MHz, rising edge.
78 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
7 Clock Architecture (continued)
7.4 Clock Circuit Operation—APLL1 (continued)
7.4.1 Main Clock Selection, Bit Clock, and Frame (continued)
7.4.1.3 LREF Pair Polarity Configuration
The T8110 may derive its clocking from an LREF pair , which is compromised of a frame pulse and a 2.048 MHz bit
clock. In order to achieve proper phase alignment when deriving clocking from LREF pairs, the T8110 must be pro-
vided with a frame pulse and bit clock with polarities as shown below.
Figure 17. T8110 Required Frame Pulse and Bit Clock with Polarities
If the frame pulse and bit clock cannot be externally provided with the proper polarities, the polarities can be inter-
nally adjusted via the main inversion select register (0x204) and the LREF inversion select register (0x20C). The
main inversion select register will allow inversion of only the bit clock, while the LREF inversion select register
allows any LREF signal to be inverted. Refer to Figure 15 on page 62 for more details.
Note: Once the frame pulse and bit clock polarity have been properly configured, they must not be changed while
the T8110 is deriving clocking from the LREF pair.
MASTER FRAME
(LREF 7/6/5/4)
2.048 MHz
MASTER BIT CLOC K
(LREF 3/2/1/0)
SLAVE FRAME
FR A ME C ENTER
MASTER FRAME SIGNAL
MAY BE EITHER 122 NS OR
244 NS WIDE.
THE OUTPUT FRAME SIGNAL LENGTH IS
PROGRAMMABLE. (SEE SECTIO N 8 O F THE
T8110 DATA SHEET.)
Agere Systems Inc. 79
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
7 Clock Architecture (contin ued )
7.4 Clock Circuit Operation— APLL 1 (continued)
7.4.2 Main and Resour ce Divid ers
Two independently programmable dividers are available to divide down the main clock selection signal. The func-
tion ranges from divide-by-1 (bypass) to divide-by-256.
!For binary divider values of 1, 2, 4, 8, 16, 32, 64, 128, and 256, the output is 50% duty cycle.
!For a divider value of 193, the output is almost 50% duty cycle (low-level duration is one clock cycle shorter than
high-lev el dur ati on).
!For all other divider values, the output is a pulse whose width is one full period of the main clock selection signal.
Output of both dividers is available to the DPLL1 and the APLL1 reference selector . The output of the main divider
is also available at the PRI_REF_OUT chip output.
Both dividers are reset whenever a changeover between X and Y clock register sets is detected; see Section 7.3
on page 75. This allows for immediate loading of the newly activated divider register values.
7.4.3 DPLL1
A digital phase-lock loop is provided to generate a 4.096 MHz or 2.048 MHz reference to APLL1, selectable via
register 0x0020B (DPLL1 rate). The DPLL1 operates at 32.768 MHz, derived from the XTAL1 crystal input. The
DPLL1 synchronization source is selectable (register 0x0020A, DPLL1 input selector) between the main clock
selection signal, the output of the resource divider, or the output of the main divider, and is intended to be pre-
sented as an 8 kHz frame reference. DPLL1 is determined to be in-lock or out-of-lock, based on the state of the
output clock when an edge transition is detected at the synchronization source. An out-of-lock condition results in a
DPLL1 correction, which can either lengthen or shorten its current output clock period by 30.5 ns.
7.4.4 Refere nce Sele ct or
The APLL1 reference clock is selectable between five possible sources via register 0x00202, APLL1 input selector .
A 4.096 MHz or 2.048 MHz reference must be provided. The five possible sources are shown below:
!XTAL1 crystal (16.384 MHz) divided-by-4
!Main divi der output
!Resource div id er output
!DPLL1 output
!PRI_REF_IN external chip input
7.4.5 Intern al Clock Ge nerat ion
The main internal functions of T8110 are synchronous to the 65.536 MHz output of APLL1. This clock is further
divided to generate 32.768 MHz, 16.384 MHz, and 8 kHz internal reference signals. Additional divide-down values
to 8.192 MHz, 4.096 MHz, and 2.048 MHz are generated. These generated clocks are the source for H1x0,
H-MVIP, MVIP, and SC-bus clocks when the T81 10 is mastering the bus clocks; see Section 7.2 on page 71. These
internally generated clocks can either be free-running, or can be aligned to the incoming main selection clock and
frame, via a phase alignment circuit (see Section 7.4.5.1).
80 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
7 Clock Architecture (continued)
7.4 Clock Circuit Operation—APLL1 (continued)
7.4.5 Internal Clock Generation (continued)
7.4.5.1 Phas e Alignme n t
Phase alignment allows the free-running internally generated clocks to be forced into alignment with the incoming
main selection clock and frame, under the following conditions:
!The main selection clock is based on a paired bit clock/frame reference (see Section 7.4.1.2 on page 77), and
the phase alignment circuit is enabled (via register 0x00107, phase alignment select).
The incoming frame center is monitored via the frame center samplers (see Section 7.4.1.2 on page 77) and com-
pared to the state of the internally generated frame. The circuit determines whether the frame centers are aligned.
If not, three possible actions take place as shown below:
!NOP: no corrections when phase alignment is disabled.
!Snap correction: the internally generated clocks and frame immediately snap into alignment with the incoming
frame center.
!Slide correction: the internally generated clocks and frame gradually slide into alignment with the incoming frame
center, at a rate of one 65.536 MHz clock period per frame. The sliding occurs in one direction only and creates
frame periods that are 15.25 ns longer than 125 µs until the frames are aligned. Please refer to Figure 18.
5-9414 (F)
A. Phase Alignment—SNAP
5-9415 (F)
B. Phase Alignment—SLIDE
Figure 18. T8110 Phase Alignment, SNAP and SLIDE
INCOMING FRAME CENTER INCOMING FRAME CENTER
MISALIGNED
INTERNAL
FRAME CENTER
SNAP
ALIGNMENT REALI G NED INTERNAL
FRAME CENT ER
125 µs
INCOMING BIT CLOCK
CT_C8_A
INCOMING FRAM E
/CT_FRAME_A
INTERNAL CLOCK,
8.192 MHz
INTERNAL FR A ME
REALIGNED INTERNAL
FRAME CENTER
MISALIGNED
INTERNAL
FRAME CENT ER
MISALIGNED
INTERNAL
FRAME CENTER
MISALIGNED
INTERNAL
FRAME CENT ER
INCOMING BIT CLOCK
CT_C8_A
INCOMING FRAME
/CT_FRAME_A
INTERNAL CL O CK,
8.192 MHz
INTERNAL FRAME
125 µs125 µs125 µs
45 ns 30 ns 15 ns
SLIDE ALIGNMENT SLIDE ALIGNMENT SLIDE ALIGNM ENT
Agere Systems Inc. 81
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
7 Clock Architecture (contin ued )
7.5 Clock Circuit Operation, APLL2
APLL2 requires either a 6.176 MHz or 12.352 MHz reference clock to produce a 49.408 MHz clock for operating
DPLL2. A user-supplied rate multiplier (register 0x00207, APLL2 rate) provides either a times 8 function (when ref-
erence clock = 6.176 MHz) or a times 4 function (when reference clock = 12.352 MHz). Additionally, APLL2 may be
bypassed for circu it dia gno sti c purpo se s (see Figu re 15 on page 62) .
7.5.1 DPLL2
A second digital phase-lock loop is provided to generate various derivations of T1 operating frequencies, available
by selection via the TCLK_OUT output. The possible output frequencies are selectable via register 0x0020F
(DPLL2 rate) and include 1.544 MHz, 3.088 MHz, 6.176 MHz, and 12.352 MHz. The DPLL2 input clock operates at
49.408 MHz from the APLL2 output. Synchronization sources for DPLL2 include the same sources provided to
DPLL1 (selectable between the main clock selection signal, the output of the resource divider, or the output of the
main divider) and two additional sources, including the T8110 internally generated frame signal and the
PRI_REF_IN input. These selections are available via register 0x0020E, DPLL2 input selector. DPLL2 is deter-
mined to be in-lock or out-of-lock based on the state of its output when an edge transition is detected at the syn-
chronization source. An out-of-lock condition results in a DPLL2 correction, which can either lengthen or shorten its
current output clock period by 20.2 ns.
7.6 Clock Circuit Operation, CT_NETREF Generation
The T8110 provides two independently programmable paths to generate CT_NETREF1 and CT_NETREF2, via
registers 0x00210—0x00216. Each CT_NETREF is individually enabled with register 0x00221, NETREF output
enables. Each path consists of a source selector MUX and a divider circuit (see Figure 16 on page 62).
7.6.1 NETREF Source Select
XTAL1 input DIV 8 (2.048 MHz)
XTAL1 input (16.384 MHz)
XTAL2 input (6.176 MHz or 12.352 MHz)
LREF[7:0]
CT_NETREFx (the other NETREF—i.e., CT_NETREF1 can be derived from CT_NETREF2, and vise-versa).
The output of the source select MUX is made available directly to the NETREF divider, and also to chip output
(NR1_SEL_OUT, NR2_SEL_OUT).
7.6.2 NETRE F Divide r
Each NETREF path provides a divider from a divide-by-1 function up to a divide-by-256 function. The clock source
for the divider is selectable between the output of the source select MUX or from external chip input (NR1_DIV_IN,
NR2_DIV_IN).
!For binary divider values of 1, 2, 4, 8, 16, 32, 64, and 128, output is 50% duty cycle.
!For divider values of 256, 193, plus all other nonbinary values, output is a pulse whose width is one-half of a
clock period, asserted during the second half of the divider clock period.
The NETREF dividers are reset whenever a changeover between X and Y clock register sets is detected (see Sec-
tion 7.3 on page 75). This allows for immediate loading of the newly activated divider register values.
82 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
7 Clock Architecture (continued)
7.7 Clock Circuit Operation— Fallback and Failsafe
Fallback is a means to alter the reference source to APLL1 by switching between two clock control register sets
upon detection of a fallback event. Failsafe is a feature to provide a safety net for the reference source to APLL1,
independent of clock fallback.
7.7.1 Clock Fallback
Clock fallback is a means to alter the APLL1 reference clock source upon detection of a fallback event and is con-
trolled by eight registers, 0x00108—0x0010F (refer to Section 6.1.4 on page 51). These registers enable and con-
trol the state transitions that determine which of two clock register sets is used to control the APLL1 reference clock
source (see Section 7.1 on page 63 through Section 7.3, Table 60 on page 85, and Figure 20 on page 84).
7.7.1.1 Fallbac k Events
Clock fallback (transition from primary to secondary clock sets) can only occur if the fallback mode is enabled (reg-
ister 0x00109, lower nibble) and a fallback event occurs. When enabled, there are three ways to trigger the fallback
event:
!Software, via a FORCE_FALLBACK command. The user sets bit 2 of the fallback control register, 0x00108, cre-
ating a software-invoked fallback event.
!Hardware via the fallback trigger enable registers, 0x0010A—0x0010B. User may enable specific watchdog tim-
ers and corresponding fallback trigger enable bits. If a watchdog timer indicates a clock error , and its correspond-
ing trigger enable bit is set, a hardware-invoked fallback event is produced.
!Hardware, legacy modes, via the fallback type select register, 0x00109, upper nibble. The legacy modes are
included to maintain backwards compatibility with earlier Ambassador devices. User may enable specific watch-
dog timers, but the fallback trigger enable registers are ignored. Instead, the watchdogs which are allowed to
trigger a fallback event are automatically selected based on the state of the main input selector register, 0x00200
(refer to Table 59). If a watchdog timer indicates a clock error , and its corresponding trigger enable is selected via
the main input selector, a hardware-invoked fallback event is produced.
Agere Systems Inc. 83
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
7 Clock Architecture (contin ued )
7.7 Clock Circuit Operation— Fallbac k and Failsafe (continued)
7.7.1 Clock Fallb ack (continued)
7.7.1.1 Fallback Events (continued)
7.7.1.2 Fallback Scenarios—Fixed vs. Rotating Se condary
When clock fallback is enabled (register 0x00109, lower nibble), there are two possible scenarios for transitioning
between the primary and secondary clock sets.
In a fixed secondary scheme, a fallback event switches the active clock set from primary to secondary. When the
fallback event is cleared (via user-invoked CLEAR_FALLBACK), the active clock set returns to primary.
In a rotating secondary scheme, a fallback event switches the active clock set from primary to secondary. When
the fallback event is cleared, the secondary remains as the new active clock set. In effect, the secondary becomes
the new primary, and the primary becomes the new secondary.
The concepts are illustrated in the figure below.
5-9420 (F)
Figure 19. Fallback—Fixed vs. Rotating Secondary
Table 59. Legacy Mode Fallback Event Triggers
Main Input Selector Function (Register 0x00200) Selected Watchdog Triggers (Legacy Modes)
Oscillator/crystal None
CT_NETREF1 NETREF1 watchdo g
CT_NETREF NETREF2 watchdo g
LREF, individual None
LREF, paired None
H-bus, A clocks CT_C8_A and /CT_FRAME_A watchdogs
H-bus, B clocks CT_C8_B and /CT_FRAME_B watchdogs
MC1, R clocks None
MC1, L clocks None
MVIP clocks (/C4 or C2 bit clock) /C4, C2, and /FR_COMP watchdogs
H-MVIP clocks /C16±, /C4, C2, and /FR_COMP watchdogs
SC-bus clocks (2 MHz or 4/8 MHz) SCLK, /SCLKx2, and /FR_COMP watchdogs
SECONDARY
REGISTER
SET
(X OR Y)
PRIMARY
REGISTER
SET
(X OR Y)
REGISTER
SET Y
REGISTER
SET X
ROTATING SECONDARY SCENARIO
FALLBACK
EVENT
FALLBACK
CLEARED
FALLBACK
EVENT
FALLBACK
EVENT
FIXED SECONDARY SCENARIO
FALLBACK
CLEARED
FALLBACK
CLEARED
84 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
7 Clock Architecture (continued)
7.7 Clock Circuit Operation—Fallback and Failsafe (continued)
7.7.1 Clock Fallback (continued)
7.7.1.2 Fallback Scenarios—Fixed vs. Rotating Secondary (continued)
5-9422 (F)
Figure 20. T8110 Clock Fallback States
FALLBACK
TYPE
?
TO_PRIMARY
(X IS THE ACTIVE SET,
ASSERT FALLBACK FLAG)
SECONDARY
(Y IS TH E ACTIVE SET)
TO_SECONDARY
(Y IS THE ACTIVE SET,
ASSERT FALLBACK FLAG)
PRIMARY
(X IS TH E ACTIVE SET)
INITIAL
(Y IS TH E ACTIVE SET)
RESET
USER COMMAND
GO_CLOCKS
FALLBACK ENABLED AND
FALLBACK EVENT
FALLBACK ENABLED AND
FALLBACK EVENT
USER COMMAND
CLEAR_FALLBACK
ROTATING
SECONDARY
FALLBACK
TYPE
?
MODE FIXED
SECONDARY
MODE
USER COMMAND
CLEAR_FALLBACK
ROTATING
SECONDARY
MODE
FIXED
SECONDARY
MODE
Agere Systems Inc. 85
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
7 Clock Architecture (contin ued )
7.7 Clock Circuit Operation— Fallbac k and Failsafe (continued)
7.7.1 Clock Fallb ack (continued)
7.7.1.2 Fallback Scenarios—Fixed vs. Rotating Se condary (continued)
* Fallback event; refer to Section 7.7.1.1 on page 82.
Fixed, rotating secondary; refer to Section 7.7.1.2 on page 83.
Table 60. Clock Fallback State Description
Clock Fallback
State Description Exit To Exit Condition
INITIAL Y is the active clock register
set. Default value provides
XTAL1-div-4 reference.
PRIMARY User issues GO_CLOCKS command
(set register 0x00108 bit 0).
PRIMARY X is the active clock register
set and controls APLL1
REFCLK.
TO_SECONDARY Fallback is enabled and fallback event*
occurs.
TO_SECONDARY Y is the active clock register
set and controls APLL1
REFCLK.
Fallback flag is asserted.
PRIMARY User issues CLEAR_FALLBACK com-
mand (set register 0x00108 bit 1) and
fallback type = fixed secondary.
SECONDARY User issues CLEAR_F ALLBACK com-
mand (set register 0x00108 bit 1) and
fallback type = rotating secondary.
SECONDARY Y is the active clock register
set and controls APLL1
REFCLK.
TO_PRIMARY Fallback is enabled and fallback event*
occurs.
TO_PRIMARY X is the active clock register
set and controls APLL1
REFCLK.
Fallback flag is asserted.
SECONDARY User issues CLEAR_F ALLBACK com-
mand (set register 0x00108 bit 1) and
fallback type = fixed secondary.
PRIMARY User issues CLEAR_FALLBACK com-
mand (set register 0x00108 bit 1) and
fallback type = rotating secondary.
86 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
7 Clock Architecture (continued)
7.7 Clock Circuit Operation—Fallback and Failsafe (continued)
7.7.1 Clock Fallback (continued)
7.7.1.3 H-Bus Clock Enab le/Dis able on Fallb ac k
The previous Ambassador devices allowed a fallback mode (A/B fallback) which automatically allowed an H1x0
bus clock master to detect an error in its own output clock and remove itself from the bus, or a clock slave to detect
an error on its incomin g clock and promote itself to clock master. The H-bus clocks include:
!A clocks: CT_C8_A, /CT_FRAM E_A
!B clocks: CT_C8_B, /CT_FRAM E_B
!C clocks: /C16±, /C4, C2, SCLK, /SCLKx2, /FR_COMP
Refer to Figure 21 and Table 61. The T8110 allows for this mode of operation in two ways:
Register 0x00109(7:4) = 0100: legacy mode, A/B fallback—when this mode is selected, the fallback triggers
allowed are predefined based on the main input clock selection, and the state machine which controls H-bus clock
enable/disable is activated.
Register 0x00109(7:4) = 1001: nonlegacy mode—when this mode is selected, the fallback trigger enable registers
determine what triggers a fallback, and the state machine which controls H-bus clock enable/disable is activated.
Figure 21. T8110 H-Bus Clock Enable States
The T8110
enters & leaves
these states
based on
Master Output
Enable cl ock
register
updates,
0x00220
Diag_ABC
= Drives A
Clocks, B Clocks and
C Clocks, no fallback
permitted
Initial
Diag_ABC
Diag_AB
C_Only
A_Only
A_Master
B_Only
B_Master
A_Error
B_Error
A Clocks Fail
B Clocks Fail
A Clocks Fail
B Clocks Fail
B Clocks Fail
A Clocks Fail
Reprogram
B Clocks
Reprogram
A Clocks
Diag nostic/Forced Clocking
Fallback Clocking, assumes
Fallback enabled in CKS register
Diag_AB
= Drives A
Clocks and B Clocks,
no fallback permitted
C_Only
= Drives C
Clocks only, no
fallback permitted
B_Only
= Drives B
Clocks, can be promoted
to master and drive C clocks
in fallbackcondition
A_Only
= Drives A
Clocks, can be promoted
to master and drive C clocks
in fallbackcondition
B_Master
= Drives B & C
Clocks, all clocks shut off
in fallbackcondition
A_Master
= Drives A & C
Clocks, all clocks shut off
in fallbackcondition
B_Error
= all clocks shut o ff,
waiting for B clocks to be
reprogrammed
A_Error
= all clocks shut off,
waiting for A clocks to be
reprogrammed
Agere Systems Inc. 87
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
7 Clock Architecture (contin ued )
7.7 Clock Circuit Operation— Fallbac k and Failsafe (continued)
7.7.1 Clock Fallb ack (continued)
7.7.1.3 H-Bus Clock Enable/Disable on Fallback (continued)
Table 61. H-Bus Clock Enable State Description
H-Bus Clock
Enable State Description Exit To Exit Condition
INITIAL Initial condition, waiting for clock
output control register program-
ming.
Any of the
other states User update of the clock output control regis-
ter (0x00220, master output enables).
DIAG_ABC T8110 is driving all H-bus clocks
(diagnostic mode). INITIAL User update of the clock output control regis-
ter (0x00220, master output enables).
DIAG_AB T8110 is driving both the H-bus A
and B clocks (diagnostic mode). INITIAL User update of the clock output control regis-
ter (0x00220, master output enables).
C_ONLY T8110 is driving only the
H-bus C clocks. INITIAL User update of the clock output control regis-
ter (0x00220, master output enables).
A_MASTER T81 10 clock output control registers
are programmed to drive A clocks
and C clocks (T8110 is an A clock
master), or T8110 was supplying a
backup A clock and has been pro-
moted to A clock master.
A_ERROR A clock error on CT_C8_A or /CT_FRAME_A
is de tected; disable clock outputs.
INITIAL User update of the clock output control regis-
ter (0x00220, master output enables).
A_ONL Y T81 10 clock output control registers
are programmed to drive A clocks
only (T8110 is a B clock slave, and
supplies a backup A clock).
A_MASTER A clock error on CT_C8_B or /CT_FRAME_B
is de tected; promote to A clock master.
A_ERROR A clock error on CT_C8_A or /CT_FRAME_A
is de tected; disable clock outputs.
INITIAL User update of the clock output control regis-
ter (0x00220, master output enables).
A_ERROR T8110 has detected a clock error
while driving the A clocks, and has
stopped driving any H bus clocks.
INITIAL User update of the clock output control regis-
ter (0x00220, master output enables).
B_MASTER T81 10 clock output control registers
are programmed to drive B clocks
and C clocks (T8110 is a B clock
master), or T8110 was supplying a
backup B clock and has been pro-
moted to B clock master.
B_ERROR A clock error on CT_C8_B or /CT_FRAME_B
is de tected; disable clock outputs.
INITIAL User update of the clock output control regis-
ter (0x00220, master output enables).
B_ONL Y T81 10 clock output control registers
are programmed to drive B clocks
only (T8110 is an A clock slave, and
supplies a backup B clock).
B_MASTER A clock error on CT_C8_A or /CT_FRAME_A
is de tected; promote to B clock master.
B_ERROR A clock error on CT_C8_B or /CT_FRAME_B
is de tected; disable clock outputs.
INITIAL User update of the clock output control regis-
ter (0x00220, master output enables).
B_ERROR T8110 has detected a clock error
while driving the B clocks, and has
stopped driving any H bus clocks.
INITIAL User update of the clock output control regis-
ter (0x00220, master output enables).
88 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
7 Clock Architecture (continued)
7.7 Clock Circuit Operation—Fallback and Failsafe (continued)
7.7.2 Clock Failsafe
Clock failsafe provides a safety net for the APLL1 reference clock source and is controlled by three registers,
0x00114—0x00116; see Section 6.1.1 1 on page 56. A failsafe event overrides the active clock control registers and
forces the APLL1 clock selection to be a fixed 4.096 MHz, derived from the XTAL1 crystal, divided by four. Transi-
tion into one of the failsafe states is independent of clock fallback (i.e., can enter from any state other than INI-
TIAL). Transitions out of the failsafe states are by user command and allow re-entry into either a nonfallback
(primary or secondary) or a fallback (TO_SECONDARY or TO_PRIMARY) state. Refer to Table 62 and Figure 22.
7.7.2.1 Failsa fe Even ts
Clock failsafe (transition from either clock register set to a forced XTAL1-div-4 APLL1 reference clock) can only
occur if the failsafe mode is enabled (register 0x00115, lower nibble), and a failsafe event occurs. A failsafe event
is triggered by a watchdog error on the APLL1 reference clock (i.e., loss-of-reference).
Additionally, an out-of-lock (OOL) condition is provided for debug purposes. This does not trigger a failsafe event,
but does indicate potential difficulty with the APLL1. A lock status flag is provided out of APLL1, and the OOL is
defined by exceeding a user-defined threshold value (register 0x00116). The lock status is a flag indicating when
APLL1 is making a correction to maintain synchronization. The flag is continuously sampled. If enough active flags
are sampled in a row to exceed the user-defined threshold, this condition is reported via the system status register
(0x00125).
5-9421 (F)
Figure 22. T8110 Clock Failsafe States
FS_2
FAILSAFE RETURN TO
NO N F A LL B ACK STATE
FAILSAFE ENABLED AND
FAILSAFE EVENT
FAI LSAFE ENABLED AND
FAI LSAFE EVENT
FAILSAFE RETURN TO
FALLBACK STATE
FALLBACK
TYPE
?
TO_PRIMARY
(X IS THE ACTIVE SET,
ASSERT FALLBACK FLAG)
SECONDARY
(Y IS THE ACTIVE SET)
TO_SECONDARY
(Y IS THE ACTIVE SET,
ASSERT FALLBACK FLAG)
INITIAL
(Y IS THE ACTIVE SET)
RESET
USER COMMAND
GO_CLOCKS
FALLBACK ENABLED AND
FALLBACK EVENT
FALLBACK ENABLED AND
FALLBACK EVENT
USER COMMAND
CLEAR_FALLBACK
ROTATING
SECONDARY
FALLBACK
TYPE
?
MODE FIXED
SECONDARY
MODE
USER COMMAND
CLEAR_FALLBACK
ROTATING
SECONDARY
MODE
FIXED
SECONDARY
MODE
FS_1
FAI LSAFE RETURN TO
NONFALLBACK STATE
FAILSAFE ENABLED AND
FAILSAFE EVENT
FAILSAFE ENABLED AND
FAILSAFE EVENT
FAILSAFE RETURN TO
FALLBACK STATE
PRIMARY
(X IS THE ACTIVE SET)
Agere Systems Inc. 89
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
7 Clock Architecture (contin ued )
7.7 Clock Circuit Operation— Fallbac k and Failsafe (continued)
7.7.2 Clock Failsa fe (continued)
7.7.2.1 Failsafe Events (continued)
Table 62. Clock Failsafe State Descriptions
Clock Failsafe
State Description Exit To Exit Condition
FS_1 APLL1 REFCLK is forced to
XTAL1-div-4.
FAILSAFE FLAG is asserted.
PRIMARY User issues FAILSAFE_RETURN to
nonfallback state command
(set register 0x00114 bit 0).
TO_SECONDARY User issues FAILSAFE_RETURN to
fallback state command
(set register 0x00114 bit 1).
FS_2 APLL1 REFCLK is forced to
XTAL1-div-4.
FAILSAFE FLAG is asserted.
SECONDARY User issues FAILSAFE_RETURN to
non-fallback state command
(set register 0x00114 bit 0).
TO_PRIMARY User issues FAILSAFE_RETURN to
fallback state command
(set register 0x00114 bit 1).
90 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
8 Frame Group and FG I/O
There are eight independently programmable T81 10 frame group/FGIO signals, FG[7:0]. In the frame group mode,
the pin is an 8 kHz frame reference output, with programmable pulse width, polarity, and delay offset from the inter-
nally generated frame reference. In the FGIO mode, the pin behaves as a general-purpose register bit, with pro-
grammable direction (IN or OUT) and read masking. The FG7 signal allows for an additional mode of operation,
providing a timer via a 16-bit programmable counter.
8.1 Frame Group Control Registers
8.1.1 FGx Lower and Upper Start Registers
The FGx lower and upper start registers provide a 12-bit delay offset value for the corresponding frame group bit.
Offsets are relative to the T8110 internally generated 8 kHz frame reference and have a resolution down to one
32.768 MHz clock period (30.5 ns increments).
Table 63. Frame Group and FG I/O Register Map
DWORD Address
(20 bits) Register
Byte 3 Byte 2 Byte 1 Byte 0
0x00400 FG0 rate FG0 width FG0 upper start FG0 lower start
0x00410 FG1 rate FG1 width FG1 upper start FG1 lower start
0x00420 FG2 rate FG2 width FG2 upper start FG2 lower start
0x00430 FG3 rate FG3 width FG3 upper start FG3 lower start
0x00440 FG4 rate FG4 width FG4 upper start FG4 lower start
0x00450 FG5 rate FG5 width FG5 upper start FG5 lower start
0x00460 FG6 rate FG6 width FG6 upper start FG6 lower start
0x00470 FG7 rate FG7 width FG7 upper start FG7 lower start
0x00474 FG7 mode upper FG7 mode lower FG7 counter high byte FG7 counter low byte
0x00480 Reserved FGIO R/W FGIO read mask FGIO data register
Table 64. FGx Lower and Upper Start Registers
Byte Address Name Bit(s) Mnemonic Value Function
0x00400
0x00410
0x00420
0x00430
0x00440
0x00450
0x00460
0x00470
FG0 Lower Start
(FG1 Lower Start)
(FG2 Lower Start)
(FG3 Lower Start)
(FG4 Lower Start)
(FG5 Lower Start)
(FG6 Lower Start)
(FG7 Lower Start)
7:0 F0LLR
(F1LLR)
(F2LLR)
(F3LLR)
(F4LLR)
(F5LLR)
(F6LLR)
(F7LLR)
LLLL LLLL Lower 8 bits of 12-bit start offset.
0x00401
(0x00411)
(0x00421)
(0x00431)
(0x00441)
(0x00451)
(0x00461)
(0x00471)
FG0 Upper Start
(FG1 Upper Start)
(FG2 Upper Start)
(FG3 Upper Start)
(FG4 Upper Start)
(FG5 Upper Start)
(FG6 Upper Start)
(FG7 Upper Start)
7:0 F0ULR
(F1ULR)
(F2ULR)
(F3ULR)
(F4ULR)
(F5ULR)
(F6ULR)
(F7ULR)
0000 LLLL Upper 4 bits of 12-bit start offset.
Agere Systems Inc. 91
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
8 Frame Group and FG I/O (continued)
8.1 Frame Group Control Registers (continued)
8.1.2 FGx Width Registers
The FGx width registers control the polarity and the pulse widths generated for the corresponding frame group bit.
The pulse-width programming works in conjunction with the FGx rate registers to provide 1-bit, 2-bit, 4-bit,
1-byte, and 2-byte wide pulses for any of the available frame group rates (see Table 65).
8.1.3 FGx Rate Registers
The FGx rate registers either enable FGIO operation* or work in conjunction with FGx width registers to provide
various width frame group pulses at rates of 2.048 MHz, 4.096 MHz, 8.192 MHz, or 16.384 MHz.
* FGIO operation is controlled at registers 0x00480—482. Refer to Section 8.3 on page 93.
Table 65. FGx Width Registers
Byte
Address Name Bit(s) Mnemonic Value Function
0x00402
(0x00412)
(0x00422)
(0x00432)
(0x00442)
(0x00452)
(0x00462)
(0x00472)
FG0 Wid th
(FG1 Width)
(FG2 Width)
(FG3 Width)
(FG4 Width)
(FG5 Width)
(FG6 Width)
(FG7 Width)
7F0ISB
(F1ISB)
(F2ISB)
(F3ISB)
(F4ISB)
(F5ISB)
(F6ISB)
(F7ISB)
0
1Generate active-high pulse (default).
Generate active-low pulse.
6:0 F0WSP
(F1WSP)
(F2WSP)
(F3WSP)
(F4WSP)
(F5WSP)
(F6WSP)
(F7WSP)
000 0000
000 0001
000 0010
000 0100
001 0000
010 0000
1-bit wide pulse (default).
1-bit wide pulse.
2-bit wide pulse.
4-bit wide pulse.
1-byte wide pulse.
2-byte wide pulse.
Table 66. FGx Rate Registers
Byte Address Name Bit(s) Mnemonic Value Function
0x00403
(0x00413)
(0x00423)
(0x00433)
(0x00443)
(0x00453)
(0x00463)
(0x00473)
FG0 Rate
(FG1 R at e )
(FG2 R at e )
(FG3 R at e )
(FG4 R at e )
(FG5 R at e )
(FG6 R at e )
(FG7 R at e )
7:0 F0RSR
(F1RSR)
(F2RSR)
(F3RSR)
(F4RSR)
(F5RSR)
(F6RSR)
(F7RSR)
0000 0000
0000 0001
0000 0010
0000 0100
0000 1000
0000 1001
Off (default).
FGIO enabled* (not used as a frame group).
FGx rate = 2.048 MHz.
FGx rate = 4.096 MHz.
FGx rate = 8.192 MHz.
FGx rate = 16.384 MHz.
92 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
8 Frame Group and FG I/O (continued)
8.2 FG7 Timer Option
The FG7 signal allows for an added function of a timer output, via a 16-bit programmable counter.
8.2.1 FG7 Counter (Low and High Byte) Registers
The FG7 counter (low and high byte) registers set the timer value. The timer is actually a divider, so the value
entered must be [divider value – 1], i.e., 0000000000000011 would yield a div-by-4 operation. The FG7 mode lower
register enables the timer option, with two clock source options: T8110 internal frame or an external timer clock via
the FG6 signal. The FG7 mode upper register controls the shape of the timer pulse. For more details, see Section
8.4.3 on page 97.
* Normal operation allows frame group or FGIO control via registers 0x00470—473. Enabling the counter overrides 0x00470—473 settings.
Square wave is only available when FG7 counter high/low value is a binary multiple 1, 2, 4, 8, 16, etc. Other values yield a carry out pulse
shape.
‡ Carry out pulse is active for one FG7 timer clock period.
§ Programmable pulses are based on T8110 i nternal 32.768 MHz clock periods.
Table 67. FG7 Counter (Low and High Byte) Registers
Byte
Address Name Bit Mnemonic Value Function
0x00474 FG7 Counter, Low Byte 7:0 FCLLR LLLL LLLL Lower 8 bits of 16-bit counter value.
0x00475 FG7 Counter, High Byte 7:0 FCULR LLLL LLLL Upper 8 bits of 16-bit counter value.
0x00476 FG7 Mode Lower 7:0 F7MSR 0000 0000
0000 0001
0000 0010
Normal operation* (default).
Enable timer, clock = internal frame.
Enable timer, clock = external FG6.
0x00477 FG7 Mode Upper 7 FCISB 0
1
Normal FG7 timer output, high pulses
(default).
Inverted FG7 timer output, low pulses.
6:4 F7SSP 000
001
010
100
FG7 tim er output off (default ).
FG7 timer output = square wave.
FG7 tim er out put = carr y out pul se.
FG7 timer output = programmable pulse§.
3:0 F7WSN 0001
0010
0100
1000
Programmable pulse width = 30.5 ns.
Programmable pulse width = 61.0 ns.
Programmable pulse width = 91.5 ns.
Programmable pulse width = 122 ns.
Agere Systems Inc. 93
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
8 Frame Group and FG I/O (continued)
8.3 FGIO Control Register s
8.3.1 FGIO Data Register
The FGIO data register provides read/write access and write storage to/from any FG signals being used as gen-
eral-purpose register bits. Writes to FGIO work in conjunction with the corresponding FGIO enabled settings in the
FGx rate registers. Reads are maskable, controlled via register 0x00481.
8.3.2 FGIO Read Mask Register
The FGIO read mask register controls the masking of any FG signals being used as general-purpose register bits
on a read access to the FGIO register.
Table 68. FGIO Data Register
Byte
Address Name Bit(s) Mnemonic Value Function
0x00480 FGIO Data Register 7 F7IOB L FGIO bit 7 value.
6 F6IOB L FGIO bit 6 value.
5 F5IOB L FGIO bit 5 value.
4 F4IOB L FGIO bit 4 value.
3 F3IOB L FGIO bit 3 value.
2 F2IOB L FGIO bit 2 value.
1 F1IOB L FGIO bit 1 value.
0 F0IOB L FGIO bit 0 value.
Table 69. FGIO Read Mask Register
Byte Address Name Bit(s) Mnemonic Value Function
0x00481 FGIO Read Mask 7 F7MEB 0
1Unmask FGIO bit 7 (default).
Mask FGIO bit 7, return 0 on a read.
6F6MEB 0
1Unmask FGIO bit 6 (default).
Mask FGIO bit 6, return 0 on a read.
5F5MEB 0
1Unmask FGIO bit 5 (default).
Mask FGIO bit 5, return 0 on a read.
4F4MEB 0
1Unmask FGIO bit 4 (default).
Mask FGIO bit 4, return 0 on a read.
3F3MEB 0
1Unmask FGIO bit 3 (default).
Mask FGIO bit 3, return 0 on a read.
2F2MEB 0
1Unmask FGIO bit 2 (default).
Mask FGIO bit 2, return 0 on a read.
1F1MEB 0
1Unmask FGIO bit 1 (default).
Mask FGIO bit 1, return 0 on a read.
0F0MEB 0
1Unmask FGIO bit 0 (default).
Mask FGIO bit 0, return 0 on a read.
94 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
8 Frame Group and FG I/O (continued)
8.3 FGIO Control Registers (continued)
8.3.3 FGIO R/W Register
The FGIO R/W register provides direction control for any of the FG signals being used as general-purpose register
bits.
Table 70. FGIO R/W Register
Byte
Address Name Bit(s) Mnemonic Value Function
0x00482 FGIO R/W 7 F7DSB 0
1FGIO bit 7 direction is input (default).
FGIO bit 7 direction is output.
6F6DSB 0
1FGIO bit 6 direction is input (default).
FGIO bit 6 direction is output.
5F5DSB 0
1FGIO bit 5 direction is input (default).
FGIO bit 5 direction is output.
4F4DSB 0
1FGIO bit 4 direction is input (default).
FGIO bit 4 direction is output.
3F3DSB 0
1FGIO bit 3 direction is input (default).
FGIO bit 3 direction is output.
2F2DSB 0
1FGIO bit 2 direction is input (default).
FGIO bit 2 direction is output.
1F1DSB 0
1FGIO bit 1 direction is input (default).
FGIO bit 1 direction is output.
0F0DSB 0
1FGIO bit 0 direction is input (default).
FGIO bit 0 direction is output.
Agere Systems Inc. 95
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
8 Frame Group and FG I/O (continued)
8.4 FG Circuit Operation
Each of the eight frame group signals FG[7:0] operate independently and have multiple uses. Refer to Figure 23
below.
!As programmable 8 kHz frame reference outputs (frame group)
!As general-purpose register I/O bits (FGIO)
!As a programmable timer (FG7 only)
!As external interrupt input signals
!As diagnostic observation points for internal testpoints
5-9428a (F)
Figure 23. FG[7:0] Functional Paths
MASTER ENABLE REGISTER (0x00103)
FGx ENABLE
LOGIC
FGX RATE
FGIOX R/W
TESTPOINT DIAGNOSTIC CONTROL
T8110 TESTPOINTS
OUTPUT
ENABLE
PULSE
GENERATOR
FGX WIDTH
OFFSET
DETECT
FGX UPPER/
LOWER STAR T
PROGRAMMABLE
TIMER
(FG7 ONLY)
T8110
FROM FG6 INPUT
INTERNAL FRA ME
ADDR
FG7 MODE
FG7 COUNTER
HI/LO BYTE
FGIOX
DATA REG
FGIO DATA REGISTER
WRITES FROM REGISTER
FGIO DATA REGISTER
READS TO RE G IS TE R
ACCESS INTERFACE
FGX
FGIOX READ MASK
FG AS EXTERNAL INTERRUPT
TO INTERRUPT CONTROLLER
ACCESS INTERFACE
IF DIRECTION = OUTPUT,
RETURN THE DATA REG
CONTENTS ON A
READBACK, ELSE RETURN
THE I/O PIN VALUE.
FGIOX R/W
96 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
8 Frame Group and FG I/O (continued)
8.4 FG Circuit Operation (continued)
8.4.1 Frame Group 8 kHz Reference Generation
Any of the T8110 FG signals may be used as programmable 8 kHz frame reference outputs. There are two sets of
control required, an offset delay from internal frame center, and pulse shaping.
The offset delay is provided via the FGx upper/lower start address registers. The delay is relative to the T8110
internal frame center, and the 12 bits used allow for 4096 different offsets, in increments of one 32.768 MHz clock
period (30.5 ns).
Pulse shaping is controlled via the FGx width and FGx rate registers. Pulses may be programmed to be active-high
or active-low. Pulse width can be either 1-bit, 2-bit, 4-bit, 1-byte or 2-byte wide (relative to the rate setting*), with
allowable rate settings of 2.048 MHz, 4.096 MHz, 8.192 MHz, and 16.384 MHz.
*Pulse widths are bit times or multiples of bit times, for each applicable rate:
RATE BIT TIME
2.048 Mbits/s 488 ns
4.096 Mbits/s 244 ns
8.192 Mbits/s 122 ns
16.384 Mbits/s 61 ns
Notes:
Frame group signals shown with offset = 0 (default). At offset = 0, the pulse starts at frame center.
Nonzero offsets denote 32.768 MHz period increments (30.5 ns) from frame center. There are up to 4096 increments within an 8 kHz frame
period. Offsets may be programmed in the range from 0—4095.
Frame group signals are shown as active high pulses (default)—they may be programmed as active-low pulses.
Diagram shows frame group pulse widths relative to bit-clock rate and time-slot width. This is applicable for any of the four fr ame group data
rates (2 Mbits/s, 4 Mbits/s, 8 Mbits/s, or 16 Mbits/s).
Figure 24. Frame Group 8 kHz Reference Timing
4321031, 63, 127 or 255
bitclock rate
(2, 4, 8, or
16MHz)
timeslot
Frame
Center
T8110 internal
frame
FG(x),
1-bit width,
offset = 0
FG(x),
2-bit width,
offset = 0
FG(x),
1-byte width,
offset = 0
FG(x),
2-byte width,
offset = 0
FG(x),
4-bit width,
offset = 0
Agere Systems Inc. 97
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
8 Frame Group and FG I/O (continued)
8.4 FG Circuit Operation (continued)
8.4.2 FGIO Gene ral-P u rpo se Bits
Any of the T8110 FG signals may be used as general-purpose I/O bits. Each FG bit used as FGIO is configured by
enabling the FGIO function via the FGx rate register(s) and setting the direction via the appropriate bits in the FGIO
R/W register. For write access to the FGIO, the FGIO data register is used to hold data for output to the FG pin(s).
Read accesses are maskable via the FGIO read mask register . For read access from the FGIO, the logical state of
the FG[7:0] signals is returned if unmasked. If an FGIO bit is masked, a read access returns 0.
8.4.3 Programmable Timer (FG7 Only)
The FG7 signal can be used as a programmable timer output, via the FG7 mode upper/lower, and FG7 counter
high and low byte registers. The FG7 timer is simply a clock divider. The FG7 counter high/low provides a 16-bit
[divider value – 1].
Note: [divider value – 1], i.e., a value of 0000000000000011 yields a div-by-4 operation.
The FG7 mode lower register enables the counter and selects between two clock sources into the counter: either
the T8110 internal frame (8 kHz) or an external clock via the FG6 input. The FG7 mode upper register controls the
output pulse shape. The output can be inverted or noninverted and shaped as either a square wave, a carryout
pulse, or a programmable-width pulse.
!Square wave. This option is applicable only for divide operations that are binary multiples (i.e., div-by-2, div-by-
4, div-by-8, div-by-16, div-by-65536). Nonbinary divide operations while square wave is selected result in a car-
ryout pulse.
!Carryout pulse. The output is a pulse, width = one FG7 timer clock period.
!Programmable-width pulse. The timer output is synchronized to the T81 10 32.768 MHz clock domain and can be
programmed for 1, 2, 3, or 4, 32.768 MHz clock periods in width (30.5 ns, 61 ns, 91.5 ns, or 122 ns).
8.4.4 FG External Interrupts
All FG signals are internally connected as inputs to the interrupt controller logic. Any FG signal, whether an output
or an input, may be used to trigger interrupts. When a T8110 FG signal is used as an externally sourced input into
the interrupt controller logic, it must be in input mode (i.e., shut-off, FGx rate register(s) FxRSR = 0000 0000). An
FG signal in output mode may also be used for interrupts (i.e., an 8 kHz periodic signal, see Section 8.4.1 on page
96). The interrupt control registers (0x00600—603) control how the FG inputs are handled (for more details, refer
to Section 12.1 on page 114).
8.4.5 FG Diagnostic Test Point Observation
Any of the T8110 FG signals may be used to observe a predefined set of internal testpoints. Each FG bit used as a
testpoint output is enabled via diagnostic register 0x00140, FG testpoint enable. Settings in this register override
the FGx rate and FGIO R/W register, and force the selected bits to be testpoint outputs, see Section 13.1 on page
130 and Table 98 on page 130.
98 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
9 General-Purpose I/O
There are eight independent T8110 GPIO signals, GP[7:0]. These pins behave as general-purpose register bits,
with programmable direction (in or out) and read masking. The GP0 and GP1 signals allow for an additional mode
of operation, providing dedicated output signals to indicate A clock and B clock mastering for H.110 bus applica-
tions.
9.1 GPIO Control Registers
9.1.1 GPIO Data Register
The GPIO data register provides read/write access and write storage to/from any GP signals being used as gen-
eral-purpose register bits. Reads from GPIO are maskable, controlled via register 0x00501.
Table 71. GPIO Register
DWORD Address
(20 bits)
Register
Byte 3 Byte 2 Byte 1 Byte 0
0x00500 GPIO override GPIO R/W GPIO read mask GPIO data register
Table 72. GPIO Data Register
Byte
Address Name Bit(s) Mnemonic Value Function
0x00500 GPIO Data Register 7 G7IOB L GPIO bit 7 value.
6 G6IOB L GPIO bit 6 value.
5 G5IOB L GPIO bit 5 value.
4 G4IOB L GPIO bit 4 value.
3 G3IOB L GPIO bit 3 value.
2 G2IOB L GPIO bit 2 value.
1 G1IOB L GPIO bit 1 value.
0 G0IOB L GPIO bit 0 value.
Agere Systems Inc. 99
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
9 General-Purpose I/O (continued)
9.1 GPIO Control Registers (continued)
9.1.2 GPIO Read Mask Register
The GPIO read mask register controls the masking of any GP signals being used as general-purpose register bits
on a read access to the GPIO register.
9.1.3 GPIO R/W Register
The GPIO R/W register provides direction control for any of the GP signals being used as general-purpose register
bits.
Table 73. GPIO Read Mask Register
Byte Address Name Bit(s) Mnemo nic V a lue Functio n
0x00501 GPIO Read Mask 7 G7MEB 0
1Unmask GPIO bit 7 (default).
Mask GPIO bit 7, return 0 on a read.
6G6MEB 0
1Unmask GPIO bit 6 (default).
Mask GPIO bit 6, return 0 on a read.
5G5MEB 0
1Unmask GPIO bit 5 (default).
Mask GPIO bit 5, return 0 on a read.
4G4MEB 0
1Unmask GPIO bit 4 (default).
Mask GPIO bit 4, return 0 on a read.
3G3MEB 0
1Unmask GPIO bit 3 (default).
Mask GPIO bit 3, return 0 on a read.
2G2MEB 0
1Unmask GPIO bit 2 (default).
Mask GPIO bit 2, return 0 on a read.
1G1MEB 0
1Unmask GPIO bit 1 (default).
Mask GPIO bit 1, return 0 on a read.
0G0MEB 0
1Unmask GPIO bit 0 (default).
Mask GPIO bit 0, return 0 on a read.
Table 74. GPIO R/W Register
Byte Address Name Bit(s) Mnemonic Value Function
0x00502 GPIO R/W 7 G7DSB 0
1GPIO bit 7 direction is input (default).
GPIO bit 7 direction is output.
6G6DSB 0
1GPIO bit 6 direction is input (default).
GPIO bit 6 direction is output.
5G5DSB 0
1GPIO bit 5 direction is input (default).
GPIO bit 5 direction is output.
4G4DSB 0
1GPIO bit 4 direction is input (default).
GPIO bit 4 direction is output.
3G3DSB 0
1GPIO bit 3 direction is input (default).
GPIO bit 3 direction is output.
2G2DSB 0
1GPIO bit 2 direction is input (default).
GPIO bit 2 direction is output.
1G1DSB 0
1GPIO bit 1 direction is input (default).
GPIO bit 1 direction is output.
0G0DSB 0
1GPIO bit 0 direction is input (default).
GPIO bit 0 direction is output.
100 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
9 General-Purpose I/O (contin ued)
9.1 GPIO Control Registers (continued)
9.1.4 GPIO Override Register
9.2 GP Circuit Operation
The eight general-purpose I/O group signals GP[7:0] each operate independently and have multiple uses. Please
refer to Figure 25 on page 100.
!As general-purpose register I/O bits (GPIO)
!As H.110 bus clock master indicators (GP0, GP1 only)
!As external interrupt input signals
!As diagnostic observation points for internal testpoints
5-9427a (F)
Figure 25. GP[7:0] Functional Paths
Table 75. GPIO Override Register
Byte
Address Name Bit(s) Mnemonic Value Function
0x0050 3 GPIO Over rid e 7: 3 Reser v ed 0000 0 NOP (d efau lt).
2G2OEB 0
1GPIO bit 2 is GPIO (default).
GPIO bit 2 is PCI_RST# indicator.
1G1OEB 0
1GPIO bit 1 is GPIO (default).
GPIO bit 1 B-master indicator output.
0G0OEB 0
1GPIO bit 0 is GPIO (default).
GPIO bit 0 A-master indicator output.
MASTER ENABLE REGISTER (0x00103)
GPx ENABLE
LOGIC
GPIO OVERRIDE
GPIOX R/W
TESTPOINT DIAGNOSTIC CONTROL
T8110 TESTPOINTS
OUTPUT
ENABLE
GPIOX
DATA REG
GPIO DATA REGISTER
WRITES FROM REGISTER
GPIO DATA REGISTER
READS TO RE G IS TE R
ACCESS INTERFACE
GPX
GPIOX READ MASK
GP AS EXTERNAL INTERRUPT
TO INTERRUPT CONTROLLER
ACCESS INTERFACE
GP0: A-CLOCK MASTER INDICATOR (0x00220 bit 4)
GP1: B-CLOCK MASTER INDICATOR (0x00220 bit 5)
GP2: PCI_RST# INDICATOR
IF DIRECTION = OUTPUT,
RETURN THE DATA REG
CONTENTS ON A
READBACK, ELSE RETURN
THE I/O PIN VALUE.
GPIOX R/W
Agere Systems Inc. 101
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
9 General-Purpose I/O (continued)
9.2 GP Circuit Operation (continued)
9.2.1 GPIO General-Purpose Bits
Any of the T8110 GP signals may be used as general-purpose I/O bits. Each GP bit used as GPIO is configured by
setting the direction via the appropriate bits in the GPIO R/W register . For write access to the GPIO, the GPIO data
register is used to hold data for output to the GP pin(s). Read accesses are maskable via the GPIO read mask reg-
ister. For read access from the GPIO, the logical state of the GP[7:0] signals is returned if unmasked. If a GPIO bit
is masked, a read access returns 0.
9.2.2 GP Dual-Purpose Bits GPIO (Override)
9.2.2.1 GP H.110 Clock Master Indicators (GP0, GP1 Only)
An additional function is provided for GP0 and GP1 only, controlled via the GPIO override register.
GP0 may be used as a dedicated output (set GPIO override register bit 0), which transmits the state of the T8110
A clock master enable (register 0x00220, bit 4). This output is intended to drive the external A clock FETs required
for H.110 bus mastering.
GP1 may be used as a dedicated output (set GPIO override register bit 1), which transmits the state of the T8110
B clock master enable (register 0x00220, bit 5). This output is intended to drive the external B clock FETs required
for H.110 bus mastering.
9.2.2.2 PCI_RST# Indicator (GP2 Only)
An additional function is provided for GP2 only, controlled via the GPIO override register. GP2 may be used as a
dedicated output (set GPIO override register bit 2), which forwards the state of the PCI_RST# signal. Polarity of
the transmitted signal is selectable via register 0x00780 (refer to Section 1 1.2 on page 111). This function provides
access to a forwarded PCI_RST# signal by external devices hanging off the minibridge port.
9.2.3 GP External Interrupts
Any of the T8110 GP signals may be used as externally sourced inputs into the interrupt controller logic. Each GP
bit used as an interrupt input must be shut off by setting the appropriate GPIO R/W register bit to be input. The
interrupt control registers (0x00604—607) control how the GP inputs are handled. For more details, see Section
12.1 on page 114.
9.2.4 GP Diagnostic Test Point Observation
Any of the T8110 GP signals may be used to observe a predefined set of internal testpoints. Each GP bit used as
a testpoint output is enabled via diagnostic register 0x00142, GP testpoint enable. Settings in this register override
the GPIO R/W register and force the selected bits to be testpoint outputs (refer to Section 13.1 on page 130, and
Table 100 on page 132).
102 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
10 Stream Rate Control
There are a total of 64 data streams, divided into 16 stream groups of four streams each, as shown below.
The H-bus group operational frequencies are selectable between 2.048 MHz, 4.096 MHz, and 8.192 MHz.
The L-bus groups may operate at 2.048 MHz, 4.096 MHz, 8.192 MHz, and 16.384 MHz, which is implemented as
multiplexed 8.192 MHz streams. (For more details, see Section 10.2.2 on page 104).
Table 76. T8110 Serial Stream Groupings
Stream Group Stream Bits
H-bus group A CT_D[0:3]
H-bus group B CT_D[4:7]
H-bus group C CT_D[8:11]
H-bus group D CT_D[12:15]
H-bus group E CT_D[16:19]
H-bus group F CT_D[20:23]
H-bus group G CT_D[24:27]
H-bus group H CT_D[28:31]
L-bus group A LD[0:3]
L-bus group B LD[4:7]
L-bus gr oup C LD[8:11]
L-bus gr oup D LD[12:15]
L-bus group E LD[16:19]
L-bus group F LD[20:23]
L-bus group G LD[24:27]
L-bus gr oup H LD[28:31]
Agere Systems Inc. 103
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
10 Stream Rate Control (continued)
10.1 H-Bus Stream Rate Control Registers
10.1.1 H-Bus Rate Registers
The H-bus rate registers control the serial data stream rate of operation for each of the H-bus stream groups,
A—H. The upper nibble controls groups B, D, F, and H. The lower nibble controls groups A, C, E, and G.
10.2 L-Bus Stream Rate Control Registers
10.2.1 L-Bus Rate Registers
The L-bus rate registers control the serial data stream rate of operation for each of the L-bus stream groups,
A—H. The upper nibble controls groups B, D, F, and H. The lower nibble controls groups A, C, E, and G. Local
streams have a 16.384 MHz rate option (refer to Section 10.2.2 on page 104).
Table 77. H-Bus Rate Registers
DWORD Address (20 Bits ) Register
Byte 3 Byte 2 Byte 1 Byte 0
0x00300 H-bus rate H/G H-bus rate F/E H-bus rate D/C H-bus rate B/A
Byte Address Name Bit(s) Mnemonic Value Function
0x00300
(0x00301)
(0x00302)
(0x00303)
H-bus Rate B/A
(H-bus Rate D/C)
(H-bus Rate F/E)
(H-bus Rate H/G)
7:4 HBRSN
(HDRSN)
(HFRSN)
(HHRSN)
0000
0010
0100
1000
H-bus group B(D, F, H) off (default).
H-bus group B(D, F, H) rate = 2.048 MHz.
H-bus group B(D, F, H) rate = 4.096 MHz.
H-bus group B(D, F, H) rate = 8.192 MHz.
3:0 HARSN
(HCRSN)
(HERSN)
(HGRSN)
0000
0010
0100
1000
H-bus group A(C, E, G) off (default).
H-bus group A(C, E, G) rate = 2.048 MHz.
H-bus group A(C, E, G) rate = 4.096 MHz.
H-bus group A(C, E, G) rate = 8.192 MHz.
Table 78. L-Bus Rate Registers
DWORD
Address (20 Bits)
Register
Byte 3 Byte 2 Byte 1 Byte 0
0x00320 L-bus rate H/G L-bus rate F/E L-bus rate D/C L-bus rate B/A
Byte Address Name Bit(s) Mnemonic Value Function
0x00320
(0x00321)
(0x00322)
(0x00323)
L-bus R ate B/A
(L-bus Rate D/C)
(L-bus Rate F/E)
(L-bus Rate H/G)
7:4 LBRSN
(LDRSN)
(LFRSN)
(LHRSN)
0000
0010
0100
1000
1001
L-bus group B(D, F, H) off (default).
L-bus group B(D, F, H) rate = 2.048 MHz.
L-bus group B(D, F, H) rate = 4.096 MHz.
L-bus group B(D, F, H) rate = 8.192 MHz.
L-bus group B(D, F, H) rate = 16.384 MHz.
3:0 LARSN
(LCRSN)
(LERSN)
(LGRSN)
0000
0010
0100
1000
1001
L-bus group A(C, E, G) off (default).
L-bus group A(C, E, G) rate = 2.048 MHz.
L-bus group A(C, E, G) rate = 4.096 MHz.
L-bus group A(C, E, G) rate = 8.192 MHz.
L-bus group A(C, E, G) rate = 16.384 MHz.
104 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
10 Stream Rate Control (continued)
10.2 L-Bus Stream Rate Control Registers (continued)
10.2.2 L-Bus 16.384 Mbits/s Operation
Local stream 16.384 Mbits/s operation is implemented as two multiplexed 8.192 Mbits/s streams. Bits are shifted at
16.384 MHz, and 16 bits are shifted per 8.192 Mbits/s time slot (refer to Figure 26). This operation makes use of
adjacent pairs of the existing single-byte hold and shift registers for local stream operation, with the local even
stream assigned as the incoming stream, and the local odd stream assigned as the outgoing stream. Pairs are
assigned as LD[0,1], LD[2,3], . . . LD[30,31]. When an L-bus group is set to operate at rate of 16.384 Mbits/s, the
hold and shift circuitry is configured such that the serial output of the even stream shift register feeds the serial
input of the odd stream shift register (refer to Figure 27).
5-9411 (F)
Figure 26. Local Stream 16.384 Mbits/s Timing
15 6
976 ns (ON E 8 M bits/s TIM E SL O T)
TIME-SLOT n
INCOMING BITS ARE SAMPLED AT
THE 3/4 POINT OF THE BIT TIME
14 13 12 11 10 9 8 7 5 4 3 2 1 0
8.192 MH z
16.384 MH z
SERIAL DATA:
L_D[EVEN] (INCOMING),
L_D[ODD] (OUTGOING)
OFFLOAD INCOMING
BYTES FROM TIME-SLOT n – 1 TO HOLDING REGISTERS,
LOAD OUTGOING BYTES FOR
TIME-SLOT n TO SHIFT R EGISTE RS
OFFLOAD INCOMING
BYTES FROM TIME-SLO T n TO HOLDING REGISTERS,
LOAD OUTGOING BYTES FOR
TIME-SLOT n + 1 TO SHIFT REGISTE RS
Agere Systems Inc. 105
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
10 Stream Rate Control (continued)
10.2 L-Bus Stream Rate Control Registers (continued)
10.2.2 L-Bus 16.384 Mbits/s Operation (continued)
5-9426 (F)
Figure 27. Local Stream 16.384 Mbits/s Circuit
LOCAL
EVEN
STREAM
SHIFT
REGISTER
EVEN
STREAM
INCOMING
HOLDING
REGISTER
EVEN
STREAM
OUTGOING
HOLDING
REGISTER
ODD
STREAM
INCOMING
HOLDING
REGISTER
ODD
STREAM
OUTGOING
HOLDING
REGISTER
MS bit
LOCAL
ODD
STREAM
SHIFT
REGISTER
MS bit
88-bit BYTE TO
DATA MEMORY
8-bit BYTE FRO M
DATA MEMORY 8
88-bit BYTE TO
DATA MEMORY
8-bit BYTE FRO M
DATA MEMORY 8
(NO LOCAL EVEN
SERIAL OUTPUT
IF 16.384 M b its/s
OPERATION)
OUTGOING
SERIAL DATA
OUTGOING SERIAL DATA (ODD)
INCOMING SERIAL DATA (EVEN)
(NO L OCAL O D D
SERIAL INPUT
IF 16.384 Mb its/s
OPERATION)
INCOMING
SERIAL DATA
16.384 Mb its/s
ENABLE
(ODD) (EVEN)
106 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
10 Stream Rate Control (continued)
10.2 L-Bus Stream Rate Control Registers (continued)
10.2.3 16.384 Mbits/s Local I/O Superrate
This 16.384 Mbits/s rate option is available only on the local I/O streams (i.e., it is not supported as a part of the
H.100/H.110 specifications). When applying the superrate option to a local I/O group, the I/O for the group is rede-
fined and divided into two pairs of input and output. An input or an output can be selected from each pair, but both
can't be used simultaneously. This leads to four possible configurations for each group. Note that inputs are always
on even signals and outputs are always on odd signals. Thus, if all local groups are operated at the superrate, then
the application can have 16 lines, all at 16.384 Mbits/s, in contrast to the 32 I/O lines at normal rates.
Figure 28. Superrate I/O Configuration
LOCAL
I/O
PINS
LD0
LD1
LD2
LD3
GROUP A
GROUP A CONFIGURATION A T 2.048, 4.096,
OR 8.192 Mbits/s
LOCAL
I/O
PINS
LD0
LD1
LD2
LD3
GROUP A
GROUP A CONFIG URATIO N 1
AT 16.384 Mbits/s SUPERRATE
LOCAL
I/O
PINS
LD0
LD1
LD2
LD3
GROUP A
GROUP A CONFIG URA T ION 2
AT 16.384 Mbits/s SUPERRATE
LOCAL
I/O
PINS
LD0
LD1
LD2
LD3
GROUP A
GROUP A CONFIG URATIO N 3
AT 16.384 Mbits/s SUPERRATE
LOCAL
I/O
PINS
LD0
LD1
LD2
LD3
GROUP A
GROUP A CONFIG URATIO N 4
AT 16.384 Mbits/s SUPERRATE
Agere Systems Inc. 107
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
10 Stream Rate Control (continued)
10.2 L-Bus Stream Rate Control Registers (continued)
10.2.4 16.384 Mbits/s Local I/O Superrate
The configurations are selected as a consequence of the connection programming. The data is inputted or output-
ted as a true 16-bit at 16.384 Mbits/s signal. Programming a 16-bit connection requires two separate byte connec-
tions, one for the MS-byte and the other for the LS-byte.
Note: n = even number, m = integer.
Figure 29. Relationship Between 8.192 Mbits/s and 16.384 Mbits/s Time Slots
Thus, programming a connection to stream n + 1 is programming a connection to the MS-byte on output pin n + 1
and programming a connection to stream n is programming a connection to the LS-byte on output pin n + 1. Simi-
larly, programming a connection from stream n + 1 is programming a connection from the MS-byte on input pin n
and programming a connection from stream n is programming a connection from the LS-byte on input pin n.
(An easier way to remember this is that the even/odd identifier becomes the MS-byte/LS-byte identifier.)
As a consequence of this arrangement, the T8110 permits byte-packing at the superrate in analogous manner to
subrate bit-packing.
15 14 13 12 11 10 9876543210
Programming a connection for
Stream n + 1, Time Slot m
writes to/reads from here
Programming a connection for
Stream n, Time Slot m
writes to/reads from here
Superrate Streampair n/n + 1, Timeslot m
If Input use Stream n, if Output use Stream n + 1
7 6 5 4 3 2 1 0
8.192 Mbits/s Stream n, Timeslot m
and
8.192 Mbits/s Stream n + 1, Timeslot m
122 ns
61 ns
8.192 Mbits/s input data bits are sampled at 3/4 point (91 ns) of the 122 ns bit time
16.384 Mbits/s input data bits are sampled at 3/4 point (45 ns) of the 61 ns bit time
108 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
11 Minibridge
The T8110 provides for access to non-PCI devices from the PCI bus via the minibridge port.
Note: If the T8110 is configured to interface to a microprocessor bus, the minibridge function is not applicable, and
the minibridge port pins are used for the microprocessor interface. Refer to Section 5 on page 40.
PCI access requests are converted to a simple interface to external devices hanging on the minibridge port. There
are eight chip select outputs, a read strobe, a write strobe, a 16-bit address and 16-bit data bus. Additionally, a for-
warded version of the PCI_RST# signal can be made available at the GP(2) output; refer to Section 6.1.1 on page
48 and Section 9.2.2.2 on page 101. PCI_AD[15:0], during the address phase, is DIRECTLY MAPPED as the
MB_A[15:0] address. Customers could possibly assume this, OR may assume that byte lane enables determine
the state of MB_A[1:0].
There is a direct mapping of the PCI address bits to the minibridge address bits. Users must be aware that
MB_A[1:0] of a minibridge transaction is a direct pass-thru from the PCI_AD[1:0] of the address phase, and for PCI
MEMORY transactions (which is the only type of transaction T8110 responds to), the value is always 00.
In addition, be aware that the minibridge only operates as 16-bit-only transfers, with the data positioned only on bits
[15:0] of PCI_AD during the data phase.
11.1 Wait-Stat e Contro l Register s
11.1.1 Minibridge W ait-State Control Registers
The minibridge wait-state control registers allow for programmable assertion times for MB_CS[7:0], MB_RD, and
MB_WR control outputs. Resolution for the wait-state value increments is one 65.538 MHz clock period (15.25 ns);
refer to Figure 26 on page 104.
Table 79. Minibridge Wait-State Control Register Map
DWORD
Address
(20 bits)
Register
Byte 3 B yt e 2 Byte 1 Byte 0
0x00700 CS0 addr setup wait CS0 read hold wait CS0 read width wait CS0 read setup wait
0x00704 CS0 addr hold wait CS0 write hold wait CS0 write width wait CS0 write setup wait
0x00710 CS1 addr setup wait CS1 read hold wait CS1 read width wait CS1 read setup wait
0x00714 CS1 addr hold wait CS1 write hold wait CS1 write width wait CS1 write setup wait
0x00720 CS2 addr setup wait CS2 read hold wait CS2 read width wait CS2 read setup wait
0x00724 CS2 addr hold wait CS2 write hold wait CS2 write width wait CS2 write setup wait
0x00730 CS3 addr setup wait CS3 read hold wait CS3 read width wait CS3 read setup wait
0x00734 CS3 addr hold wait CS3 write hold wait CS3 write width wait CS3 write setup wait
0x00740 CS4 addr setup wait CS4 read hold wait CS4 read width wait CS4 read setup wait
0x00744 CS4 addr hold wait CS4 write hold wait CS4 write width wait CS4 write setup wait
0x00750 CS5 addr setup wait CS5 read hold wait CS5 read width wait CS5 read setup wait
0x00754 CS5 addr hold wait CS5 write hold wait CS5 write width wait CS5 write setup wait
0x00760 CS6 addr setup wait CS6 read hold wait CS6 read width wait CS6 read setup wait
0x00764 CS6 addr hold wait CS6 write hold wait CS6 write width wait CS6 write setup wait
0x00770 CS7 addr setup wait CS7 read hold wait CS7 read width wait CS7 read setup wait
0x00774 CS7 addr hold wait CS7 write hold wait CS7 write width wait CS7 write setup wait
Agere Systems Inc. 109
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
11 Minibridg e (continued)
11.1 Wait-State Control Registers (continued)
11.1.1 Minibridge Wait-State Control Registers (continued)
Table 79. Minibridge Wait-State Control Registers (continued)
Byte
Address Name Bit(s) Mnemonic Value Function
0x00700
(0x00710)
(0x00720)
(0x00730)
(0x00740)
(0x00750)
(0x00760)
(0x00770)
CS0 Read Setup Wait
(CS1 Read Setup Wait)
(CS2 Read Setup Wait)
(CS3 Read Setup Wait)
(CS4 Read Setup Wait)
(CS5 Read Setup Wait)
(CS6 Read Setup Wait)
(CS7 Read Setup Wait)
7:0 R0SLR
(R1SLR)
(R2SLR)
(R3SLR)
(R4SLR)
(R5SLR)
(R6SLR)
(R7SLR)
LLLL LLLL Read cycle wait-state value, delay to
leading edge of MB_RD.
0x00701
(0x00711)
(0x00721)
(0x00731)
(0x00741)
(0x00751)
(0x00761)
(0x00771)
CS0 Read Width Wait
(CS1 Read Width Wait)
(CS2 Read Width Wait)
(CS3 Read Width Wait)
(CS4 Read Width Wait)
(CS5 Read Width Wait)
(CS6 Read Width Wait)
(CS7 Read Width Wait)
7:0 R0WLR
(R1WLR)
(R2WLR)
(R3WLR)
(R4WLR)
(R5WLR)
(R6WLR)
(R7WLR)
LLLL LLLL Read cycle wait-state value, asser-
tion time for MB_RD.
0x00702
(0x00712)
(0x00722)
(0x00732)
(0x00742)
(0x00752)
(0x00762)
(0x00772)
CS0 Read Hold Wait
(CS1 Read Hold Wait)
(CS2 Read Hold Wait)
(CS3 Read Hold Wait)
(CS4 Read Hold Wait)
(CS5 Read Hold Wait)
(CS6 Read Hold Wait)
(CS7 Read Hold Wait)
7:0 R0HLR
(R1HLR)
(R2HLR)
(R3HLR)
(R4HLR)
(R5HLR)
(R6HLR)
(R7HLR)
LLLL LLLL Read cycle wait-state value, delay to
deassertion of MB_CS0 (1, 2, 3, 4, 5,
6, 7).
0x00703
(0x00713)
(0x00723)
(0x00733)
(0x00743)
(0x00753)
(0x00763)
(0x00773)
CS0 Addr Setup Wait
(CS1 Addr Setup Wait)
(CS2 Addr Setup Wait)
(CS3 Addr Setup Wait)
(CS4 Addr Setup Wait)
(CS5 Addr Setup Wait)
(CS6 Addr Setup Wait)
(CS7 Addr Setup Wait)
7:0 A0SLR
(A1SLR)
(A2SLR)
(A3SLR)
(A4SLR)
(A5SLR)
(A6SLR)
(A7SLR)
LLLL LLLL Any cycle wait-state value, delay from
beginning of cycle to assertion of
MB_CS0 (1, 2, 3, 4, 5, 6, 7).
0x00704
(0x00714)
(0x00724)
(0x00734)
(0x00744)
(0x00754)
(0x00764)
(0x00774)
CS0 Write Setup Wait
(CS1 Write Setup Wait)
(CS2 Write Setup Wait)
(CS3 Write Setup Wait)
(CS4 Write Setup Wait)
(CS5 Write Setup Wait)
(CS6 Write Setup Wait)
(CS7 Write Setup Wait)
7:0 W0SLR
(W1SLR)
(W2SLR)
(W3SLR)
(W4SLR)
(W5SLR)
(W6SLR)
(W7SLR)
LLLL LLLL Write cycle wait-state value, delay to
leading edge of MB_WR.
110 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
11 Minibridge (continu ed)
11.1 Wait-State Contro l Registers (continued)
11.1.1 Minibridge W ait-State Control Registers (continued)
Table 79. Minibridge Wait-State Control Registers (continued)
Byte
Address Name Bit(s) Mnemonic Value Function
0x00705
(0x00715)
(0x00725)
(0x00735)
(0x00745)
(0x00755)
(0x00765)
(0x00775)
CS0 Write Width Wait
(CS1 Write Width W ait)
(CS2 Write Width W ait)
(CS3 Write Width W ait)
(CS4 Write Width W ait)
(CS5 Write Width W ait)
(CS6 Write Width W ait)
(CS7 Write Width W ait)
7:0 W0WLR
(W1WLR)
(W2WLR)
(W3WLR)
(W4WLR)
(W5WLR)
(W6WLR)
(W7WLR)
LLLL LLLL Write cycle wait-state value, assertion
time for MB_WR.
0x00706
(0x00716)
(0x00726)
(0x00736)
(0x00746)
(0x00756)
(0x00766)
(0x00776)
CS0 Write Hold Wait
(CS1 Write Hold Wait)
(CS2 Write Hold Wait)
(CS3 Write Hold Wait)
(CS4 Write Hold Wait)
(CS5 Write Hold Wait)
(CS6 Write Hold Wait)
(CS7 Write Hold Wait)
7:0 W0HLR
(W1HLR)
(W2HLR)
(W3HLR)
(W4HLR)
(W5HLR)
(W6HLR)
(W7HLR)
LLLL LLLL Write cycle wait-state value, delay to
deassertion of MB_CS0 (1, 2, 3, 4, 5,
6, 7).
0x00707
(0x00717)
(0x00727)
(0x00737)
(0x00747)
(0x00757)
(0x00767)
(0x00777)
CS0 Addr Hold Wait
(CS1 Addr Hold Wait)
(CS2 Addr Hold Wait)
(CS3 Addr Hold Wait)
(CS4 Addr Hold Wait)
(CS5 Addr Hold Wait)
(CS6 Addr Hold Wait)
(CS7 Addr Hold Wait)
7:0 A0HLR
(A1HLR)
(A2HLR)
(A3HLR)
(A4HLR)
(A5HLR)
(A6HLR)
(A7HLR)
LLLL LLLL Any cycle wait-state value, delay from
deassertion of MB_CS0 (1, 2, 3, 4, 5,
6, 7) to end of cycle.
Agere Systems Inc. 111
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
11 Minibridg e (continued)
11.2 Strobe Control Registers
The CS strobe inversion and RD-WR strobe inversion registers allow for programmable polarity of the
MB_CS[7:0], MB_RD, and MB_WR minibridge control strobes. Additionally, the polarity of the forwarded
PCI_RST# signal (to the GP(2) output) is selectable.
11.3 Minibridge Circuit Operation
The minibridge circuit accepts PCI memory read and memory write transactions and translates them into simple
asynchronous* control strobes for external devices hanging off the minibridge port.
The PCI address is passed straight through to the minibridge port, so MB_A[15:0] is always DWORD-aligned
(MB_A[1:0] = 00). Transactions are always 16-bit data, with the data on the PCI side always positioned at bits
PCI_AD[15:0]. Byte lane enables, PCI_CBEn[3:0], are ignored for minibridge transactions.
Refer to Section 4.1.5 on page 35 for more detail on the PCI side of the transactions. Refer to Figure 30 for the
access cycle descriptions of the minibridge side of the transactions.
* Async hronous rel ative to the PCI clock. St robes are generated relative to the internal chip clock in multip l es of 65.536 MHz clock periods.
Table 80. Strobe Control Registers
DWORD
Address
(20 bits)
Register
Byte 3 Byte 2 Byte 1 Byte 0
0x00780 Re se rved Res erve d RD-WR strobe
inversion CS strobe inversion
Byte Address Name Bit(s) Mnemonic Value Function
0x00780 CS Strob e Invers io n 7 IC7SB 0
1CS7 strobe is active-high (default).
CS7 strobe is active-low.
6IC6SB 0
1CS6 strobe is active-high (default).
CS6 strobe is active-low.
5IC5SB 0
1CS5 strobe is active-high (default).
CS5 strobe is active-low.
4IC4SB 0
1CS4 strobe is active-high (default).
CS4 strobe is active-low.
3IC3SB 0
1CS3 strobe is active-high (default).
CS3 strobe is active-low.
2IC2SB 0
1CS2 strobe is active-high (default).
CS2 strobe is active-low.
1IC1SB 0
1CS1 strobe is active-high (default).
CS1 strobe is active-low.
0IC0SB 0
1CS0 strobe is active-high (default).
CS0 strobe is active-low.
0x00781 R/W Strobe Inversion 7:3 Reserved 0000 0 NOP (default).
2IPRSB 0
1For ward direct PCI_RST# (default).
Forward inverted PCI_RST#.
1IMRSB 0
1MB_RD strobe is active-high (default).
MB_RD strobe is active-low.
0IMWSB 0
1MB_WR strobe is active-high, (default).
MB_WR strobe is active-low.
112 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
11 Minibridge (continu ed)
11.3 Minibridge Circuit Operation (continued)
5-9412 (F)
Figure 30. Minibridge Read/Write Access Cycles
Notes:
!Strobes are created based on the T8110 internal 65.536 MHz clock. MB_CS, MB_RD, and MB_WR are shown
here as active-low , but may be programmed active-high via the CS strobe inversion and RD-WR strobe inversion
registers.
!User-programmable wait-states are allowed at five points for either read or write cycles:
— Delay from valid address to MB_CSn assertion (address wait).
— Delay from MB_CSn assertion to the leading edge of the MB_RD (or MB_WR) strobe (setup wait).
— Pulse width of the MB_RD (or MB_WR) strobe (width wait).
— Delay from MB_RD (or MB_WR) trailing edge to the deassertion of MB_CSn (hold wait).
— Delay from deassertion of MB_CSn to address invalid (address wait).
!With no wait-states, the minimum access time (read or write) for the minibridge interface is 76.3 ns
(five 65.536 MHz cloc k cycles).
!Timing protocol. Any user-programmable wait-states are defined in increments of 65.536 MHz clock periods
(15.25 ns):
— taccess: total access time. Minimum = 76. 3 ns (five clock cycles), maximum = 19.5 µs (accumul a tio n of us er-
programmed wait-states).
— tasu: address setup to MB_CSn active. Minimum = 15.25 ns (one clock cycle), maximum = 3.9 µs
(256 clock cycles) user-programmable via CSn address wait register.
— tah: address hold from MB_CSn inactive. Minimum = 15.25 ns (one clock cycle), maximum = 3.9 µs
(256 clock cycles) user-programmable via CSn address wait register.
ADDRESS VALID
WRITE DA TA VALID
RD DATA
VALID
taccess
trdsuwait trdholdwait
trdh
twrwidth
twrsuwait twrholdwait
tasu trdwidth tah
twrsu
trdsu
T8110
INTERNAL CLOCK
(65.538 MHz)
MB_A[15:0]
MB_CSn
MB_D[15:0]
(READ CYCLE)
MB_WR
MB_D[15:0]
(WRITE CYCLE)
MB_RD
Agere Systems Inc. 113
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
11 Minibridg e (continued)
11.3 Minibridge Circuit Operation (continued)
— trdsuwait: delay from MB_CSn active to leading edge of MB_RD strobe. Minimum = 15.25 ns (one clock
cycle), maximum = 3. 9 µs (256 clock cycles) user-programmable via CSn RD setup wait register.
— trdwidth: MB_RD strobe pulse width. Minimum = 15.25 ns (one clock cycle), maximum = 3.9 µs
(256 clock cycles) user-programmable via CSn RD width wait register.
— trdholdwait: delay from MB_RD strobe trailing edge to MB_CSn inactive. Minimum = 15.25 ns
(one clock cycle), maximum = 3.9 µs (256 clock cycles) user-programmable via CSn RD hold wait register.
— trdsu: read cycle data setup to trailing edge RDn. Minimum = 10 ns.
— trdh: read cycle data hold from trailing edge RDn. Minimum = 0 ns.
— twrsuwait: delay from MB_CSn active to leading edge of MB_WR strobe. Minimum = 15.25 ns
(one clock cycle), maximum = 3.9 µs (256 clock cycles) user-progr ammable via CSn WR setup wait register.
— twrwidth: MB_WR strobe pulse width. Minimum = 15.25 ns (one clock cycle), maximum = 3.9 µs
(256 clock cycles) user-programmable via CSn WR width wait register.
— twrholdwait: del ay fr om MB_ WR strob e traili ng edg e to MB_CS n inac tive . Minimum = 15.25 ns
(one clock cycle), maximum = 3.9 µs (256 clock cycles) user-programmable via CSn WR hold wait register.
— twrsu: write cycle data setup to trailing edge of MB_WR. Minimum = 30.5 ns (two clock cycles).
11.4 Minibridge Operation al Addr essing
The operating space (in PCI) i s from 0x70000—0x7FFFF. The address presented on the minibridge side,
MB_A[15:0], is a straight pass-thru of the PCI_AD[15:0] bits during the address phase of the PCI transaction. The
eight chip selects decode address bits [15:13] so that the chip selects are active in the eight spaces shown in the
table below.
Since the upper address lines are made available on the minibridge side in addition to the chip selects, it is possi-
ble to create variations of the selected spaces using a minimal amount of external logic.
Example: A (posted) write to or (delayed) read from PCI address 0x77A10 would occur at minibridge address
0x7A10, where CS3 was active. The user could choose to use the full 16-bit address (0x7A10) or use CS3 with a
13-bit address 0x1A10 (both are simultaneously available). The timing of the CS signal relative to the read, write
address, and data is set by the parameters for CS3 in PCI registers 0x00730—00737.
Table 81. Minibridge Operating Space (PCI)
A[15:13] PCI Space MB Space Chip Select
000 0x70000—71FFC 0x0000—1FFC 0
001 0x72000—73FFC 0x2000—3FFC 1
010 0x74000—75FFC 0x4000—5FFC 2
011 0x76000—77FFC 0x6000—7FFC 3
100 0x78000—79FFC 0x8000—9FFC 4
101 0x7A000—7BFFC 0xA000—BFFC 5
110 0x7C000—7DFFC 0xC000—DFFC 6
111 0x7E000—7FFFC 0xE000—FFFC 7
114 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
12 Error Reporting and Interrupt Control
12.1 Interrupt Contro l Regis ters
12.1.1 Interrupts Via External FG[7:0] Registers
12.1.1.1 FGIO Interrupt Pending Register
The FGIO interrupt pending register stores detected interrupts via the FG[7:0] signals. The user can clear specific
pending bits by writing 1 to that bit (write 1 to clear). Interrupts via these signals are maskable via the FGIO inter-
rupt enable register.
Table 82. Interrupt Control Register Map
DWORD
Address
(20 bits)
Register
Byte 3 B yt e 2 Byte 1 Byte 0
0x00600 FGIO polarity Reserved FGIO interrupt enable FGIO interrupt pending
0x00604 GPIO polarity Reserved GPIO interrupt enable GPIO interrupt pending
0x00608 System interrupt enable
high System interrupt enable
low System interrupt
pending high System interrupt
pending low
0x0060C Clock interrupt enable
high Clock interrupt enable
low Clock i nte rr upt pe ndi ng
high Clock interrupt pending
low
0x00610 CLKERR output select SYSERR output select PCI_INTA output select Arbitration control
0x0061 4 CLKERR pul se width SYS ERR pulse width Reserved Reserved
0x006FC Reserved Reserved In-service, high In-service, low
Table 83. FGIO Interrupt Pending Registers
Byte
Address Name Bit(s) Mnemonic Value Function
0x00600 FGIO Interrupt Pending 7 JF7OB 0
1No pending interrupts via FG7 (default).
Pending interrupt via FG7.
6JF6OB 0
1No pending interrupts via FG6 (default).
Pending interrupt via FG6.
5JF5OB 0
1No pending interrupts via FG5 (default).
Pending interrupt via FG5.
4JF4OB 0
1No pending interrupts via FG4 (default).
Pending interrupt via FG4.
3JF3OB 0
1No pending interrupts via FG3 (default).
Pending interrupt via FG3.
2JF2OB 0
1No pending interrupts via FG2 (default).
Pending interrupt via FG2.
1JF1OB 0
1No pending interrupts via FG1 (default).
Pending interrupt via FG1.
0JF0OB 0
1No pending interrupts via FG0 (default).
Pending interrupt via FG0.
Agere Systems Inc. 115
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
12 Error Reporting and Interrupt Control (continued)
12.1 Interrupt Control Registe rs (continued)
12.1.1 Interrupts Via External FG[7:0] Registers (continued)
12.1.1.1 FGIO Interrupt Pending Register (continued)
The FGIO edge/level and FGIO polarity registers control how interrupts are interpreted on the GP[7:0] signals
(negative edge, positive edge, low level, or high level).
Table 83. FGIO Interrupt Pending Registers (continued)
Byte
Address Name Bit(s) Mnemonic Value Function
0x00601 FGIO Interrupt Enable 7 JF7EB 0
1Disable (mask) interrupts via FG7 (default).
Enable (unmask) interrupts via FG7.
6JF6EB 0
1Disable (mask) interrupts via FG6 (default).
Enable (unmask) interrupts via FG6.
5JF5EB 0
1Disable (mask) interrupts via FG5 (default).
Enable (unmask) interrupts via FG5.
4JF4EB 0
1Disable (mask) interrupts via FG4 (default).
Enable (unmask) interrupts via FG4.
3JF3EB 0
1Disable (mask) interrupts via FG3 (default).
Enable (unmask) interrupts via FG3.
2JF2EB 0
1Disable (mask) interrupts via FG2 (default).
Enable (unmask) interrupts via FG2.
1JF1EB 0
1Disable (mask) interrupts via FG1 (default).
Enable (unmask) interrupts via FG1.
0JF0EB 0
1Disable (mask) interrupts via FG0 (default).
Enable (unmask) interrupts via FG0.
Table 84. FGIO Edge/Level and Polarity Registers
Byte
Address Name Bit(s) Mnemonic Value Function
0x00603 FGIO Polarity 7 IF7SB 0
1FG7 interrupts are negative edge or low level (default).
FG7 interrupts are positive edge or high level.
6IF6SB0
1FG6 interrupts are negative edge or low level (default).
FG6 interrupts are positive edge or high level.
5IF5SB0
1FG5 interrupts are negative edge or low level (default).
FG5 interrupts are positive edge or high level.
4IF4SB0
1FG4 interrupts are negative edge or low level (default).
FG4 interrupts are positive edge or high level.
3IF3SB0
1FG3 interrupts are negative edge or low level (default).
FG3 interrupts are positive edge or high level.
2IF2SB0
1FG2 interrupts are negative edge or low level (default).
FG2 interrupts are positive edge or high level.
1IF1SB0
1FG1 interrupts are negative edge or low level (default).
FG1 interrupts are positive edge or high level.
0IF0SB0
1FG0 interrupts are negative edge or low level (default).
FG0 interrupts are positive edge or high level.
116 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
12 Error Reporting and Interrupt Control (continued)
12.1 Interrupt Control Register s (continued)
12.1.2 Interrupts Via External GP[7:0]
12.1.2.1 GPIO Interrupt Pending Register
The GPIO interrupt pending register stores detected interrupts via the GP[7:0] signals. The user can clear specific
pending bits by writing 1 to that bit (write 1 to clear). Interrupts via these signals are maskable via the GPIO inter-
rupt enable register.
Table 85. GPIO Interrupt Pending Register
Byte
Address Name Bit(s) Mnemonic Value Function
0x0060 4 GPIO Inte rrup t Pendi ng 7 J G 7OB 0
1No pending interrupts via GP7 (default).
Pending interrupt via GP7.
6 JG6OB 0
1No pending interrupts via GP6 (default).
Pending interrupt via GP6.
5 JG5OB 0
1No pending interrupts via GP5 (default).
Pending interrupt via GP5.
4 JG4OB 0
1No pending interrupts via GP4 (default).
Pending interrupt via GP4.
3 JG3OB 0
1No pending interrupts via GP3 (default).
Pending interrupt via GP3.
2 JG2OB 0
1No pending interrupts via GP2 (default).
Pending interrupt via GP2.
1 JG1OB 0
1No pending interrupts via GP1 (default).
Pending interrupt via GP1.
0 JG0OB 0
1No pending interrupts via GP0 (default).
Pending interrupt via GP0.
0x0060 5 GPIO Inte rrup t Enabl e 7 JG7EB 0
1Disable (mask) interrupts via GP7 (default).
Enable (unmask) interrupts via GP7.
6JG6EB 0
1Disable (mask) interrupts via GP6 (default).
Enable (unmask) interrupts via GP6.
5JG5EB 0
1Disable (mask) interrupts via GP5 (default).
Enable (unmask) interrupts via GP5.
4JG4EB 0
1Disable (mask) interrupts via GP4 (default).
Enable (unmask) interrupts via GP4.
3JG3EB 0
1Disable (mask) interrupts via GP3 (default).
Enable (unmask) interrupts via GP3.
2JG2EB 0
1Disable (mask) interrupts via GP2 (default).
Enable (unmask) interrupts via GP2.
1JG1EB 0
1Disable (mask) interrupts via GP1 (default).
Enable (unmask) interrupts via GP1.
0JG0EB 0
1Disable (mask) interrupts via GP0 (default).
Enable (unmask) interrupts via GP0.
Agere Systems Inc. 117
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
12 Error Reporting and Interrupt Control (contin ued)
12.1 Interru pt C ontrol R e gister s (continued)
12.1.2 Interrupts Via External GP[7:0] (continued)
12.1.2.2 GPIO Edge/Level and GPIO Polarity Registers
The GPIO edge/level and GPIO polarity registers control how interrupts are interpreted on the GP[7:0] signals
(negative edge, positive edge, low level, or high level).
12.1.3 Interrupts Via Internal System Errors
Table 86. GPIO Edge/Level and GPIO Polarity Registers
Byte
Address Name Bit(s) Mnemonic Value Function
0x00607 GPIO Polar-
ity 7IG7SB 0
1GP7 interrupts are negative edge or low level (default).
GP7 interrupts are positive edge or high level.
6IG6SB 0
1GP6 interrupts are negative edge or low level (default).
GP6 interrupts are positive edge or high level.
5IG5SB 0
1GP5 interrupts are negative edge or low level (default).
GP5 interrupts are positive edge or high level.
4IG4SB 0
1GP4 interrupts are negative edge or low level (default).
GP4 interrupts are positive edge or high level.
3IG3SB 0
1GP3 interrupts are negative edge or low level (default).
GP3 interrupts are positive edge or high level.
2IG2SB 0
1GP2 interrupts are negative edge or low level (default).
GP2 interrupts are positive edge or high level.
1IG1SB 0
1GP1 interrupts are negative edge or low level (default).
GP1 interrupts are positive edge or high level.
0IF0SB 0
1GP0 interrupts are negative edge or low level (default).
GP0 interrupts are positive edge or high level.
Table 87. System Error Interrupt Assignments
System Interrupt Bit Description
SYS15 Clock failsafe indicator.
SYS14 Cloc k fallback indica tor.
SYS13 PCI target, minibridge discard timer expired.
SYS12 Reserved.
SYS11 PCI target, data memory di scard timer exp ired.
SYS10 PCI target, minibridge protocol error.
SYS9 Reserved.
SYS8 PCI target, data memory protocol error.
SYS7 Reserved.
SYS6 Reserved.
SYS5 Reserved.
SYS4 Reserved.
SYS3 Reserved.
SYS2 Reserved.
SYS1 Reserved.
SYS0 Reserved.
118 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
12 Error Reporting and Interrupt Control (continued)
12.1 Interrupt Control Register s (continued)
12.1.4 System Interrupt Pending High/Low Registers
The system interrupt pending high/low registers store detected interrupts via the internal system error signals (refer
to Section 6.2.2.2 on page 61). The user can clear specific bits by writing 1 to that bit (write 1 to clear).
Table 88. System Interrupt Pending High/Low Registers
Byte
Address Name Bit(s) Mnemonic Value Function
0x00608 System Interrupt Pending Low 7 JS7OB 0
1No pending interrupts via SYS7 (default).
Pending interrupt via SYS7.
6JS6OB0
1No pending interrupts via SYS6 (default).
Pending interrupt via SYS6.
5JS5OB0
1No pending interrupts via SYS5 (default).
Pending interrupt via SYS5.
4JS4OB0
1No pending interrupts via SYS4 (default).
Pending interrupt via SYS4.
3JS3OB0
1No pending interrupts via SYS3 (default).
Pending interrupt via SYS3.
2JS2OB0
1No pending interrupts via SYS2 (default).
Pending interrupt via SYS2.
1JS1OB0
1No pending interrupts via SYS1 (default).
Pending interrupt via SYS1.
0JS0OB0
1No pending interrupts via SYS0 (default).
Pending interrupt via SYS0.
0x00609 System Interrupt Pending
High 7JSFOB0
1No pending interrupts via SYS15 (default).
Pending interrupt via SYS15.
6 JSEOB 0
1No pending interrupts via SYS14 (default).
Pending interrupt via SYS14.
5JSDOB0
1No pending interrupts via SYS13 (default).
Pending interrupt via SYS13.
4JSCOB0
1No pending interrupts via SYS12 (default).
Pending interrupt via SYS12.
3 JSBOB 0
1No pending interrupts via SYS11 (default).
Pending interrupt via SYS11.
2 JSAOB 0
1No pending interrupts via SYS10 (default).
Pending interrupt via SYS10.
1JS9OB0
1No pending interrupts via SYS9 (default).
Pending interrupt via SYS9.
0JS8OB0
1No pending interrupts via SYS8 (default).
Pending interrupt via SYS8.
Agere Systems Inc. 119
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
12 Error Reporting and Interrupt Control (contin ued)
12.1 Interru pt C ontrol R e gister s (continued)
12.1.5 System Interrupt Enable High/Low Registers
The system interrupt enable high/low registers allow for masking of interrupts via the internal system error signals.
Table 89. System Interrupt Enable High/Low Registers
Byte
Address Name Bit(s) Mnemonic Value Function
0x0060A System Interrupt Enable
Low 7 JS7EB 0
1Disable (mask) interrupts via SYS7 (default).
Enable (unmask) interrupts via SYS7.
6 JS6EB 0
1Disable (mask) interrupts via SYS6 (default).
Enable (unmask) interrupts via SYS6.
5 JS5EB 0
1Disable (mask) interrupts via SYS5 (default).
Enable (unmask) interrupts via SYS5.
4 JS4EB 0
1Disable (mask) interrupts via SYS4 (default).
Enable (unmask) interrupts via SYS4.
3 JS3EB 0
1Disable (mask) interrupts via SYS3 (default).
Enable (unmask) interrupts via SYS3.
2 JS2EB 0
1Disable (mask) interrupts via SYS2 (default).
Enable (unmask) interrupts via SYS2.
1 JS1EB 0
1Disable (mask) interrupts via SYS1 (default).
Enable (unmask) interrupts via SYS1.
0 JS0EB 0
1Disable (mask) interrupts via SYS0 (default).
Enable (unmask) interrupts via SYS0.
0x0060B System Interrupt Enable
High 7JSFEB0
1Disable (mask) interrupts via SYS15 (default).
Enable (unmask) interrupts via SYS15.
6JSEEB0
1Disable (mask) interrupts via SYS14 (default).
Enable (unmask) interrupts via SYS14.
5 JSDEB 0
1Disable (mask) interrupts via SYS13 (default).
Enable (unmask) interrupts via SYS13.
4 JSCEB 0
1Disable (mask) interrupts via SYS12 (default).
Enable (unmask) interrupts via SYS12.
3JSBEB0
1Disable (mask) interrupts via SYS11 (default).
Enable (unmask) interrupts via SYS11.
2JSAEB0
1Disable (mask) interrupts via SYS10 (default).
Enable (unmask) interrupts via SYS10.
1 JS9EB 0
1Disable (mask) interrupts via SYS9 (default).
Enable (unmask) interrupts via SYS9.
0 JS8EB 0
1Disable (mask) interrupts via SYS8 (default).
Enable (unmask) interrupts via SYS8.
120 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
12 Error Reporting and Interrupt Control (continued)
12.1 Interrupt Control Register s (continued)
12.1.6 Interrupts Via Internal Clock Errors
Table 90. Clock Error Interrupt Assignments
Clock Interrupt Bit Description
CLK15 Failsafe indicator—APLL1 reference error.
CLK14 DPLL2 sync input error.
CLK13 DPLL1 sync input error.
CLK12 CT_NETREF2 error.
CLK11 CT_NETREF1 error.
CLK10 /FR_COMP error.
CLK9 /CT_FRAME_B e rror.
CLK8 /CT_FRAME_A e rror.
CLK7 /SCLKx2 error.
CLK6 SC L K er ro r.
CLK5 C2 error.
CLK4 /C4 error.
CLK3 /C16– error.
CLK2 /C16 + erro r.
CLK1 CT_C8_B error.
CLK0 CT_C8_A error.
Agere Systems Inc. 121
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
12 Error Reporting and Interrupt Control (contin ued)
12.1 Interru pt C ontrol R e gister s (continued)
12.1.7 Clock Interrupt Pending High/Low Registers
The clock interrupt pending high/low registers store detected interrupts via the internal clock error signals (refer to
Section 6.2.1 on page 58). The user can clear specific bits by writing 1 to that bit (write 1 to clear).
Table 91. Clock Interrupt Pending High/Low Registers
Byte
Address Name Bit(s) Mnemonic Value Function
0x0060C Clock Interrupt Pending Low 7 JC7OB 0
1No pending interrupts via CLK7 (default).
Pending interrupt via CLK7.
6JC6OB0
1No pending interrupts via CLK6 (default).
Pending interrupt via CLK6.
5JC5OB0
1No pending interrupts via CLK5 (default).
Pending interrupt via CLK5.
4JC4OB0
1No pending interrupts via CLK4 (default).
Pending interrupt via CLK4.
3JC3OB0
1No pending interrupts via CLK3 (default).
Pending interrupt via CLK3.
2JC2OB0
1No pending interrupts via CLK2 (default).
Pending interrupt via CLK2.
1JC1OB0
1No pending interrupts via CLK1 (default).
Pending interrupt via CLK1.
0JC0OB0
1No pending interrupts via CLK0 (default).
Pending interrupt via CLK0.
0x0060D Clock Interrupt Pending
High 7JCFOB0
1No pending interrupts via CLK15 (default).
Pending interrupt via CLK15.
6JCEOB0
1No pending interrupts via CLK14 (default).
Pending interrupt via CLK14.
5 JCDOB 0
1No pending interrupts via CLK13 (default).
Pending interrupt via CLK13.
4 JCCOB 0
1No pending interrupts via CLK12 (default).
Pending interrupt via CLK12.
3JCBOB0
1No pending interrupts via CLK11 (default).
Pending interrupt via CLK11.
2JCAOB0
1No pending interrupts via CLK10 (default).
Pending interrupt via CLK10.
1JC9OB0
1No pending interrupts via CLK9 (default).
Pending interrupt via CLK9.
0JC8OB0
1No pending interrupts via CLK8 (default).
Pending interrupt via CLK8.
122 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
12 Error Reporting and Interrupt Control (continued)
12.1 Interrupt Control Register s (continued)
12.1.8 Clock Interrupt Enable High/Low Registers
The clock interrupt enable high/low registers allow for masking of interrupts via the internal clock error signals.
Table 92. Clock Interrupt Enable High/Low Registers
Byte
Address Name Bit(s) Mnemonic Value Function
0x0060E Clock Interrupt
Enable Low 7JC7EB 0
1Disable (mask) interrupts via CLK7 (default) .
Enable (unmask) interrupts via CLK7.
6JC6EB 0
1Disable (mask) interrupts via CLK6 (default) .
Enable (unmask) interrupts via CLK6.
5JC5EB 0
1Disable (mask) interrupts via CLK5 (default) .
Enable (unmask) interrupts via CLK5.
4JC4EB 0
1Disable (mask) interrupts via CLK4 (default).
Enable (unmask) interrupts via CLK4.
3JC3EB 0
1Disable (mask) interrupts via CLK3 (default).
Enable (unmask) interrupts via CLK3.
2JC2EB 0
1Disable (mask) interrupts via CLK2 (default).
Enable (unmask) interrupts via CLK2.
1JC1EB 0
1Disable (mask) interrupts via CLK1 (default).
Enable (unmask) interrupts via CLK1.
0JC0EB 0
1Disable (mask) interrupts via CLK0 (default).
Enable (unmask) interrupts via CLK0.
0x0060F Clock Interrupt
Enable High 7JCFEB 0
1Disable (mask) interrupts via CLK15 (default).
Enable (unmask) interrupts via CLK15.
6 JCEEB 0
1Disable (mask) interrupts via CLK14 (default).
Enable (unmask) interrupts via CLK14.
5 JCDEB 0
1Disable (mask) interrupts via CLK13 (default).
Enable (unmask) interrupts via CLK13.
4 JCCEB 0
1Disable (mask) interrupts via CLK12 (default).
Enable (unmask) interrupts via CLK12.
3 JCBEB 0
1Disable (mask) interrupts via CLK11 (default).
Enable (unmask) interrupts via CLK11.
2 JCAEB 0
1Disable (mask) interrupts via CLK10 (default).
Enable (unmask) interrupts via CLK10.
1JC9EB 0
1Disable (mask) interrupts via CLK9 (default).
Enable (unmask) interrupts via CLK9.
0JC8EB 0
1Disable (mask) interrupts via CLK8 (default).
Enable (unmask) interrupts via CLK8.
Agere Systems Inc. 123
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
12 Error Reporting and Interrupt Control (contin ued)
12.1 Interru pt C ontrol R e gister s (continued)
12.1.9 Interrupt Servicing Registers
12.1.9.1 Arbitration Control Register
The arbitration control register allows for four modes of interrupt control operation as shown below:
!Disabled. This mode bypasses any interrupt controller operation. No FG or GP inputs are allowed as external
interrupt inputs. SYSERR assertion is a simple logical OR of the internal system error bits. CLKERR assertion is
a simple logical OR of the internal clock error bits.
!Flat. This mode treats all 48 possible inputs (eight from external FG[7:0], eight from external GP[7:0], 16 from
internal system errors, 16 from internal clock errors) with equal weight, and queues them for in-service via a
round-robin arbitration.
!T ier , no pre-empting. This mode assigns three priority levels. The highest level is internal clock errors CLK[15:0];
next level is internal system errors SYS[15:0]; lowest level is external errors FG[7:0] and GP[7:0]. Arbitration pri-
ority encodes between the three levels. Multiple interrupts within a level are queued round-robin.
!T ier , with pre-empting. This mode is the same as tier, with the added ability to pre-empt a current in-service inter-
rupt according to the three priority levels.
12.1.10 PCI_INTA Output Select Register
The PCI_INTA output select register controls whether the internal signal which generates SYSERR also generates
a PCI interrupt PCI_INTA #.
12.1.10.1 SYSERR and CLKERR Output Select Register
The SYSERR output select register controls how the SYSERR signal is asserted (active-high level, active-low
level, active-high pulse, or active-low pulse).
The SYSERR pulse-width register controls how wide the SYSERR pulse is (when selected output format = high or
low pulse). Value corresponds to the number of 32.768 MHz periods – 1.
The CLKERR output select register controls how the CLKERR signal is asserted (active-high level, active-low
level, active-high pulse, or active-low pulse).
The CLKERR pulse-width register controls how wide the CLKERR pulse is (when selected output format = high or
low pulse). Value corresponds to the number of 32.768 MHz periods – 1.
Table 93. Arbitration Control Register
Byte Address Name Bit(s) Mnemonic Value Function
0x00610 Arbitration
Control 7 :0 JAMSR 0000 0000
0000 0001
0000 0010
0001 0010
Disable interrupt controller (default).
Flat structure (round-robin arbiter).
T ier structure (three levels), no pre-empting.
Tier structure (three levels), pre-empting.
Table 94. PCI_INTA Output Select Register
Byte
Address Name Bit(s) Mnemonic Value Function
0x00611 PCI_INTA Output Select 7:0 JSPSR 0000 0000
0000 0001 Do not route SYSERR to PCI_INTA (default).
Route SYSERR to PCI_INTA.
124 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
12 Error Reporting and Interrupt Control (continued)
12.1 Interrupt Control Register s (continued)
12.1.10 PCI_INTA Output Select Register (continued)
12.1.10.1 SYSERR and CLKERR Output Select Register (continued)
*When the arbitration control is disabled (0x00610 = 0000 0000), SYSERR or CLKERR levels remain asserted until all the internal system (or
clock) pending bits are cleared.
Table 95. SYSERR Output Select Registers
Byte
Address Name Bit(s) Mnemonic Value Function
0x00612 SYSERR Output Select 7:0 JSOSR 0000 0000
0000 0001
0001 0000
0001 0001
SYSERR is active-high level* (default).
SYSERR is active-low level*.
SYSERR is active-high single pulse.
SYSERR is active-low single pulse.
0x00616 SYSERR Pulse Width 7:0 JSWSR LLLL LLLL SYSERR pulse-width value.
0x00613 CLKERR Output Select 7:0 JCOSR 0000 0000
0000 0001
0001 0000
0001 0001
CLKERR is active-high level* (default).
CLKERR is active-low level*.
CLKERR is active-high single pulse.
CLKERR is active-low single pulse.
0x00617 CLKERR Pulse Width 7:0 JCWSR LLLL LLLL CLKERR pulse-width value.
Agere Systems Inc. 125
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
12 Error Reporting and Interrupt Control (contin ued)
12.1 Interru pt C ontrol R e gister s (continued)
12.1.10 PCI_INTA Output Select Register (continued )
12.1.10.2 Interrupt In-Service Registers
The interrupt in-service registers provide a 16-bit interrupt vector, with unique encoding to indicate which of the
48 possible interrupts is currently in-service.
Table 96. Interrupt In-Service Register
Byte Address Register Name Bit(s) Mnemonic Value Function
0x006FC Interrupt In-service Low 7:0 Reserved 0000 000 Lower byte of in-service vector;
returns zero.
0x006FD Interrupt In-service High 7:0 JISOR 0000 0000
0001 0000
0001 0001
0001 0010
0001 0011
0001 0100
0001 0101
0001 0110
0001 0111
0010 0000
0010 0001
0010 0010
0010 0011
0010 0100
0010 0101
0010 0110
0010 0111
0100 0000
0100 0001
0100 0010
0100 0011
0100 0100
0100 0101
No interrupt in-service (defau lt).
FG0 interrupt in-service.
FG1 interrupt in-service.
FG2 interrupt in-service.
FG3 interrupt in-service.
FG4 interrupt in-service.
FG5 interrupt in-service.
FG6 interrupt in-service.
FG7 interrupt in-service.
GP0 interrupt in-service.
GP1 interrupt in-service.
GP2 interrupt in-service.
GP3 interrupt in-service.
GP4 interrupt in-service.
GP5 interrupt in-service.
GP6 interrupt in-service.
GP7 interrupt in-service.
SYS0 interrupt in-service.
SYS1 interrupt in-service.
SYS2 interrupt in-service.
SYS3 interrupt in-service.
SYS4 interrupt in-service.
SYS5 interrupt in-service.
126 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
12 Error Reporting and Interrupt Control (continued)
12.1 Interrupt Control Register s (continued)
12.1.10 PCI_INTA Output Select Register (continued)
12.1.10.2 Interrupt In-Service Registers (continued)
The interrupt in-service registers provide a 16-bit interrupt vector, with unique encoding to indicate which of the
48 possible interrupts is currently in-service.
Table 96. Interrupt In-Service Register (continued)
Byte Address Register Name Bit(s) Mnemonic Value Function
0x006FD Interrupt In-service High 7:0 0100 0110
0100 0111
0100 1000
0100 1001
0100 1010
0100 1011
0100 1100
0100 1101
0100 1110
0100 1111
1000 0000
1000 0001
1000 0010
1000 0011
1000 0100
1000 0101
1000 0110
1000 0111
1000 1000
1000 1001
1000 1010
1000 1011
1000 1100
1000 1101
1000 1110
1000 1111
SYS6 interrupt in-service.
SYS7 interrupt in-service.
SYS8 interrupt in-service.
SYS9 interrupt in-service.
SYS10 interrupt in-service.
SYS11 interrupt in-service.
SYS12 interrupt in-service.
SYS13 interrupt in-service.
SYS14 interrupt in-service.
SYS15 interrupt in-service.
CLK0 interrupt in-service.
CLK1 interrupt in-service.
CLK2 interrupt in-service.
CLK3 interrupt in-service.
CLK4 interrupt in-service.
CLK5 interrupt in-service.
CLK6 interrupt in-service.
CLK7 interrupt in-service.
CLK8 interrupt in-service.
CLK9 interrupt in-service.
CLK10 interrupt in-service.
CLK11 interrupt in-service.
CLK12 interrupt in-service.
CLK13 interrupt in-service.
CLK14 interrupt in-service.
CLK15 interrupt in-service.
Agere Systems Inc. 127
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
12 Error Reporting and Interrupt Control (contin ued)
12.2 Erro r Rep orti ng and In terrupt Controlle r Circuit Operation
T8110 errors are reported via three output signals, CLKERR, SYSERR, and PCI_INTA#. These outputs are gener-
ated by an interrupt controller circuit; refer to Figure 31. The interrupt control circuit accepts 48 interrupt inputs in
all. The way in which these interrupts are arbitrated is selectable, and the means of reporting the interrupts out to
the sy stem is also selectable.
5-9425 (F)
Figure 31. Interrupt Controller
FGIO INTERRUPT
ENABLE REGISTER
SYSERR OUTPUT
SELECT REGISTER EDGE/LEVEL
SENSE GENERATION SYSERR
PCI_INTA OUTPUT
SELECT REGISTER
PCI_INTA#
CLKERR OUTPUT
SELECT REGISTER EDGE/LEVEL
SENSE GENERATION
ARBITRATION
CONTROL REGISTER
LOGICAL OR
(UNMASKED
CLOCK
SOURCES)
CLKERR TRIGGER
CLKERR
ARBITRATION
CLOCK ERRORS
CLOCK
INTERRUPT
PENDING
REGISTERS
16
SYSTEM
INTERRUPT
PENDING
REGISTERS
GPIO
INTERRUPT
PENDING
REGISTER
FGIO
INTERRUPT
PENDING
REGISTER
CLOCK INTERRUPT
ENABLE REGISTERS
SYSTEM ERRORS
SYSTEM INTERRUPT
ENABLE REGISTERS
16
FG[7:0]
GPIO INTERRUPT
ENABLE REGISTER
GPIO POLARITY,
8
8
16
16
INTERRUPT IN-SERVICE
REGISTER
16
EDGE/LEVEL
SENSE
CONVERSION
GPIO EDGE/LEVEL
REGISTERS
GP[7:0]
EDGE/LEVEL
SENSE
CONVERSION
FGIO POLARITY,
FGIO EDGE/LEVEL
REGISTERS
SYSERR
TRIGGER
128 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
12 Error Reporting and Interrupt Control (continued)
12.2 Error Reporting and In terru pt Co ntroller Circuit Operation (continued)
12.2.1 Externally Sourced Interrupts Via FG[7:0], GP[7:0]
Up to 16 of the 48 interrupt inputs are sourced external to the T8110, via the FG[7:0] and GP[7:0] signals. Each
input is independently controlled via the interrupt control registers (refer to Section 12.1.1 on page 114 and Section
12.1.2 on page 116). Any externally sourced interrupt may be presented as active-high level, active-low level, pos-
itive edge, or negative edge sense. Each external interrupt is maskable. Any detected interrupt which is unmasked
is held in an interrupt pending register, and presented to the arbitration circuit for servicing.
12.2.2 Internally Sourced System Error Interrupts
Another set of 16 of the 48 interrupt inputs are sourced internally via the system error register bits (0x00126—127;
refer to Section 6.2.2.2 on page 61). Each of these inputs is independently controlled via the interrupt control regis-
ters (refer to Section 12.1.3 on page 117). All internal system error bit interrupts are presented as active-high level
sense. Each system error bit interrupt is maskable. Any detected interrupt which is unmasked is held in an interrupt
pending register and presented to the arbitration circuit for servicin g.
12.2.3 Internally Sourced Clock Error Interrupts
Another set of 16 of the 48 interrupt inputs are sourced internally via the latched clock error register bits
(0x00122—123; refer to Section 6.2.1 on page 58). Each of these inputs is independently controlled via the inter-
rupt control registers (refer to Section 12.1.6 on page 120). All internal clock error bit interrupts are presented as
active-high level sense. Each clock error bit interrupt is maskable. Any detected interrupt that is unmasked is held
in an interrupt pending register and presented to the arbitration circuit for servicing.
12.2.4 Arbitration of Pending Interrupts
The arbitration of the pending interrupts can be handled in one of four selectable modes: arbitration off, flat arbitra-
tion, tier arbitration with pre-empting disabled, and tier arbitration with pre-empting enabled. Interrupts are reported
to the system via the SYSERR signal (and the PCI_INTA# signal, if enabled to do so).
12.2.4.1 Arbitration Off
This mode only allows the 16 internal system error register bits to generate interrupts, and no arbitration takes
place. The trigger for the SYSERR output is simply a logical OR of the internal system error register bits. All bits of
the internal system error register must be cleared in order to rearm the SYSERR trigger in this mode.
12.2.4.2 Flat Arbitration
The flat arbitration mode performs a round-robin arbitrations on all 48 interrupt sources. When a pending interrupt
wins the arbitration, the in-service register is loaded with its corresponding interrupt vector, SYSERR is triggered,
and that pending bit is cleared, removing it from the next round-robin arbitration cycle. The system must respond to
the current in-service interrupt (refer to Section 12.2.8 on page 129), after which the next arbitration cycle takes
place.
12.2.4.3 Tier Arbitration
The tier arbitration creates three prioritized groups as shown below:
!Highest priority. The 16 internal latched clock error register bits.
!Next highest priority. The 16 internal system error register bits.
!Lowest priority. The 16 external FG[7:0] and GP[7:0] bits.
Agere Systems Inc. 129
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
12 Error Reporting and Interrupt Control (contin ued)
12.2 Error Reporting and Interrupt Controller Circuit Operation (continued)
12.2.4.3 Tier Arbitration (continued)
Arbitration assigns interrupt servicing priority to the three groups. Multiple pending interrupts within the same group
are arbitrated round-robin. When a pending interrupt wins the arbitration, the in-service register is loaded with its
corresponding interrupt vector, SYSERR is triggered, and that pending bit is cleared, removing it from the next
arbitrati on cy cle.
Pre-Empting Disabled
With pre-empting disabled, once a pending interrupt wins the arbitration and the in-service register is loaded with
its corresponding interrupt vector, new incoming pending interrupts of higher priority must wait for the system to
respond to the current in-service interrupt (refer to Section 12.2.8 on page 129), at which time another arbitration
cycle takes place.
Pre-Empting Enabled
With pre-empting enabled, an interrupt that is in-service (i.e., its interrupt vector is loaded in the in-service register
and SYSERR has been triggered) can be overridden by new incoming pending interrupts of higher priority. The
current in-service interrupt is pushed onto a stack for storage; the higher-priority interrupt vector is loaded into the
in-service register and SYSERR is retriggered. Once all interrupts of higher priority have been serviced by the sys-
tem (refer to Section 12.2.8 on page 129), the stack is popped and the original lower-priority interrupt is reissued.
12.2.5 CLKERR Output
The CLKERR output signal is used to indicate any internal clocking errors. The trigger for the CLKERR output is
simply a logical OR of the internal latched clock error register bits. All bits of the internal clock error register must
be cleared in order to rearm the CLKERR trigger. The CLKERR trigger induces a state machine to generate the
CLKERR signal in one of four possible ways: active-high level, active-low level, active-high single pulse, or active-
low single pulse.
12.2.6 SYSERR Output
The T81 10 SYSERR output signal is used to report interrupts. Internally, the arbitration circuit provides a SYSERR
trigger, which induces a state machine to generate the SYSERR signal in one of four possible ways: active-high
level, active-low level, active-high single pulse, or active-low single pulse.
12.2.7 PCI_INTA# Output
The internal SYSERR trigger can be enabled to also trigger a PCI interrupt via the PCI_INTA# signal.
12.2.8 System Handling of Interrupts
The T8110 interrupt controller presents an interrupt to the system by triggering the SYSERR output and providing
a predefined interrupt vector value at the interrupt in-service register (ISR). The system may acknowledge the
interrupt in three ways as shown below:
!System reads the T8110 ISR register. This allows the arbiter to advance, and if more pending interrupts are
active, reloads the ISR with the winner of the arbitration and retriggers SYSERR.
!System clears the T8110 ISR register (via register 0x00100, soft reset; write 0x20 clears the ISR). The arbiter
advances, and if more pending interrupts are active, reloads the ISR and retriggers SYSERR.
!System resets the interrupt controller (via register 0x00100, soft reset, write 0x10 clears the ISR and all the
pending interrupt registers). All pending interrupts are cleared, and the arbiter is reset.
130 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
13 Test and Diagnostics
13.1 Diagnostics Control Regi sters
The diagnostic control registers allow for various diagnostic modes (refer to Section 13.2 on page 136).
13.1.1 FG Testpoint Enable Register
The FG testpoint enable register allows individual programming of FG[7:0] bits for either standard operation (as FG
or FGIO) or as testpoint outputs. FG testpoint select controls the MUX selection for which testpoints are selected.
Refer to Table 99 on page 131 for testpoint assignments for each FG bit.
Table 97. Diagnostics Control Register Map
DWORD
Address
(20 bits)
Register
Byte 3 Byte 2 Byte 1 Byte 0
0x00140 Diag3, GP testpoint
select Diag2, GP testpoin t
enable Diag1, FG testpoint select Diag0, FG testpoint enable
0x00144 Diag7 Diag6, mis c ell an eou s
diagno sti cs l o w Diag5, stat e counter
modes high Diag4, state counter
modes low
0x00148 Diag11, sync- to-
frame command off-
set high
Diag10, sync-to-
frame command off-
set low
Diag9, int erru pt cont roll er
SYSERR delay Diag8, interrupt controller
diagnostics
Table 98. FG Testpoint Enable Registers
Byte
Address Name Bit(s) Mnemonic Value Function
0x00140 Diag0, FG Testpoint
Enable 7 FT7EB 0
1FG7 is standard FG or FGIO bit (default).
FG7 is a testpoint.
6 FT6EB 0
1FG6 is standard FG or FGIO bit (default).
FG6 is a testpoint.
5 FT5EB 0
1FG5 is standard FG or FGIO bit (default).
FG5 is a testpoint.
4 FT4EB 0
1FG4 is standard FG or FGIO bit (default).
FG4 is a testpoint.
3 FT3EB 0
1FG3 is standard FG or FGIO bit (default).
FG3 is a testpoint.
2 FT2EB 0
1FG2 is standard FG or FGIO bit (default).
FG2 is a testpoint.
1 FT1EB 0
1FG1 is standard FG or FGIO bit (default).
FG1 is a testpoint.
0 FT0EB 0
1FG0 is standard FG or FGIO bit (default).
FG0 is a testpoint.
0x00141 Diag1, FG Testpoint
Select 7:0 FTPSR LLLL LLLL Value for MUX selection of testpoints out-
put to FG [7:0]—see Tabl e 98 on p age
130.
Agere Systems Inc. 131
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
13 Test and Diagnostics (continued)
13.1 Diagnostics Control Registers (c on tin ued)
13.1.1 FG Testpoint Enable Register (continued)
Table 99. FG[7:0] Internal Testpoint Assignments
FG
Testpoint
Select
Value
FG7 FG6 FG5 FG4
0000 0001 i_FRAME STATE_COUNT[10:4] (actual time slot)
0000 0010 i_FRAME STATE_COUNT_LOOKAHEAD (lookahead time slot)
0000 0100 i_FRAME STATE_COUNT_LOOKBEHIND (lookbehind time slot)
0000 1000 Reserved Reserved Reserved Reserved
0001 0000 Reserved Reserved Reserved Reserved
0010 0000 Reserved
0100 0000 P_S_SELECTOR Reserved OOL threshold flag APLL1 lock indicator
1000 0000 Stalled Snapping C clock enable B clock enable
FG3 FG2 FG1 FG0
0000 0001 STATE_COUNT[10:4] (actual time slot)
0000 0010 STATE_COUNT_LOOKAHEAD (lookahead time slot)
0000 0100 STATE_COUNT_LOOKBEHIND (lookbehind time slot)
0000 1000 Reserved Reserved Reserved Reserved
0001 0000 Reserved Reserved Reserved Reserved
0010 0000 Reserved
0100 0000 Failsafe flag Force-to-OSC4 flag Return from FS2 flag Return from FS1 flag
1000 0000 A clock enable Encoded ABC states:
000 or 100 = DIAGS
001 = A_ONLY
010 = A_MASTER
011 = A_ERROR
101 = B_ONLY
110 = B_MASTER
111 = B_ERROR
132 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
13 Test and Diagnostics (continued)
13.1 Diagnostics Control Registe rs (continued)
13.1.2 GP Testpoint Enable Register
The GP testpoint enable register allows individual programming of GP[7:0] bits for either standard operation (as
GPIO) or as testpoint outputs. GP testpoint select controls the MUX selection for which testpoints are selected.
Refer to Table 101 on page 133 for testpoint assignments for each GP bit.
Table 100. Testpoint Enable Registers
Byte
Address Name Bit(s) Mnemonic Value Function
0x00142 Diag2, GP Testpoint
Enable 7GT7EB 0
1GP7 is standard GPIO bit (default).
GP7 is a testpoint.
6GT6EB 0
1GP6 is standard GPIO bit (default).
GP6 is a testpoint.
5GT5EB 0
1GP5 is standard GPIO bit (default).
GP5 is a testpoint.
4GT4EB 0
1GP4 is standard GPIO bit (default).
GP4 is a testpoint.
3GT3EB 0
1GP3 is standard GPIO bit (default).
GP3 is a testpoint.
2GT2EB 0
1GP2 is standard GPIO bit (default).
GP2 is a testpoint.
1GT1EB 0
1GP1 is standard GPIO bit (default).
GP1 is a testpoint.
0GT0EB 0
1GP0 is standard GPIO bit (default).
GP0 is a testpoint.
0x00143 Diag3, GP Testpoint Select 7:0 GTPSR LLLL LLLL Value for MUX selection of testpoints
output to GP[7:0]—see Table 100 on
page 132.
Agere Systems Inc. 133
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
13 Test and Diagnostics (continued)
13.1 Diagnostics Control Registers (c on tin ued)
13.1.2 GP Testpoint Enable Register (continued)
Table 101. GP[7:0] Internal Testpoint Assignments
GP
Testpoint
Select
Value
GP7 GP6 GP5 GP4
0000 0001 BYTE RE F_16 BYTERE F_ 8 BYTEREF _ 4 BYTEREF_2
0000 0010 i_FRAME Reserved CP8 read CP8 write
0000 0100 Res erv ed
0000 1000 Res erve d R es erve d Reserv ed Res erv ed
0001 0000 Res erve d R es erve d Reserv ed Res erv ed
0010 0000 DP LL2 lock DPLL1 loc k Reserved
0100 0000 P_S_SELECTOR Fallback encoded states:
000 = PR IMARY
001 = TO_PRIMARY
010 = SECONDARY
011 = TO_SECONDARY
100 = FS1
101 = FS2
110 = [reserved]
111 = INITIAL
1000 0000 Stalled Snappi ng Re se rved Res erv ed
—GP3 GP2 GP1 GP0
0000 0001 STATE_COUNT[3:0] (stream)
0000 0010 CP4 read CP4 write CP2 read CP2 write
0000 0100 Reserved
0000 1000 Reserved Reserved Reserved Reserved
0001 0000 Reserved Reserved Reserved Reserved
0010 0000 Reserved
0100 0000 Fallback flag Go_clocks
indicator CLEAR_FALLBACK
indicator FORCE_FALLBACK
indicator
1000 0000 Phase alignment
frame event APLL1 feedback,
8 MHz tap APLL1 feedback,
4 MHz tap APLL1 feedback,
2 MHz tap
134 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
13 Test and Diagnostics (continued)
13.1 Diagnostics Control Registe rs (continued)
13.1.3 State Counter Modes Registers
The state counter modes registers control state counter diagnostics, including the breaking of state counter carry
chains, using /FR_COMP as the internal frame reference, and allowing the state counter to roll over early via a
modulo function. For more details, refer to Section 13.2 on page 136.
13.1.4 Miscellaneous Diagnostics Low Register
The miscellaneous diagnostics low register: bit 5 enables a mode to shorten the PCI target discard timers for
minibridge, and DATA memory target accesses. Bit 4 enables microprocessor access to the minibridge register
space. Bits 2 and 1 allow direct reset of the APLL2 and APLL1 feedback dividers. Bit 0 controls the TST input of the
power-on reset cell.
Table 102. State Counter Modes Registers
Byte
Address Name Bit(s) Mnemonic Value Function
0x00144 Diag4, State Counter
Modes Low 7:0 SCMLR LLLL LLLL Lower 8 bits of state counter modulo load
value.
0x00145 Diag5, State Counter
Modes High 7:6 Reserved 00 NOP (default).
5SCMSB 0
1Normal carry chain operation (default).
Break state counter carry chains.
4FRMSB 0
1Normal internal frame operation (default).
Use /FR_COMP as internal frame.
3SCLSB 0
1Normal counting (default).
State counter modulo counting.
2:0 SCULP LLL Upper 3 bits of state counter modulo load
value.
Table 103. Miscellaneous Diagnostics Low Register
Byte
Address Name Bit(s) Mnemonic Value Function
0x00146 Diag6, Miscellaneous
Diagnostics Low 7:6 Reserved 00 NOP (default).
5PDTSB0
1PCI target discard timers normal (default).
PCI target discard timers shortened.
4MBIEB0
1
Microprocessor access to minibridge registers
disabled (default).
Microprocessor access to minibridge registers
enabled.
3 Reserved 0 NOP.
2 FB2SB 0
1APLL2 feedback divider reset inactive (default).
APLL2 feedback divider reset active.
1 FB1SB 0
1APLL1 feedback divider reset inactive (default).
APLL1 feedback divider reset active.
0 Reserved
Agere Systems Inc. 135
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
13 Test and Diagnostics (continued)
13.1 Diagnostics Control Registers (c on tin ued)
13.1.5 Miscellaneous Diagnostic Registers
Table 104. Miscellaneous Diagnostic Registers
Byte
Address Name Bit(s) Mnemonic Value Function
0x00147 Diag7 7:0 Reserved NOP.
0x00148 Diag8, Interrupt
Controller Diagnostic 7:6 ICDSP 00
01 Interrupt controller, normal mode (default).
Interrupt controller, DIAG mode.
5:4 ICKLP LL DIAG mode, force CLK[1:0] errors.
3:2 ISYLP LL DIAG mode, force SYS[1:0] errors.
1:0 IEXLP LL DIAG mode, force EXT[8, 0] errors.
0x00149 Diag9, Interrupt Control-
ler Deas s er tio n De lay 7:0 IASLR LLLL LLLL Programmable delay to control the deas-
sertion time of SYSERR.
0x0014A Diag10, Sync-to-frame
Command Delay
(Lower)
7:0 CFLLR LLLL LLLL Low byte of 12-bit offset value for sync-to-
frame clock commands (GO_CLOCKS,
CLEAR_FALLBACK,
FORCE_FALLBACK).
0x0014B Diag11, Sync-to-frame
Command Delay
(Upper)
7:4 CFSEN 0000
0001 Disable delay mode (default).
Enable delay mode.
3:0 CFHLN LLLL Upper 4 bits of 12-bit offset value for
sync-to-frame clock commands
(GO_CLOCKS, CLEAR_FALLBACK,
FORCE_FALLBACK).
136 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
13 Test and Diagnostics (continued)
13.2 Diagnostic Circuit Operation
The T8110 internal diagnostic modes are intended primarily for chip manufacturing test. The diagnostic functions
include the following:
!DIAG0—3, observability of internal testpoints via FG(7:0), GP(7:0):
— Internal testpoints are brought to chip I/O at FG and GP signals. Refer to Table 99 on page 131 and Table 101
on page 133 for testpoint assignment.
!DIAG4—5, internal state counter diagnostic modes:
— Break counter carry chains—this is used in conjunction with monitoring of the state counter bits at FG and GP,
and breaks the 11-bit state counter into three separate pieces (bits [10:8], [7:4] and [3:0]).
— Shorten frame operation—the internally generated 8 kHz frame is bypassed in favor of the /FR_COMP input.
The /FR_COMP input still denotes the frame center and may be presented at a higher frequency than 8 kHz.
This is used in conjunction with the state counter modulo function, which when properly programmed allows
the internal state counter to roll over coincident with the /FR_COMP frame center.
!DIAG6, microprocessor access to the minibridge register regions:
— The minibridge registers are only functionally applicable for minibridge port operation and are only available
when the T8110 interface to a local PCI bus is selected. When interface to microprocessor bus is selected,
this diagnostic setting allows direct access to the minibridge registers.
!DIAG6, forced RESET of analog APLL1 feedback dividers:
— The APLL1 feedback dividers are typically not reset. This diagnostic mode allows each feedback divider to be
held in a reset state.
!DIAG7, reserved.
!DIAG8, interrupt controller diagnostics:
— When the diagnostic mode is enabled (DIAG8 register , bits 7:6 = 01), then bits 5:4 override the CLK error[1:0]
inputs, bits [3:2] override the SYS error[1:0] inputs, bit 1 overrides the GP[0] input, and bit 0 overrides the
FG[0] input to the interrupt controller. This allows for direct manipulation to set/clear a portion of interrupt bits
from each tier group. Please see Section 12.2 on page 127 for more details.
!DIAG9, interrupt controller deassertion delay:
— Allows a programmable deassertion time for the SYSERR signal in between back-to-back interrupts.
!DIAG10—11, sync-to-frame command delay:
— Allows a programmable delay time from the FRAME boundary for execution of the sync-to-frame clock com-
mands, GO_CLOCKS, CL EAR_FALLBACK, FORCE_FALLBACK.
Agere Systems Inc. 137
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
14 Connection Control
14.1 Programming Interface
Programming the T8110 for time-slot switching requires specific access cycles to the connection memory region.
Access to any other region (data memory, minibridge, or registers) is made through a standard direct access via
the interface (described starting in Section 4 on page 26).
14.1.1 PCI Connection Memory Programming
The connection memory is divided into four 2K regions, each of which handles up to 128 time slots worth of con-
nectivity for each of 16 serial data streams. The regions include H1x0 EVEN streams (CT_D[30, 28, . . . 0]),
H1x0 ODD streams (CT_D[31, 29, . . . 1]), local low streams (L_D[15:0]), and local high streams (L_D[31:16]). The
connection memory locations are addressed relative to time slot and stream. BURST access is allowed to the con-
nection memory. In order to SKIP making/breaking a connection to a particular time slot and stream combination
that gets addressed during a burst, the user must disable all the byte enables for that particular data phase.
Connection memory commands are as follows:
!RESET PAGE— resets any (up to all four) connection memory region. Address bit 15 determines whether or not
it's a reset page command. The reset page command relies on a valid internal chip clock and loops through all
addresses within the connection memory region, resetting the V ALID bit field. The reset page command must be
presented as a PCI memory WRITE command; refer to Figure 32.
!MAKE/BREAK/QUERY— telephony connection; refer to Figure 33.
MAKE and BREAK commands above must be presented as PCI memory write commands. QUERY commands
are presented as PCI memory read commands.
5-9622 (F)
Figure 32. PCI Programming—Reset Page Command
31:20
BASE ADDRESS 19:16
0100 15
114:8
0000000 7:0
00000000
31:25
0000000 24 23:17
0000000 16 15:9
0000000 87:1
0000000 0
0 = NO ACTION
1 = RESET H1x0
ODD REGION
RHO 0 = NO ACTION
1 = RESET H1x0
EVEN REGION
0 = NO ACTION
1 = RESET LOCAL
HIGH REGION
0 = NO ACTION
1 = RESET LOCAL
LOW REGION
RHE RLH RLL
ADDRESS PH ASE,
RESET PAGE
COMMAND
DATA PHASE,
RESET PAGE
COMMAND
138 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
14 Connection Control (continued)
14.1 Programming Interface (continued)
14.1.1 PCI Connection Memory Programming (continued)
5-9623 (F)
Note: For QUERY (read cycle), a 0 in bit 27 of the data phase indicates an invalid or broken connection. A 1 in bit 27 indicates a valid con-
nection.
Figure 33. PCI Programming—Make/Break/Query Telephony Connection
14.1.1.1 Microprocessor Connection Memory Programming
Because the microprocessor interface only allows word or byte accesses, multiple write accesses must occur. The
microprocessor connection memory access mimics the 32-bit PCI access by using a combination of the lower two
address bits [1:0] and holding registers. For byte access, there are a total of three byte-wide holding registers. For
word access, there is one word-wide holding register. The user must load the holding registers with the proper
information first, and then write to the upper byte (or upper word) to actually move data into the connection mem-
ory; refer to Table 105.
The connection memory is divided into four 2K regions, each of which handles up to 128 time slots worth of con-
nectivity for each of 16 serial data streams. The regions include H1x0 even streams (CT_D[30, 28, . . . 0]), H1x0
odd streams (CT_D[31, 29, . . . 1]), local low streams (L_D[15:0]), and local high streams (L_D[31:16]). The con-
nection memory locations are addressed relative to time slot and stream.
Connection memory commands are as follows:
!RESET PAGE resets any (up to all four) connection memory region (see Figure 34 on page 139). Address bit 15
determines whether or not it's a reset page command. The reset page command relies on a valid internal chip
clock and loops through all addresses within the connection memory region, resetting the VALID bit field. The
RESET P A GE command is presented as either two microprocessor WORD writes, or four microprocessor BYTE
writes, see Table 105.
!MAKE/BREAK/QUERY, telephony connection (see Figure 35 on page 140).
The MAKE and BREAK commands are presented as multiple microprocessor write cycles. The QUERY command
is presented as multiple microprocessor read cycles; refer to Table 105.
31:20
BASE ADDRESS 19:16
0100 15
014:8
TIMESLOT 76:2
STREAM 1:0
00
31
030:28
000 27 26 25 24 23:20
0000 19:16
TAG 15:8
TAG 7
06:0
SUBRATE
0 = PATT ERN MODE DISABL ED
1 = PATTERN MODE ENABLED
0 = USE CURRENT FRAME
1 = USE NEXT FRAME
0 = WRITE TO DATA MEMORY
1 = READ FROM DATA MEORY
0 = MAKE CONNECTION
1 = BREAK CONNECTION
RESERVED
PME
VFC
RWS
MBS
H-BUS/ LOCAL SELECT:
0 = LOCAL STREAMS
1 = H.1x0 STREAMS
HLS
ADDRESS PH ASE,
MAKE OR BREAK
TELEPHONY
CONNECTION
DATA PHASE,
MAKE OR BREAK
TELEPHONY
CONNECTION
Agere Systems Inc. 139
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
14 Connection Control (con tin ued )
14.1 Program min g Interface (continued)
14.1.1 PCI Connection Memory Programming (continued)
14.1.1.1 Microprocessor Connection Memory Programming (continued)
Note: Data byte n required information is shown in Figure 35
Figure 34. Microprocessor Programming—Reset Page Command
Table 105. Microprocessor Programming, Connection Memory Access
Word/Byte
(MB_CS5) A[1:0] D[15:8] D[7:0] Access Description
Byte 00 X Data byte 0 Write data byte 0 to a holding register, or read data byte
0 information.
Byte 01 X Data byte 1 Write data byte 1 to a holding register, or read data byte
1 information.
Byte 10 X Data byte 2 Write data byte 2 to a holding register, or read data byte
2 information.
Byte 11 X Data byte 3 Write data byte 3 plus the holding register data to con-
nection mem or y, or read data byte 3 information .
Word 0X Data byte 1 Data byte 0 Write data bytes 1 and 0 to a holding register, or read
data bytes 1 and 0 information.
Word 1X Data byte 3 Data byte 2 Write data bytes 3 and 2 plus the holding register data
to connection memory, or read data bytes 3 and 2 infor-
mation.
19:16
0100 15
114:0
000000000000000
A[19:0]
0 = NO ACTIO N
1 = RESET H-BUS
ODD REGION
0 = NO ACTI ON
1 = RESET H-BUS
EVEN REGION
0 = NO ACTI ON
1 = RESET LOCAL
HI REGION
0 = NO ACTI ON
1 = RESET LOCAL
LO REGION
RHO RHE
RLH RLL
7:1
0000000
DATA
BYTE 1 bit
07:1
0000000
DATA
BYTE 0 bit
0
7:1
0000000
DATA
BYTE 3 bit
07:1
0000000
DATA
BYTE 2 bit
0
140 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
14 Connection Control (continued)
14.1 Programming Interface (continued)
14.1.1 PCI Connection Memory Programming (continued)
14.1.1.1 Microprocessor Connection Memory Programming (continued)
5-9632 (F)
Figure 35. Microprocessor Programming—Make/Break/Query Telephony Connections
A[19:0] 19:16
0100 15
014:8
TIME SLOT 76:2
STREAM 1:0
7:0
TAG (LOWER BITS)
76:0
SUBRATE
7:4
0000 3:0
0
DATA
BYTE 0
H-BUS/LOCAL SELECT:
0 = LOCAL STREAMS
1 = H.1x0 STREAMS
HLS
WORD/BYTE
ADDRESS LSBITS
TAG (UPPER BITS)
DATA
BYTE 2
0123
6:470000
DATA
BYTE 1
DATA
BYTE 3
MBS 0 = MAKE CONNECTION
1 = BREAK CONNECTION
0 = WRITE TO DATA MEMORY
1 = READ FROM DATA MEMORY
0 = PATTERN MODE DISABLED
1 = PATTERN MODE ENABLED
0 = USE CURRENT FRAME
1 = USE NEXT FRAME
RWS
VFC
PME
Agere Systems Inc. 141
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
14 Connection Control (con tin ued )
14.2 Switching Operation
The basic building block of switching is one-half simplex connections loaded into the connection memory. Each
connection memory location controls data flow, either from a serial stream input to a location in data memory, or
from data memory to a serial stream output. A typical telephony simplex switch connection would use one from
and one to connection, each using the same data memory location.
14.2.1 Memory Architecture and Configuration
14.2.1.1 Connection Memory
The T8110 connection memory consists of 8192 locations, one location for each of the possible stream/time-slot
combinations, to provide a full nonblocking switch for up to 128 time slots on 32 H1x0 streams (CT_D[31:0]) and
32 local streams (L_D[31:0]). Connection memory is physically addressed by time slot (7 bits), H1x0/local select
(1 bit), and stream (5 bits).
The 8192 locations are divided into four pages of 2048, with each page dedicated to a set of 16 serial streams as
follows:
!H1x0 even streams (CT_D[30, 28, . . . 0])
!H1x0 odd streams (CT_D[31, 29, . . . 1])
!Local high streams (L_D[31:16])
!Local low streams (L_D[15:0])
Each of these connection memory pages are initialized at reset (valid bit entries are reset to invalid). Additionally,
each page may be initialized individually via software command, RESET PAGE (refer to Figure 32 on page 137
and Figure 34 on page 139).
Connection memory locations contain the following control information:
!VALID bit indicates that a valid switch connection exists for this stream/time slot.
!RWS indicates whether the connection is from (from serial stream to data memory) or to (fro m DATA memory to
serial stream).
!VFC (virtual framing control) controls which data page is used in double-buffer scenarios.
Note: There are two data memory configurations that allow double-buffering of the data, in order to create con-
stant frame delay connections. Refer to Section 14.2.1.2 on page 142 and Section 14.2.2.1 on page 143.
!PME indicates a pattern mode connection.
!TAG is the data memory location used for this one-half simplex switch connection (or the data pattern sent to
serial output for pattern mode connections).
!SUBRATE information is subrate switching control (bitswap).
142 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
14 Connection Control (continued)
14.2 Switching Operation (con tin ued)
14.2.1 Memory Architecture and Configuration (continued)
14.2.1.2 Data Memory
The T8110 data memory is 4096 bytes, which can be programmatically configured in three ways, via the data
memory mode select register (0x00105; refer to Section 6.1.3 on page 50).
5-9638 (F)
Figure 36. T8110 Data Memor y Map and Configurations
TEL
DATA
MEMORY
MODES
TEL
TEL TEL
TEL TEL
0x20000
0x20FFF
0x20000
0x207FF
0x20800
0x20BFF
0x20000
0x207FF
(SET BY CONTROL
REGISTER 0x00105)
4K SINGLE-
BUFFERED
SWITCH
2K SINGLE
BUFFERED
+
1K DOUBLE
BUFFERED
2K DOUBLE-
BUFFERED
SWITCH
0x2FFFF
(RESERVED)
0x21000
0x20FFF
0x20000
4K
UTILIZED
TOTAL
ADDRESSED
SPACE IS 64K
DATA
MEMORY
ADDRESSING
Agere Systems Inc. 143
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
14 Connection Control (con tin ued )
14.2 Switching Operation (continued)
14.2.2 Standard Switching
S tandard telephony switching is achieved by loading control fields into the connection memory for one-half simplex
connections (refer to Figure 33 on page 138, Figure 35 on page 140, and Section 14.2.1.1 on page 141).
14.2.2.1 Constant Delay and Minimum Delay Connections
The VFC control bit in connection memory determines which of two data pages is accessed, when the data mem-
ory is configured to double-buffering for telephony connections (refer to Figure 36). This bit always affects to con-
nections (read the data memory, send it out to a serial stream output) in a double-buffer configuration. This bit can
control a from connection in a double-buffer configuration, only if it is a subrate connection; otherwise, the VFC bit
has no bearing on from connections.
The double-buffering configuration creates two data pages. During a particular frame (125 µs time boundary, parti-
tioned into time slots), one page is the active page, the other is the inactive page. The active/inactive page status
toggles at every frame boundary . For all from connections (except for subrate connections), incoming serial data is
always written to the active page. For all to connections, the VFC control bit indicates whether to read from the
active or inactive page. Manipulation of this bit affects the latency between the incoming from data and the outgo-
ing to data. This latency defines whether or not a connection is constant delay or minimum delay.
Please see Appendix A on page 177 for more details on constant and minimum delay connections.
14.2.2.2 Pattern Mode
The PME con t rol bit in connection memory affects only to connections. Instead of reading a value out of the data
memory for subsequent output to a serial stream, the lower 8 bits of the TAG field provide a byte pattern for the
serial output.
14.2.2.3 Subrate
The subrate control bit field in connection memory is used only by from connections and controls how individual
bits or groups of bits of an incoming serial byte are shuffled prior to writing them to the data memory, in order to
achieve subrate switching.
144 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
14 Connection Control (continued)
14.2 Switching Operation (con tin ued)
14.2.2 Standard Switching (continued)
14.2.2.3 Subrate (continued)
Subrate Switching Overview
Traditional byte-oriented TDM data switching provides 8 bits of data per time slot, or channel, regardless of the
TDM stream bit rate. A particular channel occurs once every 8 kHz frame, and there are 8K frames per second.
This allows for a channel data propagation rate of (8 bits/frame * 8K frames/s = 64 kbits/s).
Refer to Figure 37 and Table 107.
Figure 37. TDM Data Stream Bit Rates
Subrate refers to switching fractional portions of the byte-oriented TDM data streams. The T8110 allows the 8 bits
of a byte-oriented channel to be broken into multiple channels of fewer bits, either two 4-bit channels, four 2-bit
channels, or eight 1-bit channels. This lowers the data propagation rate per channel, but increases the overall
channel capacity for a given time slot. Refer to Table 106 and Table 107.
Notes:
Bit subrate = 8 channels per time slot, 1 bit per channel.
Di-bit = 4 channels per time slot, 2 bits per channel.
Nibble subrate = 2 channels per time slot, 4 bits per channel.
Byte (no subrate) = 1 channel per time slot, 8 bits per channel.
Table 106. TDM Dat a Stream
Bit76543210
Di-Bit 7:6 5:4 3:2 1:0
Nibble 7:4 3:0
Byte 7:0
0 1 2 3 4 5 6 7
0 1 2 3
0 1
124 125 126 127
62 63
31
ONE FRAME (8 kHz)
TDM Stream Bit rate = 8MB/s: each stream has
128 timeslots (channels) per frame
TDM STREAM BIT RATE = 4 Mbits/s: EACH STREAM HAS
64 TIME SLOTS (CHANNELS) PER FRAME
TDM STREAM BIT RATE = 2 Mbits/s: EACH STREAM HAS
32 TIME SLOTS (CHANNELS) PER FRAME
EACH CHANNEL CONTAINS ONE 8-BIT
BYTE, REGARDLESS OF THE TDM
DATA STREAM BIT RATE
8 Mbits/s
4 Mbits/s
2 Mbits/s
TDM STREAM BIT RATE = 8 Mbits/s: EACH STREAM HAS
128 TIME SLOTS (CHANNELS) PER FRAME
One Time Slot (or Channel)
Agere Systems Inc. 145
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
14 Connection Control (con tin ued )
14.2 Switching Operation (continued)
14.2.2 Standard Switching (continued)
14.2.2.3 Subrate (con tinu ed)
Subrate Switching Overview (continued)
Subrate Switching Using T8110
The H1x0 bus and the local stream bus are based on byte-oriented TDM data streams—data is always switched
as whole bytes. The subrate data must be packed into these bytes prior to switching (refer to Sections and ). The
data bytes are not necessarily constrained to using fully packed bytes—any portion of a byte may be used. Sub-
rate switching using T8110 requires the following:
!Overall subrate enable mode is activated (register 0x00105, data memory mode select bit 7 is set; see Section
6.1.3 on page 50).
!The subrate field of the connection memory entry for that switch connection is set up. This field contains 7 bits
which control the type of subrate (i.e., bit, di-bit, nibble, or byte), and the data bit shuffling within the TDM byte
data, from and to (refer to Figure 33 on page 138, Figure 35 on page 140, and Table 108).
!The VFC connection memory bit for cases where a double-buffering configuration is set up in the data memory
(refer to Figure 33, Figure 35, and Sections 14.2.1.2, 14.2.2.1).
In order to program a subrate simplex connection, the subrate field is only required for the from half of that con-
nection. Incoming serial byte data has its bit positions rearranged based on the subrate field contents prior to being
written into the data memory. For double-buffered data memory configurations, the VFC bit controls which of two
data pages the rearranged byte is written to. The to half of a subrate simplex connection simply outputs the entire
byte found at the data memory location used for that connection, and its connection memory subrate field is
ignored.
Table 107. Subrate Switching, Data Pr opagation Rate vs. Channel Capacity
Subrate Type Bits per Channel Channel Data Prop agation Rate
(Bits/Frame x 8K Frames/s) Channel Capacity
(Relative to Byte Switching)
Bit 1 8 kbits/s 8X
Di-bit 2 16 kbits/s 4X
Nibble 4 32 kbits/s 2X
Byte (no subrate) 8 64 kbits/s 1X
146 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
14 Connection Control (continued)
14.2 Switching Operation (con tin ued)
14.2.2 Standard Switching (continued)
14.2.2.3 Subrate (continued)
Subrate Switching Overview (continued)
Subrate Packing of Outgoing Bytes
The output from subrate connections is always an entire byte so that it does not violate the H.100 or H.110 specifi-
cations. The output byte is composed of smaller, i.e., subrate pieces. The process of combining the incoming
pieces into a whole byte suitable for output is called packing. In the T8110 (and other subrate-capable Ambassa-
dor devices), packing is accomplished by making several from connections for each single to connection. For
example, in Figure 38, four from connec tions (of dif fer ent str eam/t ime-sl ot or igins) , all di- bit s, are us ed to co nstruc t
a byte that will be output as defined by the to connection.
The outgoing to half of a simplex connection reads an entire byte from a data memory location. The packing of
separate incoming subrate pieces into this byte is achieved by setting up multiple from one-half simplex connec-
tions for one to one-half simplex connection, all using the same data memory location. An example is illustrated in
Figure 38 This example shows the packing of four separate incoming di-bits from four different channels into one
outgoing byte on one channel.
Note: Please note the limitation that multiple di-bits from the same time slot cannot be switched simultaneously.
This would require the byte of that time slot to be unpacked first, which is discussed in Section on p age 148.
Table 108. Subrate Switching, Connection Memory Programming Setup
Subrate
Type Subrate Connection Memory Bit Field (6:0)
65 4 3 21 0
Bit 1 000 = from bit 0
001 = from bit 1
010 = from bit 2
011 = from bit 3
100 = from bit 4
101 = from bit 5
110 = from bit 6
111 = from bit 7
000 = to bit 0
001 = to bit 1
010 = to bit 2
011 = to bit 3
100 = to bit 4
101 = to bit 5
110 = to bit 6
111 = to bit 7
Subrate Connection Memory Bit Field (6:0)
65 4 3 21 0
Di-Bit 01 00 = from bits[1:0]
01 = from bits[3:2]
10 = from bits [5:4]
11 = from bits[7:6]
Reserved 00 = to bits[1:0]
01 = to bits[3:2]
10 = to bits[5:4]
11 = to bits[7:6]
Subrate
Type Subrate Connection Memory Bit Field (6:0)
65 4 3 21 0
Nibble 001 0 = from bits[3:0]
1 = from bits[7:4] Reserved 0 = to bits[3:0]
1 = to bits[7:4]
Subrate Connection Memory Bit Field (6:0)
65 4 3 21 0
Byte 000 Reserved
Agere Systems Inc. 147
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
14 Connection Control (con tin ued )
14.2 Switching Operation (continued)
14.2.2 Standard Switching (continued)
14.2.2.3 Subrate (con tinu ed)
Subrate Packing of Outgoing Bytes (continued)
Notes:
Connectivity is as follows:
!From stream a, time slot n, bits[1:0] to stream e, time slot n + 10, bits[7:6].
!From stream b, time slot n + 1, bits[1:0] to stream e, time slot n + 10, bits[3:2].
!From stream c, time slot n + 2, bits[3:2] to stream e, time slot n + 10, bits[1:0].
!From stream d, time slot n + 3, bits[5:4] to stream e, time slot n + 10, bits[5:4].
Required connection memory programming is as follows:
Five 1/2 simplex connections are required to pack four incoming di-bits into an outgoing byte.
!From stream a, time slot n. Connection memory subrate field = 0100X11.
!From stream b, time slot n + 1. Connection memory subrate field = 0100X01.
!From stream c, time slot n + 2. Connection memory subrate field = 0101X00.
!From stream d, time slot n + 3. Connection memory subrate field = 0110X10.
!To stream e, time slot n + 10. Connection memory subrate field is don't care.
Figure 38. Subrate Switching Example, Byte Packing
FRAME (8 kHz)
TIME SLOT
STREAM a, DI-BIT CHANNELS IN
STREAM b, DI-BIT CHANNELS IN
STREAM c, DI-BIT CHANNELS IN
BIT POSITIONS OF DI-BITS
WITHIN THE DATA BYTE
STREAM d, DI-BIT CHANNELS IN
STREAM e, DI-BIT CHANNELS OUT
nn + 1 n + 2 n + 3
TIME SLOT
n + 10
7:
65:
43:
21:
0
a
1a
2a
3a
4b
1b
2b
3b
4
a
4d
2b
4c
3
c
1c
2c
3c
4d
1d
2d
3d
4
7:
65:
43:
21:
07:
65:
43:
21:
07:
65:
43:
21:
07:
65:
43:
21:
0
148 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
14 Connection Control (continued)
14.2 Switching Operation (con tin ued)
14.2.2 Standard Switching (continued)
14.2.2.3 Subrate (continued)
Subrate Unpacking of Incoming Bytes
Because the H1x0 bus and the local stream bus are based on byte-oriented TDM data streams, and the T8110
architecture is geared towards standard byte switching, it is not possible to simultaneously switch subrate portions
of a single byte to different places. This limitation is overcome by application. To gain access to each subrate piece
contained in one incoming byte, that byte must be broadcast onto additional channels, one channel for each sub-
rate piece required. The means of broadcasting is up to the application—either the source device of the packed
subrate byte can broadcast it, or the device receiving that byte can broadcast it over unused channels and loop the
broadcast bytes back in. The example from Figure 38 is extended in Figure 39. This example shows the unpacking
of the packed byte created in Figure 38, output to four different channels.
Agere Systems Inc. 149
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
14 Connection Control (con tin ued )
14.2 Switching Operation (continued)
14.2.2 Standard Switching (continued)
14.2.2.3 Subrate (con tinu ed)
Subrate Unpacking of Incoming Bytes (continued)
Notes:
Connectivity is as follows:
From stream e, time slot n + 3, bits[1:0] to stream j, time slot n + 8, bits[7:6].
From stream f, time slot n + 5, bits[3:2] to stream i, time slot n + 8, bits[5:4].
From stream f, time slot n + 6, bits[5:4] to st ream h, time slot n + 8, bits[1:0].
From stream f, time slot n + 7, bits[7:6] to st ream g, time slot n + 8, bits[7:6].
Required connection memory programming is as follows:
Eight 1/2 simplex connections are required to unpack one incoming byte to four separate outgoing di-bits.
From stream e, time slot n + 3. Connection memory subrate field = 0100X11.
From stream f, time slot n + 5. Connection memory subrate field = 0101X10.
From stream f, time slot n + 6. Connection memory subrate field = 0110X00.
From stream f, time slot n + 7. Connection memory subrate field = 0111X 11.
To stream g, time slot n + 8. Connection memory subrate field is don't care.
To stream h, time slot n + 8. Connection memory subrate field is don't care.
To stream i, time slot n + 8. Connection memory subrate field is don't care.
To stream j, time slot n + 8. Connection memory subrate field is don't care.
Figure 39. Subrate Switching Example, Byte Unpacking
n + 3 n + 4 n + 5 n + 6
FRAME (8 kHz)
TI ME SL O T
TIME SLOT
BIT POSITIONS OF DI-BITS
WITHIN THE DATA BYTE
n + 7
7:
65:
43:
21:
0
STREAM e, DI-BIT CHANNELS IN a
4d
2b
4c
3
7:
65:
43:
21:
07:
65:
43:
21:
07:
65:
43:
21:
07:
65:
43:
21:
0
n + 8
a
4d
2b
4c
3a
4d
2b
4c
3a
4d
2b
4c
3
STREAM f, DI-BIT CHANNELS IN
(BROADCASTS OF THE ORIGINAL INPUT)
STREAM g, DI-BIT CHANNELS OUT
STREAM h, DI-BIT CHANNELS OUT
STREAM i, DI-BIT CHANNELS OUT
STREAM j, DI-BIT CHANNELS OUT
a
4X X X
X X X d
2
Xb
4X X
c
3X X X
BROADCASTED INCOMING BYTE
7:
65:
43:
21:
0
150 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
15 Electrical Characteristics
15.1 Absolute Maximum Ratings
Stresses in excess of the absolute maximum ratings can cause permanent damage; the table below shows abso-
lute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess
of those given in the operational sections of this data sheet. Exposure to absolute maximum ratings for extended
periods can adversely affect device reliability.
15.1.1 Handling Precautions
Although protection circuitry has been designed into this device, proper precautions should be taken to avoid expo-
sure to electrostatic discharge (ESD) during handling and mounting. Agere employs a human-body model (HBM)
and a charged-device model (CDM) for ESD-susceptibility testing and protection design evaluation. ESD voltage
thresholds are dependent on the circuit parameters used to define the model. No industry-wide standard has been
adopted for CDM. However, a standard HBM (resistance = 1500 W, capacitance = 100 pF) is widely used and,
therefore, can be used for comparison purposes. The T8110 has a HBM ESD threshold voltage rating of 1500 V
minimum.
15.2 Crystal Specifications
15.2.1 XTAL1 Crystal
The T8110 requires a 16.384 MHz clock source derived from an oscillator or a crystal. If a crystal is used it has to
be a 16.384 MHz crystal and must be connected between the XT AL1_IN and the XTAL1_OUT pins. External 24 pF,
5% capacitors must be connected from XTAL1_IN and XTAL1_OUT to Vss, as shown in the diagram below.
The ±32 ppm tolerance is the suggested value if the oscillator is used as the clocking source while mastering the
bus. Otherwise, a crystal with a lesser tolerance can be used. The crystal specifications are shown below.
Table 109. Absolute Maximum Ratings
Parameter Symbol Min Max Unit
Supply Voltage VDD —4.2V
XTAL1_IN, XTAL2_IN, XTAL1_OUT, XTAL2_OUT pins VSS VDD V
Voltage Applied to I/O Pins VSS0.3 VDD 5.5 V
Operating Temperature –40 85 °C
Storage Temperature Tstg –55 125 °C
Table 110. XTAL1 S pecifications
Parameter Value
Frequency 16.384 MHz
Oscillation Mode Fundamental, parallel resonance
Effective Series Resistance 50 maximum
Load Capacitance 18 pF
Shunt Capacitance 7 pF maximum
Frequency Tolerance and Stability 32 ppm 5-6390f(c)
VSS
24 pF
24 pF
1 M
16.384 MHZ
T8110
XTAL1_IN
XTAL1_OUT
CRYSTAL
Agere Systems Inc. 151
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
15 Electrical Characteristics (continued)
15.2 Crystal Specifications (continued)
15.2.1 XTAL1 Crystal (continued)
If an oscillator is used (see Section 7.4.4 on page 79), the signal has to be connected to the XTAL1_IN pin.
XTAL1_OUT must be left unconnected in this configuration. XTAL1_IN and XTAL1_OUT are not 5 V tolerant. The
oscillator must meet the requirements shown below.
15.2.2 XTAL2 Crystal
XTAL2 is an optional crystal oscillator input. If a crystal is used, it has to be a 6.176 MHz or a 12.352 MHz crystal
and must be connected between the XTAL2_IN and the XTAL2_OUT pins, as shown in the diagram below. Exter-
nal 24 pF, 5% capacitors must be connected from XTAL2_IN and XTAL2_OUT to Vss. The ±32 ppm tolerance is
the suggested value if the oscillator is used as the clocking source while mastering the bus. Otherwise, a crystal
with a lesser tolerance can be used (see Table 121).
If XTAL2 is not used, XTAL2_IN should be tied to VDD and XTAL2_OUT should be left unconnected.
* 120 maximum for 6.176 MHz crystal.
24 pF for 6.176 MHz crystal also.
18 pF for 6.176 MHz crystal also.
If an oscillator is used (see Section 7.5.1 on page 81), the signal has to be connected to the XTAL2_IN pin.
XTAL2_OUT must be left unconnected in this configuration. XTAL2_IN and XTAL2_OUT are not 5 V tolerant. The
oscillator must meet the requirements shown below.
Table 111. 16.384 MHz Oscillator Requirements
Parameter Value
Frequency 16.384 MHz
Maximum Rise or Fall Time 10 ns, 10%—90% VDD
Minimum Pu lse Width Low High
20 ns 20 ns
Table 112. XTAL2 Specifications
Parameter Value
Frequency 12.352 MHz
Oscillation Mode Fundamental, parallel resonance
Effective Ser ies Resistan ce 75* maximum
Load Capacitance 18 pF
Shunt Capacitance 7 pF maximum
Frequency Tolerance and Stability 32 ppm 5-6390d
Table 113. 6.176 MHz/12.352 MHz Oscillator Requirements
Parameter Value Value
Frequency 6.176 MHz 12.352 MHz
Maximum Rise or Fall Time 10 ns, 10%—90% VDD 10 ns, 10%—90% VDD
Minimum Pulse Width Low High Low High
54 ns 54 ns 27 ns 27 ns
VSS
24 pF
24 pF
1 M
T8110
XTAL2_IN
XTAL2_OUT
12.352 MHz
CRYSTAL
152 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
15 Electrical Characteristics (continu ed)
15.2 Crystal Specifications (con tin ued)
15.2.3 Reset Pulse
15.3 Thermal Param eters (Definitions and Values )
System and circuit board level performance depends not only on device electrical characteristics, but also on device
thermal characteristics. The thermal characteristics frequently determine the limits of circuit board or system perfor-
mance, and they can be a major cost adder or cost avoidance factor. When the die temperature is kept below 125
°C, temperature activated failure mechanisms are minimized. The thermal parameters that Agere provides for its
packages help the chip and system designer choose the best package for their applications, including allowing the
system designer to thermally design and integrate their systems.
It should be noted that all the parameters listed below are affected, to varying degrees, by package design (including
paddle size) and choice of materials, the amount of copper in the test board or system board, and system airflow.
ΘJA—Junction to Air Thermal Resist ance
ΘJA is a number used to express the thermal performance of a part under JEDEC standard natural convection con-
ditions. ΘJA is calculated using the following formula:
ΘJA = (TJ – Tamb)/P; where P = power
ΘJMA—Junction to Moving Air Thermal Resistance
ΘJMA is effectively identical to ΘJA but represents performance of a part mounted on a JEDEC four layer board inside
a wind tunnel with forced air convection. ΘJMA is reported at airflows of 200 lft./min and 500 lft./min, which roughly
correspo nd to
1 m/s and 2.5 m/s (respec tiv el y) . ΘJMA is calculated using the following formula:
ΘJMA = (TJ – Tamb)/P
ΘJC—Junction to Case Thermal Resistance
ΘJC is the thermal resistance from junction to the top of the case. This number is determined by forcing nearly 100%
of the heat generated in the die out the top of the package by lowering the top case temperature. This is done by
placing the top of the package in contact with a copper slug kept at room temperature using a liquid refrigeration
unit. ΘJC is calculated using the following formula:
ΘJC = (TJ – TC)/P
Table 114. Reset Pulse
Parameter Min Max Unit
RESET# Minimum Pulse Width 61 ns
Agere Systems Inc. 153
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
15 Electrical Characteristics (continued)
15.3 Thermal Parameters (Definitio ns and Values) (contin ued)
ΘJB—Junction to Board Thermal Resistance
ΘJB is the thermal resistance from junction to board. This number is determined by forcing the heat generated in the
die out of the package through the leads or balls by lowering the board temperature and insulating the package top.
This is done using a special fixture, which keeps the board in contact with a water chilled copper slug around the
perimeter of the package while insulating the package top. ΘJB is calculated using the following formula:
ΘJB = (TJ – TB)/P
ΨJT
ΨJT correlates the junction temperature to the case temperature. It is generally used by the customer to infer the
junction temperature while the part is operating in their system. It is not considered a true thermal resistance. ΨJT
is ca lculated using the following formula:
ΨJT = (TJ – TC)/P
15.4 Reliability
Product reliability can be calculated as the probability that the product will perform under normal operating condi-
tions for a set period of time. Factors influencing the reliability of a product cover a range of variables, including de-
sign and manufacturing. The failure rate of a product is given as the number of units failing per unit time. This failure
rate is known as FIT, which is as follows:
1 FIT = 1 Failure/1x10e9 hours.
Another unit used for failure rate is known as MTBF, which is 1/FIT. Many assumptions are made when calculating
the failure rate for a product, such as the average junction temperature and activation energy. The assumptions
made for calculating FIT and MTBF are shown in Table 116:
Table 115. Thermal Parameter Values
Parameter Temperature °C/Watt
ΘJA 22
ΘJMA (1 m/s) 19
ΘJMA (2.5 m/s) 17.5
ΘJC 20
ΘJB TBD
ΨJT 1.0
Table 116. Reliability Data
Junction Temperature FIT (Per 10e9 Device Hours MTBF Activation Energy
55 °C 10 1.0e8 hours .7eV
154 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
15 Electrical Characteristics (continu ed)
15.5 dc Electrical Characteristics
15.5.1 PCI Signals
All PCI signals meet the electrical requirements as specified in the PCI L ocal Bu s, Rev 2.2, specification. PCI inter-
face timing diagrams can be found in Figure 4—Figure 11, starting on page 29.
15.5.2 Electrical Drive Specifications, CT_C8 and /CT_FRAME
VDD = 3.3 V and VSS = 0.0 V, unless otherwise spec i fie d.
PCI-compliant data line I/O cells are used for the CT bus data lines. (See PCI Specifi cat ion , Rev. 2.2, Chapter 4.)
/C16, /C4, C2, SCLK, /SCLKx2, and /FR_COMP all use the same driver/receiver pairs as those specified for the
CT_C8 and /CT_FRAME signals, though this is not explicitly stated as a part of the H.1x0 specification.
Table 1 17. Electrical Drive Specifications, CT_C8 and /CT_FRAME
Parameter Symbol Condition Min Max Unit
Output High Voltage VOH IOUT = –24 mA 2.4 3.3 V
Output Low Voltage VOL IOUT = 24 mA –0.25 0.4 V
Positive-going Threshold Vt+ 1.2 2.0 V
Negative-going Threshold Vt– 0.6 1.6 V
Hysteresis (Vt+—Vt–) VHYS —0.4V
Input Pin Capacitance CIN 10 pF
Agere Systems Inc. 155
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
15 Electrical Characteristics (continued)
15.5 dc Electrical Characteristics (continued)
15.5.3 All Other Pins
VDD = 3.3 V and Vss = 0.0 V, unless otherwise specified.
15.6 H-Bus Timing
15.6.1 Timing Diagrams
5-6119F
Figure 40. Clock Alignment
Table 118. dc Electrical Characteristics, All Other Pins
Parameter Symbol Condition Min Typ Max Unit
Suppl y Cur r e nt IDD 2000 H-bus/L-bus connections 300 mA
Supply Voltage VDD 3.0 3.6 V
Input High Voltage VIH —2.0V
Input Low Voltage VIL ——0.8V
Input Current II——1µA
Input Capacitance (input only) CI——5pF
Inpu t Capacitance (I/O pin s) CIO ——10pF
Leakage Current (3-state) ILEAK ——10µA
Input Clamp Voltage VC——1.0V
Output High Vol tage V OH I = 8 mA 2.4 V
Output Low Voltage VOL I = 8 mA 0.4 V
Output Short-c ircui t Curren t IOS VOH tied to GND 100 mA
/CT_FRAME (A/B)
CT_C8 (A/B)
/FR_COMP
/C16
C2
/C4
SCLK
SCLK
/SCLKx2
/SCLKx2
SCLK
(2.048 MHz)
(2.048 MHz MODE)
(4.096 MHz MODE)
(4.096 MHz MODE)
(8.192 MHz MODE)
(8.192 MHz MODE)
/SCLKx2
FRAME BOUNDARY
156 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
15 Electrical Characteristics (continu ed)
15.6 H-Bus Timing (continued)
15.6.1 Timing Diagrams (continued)
Note: Bit 1 is the MSB and Bit 8 is the LSB. MSB is always transmitted first in all transfers. 5-6120F
Figure 41. Frame Timing Diagram
5-6122F
Figure 42. Det ailed Clock Skew Timing Diagram
15.7 ac Electrical Characteristics
15.7.1 Skew Timing, H-Bus
* Test load—50 pF.
† Assumes A and B masters in adjacent slots.
‡ When static skew is 10 ns and in the same clock cycle, each clock performs a 10 ns phase correction in opposite directions, a maxi mum
skew of 30 ns will occur during that clock cycle.
§ Meeting the skew requirements in Table 119 and the requirements of Section 15.5 H-Bus T iming on p age 155 could require the PLLs gener-
ating CT_C8 to have different time constants when acting as primary and secondary clock masters.
Table 119. Skew Timing, H-Bus
Symbol Parameter Min Typical Max Unit
tSKC8 Maximum Skew Between CT_C8_A and CT_C8_B* †‡ § ——±10, ±Φns
TSKCOMP Maximum Skew Between CT_C8_A and any Compatibility Clock* ±5 ns
Maximum Skew Between CT_C8_A and L_SCx Clock* ±2 ns
812345678 123456781
1270
/CT_FRAME
CT_C8
CT_DX
TIME
SLOT
125
µ
s
FRAME BOUNDARY
Vt+
Vt+
CT_C8_A
CT_C8_B
tSKC8
Vt+
Vt+
CT_C8_A
COMPATIBILITY
tSKCOMP
CLOCKS
Vt–
tSKCOMP
Agere Systems Inc. 157
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
15 Electrical Characteristics (continued)
15.7 ac Electrical Characteristics (continued)
15.7.1 Skew Timing, H-Bus (continued)
* Worst-case loading of 50 pF on all outputs.
15.8 Hot Swap
The T8110 has features which assist in H.110 hot swap applications. All H.110 bus signals are put in high imped-
ance (3-state and/or input) during the early power phase of board insertion/removal. The ECTF H.110 specification
requires that all CT data lines and CT_NETREF clocks have 0.7 V applied through 18 k resistors before plugging
into and releasing from the H.110 bus. A feature on the T8110 incorporates all 34 18 kprecharge resistors inter-
nally (32 for the CT data signals, 2 for NETREFs). These resistors accept 0.7 V directly through the VPRE-
CHARGE input. The ECTF H.110 specification requires that the T8110 must be powered from early power in hot
swap applications. The circuit that generates the 0.7 V precharge voltage must also be powered from early power .
Refer to ECTF H.110 and PICMG CompactPCI Hot Swap specifications for hot swap requirements.
15.8.1 LPUE (Local Pull-Up Enable)
LPUE is used as an assist in CompactPCI specifically for hot swap; see Section 2.3.2 on page 22. During live
board insertion/removal, the only devices which should be on early power are the power controller and interface
parts (PCI interface attached to J1, H.110 interface attached to J4). Without the LPUE, any device connected to the
T8110 would get current flow from the early power through the pull-up resistors. When late power parts power up,
they already have current flowing through the I/O and these devices could possibly latch up. The current flow is
eliminated by LPUE disabling the pull-up resistors. LPUE is typically controlled by the power controller. The power
controller will pull LPUE low during board insertion/removal and will release LPUE high so that the pull ups are re-
enabled with late power turning on. Signals that have pull-ups disabled by LPUE are GP[7:0], FG[7:0],
MB_D[15:0], LD[31:0], LREF[7:0], PRI_REF_IN, NR1_DIV_IN, and NR2_DIV_IN.
15.9 Decoupling
Dec oupling the T8110 VDDs with 0.1 µF capacitors is recommended. 1000 pF or 0.01 µF capacitors may be used
in addition to the 0.1 µF capacitors to provide additional decoupling.
Table 120. L_SC[3:0] and Frame Group Rise and Fall Time
Parameter Min Typ Max Unit*
L_SCx Rise Time 5 ns
L_SCx Fall Time 4 ns
Frame Group Rise Time 3 ns
Frame Group Fall Time 3 ns
158 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
15 Electrical Characteristics (continu ed)
15.10 APLL VDD Filt er
Separate VDDs are provided for APLL1 and APLL2 for filtering purposes. VDD filtering will provide stability in the
APLL, primarily the VCOs. An R/C low pass filter should be applied to the PLL VDDs, see Figure 43. Depending on
the quality of VDD and board layout characteristics, the R/C values should be selected to filter out unwanted fre-
quencies above a targeted frequency. For example, a 25 resistor and 10 µF capacitor will have a cut-off
frequency of 636 Hz. Characterize the quality of your VDD and select component values accordingly. 25 is the
maximum recommended resistor value. At high frequencies the ESR of a bulk cap becomes a problem (no longer
effectively low passes) so a high-frequency cap of 0.1 µF or so is required to compensate for some of the higher
clocks and various harmonics. This needs to be placed as close to the T8110 device as possible to minimize the
radiational pick-up in the remaining trace length. APLL1 and APLL2 each draw approximately 7 mA at 3.3 V. Hot
swap applications can use late power to ensure the capacitance and in-rush current do not violate the PICMG Hot
Swap specification.
0995(F)
Figure 43. APLL VDD Filtering
15.11 PC Board PBGA Consideration s
The T81 10 is a 272-ball plastic ball grid array package. The 16 centrally located thermal balls should be connected
to board ground. While there are no special printed-circuit board requirements for the T8110, there are specifica-
tion requirements for PC board layout that must be adhered to. For instance, per the ECTF H.110 specification, all
CT bus data signals must not exceed 4 inches in length from connector to I/O cell and all CT bus clock signals
must not exceed 2 inches in length from connector to I/O cell. We advise the customer to become familiar with
applicable specifications for any PC board requirements.
VSS
T8110
APLL1VDD
VSS
APLL2VDD
VDD = 3.3 V
VDD = 3.3 V
R
C
R
C0.1 µF
0.1 µF
Agere Systems Inc. 159
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
15 Electrical Characteristics (continued)
15.12 Unused Pins
If the PCI interface is not used, these signals should be pulled up/down to their inactive state. Multiple pins may
share a common resistor. Signals with pull-up/down resistors may be left unconnected if unused. Unused 8 mA
3-state signals may be left unconnected. If XTAL1_IN and/or XTAL2_IN are being driven from an oscillator, then
XTAL1_OUT and/or XTAL2_OUT must be left unconnected. If XTAL2 is not used, XTAL2_IN should be pulled-up
or tied directly to VDD and XTAL2_OUT should be left unconnected. If VPRECHARGE is unused, this signal may
be left unconnected. All signals listed as no connect (D16, D20, E17, and G17) in Table 9 must be left uncon-
nected.
15.13 T8110 Develop ment Kits
Two development kits are available for the T8110, one for PCI and one for CompactPCI. Each kit contains an eval-
uation board, software, and documentation. The CompactPCI evaluation board is full hot swap; it includes the
T8110 chip, a PCI transparent bridge, a dual T1/E1 line interface, dual codec, and dual SLIC. The PCI evaluation
board is a full-length PCI board and is comparably featured (no hot swap). The CompactPCI evaluation board is
designed to use the PCI interface only, and the PCI board has an option to use the PCI interface or the micropro-
cessor interface. Software includes full source code, including rights to reuse. Documentation CD includes evalua-
tion board schematics (ORCAD and .pdf formats) evaluation board bill of material (BOM), data sheets, and
advisories. Refer to website http://www.agere.com/enterprise_metro_access/tdm_interconnect.html for additional
information.
15.14 T8110 Orde rin g Information
Table 121. T81 10 Ordering Information
Device Part Number Package Comcode
T-8110---BAL-DB 272-Ball PBGA 108560269
160 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
16 Package Outline
16.1 Pin and Pad Assignments
5-8906F(a).
Figure 44. T8110 Pins by Functional Group, PCI I/F Enabled, Microprocessor I/F Disabled
VSS
VDD
VDDVSS
VSS
VDD
VSS
VDD
VSSVDDVSSVDDVSSVDDVSS
VDD
VSS
VDD
VSS
VDD
VSS VDD VSS VDD
VSSA
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
1234567891011121314151617181920
PRECHARGE
GPIO
MINIBRIDGE
ADDRESS
MINIBRIDGE
CONTROL
SIGNALS
MINIBRIDGE
DATA
RESET
PLL
PLL
LOCAL
CLOCK
OUTPUTS
LOCAL
FRAME
ERROR
SIGNALS (PCI CONTROLS) PCI
INTERFACE
GROUP
DATA
H-BUS DATA H.110 CLOCKS
LOCAL
REFERENCE
INPUTS EXTERNAL
CLADs/DJATs
COMPATIBILITY
CLOCKS PLL
MLAC
JTAG
PORT
(CBEs)
(XTAL#1)
(XTAL#2)
BIST
(EEPROM)
LOCAL
PE
H.100
PE
H.110
PE
VIO/µP_SELECT = 3.3 V or 5 V THERMAL GROUND
Agere Systems Inc. 161
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
16 Package Outline (continued)
16.1 Pin and Pad Assig nme nt s (continued)
5-8906F(b).
Figure 45. T8110 Pins by Functional Group, Microprocessor I/F Enabled, PCI I/F Disabled
VSS
VDD
VDDVSS
VSS
VDD
VSS
VDD
VSSVDDVSSVDDVSSVDDVSS
VDD
VSS
VDD
VSS
VDD
VSS VDD VSS VDD
VSSA
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
1234567891011121314151617181920
PRECHARGE
GPIO
µPROCESSOR
ADDRESS
µPROCESSOR
CONTROL
SIGNALS
µPROCESSOR
DATA
RESET
PLL
PLL
LOCAL
CLOCK
OUTPUTS
LOCAL
FRAME
ERROR
SIGNALS (NO CONNECT )
GROUP
DATA
H-BUS DATA H.110 CLOCKS
LOCAL
REFERENCE
INPUTS EXTERNAL
CLADs/DJATs
COMPATIBILITY
CLOCKS PLL
MLAC
JTAG
PORT
(XTAL#1)
(XTAL#2)
BIST
LOCAL
PE
H.100
PE
H.110
PE
VIO/µP_SELECT = 0V THERMAL GROUND
(N/C)
162 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
16 Package Outline (continued)
16.1 Pin and P ad Assignments (continued)
5-4406
BOTTOM VIEW
A
B
C
D
E
F
G
H
J
K
L
M
Y
N
P
R
T
U
V
W
12345678910
11
12
13
14
15
16
17
182019
19 SPACES @ 1.27 = 24.13
19 SP AC ES
@ 1.27 = 24.13
0.76 +0.14
–0.16
A1 BAL L
PAD CORNER
Agere Systems Inc. 163
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
16 Package Outline (continued)
16.1 Pin and Pad Assig nme nt s (continued)
5-4406
SIDE VIEW
5-4406
TOP VIEW
1.17 ± 0.05
SEATING PL ANE
SOLD ER BALL
0.60 ± 0.10
0.20
0.36 +0.04
–0.06 2.13 +0.19
–0.21
27.00
24.00 +0.70
–0.50
24.00 +0.70
–0.50
A1 BALL PAD
CORNER
27.00
164 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
17 JTAG/Boundary Scan
17.1 The Principle of Bound ary-Scan Architectur e
Each primary input signal and primary output signal is supplemented with a multipurpose memory element called a
boundary-scan cell. Cells on device primary inputs are referred to as input cells and cells on primary outputs are
referred to as output cells. Input and output is relative to the core logic of the device.
At any time, only one register can be connected from TDI to TDO. For example, instruction register (IR), bypass,
boundary-scan, ident, or even some appropriate register internal to the core logic (see Figure 46). The selected
register is identified by the decoded output of the instruction register. Certain instructions are mandatory, such as
EXTEST (boundary-scan register selected), whereas others are optional, such as the IDCODE instruction (Ident
regi ste r se lec t ed ) .
Figure 46. IEEE® 1149.1 Boundary-Scan Architecture
Figure 46 shows the following elements:
!A set of four dedicated test pins, test data in (TDI), test mode select (TMS), test clock (TCK), test data out (TDO),
and one optional test pin test reset (TRSTN). These pins are collectively referred to as the test access port
(TAP).
!A boundary-scan cell on each device’s primary input and primary output pin, connected internally to form a serial
boundary -sc an re gis te r (boundary scan ).
!A finite-state machine TAP controller with inputs TCK and TMS.
!An n-bit (n = 3) instruction register (IR), holding the current instruction.
!A 1-bit bypass register (BYPASS).
!An optional 32-bit identification register (ident) capable of being loaded with a permanent device identification
code.
INTERNAL
CORE LOGIC
IDENTIFICATION REGISTER
INSTRUCTION REGISTER (IR)
TEST MODE SELECT
TEST CLOCK
TMS
TCK
TEST RESET (TRSTN)
TEST DATA OUT
TDO
TDI
TEST DATA IN BYPASS
TAP
CONTROLLER
Agere Systems Inc. 165
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
17 JTAG/Boundary Scan (continued)
17.1.1 Instruction Register
The instruction register is 3 bits long and the capture value is 001.
17.2 Boundar y-Scan Register
Note: The control column of the following table indicates the value for boundary-scan control of this pin.;
Table 122. Instruction Register
Instruction Binary Code Description
EXTES T 000 Plac es the boun dary - sc an regis te r in EXTE S T mode.
SAMP LE 001 Pl aces the boun dar y -sc an re gister in sample mode.
IDCODE 101 Identification code.
BYPASS 110, 111 Places the bypass register in the scan chain.
HIGH Z 010 Places all outputs and I/Os in 3-state mode.
Table 123. Boundary-Scan Register Description
Boundary-Scan
Register Bit Pin Pin Name Ball Enabled
State Pin Grouping Control Disabled
State
0V
SS A1 Linkage
1 BOUT_CT_D_EN(27) Controller
2 CT_D27 A2 I/O BOUT_CT_D_EN(27) 0 High Z
3 BOUT_CT_D_EN(24) Controller
4 CT_D24 A3 I/O BOUT_CT_D_EN(24) 0 High Z
5 BOUT_CT_D_EN(21) Controller
6 CT_D21 A4 I/O BOUT_CT_D_EN(21) 0 High Z
7 BOUT_CT_D_EN(19) Controller
8 CT_D19 A5 I/O BOUT_CT_D_EN(19) 0 High Z
9 BOUT_CT_D_EN(16) Controller
10 CT_D16 A6 I/O BOUT_CT_D_EN(16) 0 High Z
11 BOUT_CT_D_EN(13) Controller
12 CT_D13 A7 I/O BOUT_CT_D_EN(13) 0 High Z
13 BOUT_CT_D_EN(11) Controller
14 CT_D11 A8 I/O BOUT_CT_D_EN(11) 0 High Z
15 BOUT_CT_D_EN(8) Controller
16 CT_D8 A9 I/O BOUT_CT_D_EN(8) 0 High Z
17 BOUT_CT_D_EN(4) Controller
18 CT_D4 A10 I/O BOUT_CT_D_EN(4) 0 High Z
19 BOUT_CT_D_EN(0) Controller
20 CT_D0 A11 I/O BOUT_CT_D_EN(0) 0 High Z
21 BOUT_CT_A_EN Controller
166 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
17 JTAG/Boundary Scan (continued)
17.2 Boundary-Scan Register (continued)
Table 123. Boundary-Scan Register Description (continued)
Boundary-Scan
Register Bit Pin Pin Name Ball Enabled
State Pin Grouping Control Disa ble d
State
22 /CT_FRAME_A A12 I/O BOUT_CT_A_EN 0 High Z
23 CT_C8_A A13 I/O BOUT_CT_A_EN 0 High Z
24 BOUT_CT_NETREF1_En Controller
25 CT_NETREF1 A14 I/O BOUT_CT_NETREF1_En 0 High Z
26 L_REF0 A15 Input BOUT_CT_NETREF1_En
27 L_REF4 A16 Input BOUT_CT_NETREF1_En
28 GENERAL_EN Controller
29 PRI_REF_OUT A17 Output3 GENERAL_EN 0 High Z
30 PRI_REF_IN A18 Clock GENERAL_EN
31 NR1_DIV_IN A19 Input GENERAL_EN
32 PEN A20 Enable0 GENERAL_EN(0) 50 Kup
33 BOUT_CT_D_EN(29) Controller
34 CT_D29 B1 I/O BOUT_CT_D_EN(29) 0 High Z
35 BOUT_CT_D_EN(28) Controller
36 CT_D28 B2 I/O BOUT_CT_D_EN(28) 0 High Z
37 BOUT_CT_D_EN(25) Controller
38 CT_D25 B3 I/O BOUT_CT_D_EN(25) 0 High Z
39 BOUT_CT_D_EN(22) Controller
40 CT_D22 B4 I/O BOU T_CT_D_EN(22) 0 High Z
41 BOUT_CT_D_EN(20) Controller
42 CT_D20 B5 I/O BOU T_CT_D_EN(20) 0 High Z
43 BOUT_CT_D_EN(17) Controller
44 CT_D17 B6 I/O BOU T_CT_D_EN(17) 0 High Z
45 BOUT_CT_D_EN(14) Controller
46 CT_D14 B7 I/O BOUT_CT_D_EN(14) 0 High Z
47 BOUT_CT_D_EN(9) Controller
48 CT_D9 B8 I/O BOUT_CT_D_EN(9) 0 High Z
49 BOUT_CT_D_EN(6) Controller
50 CT_D6 B9 I/O BOUT_CT_D_EN(6) 0 High Z
51 BOUT_CT_D_EN(5) Controller
52 CT_D5 B10 I/O BOUT_CT_D_EN(5) 0 High Z
53 BOUT_CT_D_EN(1) Controller
54 CT_D1 B11 I/O BOUT_CT_D_EN(1) 0 High Z
55 BOUT_CT_B_EN Controller
56 /CT_FRAME_B B12 I/O BOUT_CT_B_EN 0 High Z
57 CT_C8_B B13 I/O BOUT_CT_B_EN 0 High Z
Agere Systems Inc. 167
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
17 JTAG/Boundary Scan (continued)
17.2 Boundary-Scan Register (continued)
Table 123. Boundary-Scan Register Description (continued)
Boundary-Scan
Register Bit Pin Pin Name Ball Enabled
State Pin Grouping Control Disabled
State
58 BOUT_CT_NETREF2_En Controller
59 CT_NETREF2 B14 I/O BOUT_CT_NETREF2_En 0 High Z
60 L_REF1 B15 Input BOUT_CT_NETREF2_En
61 L_REF5 B16 Input BOUT_CT_NETREF2_En
62 L_REF6 B17 Input BOUT_CT_NETREF2_En
63 NR1_SEL_OUT B18 Output3 GENERAL_EN 0 High Z
64 APLL1VDD B19 Linkage
65 XTAL1_IN B20 Linkage
66 VPRECHARGE C1 Linkage
67 BOUT_CT_D_EN(30) Controller
68 CT_D30 C2 I/O BOUT_CT_D_EN(30) 0 High Z
69 BOUT_CT_D_EN(26) Controller
70 CT_D26 C3 I/O BOUT_CT_D_EN(26) 0 High Z
71 BOUT_CT_D_EN(23) Controller
72 CT_D23 C4 I/O BOUT_CT_D_EN(23) 0 High Z
73 BOUT_CT_D_EN(18) Controller
74 CT_D18 C5 I/O BOUT_CT_D_EN(18) 0 High Z
75 BOUT_CT_D_EN(15) Controller
76 CT_D15 C6 I/O BOUT_CT_D_EN(15) 0 High Z
77 BOUT_CT_D_EN(12) Controller
78 CT_D12 C7 I/O BOUT_CT_D_EN(12) 0 High Z
79 BOUT_CT_D_EN(10) Controller
80 CT_D10 C8 I/O BOUT_CT_D_EN(10) 0 High Z
81 BOUT_CT_D_EN(7) Controller
82 CT_D7 C9 I/O BOUT_CT_D_EN(7) 0 High Z
83 BOUT_CT_D_EN(2) Controller
84 CT_D3 C10 I/O BOUT_CT_D_EN(2) High Z
85 BOUT_CT_D_EN(3) Controller
86 CT_D2 C11 I/O BOUT_CT_D_EN(3) 0 High Z
87 BOUT_FRN_COMP_EN Controller
88 /FRN_COMP C12 I/O BOUT_FRN_COMP_EN 0 50 kup
89 BOUT_SCBUS_CLOCKS_En Controller
90 /SCLKX2 C13 I/O BOUT_SCBUS_CLOCKS_En 0 50 kup
91 SCLK C14 I/O BOUT_SCBUS_CLOCKS_En 0 50 kup
92 L_REF2 C15 Input BOUT_SCBUS_CLOCKS_En
93 L_REF3 C16 Input BOUT_SCBUS_CLOCKS_En
168 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
17 JTAG/Boundary Scan (continued)
17.2 Boundary-Scan Register (continued)
Table 123. Boundary-Scan Register Description (continued)
Boundary-Scan
Register Bit Pin Pin Name Ball Enabled
State Pin Grouping Control Disa ble d
State
94 L_REF7 C17 Input BOUT_SCBUS_CLOCKS_En
95 TRST# C18 TRST BOUT_SCBUS_CLOCKS_En 50 kup
96 XTAL1_OUT C19 Linkage BOUT_SCBUS_CLOCKS_En
97 NR2_DIV_IN C20 Input BOUT_SCBUS_CLOCKS_En
98 BOUT_GP_EN(0) Controller
99 GP0 D1 I/O BOUT_GP_EN(0) 0 High Z
100 BOUT_CT_D_EN(31) Controller
101 CT_D31 D2 I/O BOUT_CT_D_EN(31) 0 High Z
102 BOUT_GP_EN(4) Controller
103 GP4 D3 I/O BOUT_GP_EN(4) 0 High Z
104 VSS D4 Linkage
105 H110_ENABLE D5 Enable1 BOUT_GP_EN(4) 20 k
down
106 VDD D6 Linkage
107 H100_ENABLE D7 Enable0 BOUT_GP_EN(4) 20 k
down
108 VSS D8 Linkage
109 BOUT_HMVIP_CLOCKS_En Controller BOUT_GP_EN(4)
110 /C16+ D9 I/O BO UT_HMVIP_CLOCKS_En 0 50 kup
111 /C16– D10 I/O BOUT_HMVIP_CLOCKS_En 0 50 kup
112 VDD D11 Linkage
113 BOUT_MVIP_CLOCKS_En Controller
114 /C4 D12 I/O BOUT_MVIP_CLOCKS_En 0 50 kup
115 VSS D13 Linkage
116 C2 D14 I/O BOUT_MVIP_CLOCKS_En 0 50 kup
117 VDD D15 Linkage
118 PLOCK D16 Linkage BOUT_MVIP_CLOCKS_En
119 VSS D17 Linkage
120 TMS D18 TMS BOUT_MVIP_CLOCKS_En 50 kup
121 NR2_SEL_OUT D19 Output3 GENERAL_EN 0 High Z
122 PSEL D20 Linkage GENERAL_EN 20 k
down
123 BOUT_GP_EN(1) Controller
124 GP1 E1 I/O BOUT_GP_EN(1) 0 High Z
125 BOUT_GP_EN(2) Controller
126 GP2 E2 I/O BOUT_GP_EN(2) 0 High Z
127 BOUT_GP_EN(6) Controller
Agere Systems Inc. 169
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
17 JTAG/Boundary Scan (continued)
17.2 Boundary-Scan Register (continued)
Table 123. Boundary-Scan Register Description (continued)
Boundary-Scan
Register Bit Pin Pin Name Ball Enabled
State Pin Grouping Control Disabled
State
128 GP5 E3 I/O BOUT_GP_EN(6) 0 High Z
129 BOUT_GP_EN(7) Controller
130 GP7 E4 I/O BOUT_GP_EN(7) 0 High Z
131 PTEST E17 Linkage BOUT_GP_EN(7) 20 k
down
132 TCK E18 TCK BOUT_GP_EN(7) 50 kup
133 APLL2VDD E19 Linkage
134 XTAL2_IN E20 Linkage BOUT_GP_EN(7)
135 BOUT_MB_EN Controller
136 MB_A0 F1 I/O BOUT_MB_EN 0 20 k
down
137 BOUT_GP_EN(3) Controller
138 GP3 F2 I/O BOUT_GP_EN(3) 0 High Z
139 BOUT_GP_EN(5) Controller
140 GP6 F3 I/O BOUT_GP_EN(5) 0 High Z
141 VDD F4 Linkage
142 VDD F17 Linkage
143 TDI F18 TDI BOUT_GP_EN(5) 50 kup
144 XTAL2_OUT F19 Linkage BOUT_GP_EN(5)
145 TESTMODE F20 Enable0 BOUT_GP_EN(5) 20 k
down
146 BOUT_MB_A1_EN Controller
147 MB_A1 G1 I/O BOUT_MB_A1_EN 0 20 k
down
148 BOUT_MB_A2_EN Controller
149 MB_A2 G2 I/O BOUT_MB_A2_EN 0 20 k
down
150 MB_A3 G3 I/O BOUT_MB_A2_EN 0 20 k
down
151 OUT_EE_CS_EN Controller
152 EE_CS G4 Output3 OUT_EE_CS_EN 0 High Z
153 PPDN G17 Linkage OUT_EE_CS_EN 20 k
down
154 TDO G18 TDO OUT_EE_CS_EN
155 OUT_L_SC_En(3) Controller
156 L_SC3 G19 Output3 OUT_L_SC_En(3) 0 High Z
157 OUT_TCLK_OUT_En Controller
158 TCLK_OUT G20 Output3 OUT_TCLK_OUT_En 0 High Z
170 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
17 JTAG/Boundary Scan (continued)
17.2 Boundary-Scan Register (continued)
Table 123. Boundary-Scan Register Description (continued)
Boundary-Scan
Register Bit Pin Pin Name Ball Enabled
State Pin Grouping Control Disa ble d
State
159 MB_A4 H1 I/O BOUT_MB_EN 0 20 k
down
160 MB_A5 H2 I/O BOUT_MB_EN 0 20 k
down
161 MB_A6 H3 I/O BOUT_MB_EN 0 20 k
down
162 VSS H4 Linkage
163 VSS H17 Linkage
164 OUT_L_SC_En(2) Controller
165 L_SC2 H18 Output3 OUT_L_SC_En(2) 0 High Z
166 OUT_L_SC_En(1) Controller
167 L_SC1 H19 Output3 OUT_L_SC_En(1) 0 High Z
168 OUT_L_SC_En(0) Controller
169 L_SC0 H20 Output3 OUT_L_SC_En(0) 0 High Z
170 MB_A8 J1 I/O BOUT_MB_EN 0 20 k
down
171 MB_A9 J2 I/O BOUT_MB_EN 0 20 k
down
172 MB_A10 J3 I/O BOUT_MB_EN 0 20 k
down
173 MB_A7 J4 I/O BOUT_MB_EN 0 20 k
down
174 LPUE J17 Enable1 BOUT_MB_EN 50 kup
175 BOUT_L_D_EN(2) Controller
176 L_D2 J18 I/O BOUT_L_D_EN(2) 0 High Z
177 BOUT_L_D_EN(1) Controller
178 L_D1 J19 I/O BOUT_L_D_EN(1) 0 High Z
179 BOUT_L_D_EN(0) Controller
180 L_D0 J20 I/O BOUT_L_D_EN(0) 0 High Z
181 MB_A12 K1 I/O BOUT_MB_EN 0 20 k
down
182 MB_A13 K2 I/O BOUT_MB_EN 0 20 k
down
183 MB_A11 K3 I/O BOUT_MB_EN 0 20 k
down
184 VDD K4 Linkage
185 BOUT_L_D_EN(3) Controller
186 L_D3 K17 I/O B OUT_L_D_EN(3) 0 High Z
187 BOUT_L_D_EN(6) Controller
Agere Systems Inc. 171
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
17 JTAG/Boundary Scan (continued)
17.2 Boundary-Scan Register (continued)
Table 123. Boundary-Scan Register Description (continued)
Boundary-Scan
Register Bit Pin Pin Name Ball Enabled
State Pin Grouping Control Disa ble d
State
188 L_D6 K18 I/O B OUT_L_D_EN(6) 0 High Z
189 BOUT_L_D_EN(5) Controller
190 L_D5 K19 I/O BOUT_L_D_EN(5) 0 High Z
191 BOUT_L_D_EN(4) Controller
192 L_D4 K20 I/O BOUT_L_D_EN(4) 0 High Z
193 MB_CS0 L1 I/O BOUT_MB_EN 0 20 k
down
194 MB_CS1 L2 I/O BOUT_MB_EN 0 20 k
down
195 MB_A14 L3 I/O BOUT_MB_EN 0 20 k
down
196 MB_A15 L4 I/O BOUT_MB_EN 0 20 k
down
197 VDD L17 Linkage
198 BOUT_L_D_EN(7) Controller
199 L_D7 L18 I/O BOUT_L_D_EN(7) 0 High Z
200 BOUT_L_D_EN(9) Controller
201 L_D9 L19 I/O BOUT_L_D_EN(9) 0 High Z
202 BOUT_L_D_EN(8) Controller
203 L_D8 L20 I/O BOUT_L_D _EN(8) 0 High Z
204 MB_CS2 M1 I/O BOUT_MB_EN 0 20 k
down
205 MB_CS3 M2 I/O BOUT_MB_EN 0 20 k
down
206 MB_CS4 M3 I/O BOUT_MB_EN 0 High Z
207 MB_CS5 M4 I/O BOUT_MB_EN 0 High Z
208 BOUT_L_D_EN(11) Controller
209 L_D11 M17 I/O BOUT_L_D_EN(11) 0 High Z
210 BOUT_L_D_EN(10) Controller
211 L_D10 M18 I/O BOUT_L_D_EN (10 ) 0 High Z
212 BOUT_L_D_EN(13) Controller
213 L_D13 M19 I/O BOUT_L_D_EN(13) 0 High Z
214 BOUT_L_D_EN(12) Controller
215 L_D12 M20 I/O BOUT _L_ D _EN(12) 0 High Z
216 MB_RD N1 I/O BOUT_MB_EN 0 High Z
217 OUT_MB_CS6_EN Controller
218 MB_CS6 N2 O u tput 3 OUT_MB_CS6_EN 0 High Z
219 MB_CS7 N3 I/O BOUT_MB_EN 0 High Z
172 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
17 JTAG/Boundary Scan (continued)
17.2 Boundary-Scan Register (continued)
Table 123. Boundary-Scan Register Description (continued)
Boundary-Scan
Register Bit Pin Pin Name Ball Enabled
State Pin Grouping Control Disa ble d
State
220 VSS N4 Linkage
221 VSS N17 Linkage
222 BOUT_L_D_EN(15) Controller
223 L_D15 N18 I/ O BOUT_L_ D_EN(15) 0 High Z
224 BOUT_L_D_EN(14) Controller
225 L_D14 N19 I/ O BOUT_L_ D_EN(14) 0 High Z
226 BOUT_L_D_EN(16) Controller
227 L_D16 N20 I/O BOUT_L_D_EN(16) 0 High Z
228 MB_WR P1 I/O BOUT_MB_EN 0 High Z
229 BOUT_MB_D_En Controller
230 MB_D14 P2 I/O BOUT_MB_D_En 0 High Z
231 MB_D15 P3 I/O BOUT_MB_D_En 0 High Z
232 MB_D11 P4 I/O BOUT_MB_D_En 0 High Z
233 BOUT_L_D_EN(23) Controller
234 L_D23 P17 I/O BOUT_L_D_EN(23) 0 High Z
235 BOUT_L_D_EN(19) Controller
236 L_D19 P18 I/O BOUT_L_D_EN(19) 0 High Z
237 BOUT_L_D_EN(18) Controller
238 L_D18 P19 I/O BOUT_L_D_EN(18) 0 High Z
239 BOUT_L_D_EN(17) Controller
240 L_D17 P20 I/O BOUT_L_D_EN(17) 0 High Z
241 MB_D12 R1 I/O BOUT_MB_D_En 0 High Z
242 MB_D13 R2 I/O BOUT_MB_D_En 0 High Z
243 MB_D10 R3 I/O BOUT_MB_D_En 0 High Z
244 VDD R4 Linkage
245 VDD R17 Linkage
246 BOUT_L_D_EN(22) Controller
247 L_D22 R18 I/O BOUT_L_D_EN(22) 0 High Z
248 BOUT_L_D_EN(21) Controller
249 L_D21 R19 I/O BOUT_L_D_EN(21) 0 High Z
250 bout_L_D_EN(20) Controller
251 L_D20 R20 I/O BOUT_L_D_EN(20) 0 High Z
252 MB_D8 T1 I/O BOUT_MB_D_En 0 High Z
253 MB_D9 T2 I/O BOUT_MB_D_En 0 High Z
254 MB_D6 T3 I/O BOUT_MB_D_En 0 High Z
255 MB_D7 T4 I/O BOUT_MB_D_En 0 High Z
Agere Systems Inc. 173
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
17 JTAG/Boundary Scan (continued)
17.2 Boundary-Scan Register (continued)
Table 123. Boundary-Scan Register Description (continued)
Boundary-Scan
Register Bit Pin Pin Name Ball Enabled
State Pin Grouping Control Disabled
State
256 BOUT_L_D_EN(31) Controller
257 L_D31 T17 I/O BOUT_L_D_EN(31) 0 High Z
258 BOUT_L_D_EN(26) Controller
259 L_D26 T18 I/O BOUT_L_D_EN(26) 0 High Z
260 BOUT_L_D_EN(25) Controller
261 L_D25 T19 I/O BOUT_L_D_EN(25) 0 High Z
262 BOUT_L_D_EN(24) Controller
263 L_D24 T20 I/O BOUT_L_D_EN(24) 0 High Z
264 MB_D4 U1 I/O BOUT_MB_D_En 0 High Z
265 MB_D5 U2 I/O BOUT_MB_D_En 0 High Z
266 MB_D3 U3 I/O BOUT_MB_D_En 0 High Z
267 VSS U4 Linkage
268 VIO/µP_SELECT U5 Input
269 VDD U6 Linkage
270 INV_PCI_CBE3_EN_N Controller
271 PCI_CBE3# U7 I/O INV_PCI_CBE3_EN_N 0 High Z
272 VSS U8 Linkage
273 INV_PCI_CBE2_EN_N Controller
274 PCI_CBE2# U9 I/O INV_PCI_CBE2_EN_N 0 High Z
275 VDD U10 Linkage
276 INV_PCI_PAR_EN_N Controller
277 PCI_PAR U11 I/O INV_PCI_PAR_EN_N 0 High Z
278 INV_PCI_CBE1_EN_N Controller
279 PCI_CBE1# U12 I/O INV_PCI_CBE1_EN_N 0 High Z
280 VSS U13 Linkage
281 INV_PCI_CBE0_EN_N Controller
282 PCI_CBE0# U14 I/O INV_PCI_CBE0_EN_N 0 High Z
283 VDD U15 Linkage
284 INV_PCI_ADEN_N(3) Controller
285 PCI_AD3 U16 I/O INV_PCI_ADEN_N(3) 0 High Z
286 VSS U17 Linkage
287 BOUT_L_D_EN(30) Controller
288 L_D30 U18 I/O BOUT_L_D_EN(30) 0 High Z
289 BOUT_L_D_EN(29) Controller
290 L_D29 U19 I/O BOUT_L_D_EN(29) 0 High Z
291 BOUT_L_D_EN(27) Controller
174 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
17 JTAG/Boundary Scan (continued)
17.2 Boundary-Scan Register (continued)
Table 123. Boundary-Scan Register Description (continued)
Boundary-Scan
Register Bit Pin Pin Name Ball Enabled
State Pin Grouping Control Disa ble d
State
292 L_D27 U20 I/O BOUT_L_D_EN(27) 0 High Z
293 MB_D1 V1 I/O BOUT_MB_D_En 0 Hi gh Z
294 MB_D2 V2 I/O BOUT_MB_D_En 0 Hi gh Z
295 SYSERR V3 Output3 GENERAL_EN 0 High Z
296 INV_PCI_ADEN_N(31) Controller
297 PCI_AD31 V4 I/O INV_PCI_ADEN_N(31) 0 High Z
298 INV_PCI_ADEN_N(30) Controller
299 PCI_AD30 V5 I/O INV_PCI_ADEN_N(30) 0 High Z
300 INV_PCI_ADEN_N(27) Controller
301 PCI_AD27 V6 I/O INV_PCI_ADEN_N(27) 0 High Z
302 INV_PCI_ADEN_N(23) Controller
303 PCI_AD23 V7 I/O INV_PCI_ADEN_N(23) 0 High Z
304 INV_PCI_ADEN_N(19) Controller
305 PCI_AD(19) V8 I/O INV_PCI_ADEN_N(19) 0 High Z
306 INV_PCI_ADEN_N(18) Controller
307 PCI_AD18 V9 I/O INV_PCI_ADEN_N(18) 0 High Z
308 PCI_LOCK# V10 Input INV_PCI_ADEN_N(18)
309 INV_PCI_CTRL_EN_N Controller
310 PCI_STOP# V11 I/O INV_PCI_CTRL_EN_N 0 High Z
311 INV_PCI_SERR_OUT_N Controller
312 PCI_SERR# V12 Output3 INV_PCI_SERR_OUT_N 0 High Z
313 INV_PCI_ADEN_N(15) Controller
314 PCI_AD15 V13 I/O INV_PCI_ADEN_N(15) 0 High Z
315 INV_PCI_ADEN_N(11) Controller
316 PCI_AD11 V14 I/O INV_PCI_ADEN_N(11) 0 High Z
317 INV_PCI_ADEN_N(7) Controller
318 PC_AD7 V15 I/O I NV_PCI_ADEN_N(7) 0 High Z
319 INV_PCI_ADEN_N(2) Controller
320 PCI_AD2 V16 I/O INV_PCI_ADEN_N(2) 0 High Z
321 BOUT_FG_EN(7) Controller
322 FG7 V17 I/O BOUT_FG_EN(7) 0 High Z
323 BOUT_FG_EN(6) Controller
324 FG6 V18 I/O BOUT_FG_EN(6) 0 High Z
325 BOUT_FG_EN(5) Controller
326 FG5 V19 I/O BOUT_FG_EN(5) 0 High Z
327 BOUT_L_D_EN(28) Controller
328 L_D28 V20 I/O BOUT_L_D_EN(28) 0 High Z
Agere Systems Inc. 175
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
17 JTAG/Boundary Scan (continued)
17.2 Boundary-Scan Register (continued)
Table 123. Boundary-Scan Register Description (continued)
Boundary-Scan
Register Bit Pin Pin Name Ball Enabled
State Pin Grouping Control Disabled
State
329 MB_D0 W1 I/O BOUT_MB_D_En 0 High Z
330 CLKERR W2 Output3 GENERAL_EN 0 High Z
331 INV_PCI_REQ_EN_N Controller
332 PCI_REQ# W3 Output3 I NV_PCI_REQ_EN_N 0 High Z
333 PCI_GNT# W4 Input INV_PCI_REQ_EN_N
334 INV_PCI_ADEN_N(29) Controller INV_PCI_REQ_EN_N
335 PCI_AD29 W5 I/O INV_PCI_ADEN_N(29) 0 High Z
336 INV_PCI_ADEN_N(26) Controller
337 PCI_AD26 W6 I/O INV_PCI_ADEN_N(26) 0 High Z
338 INV_PCI_ADEN_N(22) Controller
339 PCI_AD22 W7 I/O INV_PCI_ADEN_N(22) 0 High Z
340 INV_PCI_ADEN_N(21) Controller
341 PCI_AD21 W8 I/O INV_PCI_ADEN_N(21) 0 High Z
342 INV_PCI_ADEN_N(17) Controller
343 PCI_AD17 W9 I/O INV_PCI_ADEN_N(17) 0 High Z
344 PCI_IDSEL# W10 Input
345 PCI_DEVSEL# W 11 I/O INV_PCI_CTRL_EN_N 0 High Z
346 INV_PCI_PERR_EN_N Controller
347 PCI_PERR# W12 I/O INV_PCI_PERR_EN_N 0 High Z
348 INV_PCI_ADEN_N(14) Controller
349 PCI_AD14 W13 I/O INV_PCI_ADEN_N(14) 0 High Z
350 INV_PCI_ADEN_N(10) Controller
351 PCI_AD10 W14 I/O INV_PCI_ADEN_N(10) 0 High Z
352 INV_PCI_ADEN_N(9) Controller
353 PCI_AD9 W15 I/O INV_PCI_ADEN_N(9) 0 High Z
354 INV_PCI_ADEN_N(6) Controller
355 PCI_AD6 W16 I/O INV_PCI_ADEN_N(6) 0 High Z
356 INV_PCI_ADEN_N(1) Controller
357 PCI_AD1 W17 I/O INV_PCI_ADEN_N(1) 0 High Z
357 BOUT_FG_EN(4) Controller
359 FG4 W18 I/O BOUT_FG_EN(4) 0 High Z
360 BOUT_FG_EN(3) Controller
361 FG3 W19 I/O BOUT_FG_EN(3) 0 High Z
362 BOUT_FG_EN(2) Controller
363 FG2 W20 I/O BOUT_FG_EN(2) 0 High Z
364 RESET# Y1 Input BOUT_FG_EN(2) 50 kup
365 PCI_RST# Y2 Input BOUT_FG_EN(2)
366 PCI_CLK Y3 Clock BOUT_FG_EN(2)
176 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
17 JTAG/Boundary Scan (continued)
17.2 Boundary-Scan Register (continued)
Table 123. Boundary-Scan Register Description (continued)
Boundary-Scan
Register Bit Pin Pin Name Ball Enabled
State Pin Grouping Control Disa ble d
State
367 INV_OUT_PCI_INTAN Controller
368 PCI_INTA# Y4 Output3 INV_OUT_PCI_INTAn 0 High Z
369 INV_PCI_ADEN_N(28) Controller
370 PCI_AD28 Y5 I/O INV_PCI_ADEN_N(28) 0 High Z
371 INV_PCI_ADEN_N(25) Controller
372 PCI_AD25 Y6 I/O INV_PCI_ADEN_N(25) 0 High Z
373 INV_PCI_ADEN_N(24) Controller
374 PCI_AD24 Y7 I/O INV_PCI_ADEN_N(24) 0 High Z
375 INV_PCI_ADEN_N(20) Controller
376 PCI_AD20 Y8 I/O INV_PCI_ADEN_N(20) 0 High Z
377 INV_PCI_ADEN_N(16) Controller
378 PCI_AD16 Y9 I/O INV_PCI_ADEN_N(16) 0 High Z
379 INV_PCI_FRAME_EN_N Controller
380 PCI_FRAME# Y10 I/O INV_PCI_FRAME_EN_N 0 High Z
381 INV_PCI_IRDY_EN_N Controller
382 PCI_IRDY# Y11 I/O INV_PCI_IRDY_EN_N 0 High Z
383 PCI_TRDY# Y12 I/O INV_PCI_CTRL_EN_N 0 High Z
384 INV_PCI_ADEN_N(13) Controller
385 PCI_AD13 Y13 I/O INV_PCI_ADEN_N(13) 0 High Z
386 INV_PCI_ADEN_N(12) Controller
387 PCI_AD12 Y14 I/O INV_PCI_ADEN_N(12) 0 High Z
388 INV_PCI_ADEN_N(8) Controller
389 PCI_AD8 Y15 I/O INV_PCI_ADEN_N(8) 0 High Z
390 INV_PCI_ADEN_N(5) Controller
391 PCI_AD5 Y16 I/O INV_PCI_ADEN_N(5) 0 High Z
392 INV_PCI_ADEN_N(4) Controller
393 PCI_AD4 Y17 I/O INV_PCI_ADEN_N(4) 0 High Z
394 INV_PCI_ADEN_N(0) Controller
395 PC_AD0 Y18 I/O I NV_PCI_ADEN_N(0) 0 High Z
396 BOUT_FG_EN(1) Controller
397 FG1 Y19 I/O BOUT_FG_EN(1) 0 High Z
398 BOUT_FG_EN(0) Controller
399 FG0 Y20 I/O BOUT_FG_EN(0) 0 High Z
Agere Systems Inc. 177
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
Appendix A. Constant and Minimum Delay Connections
A.1 Connection Definitions
A forward connection is defined as one in which the output to time slot has a greater value than the input from time
slot, or, put another way, the delta between them is positive.
A reverse connection is defined as one in which the output to time slot has a lesser value than the input from time
slot, and the delta between them is negative.
For example, going from TS(1) to TS(38) is a forward connection, and the TS is +37, but going from TS(38) to
TS(1) is a reverse connection, with a TS of –37:
where TS = TS(to) – TS(from).
Similarly, a delta can be introduced for streams which will have a bearing in certain exceptions (discussed later):
STR = STR(to) – STR(from).
There is only one combination which forms a TS of +127 or –127:
TS = TS(127) – TS(0) = +127, and
TS = TS(0) – TS(127) = –127,
but there are two combinations which form TSs of +126 or –126:
TS = TS(127) – TS(1) = TS(126) – TS(0) = +126, and
TS = TS(1) – TS(127) = TS(0) – TS(126) = –126,
there are three combinations which yield +125 or –125, and so on.
The user can utilize the TS to control the latency of the resulting connection. In some cases, the latency must be
minimized. In other cases, such as a block of connections which must maintain some relative integrity while cross-
ing a frame boundary, the required latency of some of the connections may exceed a one frame (>128 time slots)
to maintain the integrity of this virtual frame.
The device uses a control bit at each connection memory location, VFC, for controlling latency, allowing each con-
nection to select one of two alternating data buffers.
A.2 Delay Type Definitions
Constant Delay—This is a well-defined, predictable, and linear region of latency in which the to time slot is at
least 128 time slots after the from time slot, but no more than 256 time slots after the from time slot.
Mathematically, constant delay latency is described as follows*, with L denoting latency, and VFC set to the value
indicated:
Forward connections, VFC = 1: L = 128 + TS (0 TS 127)
Reverse connections, VFC = 0: L = 256 + TS (–127 TS –1)
Example: Switching from TS(37) to TS(1) as a constant delay, the delta is –36, so FME is set to 0 and the result-
ing latency is 256 – 36 = 220 time slots. Thus, the connection will be made from TS(37) of frame(n) to
TS(1) of frame(n + 2).
Simple summary: Use constant delay for latencies of 128 to 256 time slots,
set VFC = 1 for forward connections,
set VFC = 0 for reverse connections.
* Since TS = TS(to) –TS(from), the user can modify the equations to solve for either TS(to) or TS(from).
178 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
Appendix A. Constant and Minimum Delay Connections (continued)
A.2 Delay Type Definitions (continued)
Figure 47. Constant Delay Connection Latency
Minimum Delay—This is the most common type of switching, but has a shorter range than constant delay, and the
user must be aware of exceptions caused by interactions between the device's internal pipeline and the dual buff-
ering. The to time slot is at least 3 time slots after the from time slot, but no more than 128 time slots after the from
time slot. Exceptions exist at TSs of +1, +2, –126, and –127.
Forward connections, VFC = 0: L = TS (3 TS 127).
Reverse connections, VFC = 1: L = 128 + TS (–125 TS 0).
Example: Using the same switching from the example above, TS(37) to TS(1), the delta is –36, so VFC is set
to 1 to effect the minimum delay (setting to 0 effects constant delay), and the resulting latency is
128 – 36 = 92 time slots. The relative positions of the end time slots are the same in both minimum and
constant delay, i.e., they both switch to TS(1)], but the actual data is delayed by an additional frame in
the constant delay case.
Simple summary: Use minimum delay for latencies of 3 to 128 time slots,
set VFC = 0 for forward connections,
set VFC = 1 for reverse connections.
Exceptions to minimum delayUp until this point in the discussion, the STRs have not been discussed
because the to and from streams have been irrelevant in the switching process.
Note: The one universally disallowed connection on the device is a TS of 0 and a STR of 0. This is, of course, a
stream + time slot switching to itself!
Rather than try to list the exceptions mathematically, a table is provided. The latencies in these cases may exceed
two frames due to the interaction of the intrinsic pipeline delays with the double buffering.
APPLIED DELTA
(TIME SLOTS)
RESULT ING LATENC Y
–127
128
0
127
255
256
(TIME SLOTS)
VFC = 0
VFC = 1
129
Agere Systems Inc. 179
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
Appendix A. Constant and Minimum Delay Connections (continued)
A.2 Delay Type Definitions (continued)
Graphically, the minimum delay latency equations are illustrated below . The exceptions to the minimum delay have
been included in the diagram, connected to the main function by dashed lines.
5-6224
Figure 48. Minimum Delay Connection Latency
Lower Stream RatesThe discussion has centered on 128 time-slot frames which correspond to 8.192 Mbits/s
data rates. How does one make similar predictions for lower stream rates?
For 4.096 Mbits/s, multiply the to and from time-slot values by two, i.e., time slot 0 at 4.096 Mbits/s corresponds to
time slot 0 at 8.192 Mbits/s, and time slot 63 at 4.096 Mbits/s corresponds to time slot 126 at 8.192 Mbits/s. Simi-
larly, multiply values by four to convert 2.048 Mbits/s values. The latency equations can then be applied directly.
Table 124. Special Cases (Exceptions)
VFC Value TSLatency for STR < 0 Latency for STR 0
0 +1 257 257
0+2 258 2
1 –126 258 2
1 –127 257 257
APPLIED DELTA
(TIME SLO T S)
RESULTING LATENCY
–127
0
127
127
128......256
(TIME SLOTS)
VFC = 1
VFC = 0
0
–126
258
257
2
2
2
SPECIAL LONG LATEN CY
CONNECTIONS
(SEE TEXT)
180 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
Appendix B. Register Bit Field Mnemonic Summary
Key to using the table below:
!Five character alphanumeric designation
!Character 4 indicates the general register type as follows:
— Divide = load value for divider
— Enable = bit or bits to enable a function
— Load = load value, typically for counter
— Output = output only
— Select = bit or bits select multiple functions
!Character 5 indicates the size as follows:
— B = bit
— N = nibble
— P = partial register (2, 3, 5, 6, or 7 bits)
— R = register
!Position column identifies the bit position in the register:
— 0, 1, 2, 3, 4, 5, 6, 7 for bits
— L for lower nibble
— U for upper nibble
— n-m for bit positions in a partial register
Agere Systems Inc. 181
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
Appendix B. Register Bit Field Mnemonic Summary (continued)
Table 125. Mnemonic Summary, Sorted by Name
Mnemonic Description Type Register Bit Position
A1HLR MB_CS1 address hold Load 0x00717
A1SLR MB_CS1 address setup Load 0x00713
A2HLR MB_CS2 address hold Load 0x00727
A2SLR MB_CS2 address setup Load 0x00723
A3HLR MB_CS3 address hold Load 0x00737
A3SLR MB_CS3 address setup Load 0x00733
A4HLR MB_CS4 address hold Load 0x00747
A4SLR MB_CS4 address setup Load 0x00743
A5HLR MB_CS5 address hold Load 0x00757
A5SLR MB_CS5 address setup Load 0x00753
A6HLR MB_CS6 address hold Load 0x00767
A6SLR MB_CS6 address setup Load 0x00763
A7HLR MB_CS7 address hold Load 0x00777
A7SLR MB_CS7 address setup Load 0x00773
ABOEN A and B clocks output Enable 0x00220 U
ACRS N A clocks r ate Select 0x00223 L
AIOEB All I/O (master) Enable 0x00103 7
BCRS N B clocks r ate Select 0x00223 U
C2FEB C2 fallback trigger Enable 0x0010A 5
C2LOB C2 latched error Output 0x00122 5
C2TOB C2 transient error Output 0x00120 5
C2WEB C2 watchdog Enable 0x0010E 5
C4FEB /C4 fallback trigger Enable 0x0010A 4
C4LOB C4 latched error Output 0x00122 4
C4TOB C4 transient error Output 0x00120 4
C4WEB /C4 watchdog Enable 0x0010E 4
CAFEB C8A fal lba ck tri gger Enabl e 0x 001 0A 0
CALOB C8A lat ch ed error Output 0 x0 012 2 0
CATOB C 8A trans ie nt error Output 0x0012 0 0
CAWEB C 8A watchdo g Enable 0x001 0E 0
CAWSN C 8A watc hdo g Selec t 0x 0010 C L
CBFEB C8B fal lba ck tri gger Enable 0x 001 0A 1
CBLOB C8B lat ch ed error Output 0x0012 2 1
CBTOB C 8B tr ansie nt erro r Output 0x0012 0 1
CBWEB C8B watchdo g Enable 0x001 0E 1
CBWSN C8B watchdo g Selec t 0x 0010 C U
CCOEN C clocks output Enable 0x00220 L
CCSEN C clocks separate Enable 0x00224 L
CFBOB Fallback status Output 0x00127 6
CFHLN Diag sync-to-frame high Load 0x0014B L
CFLLR Diag sync-to-frame low Load 0x0014A
CFPOB CLEAR_FALLBACK pending Output 0x00124 1
CFSEN Diag sync-to-frame EN Enable 0x0014B U
182 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
Appendix B. Register Bit Field Mnemonic Summary (continued)
Table 125. Mnemonic Summary, Sorted by Name (continu ed)
Mnemo nic Desc ript ion Type R e gist er Bit Posi tion
CFSOB Failsafe status Output 0x00127 7
CKMDR Clock main Divide 0x00201
CKMSR Clock main Select 0x00200
CKRDR Clock resource Divide 0x00205
CMFEB /C16– fallback trigger Enable 0x0010A 3
CMLOB /C16– latched error Output 0x00122 3
CMTOB /C16– transient error Output 0x00120 3
CMWEB /C16– watchdog Enable 0x0010E 3
CPFEB /C16+ fallback trigger Enable 0x0010A 2
CPLOB /C16+ latched error Output 0x00122 2
CPTOB /C16+ transient error Output 0x00120 2
CPWEB /C16+ watchdog Enable 0x0010E 2
CSASR Clock set access Select 0x00106
D1FEB DPLL1 sync trigger Enable 0x0010B 5
D1ISR DPLL1 input Select 0x0020A
D1LOB DPLL1 sync latched error Output 0x00123 5
D1RSR DPLL1 rate Select 0x0020B
D1TOB DPLL1 sync transient error Output 0x00121 5
D1WEB DPLL1 sync watchdog Enable 0x0010F 5
D2FEB DPLL2 sync trigger Enable 0x0010B 6
D2ISR DPLL2 input Select 0x0020E
D2LOB DPLL2 sync latched error Output 0x00123 6
D2RSR DPLL2 rate Select 0x0020F
D2TOB DPLL2 sync transient error Output 0x00121 6
D2WEB DPLL2 sync watchdog Enable 0x0010F 6
DMMSP Data memory mode Select 0x00105 6:0
DMPOB Data memory PCI error status Output 0x00127 0
DMSOB Data memory PCI queue status Output 0x0012C 0
DMTOB Data memory PCI timer status Output 0x00127 3
F0DSB FGIO 0 R/W direction Select 0x00482 0
F0IOB FGIO 0 data Load 0x00480 0
F0ISB Frame 0 pulse inversion Enable 0x00402 7
F0LLR Frame 0 lower start time Load 0x00400
F0MEB FGIO 0 read mask Enable 0x00481 0
F0RSR Frame 0 pulse width rate Select 0x00403
F0ULR Frame 0 upper start time Load 0x00401
F0WSP Frame 0 pulse width Select 0x00402 6:0
F1DSB FGIO 1 R/W direction Select 0x00482 1
F1IOB FGIO 1 data Load 0x00480 1
F1ISB Frame 1 pulse inversion Enable 0x00412 7
F1LLR Frame 1 lower start time Load 0x00410
F1MEB FGIO 1 read mask Enable 0x00481 1
F1RSR Frame 1 pulse width rate Select 0x00413
Agere Systems Inc. 183
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
Appendix B. Register Bit Field Mnemonic Summary (continued)
Table 125. Mnemonic Summary, Sorted by Name (continued)
Mnemonic Description Type Register Bit Position
F1ULR Frame 1 upper start time Load 0x00411
F1WSP Frame 1 pulse width Select 0x00412 6:0
F2DSB FGIO 2 R/W direction Select 0x00482 2
F2IOB FGIO 2 data Load 0x00480 2
F2ISB Frame 2 pulse inversion Enable 0x00422 7
F2LLR Frame 2 lower start time Load 0x00420
F2MEB FGIO 2 read mask Enable 0x00481 2
F2RSR Frame 2 pulse width rate Select 0x00423
F2ULR Frame 2 upper start time Load 0x00421
F2WSP Frame 2 pulse width Select 0x00422 6:0
F3DSB FGIO 3 R/W direction Select 0x00482 3
F3IOB FGIO 3 data Load 0x00480 3
F3ISB Frame 3 pulse inversion Enable 0x00432 7
F3LLR Frame 3 lower start time Load 0x00430
F3MEB FGIO 3 read mask Enable 0x00481 3
F3RSR Frame 3 pulse width rate Select 0x00433
F3ULR Frame 3 upper start time Load 0x00431
F3WSP Frame 3 pulse width Select 0x00432 6:0
F4DSB FGIO 4 R/W direction Select 0x00482 4
F4IOB FGIO 4 data Load 0x00480 4
F4ISB Frame 4 pulse inversion Enable 0x00442 7
F4LLR Frame 4 lower start time Load 0x00440
F4MEB FGIO 4 read mask Enable 0x00481 4
F4RSR Frame 4 pulse width rate Select 0x00443
F4ULR Frame 4 upper start time Load 0x00441
F4WSP Frame 4 pulse width Select 0x00442 6:0
F5DSB FGIO 5 R/W direction Select 0x00482 5
F5IOB FGIO 5 data Load 0x00480 5
F5ISB Frame 5 pulse inversion Enable 0x00452 7
F5LLR Frame 5 lower start time Load 0x00450
F5MEB FGIO 5 read mask Enable 0x00481 5
F5RSR Frame 5 pulse width rate Select 0x00453
F5ULR Frame 5 upper start time Load 0x00451
F5WSP Frame 5 pulse width Select 0x00452 6:0
F6DSB FGIO 6 R/W direction Select 0x00482 6
F6IOB FGIO 6 data Load 0x00480 6
F6ISB Frame 6 pulse inversion Enable 0x00462 7
F6LLR Frame 6 lower start time Load 0x00460
F6MEB FGIO 6 read mask Enable 0x00481 6
F6RSR Frame 6 pulse width rate Select 0x00463
F6ULR Frame 6 upper start time Load 0x00461
F6WSP Frame 6 pulse width Select 0x00462 6:0
F7DSB FGIO 7 R/W direction Select 0x00482 7
F7IOB FGIO 7 data Load 0x00480 7
184 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
Appendix B. Register Bit Field Mnemonic Summary (continued)
Table 125. Mnemonic Summary, Sorted by Name (continu ed)
Mnemo nic Desc ript ion Type R e gist er Bit Posi tion
F7ISB Frame 7 pulse inversion Enable 0x00472 7
F7LLR Frame 7 lower start time Load 0x00470
F7MEB FGIO 7 read mask Enable 0x00481 7
F7MSR Frame 7 mode Select 0x00476
F7RSR Frame 7 pulse width rate Select 0x00473
F7SSP FG7 timer pulse shape Select 0x00477
F7ULR Frame 7 upper start time Load 0x00471
F7WSN FG7 timer pulse width Select 0x00477 L
F7WSP Frame 7 pulse width Select 0x00472 6:0
FAFEB /FRAME A fall ba ck trig ger E nab le 0x0010 B 0
FALOB /F RA ME A latche d error Output 0x00 123 0
FATOB /FRAME A trans ient error Output 0x00121 0
FAWEB /FRA ME A watc hdo g Enable 0x001 0F 0
FB1SB APLL1 feedback reset Select 0x00146 1
FB2SB APLL2 feedback reset Select 0x00146 2
FBCSR Fallback control Select 0x00108
FBFEB /F RA ME B fall ba ck trig ger E nab le 0x0010 B 1
FBFOB Fallback enable status Output 0x00124 7
FBLOB /F RA ME B latche d error Output 0x00 123 1
FBSOP Fallback states Output 0x00124 6:4
FBTOB /FRA ME B trans ient error Output 0x00121 1
FBWEB /FRAMEB watc hdo g Enable 0x 001 0F 1
FCFEB / FR_COMP fal lba ck tri gger Enab le 0x0010 B 2
FCISB FG7 timer invert output Select 0x00477 7
FCLLR Frame group 7 lower count Load 0x00474
FCLOB /FR_ COM P lat ch ed error Output 0x 00 123 2
FCTOB /FR_ C OMP tr ans ie nt error Output 0x 00 121 2
FCULR Frame group 7 upper count Load 0x00475
FCWEB /F R_ CO MP watc hd og Enable 0x0010F 2
FFPOB FORCE_FALLBACK pending Output 0x00124 0
FGREB Frame group Enable 0x00103 5
FPASR Frame phase alignment Select 0x00107
FRMSB Diag /FR_COMP input Select 0x 00 145 4
FRSEN /FR_ CO MP se parate Enab le 0x 00 224 U
FRWSR /F R_ C OMP widt h Selec t 0x 00 222
FSCSR Failsafe return command Select 0x00114
FSEER Failsafe enable Enable 0x00115
FSLOB Failsafe latched error Output 0x00123 7
FSMSN Fallback secondary mode Select 0x00109 L
FSSSR Failsafe sensitivity Select 0x00116
FSTOB Failsafe transient error Output 0x00121 7
FSWEB Failsafe watchdog Enable 0x0010F 7
FT0EB FG0 testpoint Enable 0x00140 0
Agere Systems Inc. 185
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
Appendix B. Register Bit Field Mnemonic Summary (continued)
Table 125. Mnemonic Summary, Sorted by Name (continued)
Mnemonic Description Type Register Bit Position
FT1EB FG1 testpo int Enabl e 0 x0 014 0 1
FT2EB FG2 testpo int Enabl e 0 x0 014 0 2
FT3EB FG3 testpo int Enabl e 0 x0 014 0 3
FT4EB FG4 testpo int Enabl e 0 x0 014 0 4
FT5EB FG5 testpo int Enabl e 0 x0 014 0 5
FT6EB FG6 testpo int Enabl e 0 x0 014 0 6
FT7EB FG7 testpo int Enabl e 0 x0 014 0 7
FTPSR FG testpoint MUX Select 0x00141
FTRSN Fallback type Select 0x00109 U
G0DSB GPIO 0 R/W direction Select 0x00502 0
G0IOB GPIO 0 data Load 0x00500 0
G0MEB GPIO 0 read mask Enable 0x00501 0
G0OEB GPIO 0 override Enable 0x00503 0
G1DSB GPIO 1 R/W direction Select 0x00502 1
G1IOB GPIO 1 data Load 0x00500 1
G1MEB GPIO 1 read mask Enable 0x00501 1
G1OEB GPIO 0 override Enable 0x00503 1
G2DSB GPIO 2 R/W direction Select 0x00502 2
G2IOB GPIO 2 data Load 0x00500 2
G2MEB GPIO 2 read mask Enable 0x00501 2
G2OEB GPIO 2 override Enable 0x00503 2
G3DSB GPIO 3 R/W direction Select 0x00502 3
G3IOB GPIO 3 data Load 0x00500 3
G3MEB GPIO 3 read mask Enable 0x00501 3
G4DSB GPIO 4 R/W direction Select 0x00502 4
G4IOB GPIO 4 data Load 0x00500 4
G4MEB GPIO 4 read mask Enable 0x00501 4
G5DSB GPIO 5 R/W direction Select 0x00502 5
G5IOB GPIO 5 data Load 0x00500 5
G5MEB GPIO 5 read mask Enable 0x00501 5
G6DSB GPIO 6 R/W direction Select 0x00502 6
G6IOB GPIO 6 data Load 0x00500 6
G6MEB GPIO 6 read mask Enable 0x00501 6
G7DSB GPIO 7 R/W direction Select 0x00502 7
G7IOB GPIO 7 data Load 0x00500 7
G7MEB GPIO 7 read mask Enable 0x00501 7
GOPOB Go clocks pending Output 0x00124 2
GPIEB General purpose I/O Enable 0x00103 4
GSREB Global subrate Enable 0x00105 7
GT0EB GP0 testpoint Enable 0x00142 0
GT1EB GP1 testpoint Enable 0x00142 1
GT2EB GP2 testpoint Enable 0x00142 2
GT3EB GP3 testpoint Enable 0x00142 3
GT4EB GP4 testpoint Enable 0x00142 4
186 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
Appendix B. Register Bit Field Mnemonic Summary (continued)
Table 125. Mnemonic Summary, Sorted by Name (continu ed)
Mnemo nic Desc ript ion Type R e gist er Bit Posi tion
GT5EB GP5 testpoint Enable 0x00142 5
GT6EB GP6 testpoint Enable 0x00142 6
GT7EB GP7 testpoint Enable 0x00142 7
GTP SR GP testpo int MUX Selec t 0x 00 143
HARSN H1x0 group A rate Select 0x00300 L
HBRSN H1x0 group B rate Select 0x00300 U
HCKEB H1x0 clocks Enable 0x00103 3
HCRSN H1x0 group C rate Select 0x00301 L
HDBEB H1x0 data bus Enable 0x00103 2
HDRSN H1x0 group D rate Select 0x00301 U
HERSN H1x0 group E rate Select 0x00302 L
HFRSN H1x0 group F rate Select 0x00302 U
HGRSN H1x0 group G rate Select 0x00303 L
HHRSN H1x0 group H rate Select 0x00303 U
HRBEB Hard reset of back end Enable 0x00101 1
IASLR Diag, SYSERR assertion Load 0x00149
IC0SB Invert MB CS0 strobe Select 0x00780 0
IC1SB Invert MB CS1 strobe Select 0x00780 1
IC2SB Invert MB CS2 strobe Select 0x00780 2
IC3SB Invert MB CS3 strobe Select 0x00780 3
IC4SB Invert MB CS4 strobe Select 0x00780 4
IC5SB Invert MB CS5 strobe Select 0x00780 5
IC6SB Invert MB CS6 strobe Select 0x00780 6
IC7SB Invert MB CS7 strobe Select 0x00780 7
ICDSP Diag, internal control mode Select 0x00148 7:6
ICKLP Diag, internal control CLKERR Load 0x00148 5:4
ICMSB Invert cloc k mai n Sele ct 0x00204 4
IDHOR Device ID high Output 0x0012B
IDLOR Device ID low Output 0x0012A
IEXLP Diag, internal control EXTERR Load 0x00148 1:0
IF0SB Invert interrupt FGIO 0 Select 0x00603 0
IF1SB Invert interrupt FGIO 1 Select 0x00603 1
IF2SB Invert interrupt FGIO 2 Select 0x00603 2
IF3SB Invert interrupt FGIO 3 Select 0x00603 3
IF4SB Invert interrupt FGIO 4 Select 0x00603 4
IF5SB Invert interrupt FGIO 5 Select 0x00603 5
IF6SB Invert interrupt FGIO 6 Select 0x00603 6
IF7SB Invert interrupt FGIO 7 Select 0x00603 7
IG0SB Invert interrupt GPIO 0 Select 0x00607 0
IG1SB Invert interrupt GPIO 1 Select 0x00607 1
IG2SB Invert interrupt GPIO 2 Select 0x00607 2
IG3SB Invert interrupt GPIO 3 Select 0x00607 3
IG4SB Invert interrupt GPIO 4 Select 0x00607 4
Agere Systems Inc. 187
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
Appendix B. Register Bit Field Mnemonic Summary (continued)
Table 125. Mnemonic Summary, Sorted by Name (continued)
Mnemonic Description Type Register Bit Position
IG5SB Invert interrupt GPIO 5 Select 0x00607 5
IG6SB Invert interrupt GPIO 6 Select 0x00607 6
IG7SB Invert interrupt GPIO 7 Select 0x00607 7
IMRSB Invert MB read strobe Select 0x00781 1
IMWSB Invert MB write strobe Select 0x00781 0
IPRSB Invert MB PCIRSTn, forwarded Select 0x00781 2
IR0SB Invert local reference 0 Select 0x0020C 0
IR1SB Invert local reference 1 Select 0x0020C 1
IR2SB Invert local reference 2 Select 0x0020C 2
IR3SB Invert local reference 3 Select 0x0020C 3
IR4SB Invert local reference 4 Select 0x0020C 4
IR5SB Invert local reference 5 Select 0x0020C 5
IR6SB Invert local reference 6 Select 0x0020C 6
IR7SB Invert local reference 7 Select 0x0020C 7
ISYLP Diag, internal control SYSERR Load 0x00148 3:2
JAMSR Interrupt arbitration mode Select 0x00610
JC0EB Interrupt from CLK ERR 0 Enabl e 0x006 0E 0
JC0OB Interrupt pending CLKERR 0 Output 0x0060C 0
JC1EB Interrupt from CLK ERR 1 Enabl e 0x006 0E 1
JC1OB Interrupt pending CLKERR 1 Output 0x0060C 1
JC2EB Interrupt from CLK ERR 2 Enabl e 0x006 0E 2
JC2OB Interrupt pending CLKERR 2 Output 0x0060C 2
JC3EB Interrupt from CLK ERR 3 Enabl e 0x006 0E 3
JC3OB Interrupt pending CLKERR 3 Output 0x0060C 3
JC4EB Interrupt from CLK ERR 4 Enabl e 0x006 0E 4
JC4OB Interrupt pending CLKERR 4 Output 0x0060C 4
JC5EB Interrupt from CLK ERR 5 Enabl e 0x006 0E 5
JC5OB Interrupt pending CLKERR 5 Output 0x0060C 5
JC6EB Interrupt from CLK ERR 6 Enabl e 0x006 0E 6
JC6OB Interrupt pending CLKERR 6 Output 0x0060C 6
JC7EB Interrupt from CLK ERR 7 Enabl e 0x006 0E 7
JC7OB Interrupt pending CLKERR 7 Output 0x0060C 7
JC8EB Interrupt from CLK ERR 8 Enabl e 0x00 60F 0
JC8OB Interrupt pending CLKERR 8 Output 0x0060D 0
JC9EB Interrupt from CLK ERR 9 Enabl e 0x00 60F 1
JC9OB Interrupt pending CLKERR 9 Output 0x0060D 1
JCAEB Interrupt from CLK ERR A Enable 0x00 60F 2
JCAOB Interrupt pending CLKERR A Output 0x0060D 2
JCBEB Interrupt from CLK ERR B Enable 0x00 60F 3
JCBOB Interrupt pending CLKERR B Output 0x0060D 3
JCCEB Interrupt from CLKERR C Enable 0x0060F 4
JCCOB Interrupt pending CLKERR C Output 0x0060D 4
JCDEB Interrupt from CLKERR D Enable 0x0060F 5
188 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
Appendix B. Register Bit Field Mnemonic Summary (continued)
Table 125. Mnemonic Summary, Sorted by Name (continu ed)
Mnemo nic Desc ript ion Type R e gist er Bit Posi tion
JCDOB Interrupt pending CLKERR D Output 0x0060D 5
JCEEB Interrupt from CLKERR E Enable 0x0060F 6
JCEOB Interrupt pending CLKERR E Output 0x0060D 6
JCFEB Interrupt from CLKERR F Enable 0x0060F 7
JCFOB Interrupt pending CLKERR F Output 0x0060D 7
JCOSR Interrupt CLKERR output mode Select 0x00613
JCWSR Interrupt CLKERR pulse width Select 0x00617
JF0EB Interrupt from FGIO 0 Enable 0x00601 0
JF0OB Interrupt pending FGIO 0 Output 0x00600 0
JF1EB Interrupt from FGIO 1 Enable 0x00601 1
JF1OB Interrupt pending FGIO 1 Output 0x00600 1
JF2EB Interrupt from FGIO 2 Enable 0x00601 2
JF2OB Interrupt pending FGIO 2 Output 0x00600 2
JF3EB Interrupt from FGIO 3 Enable 0x00601 3
JF3OB Interrupt pending FGIO 3 Output 0x00600 3
JF4EB Interrupt from FGIO 4 Enable 0x00601 4
JF4OB Interrupt pending FGIO 4 Output 0x00600 4
JF5EB Interrupt from FGIO 5 Enable 0x00601 5
JF5OB Interrupt pending FGIO 5 Output 0x00600 5
JF6EB Interrupt from FGIO 6 Enable 0x00601 6
JF6OB Interrupt pending FGIO 6 Output 0x00600 6
JF7EB Interrupt from FGIO 7 Enable 0x00601 7
JF7OB Interrupt pending FGIO 7 Output 0x00600 7
JG0EB Interrupt from GPIO 0 Enable 0x00605 0
JG0OB Interrupt pending GPIO 0 Output 0x00604 0
JG1EB Interrupt from GPIO 1 Enable 0x00605 1
JG1OB Interrupt pending GPIO 1 Output 0x00604 1
JG2EB Interrupt from GPIO 2 Enable 0x00605 2
JG2OB Interrupt pending GPIO 2 Output 0x00604 2
JG3EB Interrupt from GPIO 3 Enable 0x00605 3
JG3OB Interrupt pending GPIO 3 Output 0x00604 3
JG4EB Interrupt from GPIO 4 Enable 0x00605 4
JG4OB Interrupt pending GPIO 4 Output 0x00604 4
JG5EB Interrupt from GPIO 5 Enable 0x00605 5
JG5OB Interrupt pending GPIO 5 Output 0x00604 5
JG6EB Interrupt from GPIO 6 Enable 0x00605 6
JG6OB Interrupt pending GPIO 6 Output 0x00604 6
JG7EB Interrupt from GPIO 7 Enable 0x00605 7
JG7OB Interrupt pending GPIO 7 Output 0x00604 7
JISOR Interrupt in-service Output 0x006FC
JS0EB Interrupt from SYSERR 0 Enable 0x0060A 0
JS0OB Interrupt pending SYSERR 0 Output 0x00608 0
JS1EB Interrupt from SYSERR 1 Enable 0x0060A 1
Agere Systems Inc. 189
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
Appendix B. Register Bit Field Mnemonic Summary (continued)
Table 125. Mnemonic Summary, Sorted by Name (continued)
Mnemonic Description Type Register Bit Position
JS1OB Interrupt pending SYSERR 1 Output 0x00608 1
JS2EB Interrupt from SYSERR 2 Enable 0x0060A 2
JS2OB Interrupt pending SYSERR 2 Output 0x00608 2
JS3EB Interrupt from SYSERR 3 Enable 0x0060A 3
JS3OB Interrupt pending SYSERR 3 Output 0x00608 3
JS4EB Interrupt from SYSERR 4 Enable 0x0060A 4
JS4OB Interrupt pending SYSERR 4 Output 0x00608 4
JS5EB Interrupt from SYSERR 5 Enable 0x0060A 5
JS5OB Interrupt pending SYSERR 5 Output 0x00608 5
JS6EB Interrupt from SYSERR 6 Enable 0x0060A 6
JS6OB Interrupt pending SYSERR 6 Output 0x00608 6
JS7EB Interrupt from SYSERR 7 Enable 0x0060A 7
JS7OB Interrupt pending SYSERR 7 Output 0x00608 7
JS8EB Interrupt from SYSERR 8 Enable 0x0060B 0
JS8OB Interrupt pending SYSERR 8 Output 0x00609 0
JS9EB Interrupt from SYSERR 9 Enable 0x0060B 1
JS9OB Interrupt pending SYSERR 9 Output 0x00609 1
JSAEB Interrupt from SYSERR A Enable 0x0060B 2
JSAOB Interrupt pending SYSERR A Output 0x00609 2
JSBEB Interrupt from SYSERR B Enable 0x0060B 3
JSBOB Interrupt pending SYSERR B Output 0x00609 3
JSCEB Interrupt from SYSERR C Enable 0x0060B 4
JSCOB Interrupt pending SYSERR C Output 0x00609 4
JSDEB Interrupt from SYSERR D Enable 0x0060B 5
JSDOB Interrupt pending SYSERR D Output 0x00609 5
JSEEB Interrupt from SYSERR E Enable 0x0060B 6
JSEOB Interrupt pending SYSERR E Output 0x00609 6
JSFEB Interrupt from SYSERR F Enable 0x0060B 7
JSFOB Interrupt pending SYSERR F Output 0x00609 7
JSOSR Interrupt SYSERR output mode Select 0x00612
JSPSR Interrupt SYSERR-to-PCI_INTA# Select 0x00611
JSWSR Interrupt SYSERR pulse width Select 0x00616
LARSN Local group A rate Select 0x00320 L
LBRSN Local group B rate Select 0x00320 U
LC0SR Local clock 0 output Select 0x00228
LC1SR Local clock 1 output Select 0x00229
LC2SR Local clock 2 output Select 0x0022A
LC3SR Local clock 3 output Select 0x0022B
LCKEB Local clocks Enable 0x00103 1
LCRSN Local group C rate Select 0x00321 L
LDBEB Local data bus Enable 0x00103 0
190 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
Appendix B. Register Bit Field Mnemonic Summary (continued)
Table 125. Mnemonic Summary, Sorted by Name (continu ed)
Mnemo nic Desc ript ion Type R e gist er Bit Posi tion
LDRSN Local group D rate Select 0x00321 U
LERSN Local group E rate Select 0x00322 L
LFRSN Local group F rate Select 0x00322 U
LGRSN Local group G rate Select 0x00323 L
LHRSN Local group H rate Select 0x00323 U
LRISR Local reference input Select 0x00208
MBIEB Di ag MB micr oprocessor acces s Enable 0x00 146 4
MBPOB MB PCI error status Output 0x00127 2
MBREB Minibridge Enable 0x00103 6
MBSOB MB PCI queue status Output 0x0012C 2
MBTOB MB PCI timer status Output 0x00127 5
N1DSB NR1 divider inversion Select 0x00204 1
N1DSN NETREF1 divider input Select 0x00210 U
N1FEB NETREF1 fallback trigger Enable 0x0010B 3
N1ISN NETREF1 main input Select 0x00210 L
N1LOB NETREF1 latched error Output 0x00123 3
N1LSR NETREF1 local reference Select 0x00212
N1OEN NETREF1 output Enable 0x00221 L
N1SSB NR1 selector inversion Select 0x00204 0
N1TOB NETREF1 transient error Output 0x00121 3
N1WEB NETREF1 watchdog Enable 0x0010F 3
N1WSN NETREF1 watchdog Select 0x0010D L
N2DSB NR2 divider inversion Select 0x00204 3
N2DSN NETREF1 divider input Select 0x00214 U
N2FEB NETREF2 fallback trigger Enable 0x0010B 4
N2ISN NETREF1 main input Select 0x00214 L
N2LOB NETREF2 latched error Output 0x00123 4
N2LSR NETREF1 local reference Select 0x00216
N2OEN NETREF1 output Enable 0x00221 U
N2SSB NR2 selector inversion Select 0x00204 2
N2TOB NETREF2 transient error Output 0x00121 4
N2WEB NETREF2 watchdog Enable 0x0010F 4
N2WSN NETREF2 watchdog Select 0x0010D U
NR1DR NETREF1 Divide 0x00211
NR2DR NETREF2 Divide 0x00215
OLHLR Out-of -lock thr eshol d, hig h Load 0x00119
OLLLR Out- of -loc k threshol d, low Load 0 x00118
OOLE R O ut-of -l ock monitor Enab le 0x0011A
P1ISR APLL1 input Select 0x00202
P1RSR APLL1 rate Select 0x00203
P2RSR APLL2 rate Select 0x00207
PAFSR Phase align frame Enable 0x00107
PDTSB Diag PCI disc ard timer Select 0x00 146 5
Agere Systems Inc. 191
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
Appendix B. Register Bit Field Mnemonic Summary (continued)
Table 125. Mnemonic Summary, Sorted by Name (continued)
Mnemonic Description Type Register Bit Position
PMBEB PCI reset to minibridge Enable 0x00101 3
PRBEB PCI reset of back end Enable 0x00101 2
R0HLR MB_CS0 read cycle hold Load 0x00702
R0SLR MB_CS0 read cycle setup Load 0x00700
R0WLR MB_CS0 read cycle width Load 0x00701
R1HLR MB_CS1 read cycle hold Load 0x00712
R1SLR MB_CS1 read cycle setup Load 0x00710
R1WLR MB_CS1 read cycle width Load 0x00711
R2HLR MB_CS2 read cycle hold Load 0x00722
R2SLR MB_CS2 read cycle setup Load 0x00720
R2WLR MB_CS2 read cycle width Load 0x00721
R3HLR MB_CS3 read cycle hold Load 0x00732
R3SLR MB_CS3 read cycle setup Load 0x00730
R3WLR MB_CS3 read cycle width Load 0x00731
R4HLR MB_CS4 read cycle hold Load 0x00742
R4SLR MB_CS4 read cycle setup Load 0x00740
R4WLR MB_CS4 read cycle width Load 0x00741
R5HLR MB_CS5 read cycle hold Load 0x00752
R5SLR MB_CS5 read cycle setup Load 0x00750
R5WLR MB_CS5 read cycle width Load 0x00751
R6HLR MB_CS6 read cycle hold Load 0x00762
R6SLR MB_CS6 read cycle setup Load 0x00760
R6WLR MB_CS6 read cycle width Load 0x00761
R7HLR MB_CS7 read cycle hold Load 0x00772
R7SLR MB_CS7 read cycle setup Load 0x00770
R7WLR MB_CS7 read cycle width Load 0x00771
S2FEB /SCLKx2 fallback trigger Enable 0x0010A 7
S2LOB /SCLKx2 latched error Output 0x00122 7
S2TOB /SCLKx2 transient error Output 0x00120 7
S2WEB /SCLKx2 watchdog Enable 0x0010E 7
SCFEB SCLK fallback trigger Enable 0x0010A 6
SCLOB SCLK latched error Output 0x00122 6
SCLSB Diag state counter mode EN Select 0x00145 3
SCMLR Diag state counter mode low Load 0x00144
SCMSB Diag state counter carry Select 0x00145 5
SCRSR SCLK/SCLKx2 rate Select 0X00227
SCTOB SCLK transient error Output 0x00120 6
SCULP Diag state counter mode high Load 0x00145 2:0
SCWEB SCLK watchdog Enable 0x0010E 6
SRBEB Soft rese t of back end Enabl e 0 x0 010 1 0
SRESR Soft rese t Select 0x0010 0
TCOSR T clock output Select 0x00226
VEROR Version ID register Output 0x00128
W0HLR MB_CS0 write cycle hold Load 0x00706
192 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
Appendix B. Register Bit Field Mnemonic Summary (continued)
Table 125. Mnemonic Summary, Sorted by Name (continu ed)
Mnemo nic Desc ript ion Type R e gist er Bit Posi tion
W0SLR MB _CS 0 write cy cl e set up L oad 0x00 704
W0WLR MB_CS0 write cy cl e width L oad 0x00 705
W1HLR MB_CS1 write cycl e hol d L oad 0x00 716
W1SLR MB _CS 1 write cy cl e set up L oad 0x00 714
W1WLR MB_CS1 write cy cl e width L oad 0x00 715
W2HLR MB_CS2 write cycl e hol d L oad 0x00 726
W2SLR MB _CS 2 write cy cl e set up L oad 0x00 724
W2WLR MB_CS2 write cy cl e width L oad 0x00 725
W3HLR MB_CS3 write cycl e hol d L oad 0x00 736
W3SLR MB _CS 3 write cy cl e set up L oad 0x00 734
W3WLR MB_CS3 write cy cl e width L oad 0x00 735
W4HLR MB_CS4 write cycl e hol d L oad 0x00 746
W4SLR MB _CS 4 write cy cl e set up L oad 0x00 744
W4WLR MB_CS4 write cy cl e width L oad 0x00 745
W5HLR MB_CS5 write cycl e hol d L oad 0x00 756
W5SLR MB _CS 5 write cy cl e set up L oad 0x00 754
W5WLR MB_CS5 write cy cl e width L oad 0x00 755
W6HLR MB_CS6 write cycl e hol d L oad 0x00 766
W6SLR MB _CS 6 write cy cl e set up L oad 0x00 764
W6WLR MB_CS6 write cy cl e width L oad 0x00 765
W7HLR MB_CS7 write cycl e hol d L oad 0x00 776
W7SLR MB _CS 7 write cy cl e set up L oad 0x00 774
W7WLR MB_CS7 write cy cl e width L oad 0x00 775
XYSOB Active clock set Output 0x00124 3
Agere Systems Inc. 193
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
Appendix B. Register Bit Field Mnemonic Summary (continued)
Table 126. Mnemonic Summary, Sorted by Register
Mnemonic D escr ip tio n Type R egi ster Bit Position
SRESR Soft reset Se lec t 0 x0 010 0
SRBEB Soft reset of back end Enable 0x00101 0
HRBEB Hard reset of back end Enable 0x00101 1
PRBEB PCI reset of back end Enable 0x00101 2
PMBEB PCI reset to minibridge Enable 0x00101 3
LDBEB Local data bus Enable 0x00103 0
LCKEB Local clocks Enable 0x00103 1
HDBEB H1x0 data bus Enable 0x00103 2
HCKEB H1x0 clocks Enable 0x00103 3
GPIEB Ge ner al -p ur pos e I/O Enable 0x0 0103 4
FGREB Frame group Enable 0x00103 5
MBREB Minibridge Enable 0x00103 6
AIOEB All I/O (master) Enable 0x00103 7
GSREB Global subrate Enable 0x00105 7
DMMSP Data memory mode Select 0x00105 6:0
CSASR Clock set access Select 0x00106
FPASR Frame phase alignment Select 0x00107
PAFSR Phase align frame Enable 0x00107
FBCSR Fallback control Select 0x00108
FSMSN Fallback secondary mode Select 0x00109 L
FTRSN Fallback type Select 0x00109 U
CAFEB C8A fallback tri gger Enabl e 0x0010A 0
CBFEB C8B fallback tri gger Enabl e 0x0010A 1
CPFEB /C16+ fallback trigger Enable 0x0010A 2
CMFEB /C16– fallback trigger Enable 0x0010A 3
C4FEB /C4 fallback trigger Enable 0x0010A 4
C2FEB C2 fallback trigger Enable 0x0010A 5
SCFEB SCLK fallback trigger Enable 0x0010A 6
S2FEB /SCLKx2 fallback trigger Enable 0x0010A 7
FAFEB /FRAMEA fallback trigger Enable 0x0010B 0
FBFEB /FRAMEB fallbac k trigg er Enable 0x0010B 1
FCFEB /FR_COMP fallback trigger Enable 0x0010B 2
N1FEB NETREF1 fallback trigger Enable 0x0010B 3
N2FEB NETREF2 fallback trigger Enable 0x0010B 4
D1FEB DPLL1 sync trigger Enable 0x0010B 5
D2FEB DPLL2 sync trigger Enable 0x0010B 6
CAWSN C8A watc hdo g Se lect 0x0 010 C L
CBWSN C8B watchdog Se lect 0x0 010 C U
N1WSN NETREF1 watchdog Select 0x0010D L
N2WSN NETREF2 watchdog Select 0x0010D U
CAWEB C8A watchdo g Enable 0x0010E 0
CBWEB C8B watchdog Enable 0x0010E 1
CPWEB /C16+ watchdog Enable 0x0010E 2
194 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
Appendix B. Register Bit Field Mnemonic Summary (continued)
Table 126. Mnemonic Summary, Sorted by Register (continued)
Mnemonic Description Type Register Bit Position
CMWEB /C16– watchdog Enable 0x0010E 3
C4WEB /C4 watchdog Enable 0x0010E 4
C2WEB C2 watchdog Enable 0x0010E 5
SCWEB SCLK watchdog Enable 0x0010E 6
S2WEB /SCLKx2 watchdog Enable 0x0010E 7
FAWEB /FRA ME A watc hdo g Enable 0x 001 0F 0
FBWEB /FRAMEB watc hdo g Ena ble 0x0010F 1
FCWEB /F R_ CO MP watc hd og Enable 0x 001 0F 2
N1WEB NETREF1 watchdog Enable 0x0010F 3
N2WEB NETREF2 watchdog Enable 0x0010F 4
D1WEB DPLL1 sync watchdog Enable 0x0010F 5
D2WEB DPLL2 sync watchdog Enable 0x0010F 6
FSWEB Failsafe watchdog Enable 0x0010F 7
FSCSR Failsafe return command Select 0x00114
FSEER Failsafe enable Enable 0x00115
FSSSR Failsafe sensitivity Select 0x00116
OLLLR Out- of -loc k threshol d, low Load 0x00 118
OLHLR Out-of -lock thr eshol d, hig h L oad 0x 00 119
OOLE R O ut-of-lock mon ito r E na ble 0x0011A
CATOB C8A transient error Output 0x00120 0
CBTOB C8B transient error Output 0x00120 1
CPTOB /C16+ transient error Output 0x00120 2
CMTOB /C16– transient error Output 0x00120 3
C4TOB C4 transient error Output 0x00120 4
C2TOB C2 transient error Output 0x00120 5
SCTOB SCLK transient error Output 0x00120 6
S2TOB /SCLKx2 transient error Output 0x00120 7
FATOB /FRAME A trans ient error Output 0x00121 0
FBTOB /FRA ME B trans ient error Output 0x00121 1
FCTOB /FR_ C OMP tr ans ie nt error O utp ut 0x00 121 2
N1TOB NETREF1 transient error Output 0x00121 3
N2TOB NETREF2 transient error Output 0x00121 4
D1TOB DPLL1 sync transient error Output 0x00121 5
D2TOB DPLL2 sync transient error Output 0x00121 6
FSTOB Failsafe transient error Output 0x00121 7
CALOB C8A latched error Output 0x00122 0
CBLOB C8B latched error Output 0x00122 1
CPLOB /C16+ latched error Output 0x00122 2
CMLOB /C16– latched error Output 0x00122 3
C4LOB C4 latched error Output 0x00122 4
C2LOB C2 latched error Output 0x00122 5
SCLOB SCLK latched error Output 0x00122 6
S2LOB /SCLKx2 latched error Output 0x00122 7
FALOB /F RA ME A latche d error Output 0x00 123 0
Agere Systems Inc. 195
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
Appendix B. Register Bit Field Mnemonic Summary (continued)
Table 126. Mnemonic Summary, Sorted by Register (continued)
Mnemonic D escr ip tio n Type R egi ster Bit Position
FBLOB /FRAMEB latched error Output 0x00123 1
FCLOB /FR_COMP latched error Output 0x00123 2
N1LOB NETREF1 latched error Output 0x00123 3
N2LOB NETREF2 latched error Output 0x00123 4
D1LOB DPLL1 sync latched error Output 0x00123 5
D2LOB DPLL2 sync latched error Output 0x00123 6
FSLOB Failsafe latched error Output 0x00123 7
FFPOB FORCE_FALLBACK pending Output 0x00124 0
CFPOB CLEAR_FALLBACK pending Output 0x00124 1
GOPOB Go clocks pending Output 0x00124 2
XYSOB Activ e cl oc k set Output 0 x0 012 4 3
FBFOB Fallback enable status Output 0x00124 7
FBSOP Fallback states Output 0x00124 6:4
DMPOB Data memory PCI error status Output 0x00127 0
MBPOB MB PCI error status Output 0x0012 7 2
DMTOB Data memory PCI timer status Output 0x00127 3
MBTOB MB PCI timer status Out put 0x0012 7 5
CFBOB Fallback status Output 0x00127 6
CFSOB Failsafe status Output 0x00127 7
VEROR Version ID register Output 0x00128
IDLOR Device ID low Output 0x0012A
IDHOR Device ID high Output 0x0012B
MBSOB MB PCI queue status Output 0x0012C 2
DMSOB Data memory PCI queue status Output 0x0012C 0
FT0EB FG0 testpoint En abl e 0x0 014 0 0
FT1EB FG1 testpoint En abl e 0x0 014 0 1
FT2EB FG2 testpoint En abl e 0x0 014 0 2
FT3EB FG3 testpoint En abl e 0x0 014 0 3
FT4EB FG4 testpoint En abl e 0x0 014 0 4
FT5EB FG5 testpoint En abl e 0x0 014 0 5
FT6EB FG6 testpoint En abl e 0x0 014 0 6
FT7EB FG7 testpoint En abl e 0x0 014 0 7
FTPSR FG testpoint MUX Select 0x00141
GT0EB GP0 testpoint Enable 0x00142 0
GT1EB GP1 testpoint Enable 0x00142 1
GT2EB GP2 testpoint Enable 0x00142 2
GT3EB GP3 testpoint Enable 0x00142 3
GT4EB GP4 testpoint Enable 0x00142 4
GT5EB GP5 testpoint Enable 0x00142 5
GT6EB GP6 testpoint Enable 0x00142 6
GT7EB GP7 testpoint Enable 0x00142 7
GTPSR GP testpoint MUX Select 0x00143
SCMLR Diagnostic, state counter mode low Load 0x00144
196 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
Appendix B. Register Bit Field Mnemonic Summary (continued)
Table 126. Mnemonic Summary, Sorted by Register (continued)
Mnem onic Description Type Register Bit Position
SCLSB Diagno st ic , state counte r mod e EN Select 0x 001 45 3
FRMSB Diagnostic, /FR_COMP input Select 0x00145 4
SCMSB Diagno st ic , state counte r carr y Select 0x001 45 5
SCULP D iagno stic, state counter mod e high L oad 0x00145 2:0
FB1SB APLL1 feedback reset Select 0x00146 1
FB2SB APLL2 feedback reset Select 0x00146 2
MBIEB Diagnostic, MB microprocessor access Enable 0x00146 4
PDTSB Diagnostic, PCI discard timer Select 0x00146 5
IEXLP Diagnostic, interrupt control EXTERR Load 0x00148 1:0
ISYLP Diagnostic, interrupt control SYSERR Load 0x00148 3:2
ICKLP Diagnostic, interrupt control CLKERR Load 0x00148 5:4
ICDSP Diagnostic, interrupt control mode Select 0x00148 7:6
IASLR Diagnostic, SYSERR assertion Load 0x00149
CFLLR Diagnostic sync-to-frame low Load 0x0014A
CFHLN Diagnostic sync-to-frame high Load 0x0014B L
CFSEN Diagnostic sync-to-frame EN Enable 0x0014B U
CKMSR Clock main Select 0x00200
CKMDR Clock main Divide 0x00201
P1ISR APLL1 input Select 0x00202
P1RSR APLL1 rate Select 0x00203
N1SSB NR1 selecto r inver s ion Sele ct 0x00204 0
N1DSB NR1 div i der inv ersion Select 0x002 04 1
N2SSB NR2 selecto r inver s ion Sele ct 0x00204 2
N2DSB NR2 divider inversion Select 0x 002 04 3
ICMSB Inv ert c l ock main Select 0x 002 04 4
CKRDR Clock resource Divide 0x00205
P2RSR APLL2 rate Select 0x00207
LRISR Local reference input Select 0x00208
D1ISR DPLL1 input Select 0x0020A
D1RSR DPLL1 rate Select 0x0020B
IR0SB Invert local reference 0 Select 0x0020C 0
IR1SB Invert local reference 1 Select 0x0020C 1
IR2SB Invert local reference 2 Select 0x0020C 2
IR3SB Invert local reference 3 Select 0x0020C 3
IR4SB Invert local reference 4 Select 0x0020C 4
IR5SB Invert local reference 5 Select 0x0020C 5
IR6SB Invert local reference 6 Select 0x0020C 6
IR7SB Invert local reference 7 Select 0x0020C 7
D2ISR DPLL2 input Select 0x0020E
D2RSR DPLL2 rate Select 0x0020F
N1ISN NETR EF1 mai n inpu t Select 0x 002 10 L
N1DSN NE TR EF1 div id er input Select 0x002 10 U
NR1DR NETREF1 Divide 0x00211
N1LSR NE TR EF1 loc al referen ce Sele ct 0x00212
Agere Systems Inc. 197
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
Appendix B. Register Bit Field Mnemonic Summary (continued)
Table 126. Mnemonic Summary, Sorted by Register (continued)
Mnemonic D escr ip tio n Type R egi ster Bit Position
N2ISN NETREF1 main input Select 0x00214 L
N2DSN NETREF1 divider input Select 0x00214 U
NR2DR NETREF2 Divide 0x00215
N2LSR NETREF1 local reference Select 0x00216
CCOEN C clocks output Enable 0x00220 L
ABOEN A and B clocks output Enable 0x00220 U
N1OEN NETREF1 output Enable 0x00221 L
N2OEN NETREF1 output Enable 0x00221 U
FRWSR /FR_COMP width Select 0x00222
ACRSN A clocks rate Select 0x00223 L
BCRSN B clocks rate Select 0x00223 U
CCSEN C clocks separate Enable 0x00224 L
FRSEN /FR_COMP separate Enable 0x00224 U
TCOSR T clock output Select 0x00226
SCRSR SCLK/SCLKx2 rate Select 0x00227
LC0SR Local clock 0 output Select 0x00228
LC1SR Local clock 1 output Select 0x00229
LC2SR Local clock 2 output Select 0x0022A
LC3SR Local clock 3 output Select 0x0022B
HARSN H1x0 group A rate Select 0x00300 L
HBRSN H1x0 group B rate Select 0x00300 U
HCRSN H1x0 group C rate Select 0x00301 L
HDRSN H1x0 group D rate Select 0x00301 U
HERSN H1x0 group E rate Select 0x00302 L
HFRSN H1x0 group F rate Select 0x00302 U
HGRSN H1x0 group G rate Select 0x00303 L
HHRSN H1x0 group H rate Select 0x00303 U
LARSN Local group A rate Select 0x00320 L
LBRSN Local group B rate Select 0x00320 U
LCRSN Local group C rate Select 0x00321 L
LDRSN Local group D rate Select 0x00321 U
LERSN Local group E rate Select 0x00322 L
LFRSN Local group F rate Select 0x00322 U
LGRSN Local group G rate Select 0x00323 L
LHRSN Local group H rate Select 0x00323 U
F0LLR Frame 0 lower start time Load 0x00400
F0ULR Frame 0 upper start time Load 0x00401
F0ISB Frame 0 pulse inversion Enable 0x00402 7
F0WSP Frame 0 pulse width Select 0x00402 6:0
F0RSR Frame 0 pulse width rate Select 0x00403
F1LLR Frame 1 lower start time Load 0x00410
F1ULR Frame 1 upper start time Load 0x00411
F1ISB Frame 1 pulse inversion Enable 0x00412 7
198 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
Appendix B. Register Bit Field Mnemonic Summary (continued)
Table 126. Mnemonic Summary, Sorted by Register (continued)
Mnemonic Description Type Register Bit Position
F1WSP F rame 1 puls e width Select 0x 00 412 6:0
F1RSR F rame 1 puls e width rate Sel ec t 0x00 413
F2LLR Frame 2 lowe r start time Load 0x00420
F2ULR Frame 2 upper start time Load 0x00421
F2ISB Frame 2 pulse inversion Enable 0x00422 7
F2WSP F rame 2 puls e width Select 0x 00 422 6:0
F2RSR F rame 2 puls e width rate Sel ec t 0x00 423
F3LLR Frame 3 lowe r start time Load 0x00430
F3ULR Frame 3 upper start time Load 0x00431
F3ISB Frame 3 pulse inversion Enable 0x00432 7
F3WSP F rame 3 puls e width Select 0x 00 432 6:0
F3RSR F rame 3 puls e width rate Sel ec t 0x00 433
F4LLR Frame 4 lowe r start time Load 0x00440
F4ULR Frame 4 upper start time Load 0x00441
F4ISB Frame 4 pulse inversion Enable 0x00442 7
F4WSP F rame 4 puls e width Select 0x 00 442 6:0
F4RSR F rame 4 puls e width rate Sel ec t 0x00 443
F5LLR Frame 5 lowe r start time Load 0x00450
F5ULR Frame 5 upper start time Load 0x00451
F5ISB Frame 5 pulse inversion Enable 0x00452 7
F5WSP F rame 5 puls e width Select 0x 00 452 6:0
F5RSR F rame 5 puls e width rate Sel ec t 0x00 453
F6LLR Frame 6 lowe r start time Load 0x00460
F6ULR Frame 6 upper start time Load 0x00461
F6ISB Frame 6 pulse inversion Enable 0x00462 7
F6WSP F rame 6 puls e width Select 0x 00 462 6:0
F6RSR F rame 6 puls e width rate Sel ec t 0x00 463
F7LLR Frame 7 lowe r start time Load 0x00470
F7ULR Frame 7 upper start time Load 0x00471
F7ISB Frame 7 pulse inversion Enable 0x00472 7
F7WSP F rame 7 puls e width Select 0x 00 472 6:0
F7RSR F rame 7 puls e width rate Sel ec t 0x00 473
FCLLR Frame group 7 lower count Load 0x00474
FCULR Frame group 7 upper count Load 0x00475
F7MSR Frame 7 mode Select 0x00476
FCISB FG7 timer invert output Select 0x00477 7
F7WSN FG7 timer pulse width Select 0x00477 L
F7SSP FG7 timer pulse shape Select 0x00477
F0IOB FGIO 0 data Load 0x00480 0
F1IOB FGIO 1 data Load 0x00480 1
F2IOB FGIO 2 data Load 0x00480 2
F3IOB FGIO 3 data Load 0x00480 3
F4IOB FGIO 4 data Load 0x00480 4
F5IOB FGIO 5 data Load 0x00480 5
Agere Systems Inc. 199
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
Appendix B. Register Bit Field Mnemonic Summary (continued)
Table 126. Mnemonic Summary, Sorted by Register (continued)
Mnemonic D escr ip tio n Type R egi ster Bit Position
F6IOB FGIO 6 data Load 0x00480 6
F7IOB FGIO 7 data Load 0x00480 7
F0MEB FGIO 0 read mask Enable 0x00481 0
F1MEB FGIO 1 read mask Enable 0x00481 1
F2MEB FGIO 2 read mask Enable 0x00481 2
F3MEB FGIO 3 read mask Enable 0x00481 3
F4MEB FGIO 4 read mask Enable 0x00481 4
F5MEB FGIO 5 read mask Enable 0x00481 5
F6MEB FGIO 6 read mask Enable 0x00481 6
F7MEB FGIO 7 read mask Enable 0x00481 7
F0DSB FGIO 0 R/W direction Select 0x00482 0
F1DSB FGIO 1 R/W direction Select 0x00482 1
F2DSB FGIO 2 R/W direction Select 0x00482 2
F3DSB FGIO 3 R/W direction Select 0x00482 3
F4DSB FGIO 4 R/W direction Select 0x00482 4
F5DSB FGIO 5 R/W direction Select 0x00482 5
F6DSB FGIO 6 R/W direction Select 0x00482 6
F7DSB FGIO 7 R/W direction Select 0x00482 7
G0IOB GPIO 0 data Load 0x00500 0
G1IOB GPIO 1 data Load 0x00500 1
G2IOB GPIO 2 data Load 0x00500 2
G3IOB GPIO 3 data Load 0x00500 3
G4IOB GPIO 4 data Load 0x00500 4
G5IOB GPIO 5 data Load 0x00500 5
G6IOB GPIO 6 data Load 0x00500 6
G7IOB GPIO 7 data Load 0x00500 7
G0MEB PIO 0 read mask Enable 0x00501 0
G1MEB GPIO 1 read mask Enable 0x00501 1
G2MEB GPIO 2 read mask Enable 0x00501 2
G3MEB GPIO 3 read mask Enable 0x00501 3
G4MEB GPIO 4 read mask Enable 0x00501 4
G5MEB GPIO 5 read mask Enable 0x00501 5
G6MEB GPIO 6 read mask Enable 0x00501 6
G7MEB GPIO 7 read mask Enable 0x00501 7
G0DSB GPIO 0 R/W direction Select 0x00502 0
G1DSB GPIO 1 R/W direction Select 0x00502 1
G2DSB GPIO 2 R/W direction Select 0x00502 2
G3DSB GPIO 3 R/W direction Select 0x00502 3
G4DSB GPIO 4 R/W direction Select 0x00502 4
G5DSB GPIO 5 R/W direction Select 0x00502 5
G6DSB GPIO 6 R/W direction Select 0x00502 6
G7DSB GPIO 7 R/W direction Select 0x00502 7
G0OEB GPIO 0 override Enable 0x00503 0
G1OEB GPIO 0 override Enable 0x00503 1
200 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
Appendix B. Register Bit Field Mnemonic Summary (continued)
Table 126. Mnemonic Summary, Sorted by Register (continued)
Mnemonic Description Type Register Bit Position
G2OEB G PI O 2 overrid e Ena ble 0x00 503 2
JF0OB Interrupt pending FGIO 0 Output 0x00600 0
JF1OB Interrupt pending FGIO 1 Output 0x00600 1
JF2OB Interrupt pending FGIO 2 Output 0x00600 2
JF3OB Interrupt pending FGIO 3 Output 0x00600 3
JF4OB Interrupt pending FGIO 4 Output 0x00600 4
JF5OB Interrupt pending FGIO 5 Output 0x00600 5
JF6OB Interrupt pending FGIO 6 Output 0x00600 6
JF7OB Interrupt pending FGIO 7 Output 0x00600 7
JF0EB Interrupt from FGIO 0 Enable 0x00601 0
JF1EB Interrupt from FGIO 1 Enable 0x00601 1
JF2EB Interrupt from FGIO 2 Enable 0x00601 2
JF3EB Interrupt from FGIO 3 Enable 0x00601 3
JF4EB Interrupt from FGIO 4 Enable 0x00601 4
JF5EB Interrupt from FGIO 5 Enable 0x00601 5
JF6EB Interrupt from FGIO 6 Enable 0x00601 6
JF7EB Interrupt from FGIO 7 Enable 0x00601 7
IF0SB Invert interrupt FGIO 0 Select 0x006 03 0
IF1SB Invert interrupt FGIO 1 Select 0x006 03 1
IF2SB Invert interrupt FGIO 2 Select 0x006 03 2
IF3SB Invert interrupt FGIO 3 Select 0x006 03 3
IF4SB Invert interrupt FGIO 4 Select 0x006 03 4
IF5SB Invert interrupt FGIO 5 Select 0x006 03 5
IF6SB Invert interrupt FGIO 6 Select 0x006 03 6
IF7SB Invert interrupt FGIO 7 Select 0x006 03 7
JG0OB Interrupt pending GPIO 0 Output 0x00604 0
JG1OB Interrupt pending GPIO 1 Output 0x00604 1
JG2OB Interrupt pending GPIO 2 Output 0x00604 2
JG3OB Interrupt pending GPIO 3 Output 0x00604 3
JG4OB Interrupt pending GPIO 4 Output 0x00604 4
JG5OB Interrupt pending GPIO 5 Output 0x00604 5
JG6OB Interrupt pending GPIO 6 Output 0x00604 6
JG7OB Interrupt pending GPIO 7 Output 0x00604 7
JG0EB Interrupt from GPIO 0 Enable 0x00605 0
JG1EB Interrupt from GPIO 1 Enable 0x00605 1
JG2EB Interrupt from GPIO 2 Enable 0x00605 2
JG3EB Interrupt from GPIO 3 Enable 0x00605 3
JG4EB Interrupt from GPIO 4 Enable 0x00605 4
JG5EB Interrupt from GPIO 5 Enable 0x00605 5
JG6EB Interrupt from GPIO 6 Enable 0x00605 6
JG7EB Interrupt from GPIO 7 Enable 0x00605 7
IG0SB Invert interrupt GPIO 0 Select 0x00607 0
IG1SB Invert interrupt GPIO 1 Select 0x00607 1
IG2SB Invert interrupt GPIO 2 Select 0x00607 2
Agere Systems Inc. 201
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
Appendix B. Register Bit Field Mnemonic Summary (continued)
Table 126. Mnemonic Summary, Sorted by Register (continued)
Mnemonic D escr ip tio n Type R egi ster Bit Position
IG3SB Invert interrupt GPIO 3 Select 0x00607 3
IG4SB Invert interrupt GPIO 4 Select 0x00607 4
IG5SB Invert interrupt GPIO 5 Select 0x00607 5
IG6SB Invert interrupt GPIO 6 Select 0x00607 6
IG7SB Invert interrupt GPIO 7 Select 0x00607 7
JS0OB Interrupt pending SYSERR 0 Output 0x00608 0
JS1OB Interrupt pending SYSERR 1 Output 0x00608 1
JS2OB Interrupt pending SYSERR 2 Output 0x00608 2
JS3OB Interrupt pending SYSERR 3 Output 0x00608 3
JS4OB Interrupt pending SYSERR 4 Output 0x00608 4
JS5OB Interrupt pending SYSERR 5 Output 0x00608 5
JS6OB Interrupt pending SYSERR 6 Output 0x00608 6
JS7OB Interrupt pending SYSERR 7 Output 0x00608 7
JS8OB Interrupt pending SYSERR 8 Output 0x00609 0
JS9OB Interrupt pending SYSERR 9 Output 0x00609 1
JSAOB Interrupt pending SYSERR A Output 0x00609 2
JSBOB Interrupt pending SYSERR B Output 0x00609 3
JSCOB Interrupt pending SYSERR C Output 0x00609 4
JSDOB Interrupt pending SYSERR D Output 0x00609 5
JSEOB Interrupt pending SYSERR E Output 0x00609 6
JSFOB Interrupt pending SYSERR F Output 0x00609 7
JS0EB Interrupt from SYSERR 0 Enable 0x0060A 0
JS1EB Interrupt from SYSERR 1 Enable 0x0060A 1
JS2EB Interrupt from SYSERR 2 Enable 0x0060A 2
JS3EB Interrupt from SYSERR 3 Enable 0x0060A 3
JS4EB Interrupt from SYSERR 4 Enable 0x0060A 4
JS5EB Interrupt from SYSERR 5 Enable 0x0060A 5
JS6EB Interrupt from SYSERR 6 Enable 0x0060A 6
JS7EB Interrupt from SYSERR 7 Enable 0x0060A 7
JS8EB Interrupt from SYSERR 8 Enable 0x0060B 0
JS9EB Interrupt from SYSERR 9 Enable 0x0060B 1
JSAEB Interrupt from SYSERR A Enable 0x0060B 2
JSBEB Interrupt from SYSERR B Enable 0x0060B 3
JSCEB Interrupt from SYSERR C Enable 0x0060B 4
JSDEB Interrupt from SYSERR D Enable 0x0060B 5
JSEEB Interrupt from SYSERR E Enable 0x0060B 6
JSFEB Interrupt from SYSERR F Enable 0x0060B 7
JC0OB Interrupt pending CLKERR 0 Output 0x0060C 0
JC1OB Interrupt pending CLKERR 1 Output 0x0060C 1
JC2OB Interrupt pending CLKERR 2 Output 0x0060C 2
JC3OB Interrupt pending CLKERR 3 Output 0x0060C 3
JC4OB Interrupt pending CLKERR 4 Output 0x0060C 4
JC5OB Interrupt pending CLKERR 5 Output 0x0060C 5
JC6OB Interrupt pending CLKERR 6 Output 0x0060C 6
202202 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
Appendix B. Register Bit Field Mnemonic Summary (continued)
Table 126. Mnemonic Summary, Sorted by Register (continued)
Mnemonic Description Type Register Bit Position
JC7OB Interrupt pending CLKERR 7 Output 0x0060C 7
JC8OB Interrupt pending CLKERR 8 Output 0x0060D 0
JC9OB Interrupt pending CLKERR 9 Output 0x0060D 1
JCAOB Interrupt pending CLKERR A Output 0x0060D 2
JCBOB Interrupt pending CLKERR B Output 0x0060D 3
JCCOB Interrupt pending CLKERR C Output 0x0060D 4
JCDOB Interrupt pending CLKERR D Output 0x0060D 5
JCEOB Interrupt pending CLKERR E Output 0x0060D 6
JCFOB Interrupt pending CLKERR F Output 0x0060D 7
JC0EB Interrupt from CLKERR 0 Enable 0x0060E 0
JC1EB Interrupt from CLKERR 1 Enable 0x0060E 1
JC2EB Interrupt from CLKERR 2 Enable 0x0060E 2
JC3EB Interrupt from CLKERR 3 Enable 0x0060E 3
JC4EB Interrupt from CLKERR 4 Enable 0x0060E 4
JC5EB Interrupt from CLKERR 5 Enable 0x0060E 5
JC6EB Interrupt from CLKERR 6 Enable 0x0060E 6
JC7EB Interrupt from CLKERR 7 Enable 0x0060E 7
JC8EB Interrupt from CLKERR 8 Enable 0x0060F 0
JC9EB Interrupt from CLKERR 9 Enable 0x0060F 1
JCAEB Interrupt from CLKERR A Enable 0x0060F 2
JCBEB Interrupt from CLKERR B Enable 0x0060F 3
JCCEB Interrupt from CLKERR C Enable 0x0060F 4
JCDEB Interrupt from CLKERR D Enable 0x0060F 5
JCEEB Interrupt from CLKERR E Enable 0x0060F 6
JCFEB Interrupt from CLKERR F Enable 0x0060F 7
JAMSR Interrupt arbitration mode Select 0x00610
JSPSR Interrupt SYSERR-to-PCI_INTA Select 0x00611
JSOSR Interrupt SYSERR output mode Select 0x00612
JCOSR Interrupt CLKERR output mode Select 0x00613
JSWSR Interrupt SYSERR pulse width Select 0x00616
JCWSR Interrupt CLKERR pulse width Select 0x00617
JISOR Interrupt in-service Output 0x006FC
R0SLR MB_CS0 read cycle setup Load 0x00700
R0WLR MB_CS0 read cycle width Load 0x00701
R0HLR MB_CS0 read cycle hold Load 0x00702
A0SLR M B _CS0 addr es s setup Load 0x00703
W0SLR MB_CS0 write cycle setup Load 0x00704
W0WLR MB_CS0 write cycle width Load 0x00705
W0HLR MB_CS0 write cycle hold Load 0x00706
R1SLR MB_CS1 read cycle setup Load 0x00710
R1WLR MB_CS1 read cycle width Load 0x00711
R1HLR MB_CS1 read cycle hold Load 0x00712
A1SLR M B _CS1 addr es s setup Load 0x00713
Agere Systems Inc. 203
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
Appendix B. Register Bit Field Mnemonic Summary (continued)
Table 126. Mnemonic Summary, Sorted by Register (continued)
Mnemonic Description Type Register Bit Position
W1SLR M B_CS1 write cycl e set up Load 0x00714
W1WLR MB_C S1 write cy cl e width Load 0x00715
W1HLR M B_C S1 write cy cl e hol d Load 0x 00 716
A1HLR M B_C S1 addr e ss hold L oad 0x00717
R2SLR MB_CS2 read cycle setup Load 0x00720
R2WLR MB_CS2 read cycle width Load 0x00721
R2HLR MB_CS2 read cycle hold Load 0x00722
A2SLR M B_C S2 addr e ss setup Load 0x00723
W2SLR M B_CS2 write cycl e set up Load 0x00724
W2WLR MB_C S2 write cy cl e width Load 0x00725
W2HLR M B_C S2 write cy cl e hol d Load 0x 00 726
A2HLR M B_C S2 addr e ss hold L oad 0x00727
R3SLR MB_CS3 read cycle setup Load 0x00730
R3WLR MB_CS3 read cycle width Load 0x00731
R3HLR MB_CS3 read cycle hold Load 0x00732
A3SLR M B_C S3 addr e ss setup L oad 0x00733
W3SLR M B_CS3 write cycl e set up Load 0x00734
W3WLR MB_C S3 write cy cl e width Load 0x00735
W3HLR M B_C S3 write cy cl e hol d Load 0x 00 736
A3HLR M B_C S3 addr e ss hold L oad 0x00737
R4SLR MB_CS4 read cycle setup Load 0x00740
R4WLR MB_CS4 read cycle width Load 0x00741
R4HLR MB_CS4 read cycle hold Load 0x00742
A4SLR M B_C S4 addr e ss setup Load 0x00743
W4SLR M B_CS4 write cycl e set up Load 0x00744
W4WLR MB_C S4 write cy cl e width Load 0x00745
W4HLR M B_C S4 write cy cl e hol d Load 0x 00 746
A4HLR M B_C S4 addr e ss hold L oad 0x00747
R5SLR MB_CS5 read cycle setup Load 0x00750
R5WLR MB_CS5 read cycle width Load 0x00751
R5HLR MB_CS5 read cycle hold Load 0x00752
A5SLR M B_C S5 addr e ss setup L oad 0x00753
W5SLR M B_CS5 write cycl e set up Load 0x00754
W5WLR MB_C S5 write cy cl e width Load 0x00755
W5HLR M B_C S5 write cy cl e hol d Load 0x 00 756
A5HLR M B_C S5 addr e ss hold L oad 0x00757
R6SLR MB_CS6 read cycle setup Load 0x00760
R6WLR MB_CS6 read cycle width Load 0x00761
R6HLR MB_CS6 read cycle hold Load 0x00762
A6SLR M B_C S6 addr e ss setup L oad 0x00763
W6SLR M B_CS6 write cycl e set up Load 0x00764
W6WLR MB_C S6 write cy cl e width Load 0x00765
W6HLR M B_C S6 write cy cl e hol d Load 0x 00 766
A6HLR M B_C S6 addr e ss hold L oad 0x00767
204204 Agere Systems Inc.
Data Sheet
February 2004
Ambassador T8110 PCI-Based H.100/H.110 Switch
Appendix B. Register Bit Field Mnemonic Summary (continued)
Table 126. Mnemonic Summary, Sorted by Register (continued)
Mnemonic Description Type Register Bit Position
R7SLR MB_CS7 read cycle setup Load 0x00770
R7WLR MB_CS7 read cycle width Load 0x00771
R7HLR MB_CS7 read cycle hold Load 0x00772
A7SLR MB _CS7 addr es s setup Load 0x00773
W7SLR MB _CS 7 writ e cycl e set up Load 0x00774
W7WLR MB_CS7 write cy cl e width Load 0x00775
W7HLR MB_CS7 write cycl e hol d Load 0x00 776
A7HLR MB _CS7 addr es s hold L oad 0x00777
IC0SB Invert MB CS0 strobe Select 0x00780 0
IC1SB Invert MB CS1 strobe Select 0x00780 1
IC2SB Invert MB CS2 strobe Select 0x00780 2
IC3SB Invert MB CS3 strobe Select 0x00780 3
IC4SB Invert MB CS4 strobe Select 0x00780 4
IC5SB Invert MB CS5 strobe Select 0x00780 5
IC6SB Invert MB CS6 strobe Select 0x00780 6
IC7SB Invert MB CS7 strobe Select 0x00780 7
IMWSB Invert MB write strobe Select 0x00781 0
IMRSB Invert MB read strobe Select 0x00781 1
IPRSB Invert MB PCIRST, forwarded Select 0x00781 2
Agere Systems Inc. 205
Dat a Sheet
February 2004 Ambassador T8110 PCI-Based H.100/H.110 Switch
Significant Changes Between the August 2002 and June 2003 Release
1. Virtual Channels: the packet payload engine has been de-featured. All references to this feature have been
removed from the datasheet. The virtual channel memory region and all related registers and/or register bits are
now listed as reserved. Note that since virtual channels are not used, the T8110 will operate only as a PCI tar-
get (it will never initiate PCI transactions).
The following pins were affected:
!PCI_DEVSEL#, PCI_STOP#, and PCI_TRDY# are now only outputs.
!PCI_FRAME# and PCI_IRDY# are now only inputs.
!PCI_GNT# is unused and should be tied to VDD.
!PCI_REQ# is unused and can be left unconnected.
The following registers were affected:
2. LREF Pairing: when LREF pairing is used, the bit clock must be 2.048 MHz. Proper LREF pair polarity configu-
ration is now described in Section 7.4.1.3.
3. /FR_COMP: the T8110 can only slave to a 122 ns wide /FR_COMP signal as described in Section 7.2.2.
4. Status register 5 is now listed as reserved because its functionality was not implemented.
Significant Changes Between the June 2003 and November 2003 Release
Changes that were made to this document (since Revision 3) are listed below.
Table 127. Affected Registers
Register Description Action
0x00100 Soft Reset Reset NOTIFY_PENDING, NOTIFY QUEUE com-
mands no longer valid.
0x00104 VCSTART Reserved.
0x00105 Data Memory Mode Select Data memory is only configurable for time-slot
switching.
0x00110—0x00113 External Buffer Descriptor Table Reserved.
0x00126 Status 6, System Errors, Lower Reserved.
0x00127 Status 7, System Errors, Upper Bit 4 (VCTOB) and bit 1 (VCPOB) are reserved.
0x0012C Status 8 Bit 1 (VCSOB) is reserved.
0x0012D Status 9, Miscellaneous Status Reserved.
0x00146 Diag6, Miscellaneous Diag. Low Bit 3 (VCMEB) is reserved.
0x00147 Diag7, External Buffer Retry Timer Reserved.
0x006FE Interrupt In-Service Byte 2 Reserved.
0x006FF Interrupt In-Service Byte 3 Reserved.
Table 128. Changes
Page Description
page 13 Added PEN, TESTMODE Interface Signals to Table 7.
page 20 Added PEN, TESTMODE pins to Table 9.
page 152 Added thermal parameter definitions and values.
page 161 Removed signals listed as no connects.
page 179 Changed boundary of Constant Delay Reverse connections.
Copyright © 2004 Agere Systems Inc.
All Rights Reserved
February 2004
DS04-023SWCH (Replaces DS03-131SWCH and AY03-022SWCH)
Agere Systems Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application.
Agere, Agere Systems, the Agere logo are trademarks and Ambassador is a registered trademark of Agere Systems Inc.
For additional information, contact your Agere Systems Account Manager or the following:
INTERNET: http://www.agere.com
E-MAIL: docmaster@agere.com
N. AMERICA: Agere Systems Inc., Lehigh Valley Central Campus, Room 10A-301C, 1110 American Parkway NE, Allentown, PA 18109-91386
1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106 )
ASIA: Agere Systems Hong Kong Ltd., Suites 3201 & 3210-12, 32/F, Tower 2, The Gateway, Harbour City, Kowloon
Tel. (852) 3129-2000, FAX (852) 3129-2020
CHINA: (86) 21-5 46 14688 (Shanghai ), ( 86 ) 755 - 25 881122 (Shenzhen)
JAPAN: (81) 3-5421-1600 (Tokyo), KOREA: (82) 2-767-1850 (Seoul), SINGAPORE: (65) 77 8-8833, TAIWAN: (886) 2-2725-585 8 (Taipei)
EUROPE: Tel. (44) 7000 624624, FAX (44) 1344 488 045
Motorola is a registered trademark of Motorola, Inc.
Intel is a registered trademark of Intel Corporation.
AT&T is a registered trademark of AT&T Corporation.
CompactPCI is a registered trademark of the PCI Industrial Computer Manufacturers Group.
MVIP is a trademark of Natural MicroSystems Corporation.
IEEE is a registered trademark of The Institute of Electrical and Electronic Engineers, Inc.